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Abstract—Deep penetration of personal computing devices and high-speed Internet has enabled everyone to be a broadcaster. In this
crowdsourced live streaming service, numerous amateur broadcasters lively stream their video contents to viewers around the world.
Consequently, these broadcasters generate a massive amount of video data. The set of video sources and recipients are big as well,
so are demand for the storage and computational resources. Transcoding becomes a must to better service these viewers with
different network and device configurations. However, the massive amount of video data contributed by countless channels even
makes cloud significantly expensive for providing transcoding services to the whole community. In this paper, inspired by the paradigm
of Edge Computing, we propose a Cloud-edge collaborative system which combines the idle end-viewers’ resources with the cloud

to transcode the massive amount of videos at scale. Specifically, we put forward tailored viewer selection algorithms after empirically
analyses the viewer behavior data. In the meantime, we propose auction-based payment schemes to motivate these viewers
participating in the transcoding. Large-scale trace-driven simulations demonstrate the superiority of our approach in cost reduction and
service stability. We further implement a prototype in PlanetLab to prove the feasibility of our design.

Index Terms—Cloud computing, edge computing, video transcoding, algorithm design

1 INTRODUCTION

THE advances of personal computing devices and the
prevalence of high-speed Internet access have gener-
ated unprecedented amount of video traffic. Global Internet
based traffic is expected to reach 3.3 ZB by 2021. Among
this, videos are the dominant data format, which stand for
82% of the all consumer Internet traffic. Specifically, live
videos, contributed by the emerging crowdsourced live
streaming services, is becoming the prominent video format
chosen by users to share their lives to the world. Live videos
will account for 13 percent of video traffic by 2021 and
will have increased 15-fold from 2016 to 2021. In the crowd-
sourced live streaming services, numerous amateur broad-
casters lively stream their video contents to viewers around
the world every second, every where. Fellow viewers watch-
ing the same channel constantly interact with each other
and the channel broadcaster through chatting messages.
Twitch TV, one of the most successful examples, hosts over
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two million broadcasters per month and supports 9.7 million
daily active viewers in 2016 [1].

Similar to other traditional video streaming services
over the Internet, interactive live streaming service pro-
viders also transcode same video content into different
quality versions and distribute the appropriate version
to better match the varying network conditions of end
users and provide the best possible user experience [2].
These transcoding tasks are extreme CPU-intensive and
require significant hardware. Cloud thus becomes a nat-
ural choice for most providers to conduct such compute-
intensive transcoding tasks due to its elasticity and the
“pay-as-you-go” billing model. For example, Netflix
builds its whole video transcoding and delivering infra-
structure in the cloud [3]. After acquired by Amazon,
Twitch has also finished its migration of online chatting
servers to the AWS in 2016 and keep expanding its
server capacity to meet the transcoding demand.

The massive number of concurrent live channels, hetero-
geneous source contents and device configurations of end
users in the interactive live streaming services generate a
substantial amount of transcoding tasks. For example,
overall Twitch hosted over two million unique monthly
broadcasters, and 355 billion minutes of livecast has been
watched in 2017. These video content all has to be trans-
coded first before they are consumed by the viewers. As a
result, even a cloud-based approach becomes significantly
expensive. Real-world service providers such as Twitch TV
only provide transcoding services to a small portion of pre-
mium broadcasters, and only extend this service to normal
broadcasters when there is extra capacity. Besides that,
the requirement on streaming latency in such interactive
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environment is even more stringent, as a high latency
severely affects the viewer-broadcaster, viewer-viewer
interactive experience [4]. While the cloud server may be far
away from the live source, which inevitably causes higher
streaming latency. We thus want to seek for more cost-
efficient, low-latency solutions to transcode this massive
amount of video data and cover more broadcasters.

Edge Computing is an architecture that uses a collabora-
tive multitude of end-user clients or near-user edge devices
to carry out a substantial amount of storage or computa-
tional workload [5]. It is a complementary component
of cloud computing by extending the cloud computing
paradigm to the network edges. While cloud is still the
mainstream choice for deploying large-scale virtual infra-
structure, centralized datacenter-based cloud is now migrat-
ing toward a hybrid mode with edge assistance [6]. Looking
deeper into our services, we also observe the abundant
computational resources residing in edge viewers, espe-
cially those high-end game devices. Therefore, inspired
by the paradigm of Edge Computing and this observation,
it would be great if we could involve these viewers into
taking transcoding tasks to support cloud.

However, taking transcoding tasks inevitably costs extra
power and bandwidth consumption; Viewers’ willingness
to take such tasks also varies from person to person. Though
we notice the formation of channel oriented online commu-
nities and the support from users in terms of donation and
subscription [7], [8], involving these viewers into computa-
tional intensive transcoding tasks still needs much stronger
incentives to guarantee transcoding performance. Besides
that, not all viewers are appropriate for taking these tasks
because they have different network situations and device
configurations. Therefore, an efficient mechanism that can
select the qualified viewers to transcode the massive video
data, and determine the appropriate rewards to motivate
such contributions is needed.

To this end, we propose an auction-based selection
approach combining cloud and edge computing together to
offer transcoding services at low costs and with smaller
delays. We first identify the key components for selecting a
viewer to take transcoding tasks. We then study the offline
situation with/without strict task number constraint sepa-
rately, and extend our proposed algorithms to handle the
online situation. To be specific, we use the proportional share
mechanism as the basis for filtering qualified viewers in all
offline situations. We improve the straightforward dynamic
programming algorithm by proposing a more computational
efficient heuristic algorithm supported by the priority queue.
In the online situation, we propose a greedy algorithm to
select viewers and determine payment guaranteeing compu-
tational efficiency, individual rationality, budget feasibility
and truthfulness simultaneously. Large scale simulations
driven by real traces demonstrate that our solution can pro-
vide reliable transcoding services at low cost. A prototype of
our system is further implemented on the PlanetLab to dem-
onstrate the feasibility of our system.

The remainder of this paper proceeds as follows: Section 2
examines the underlying challenges in conducting transcod-
ing for crowdsourced live streaming services, presents the
system overview of our cloud-edge collaborative system,
and formally formulate the problem. Section 3 presents the

algorithms to efficiently select reviewers and make pay-
ments for transcoding tasks in both offline and online situa-
tion. In Section 4, we evaluate our design through trace-
driven simulations. We further build a prototype and imple-
ment it on PlanetLab in Section 5. Section 6 introduces the
related work and discuss the difference between our work
and the previous ones. Finally, Section 7 concludes the paper
and discusses potential future directions.

2 SyYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first examine the importance of latency in
processing our big live video data. We then discuss the pos-
sibility of providing low-cost, small latency transcoding
services through involving the computational power from
end viewers. We further illustrate the overall architecture of
our cloud-edge collaborative system and formally formulate
the studied problem in our systems.

2.1 Why Delay Matters for Big Video?

Traditional video streaming services, like Youtube, strive to
make their videos startup quickly and play with less rebuf-
fering. Researchers have shown that viewers start to aban-
don videos after 2 seconds startup time in these traditional
video streaming services [9]. High latency in playout delay
greatly increases the abandon rate of viewers, making users
less engaged in videos, and eventually harm the profit of
content providers. For interactive live streaming services, it
is the interaction feature that makes delay play an even more
critical role. In twitch-like interactive streaming services,
the interaction among viewers and between viewers and
broadcasters also require bandwidth-hungry video streams
to match its pace with other communication channels like
audio and messages, otherwise users may become frustrated
by other early spoilers or fail to fully engage in this participa-
tory community. Undesirable interaction with peer viewers
and the broadcasters can even drive viewers to abandon cur-
rent channels [10]. In addition, applications like Twitch and
Periscope allow viewers to express their enjoyment to certain
content (using like or heart button). These positive feedbacks
can help broadcasters to modify their content to better match
viewers’ tastes and attract more viewers. While mismatching
between likes and streaming scenes could generate false pos-
itive feedbacks to the broadcasters, which greatly affects the
information value hidden in these messages [11]. Latency
plays a more significant role in this interactive live streaming
services. It is, however, not easy to reduce it considering the
scale and heterogeneity of this system. With naive deploy-
ment on cloud, 90% users have an interaction latency over
200 ms [12]. Several other research works have also indicated
that with current cloud infrastructure, cloud is unable to sat-
isfy the strict latency requirements in interactive live stream-
ing services [13]. Researchers therefore are actively seeking
for new approaches or architectures to reduce the interaction
delay for viewers.

2.2 Why a Cloud-Edge Hybrid Approach?

Cloud is a natural choice for conducting video transcoding
services. The elasticity of cloud allows service providers
to scale up and down to match the dynamics of computa-
tional demand when hosting channels. Strict service level
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agreements offered by cloud providers also guarantee
crowdsourced streaming service providers stable perform-
ances in conducting computational-intensive tasks. None-
theless, user experience in these delay-sensitive streaming
services still cannot be easily guaranteed by total reliance
on the cloud. The primary challenge is that new interactive
live streaming services pose more strict requirement on
latency as we have stated previously. Possible long dis-
tances between the centralized cloud datacenters and the
ingesting server can incur large network delay. Similar
observations in CDN literature prove that regional wide
network latency can be 10 times more than that of local com-
munication latency [14]. Besides that, the massive number
of concurrent channels and heterogeneous configurations of
viewers in this novel service generate a large combination
of transcoding tasks which need to be fulfilled. These CPU-
intensive tasks require significant hardware and thus are
very costly, as confirmed by Twitch [15]. Constrained by the
budget, the freemium-based service providers usually just
offer transcoding services to premium channels now.

Behind the huge transcoding tasks are viewers who are
actively involved in this interactive live streaming services.
Each viewer spends twice as much as time watching interac-
tive streaming events than on traditional streaming services.
Among these massive viewer base, some of these viewers
may also close to the ingress server. Furthermore, the in-
creased computing power of personal computer also makes
these viewers, especially game players, capable of handling
computational tasks at ease. These factors all make edge
viewers promising candidates to deliver low latency trans-
coding services, enabling more viewers watching their desi-
red channels without interruptions. However, end viewers
may come and leave the interactive video streaming service
whenever they want. This flexibility on viewer side becomes
the instability and uncertainty for conducting transcoding
services, which makes total reliance on edge viewers not
practical. A more promising solution naturally is to combine
the power of cloud and edge viewers together to accomplish
our transcoding services. Benefited by the computation
potential lies in viewer side and their natural distance advan-
tage to the servers, this hybrid approach can offer service
provider high-quality transcoding services at low costs.
The most critical problem thus is whom we should allocate
these transcoding tasks to and at what price.

2.3 System Model

Globally, our system is divided into multiple regions, where
each region has its own regional datacenter (also referred to
as “regional server”) for ingesting source videos, assigning
transcoding tasks to viewers or cloud, recollecting trans-
coded video and forwarding the processed streams for fur-
ther delivery. Fig. 1 shows the overall design. Specifically,
source live streaming contents are first collected by
the regional server through protocols such as Real Time
Messaging Protocol (RTMP). Several viewers will then be
selected for taking video transcoding tasks according to cer-
tain criteria. Unmatched tasks after this selection or during
the live streaming process will be sent to dedicated cloud
transcoding servers if no further satisfiable transcoding
viewers can be found locally (results in cross-region assign-
ment). The selected viewers and cloud servers transcode
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Fig. 1. System overview.

video contents into different quality versions, and send
them back to the regional datacenter. Finally, the transcoded
video is forwarded to other regional datacenters to serve all
viewers. As can be seen, in our system, the computation
processes for transcoding are distributed among the
selected edge viewers and cloud; The decision process for
selecting valid users is finished in each regional server.

2.4 Problem Formulation

We now consider specifically the incentive issue, which
includes viewer selection and payment determination, in
the above scenario. Intuitively, transcoding tasks can always
be satisfied by viewers in our overwhelming viewer pool.
However, in reality, the viewer and broadcaster numbers
are highly dynamic over time. In both a single region and
the whole global system, independent users may come, stay
in the system for a distinct amount of time, and leave by
their will. Causal selection cannot guarantee the involve-
ment of highly qualified viewers and may cause a large
number of reassignments, leading to high system overhead
for recalculation and short absence of the target quality
version during the reassigning period.

On the other hand, it is difficult to determine the right
price to motivate these viewers since viewers have their
own private cost functions. Casually setting a fixed price
could lead to the overpricing or underpricing problem
which either incurs a huge cost for the service provider or
fails to provide enough incentives to motivate viewers.
What is more, the sum of payments for all selected viewers
is constrained by the limited budget for each channel since
we are seeking a cost-effective design for video transcoding
services. Therefore, efficiently utilizing this budget to fully
motivate viewers and recruit qualified viewers is what we
are aiming at.

We thus propose an auction-based approach to facilitate
the transcoding task assignments from channels to the
crowd of viewers and determine the payment for these
transcoding viewers at the same time. Dynamic prices gen-
erated by auctions can help us fully motivate users while at
a low cost in the competitive environment thanks to our
large viewer pool. Carefully designed selection algorithms
can also ensure us to select the appropriate viewers to take
the transcoding tasks. For each region, we denote the live
video channels as a set C' = {¢y,¢2,...,cn}, and viewers as
V ={v1,vs,...,v,}. Each channel ¢; € C has a budget B,
which is part of the revenue from advertisements, and R; is
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the total number of transcoded video representations
required for a channel c;. Independent viewers have their
private cost functions for taking the tasks, and they make
strategic decisions to maximize their individual utility w;,
which follows the classical quasi-linear form. The utility of
viewer ¢ at time ¢ is

) pi—my
-

p;i is the payment to viewer v; and m; is the cost for users to
transcode the corresponding channel. Under truthful bid-
ding, m; equals to b;.

Each viewer v; submits its bid b; based on its own valua-
tion function for taking such a task. After receiving the bid,
the regional server acting as an auctioneer makes the assign-
ment and payment decisions. Notably, the arrival/depar-
ture time and the cost function of each viewer are private,
and may only be known to itself. Similarly, the arrival/
departure time of each channel is also private. In other
words, at time ¢, the scheduler has no knowledge of any
incoming channels or viewers, neither does it know if any
channel/viewer is going to terminate/leave soon. There-
fore, the auctioneer must have an online mechanism to
determine the task assignment and payment as each bidder
emerges to play.

As we have argued previously, stability is a critical factor
for choosing viewers to take our transcoding tasks. Viewers
should be able to continue offering transcoding services
during the channel streaming session without leaving. We
first need to extract stable users from the viewer pool. Based
on our previous study, we set a waiting threshold only after
passing which can the viewer be qualified as stable, and be
selected into our candidate pool. This threshold is deter-
mined by maximizing the mathematical expectation of the
non-stop transcoding time of all viewers [16]. Further, to
differentiate the stability level among these candidates, we
need to have a more fine-grained metric of stability. We use
a simple yet effective method which jointly considers the
average online duration (d) and standard deviation (o) of a
viewer’s online record. We use a linear combination of them
to represent the stability D. In our simulation the default A
is set to 0.8 as it gives the best result.

if v;is selected
otherwise.

D(w)=X-di— (1 =X\ -0\ € (0,1);

Besides stability, latency obviously should also be opti-
mized explicitly in this interactive streaming services. There-
fore, we propose our quality of viewer metric as follows:

¥
Sy = 2"
In(1 + 1)
where y and g is the weight for each component in our met-
ric, lying between 0 and 1. When g = 0, y = 1, we only max-
imize the stability of all selected viewers, and vice versa.
The intuition for defining the stability of users in this form
is inspired by the fact that, a longer average online duration
indicates the viewer tends to stay longer, and a smaller stan-
dard deviation means such behavior is more consistent [16].
The effect of latency on quality of viewers uses the widely

adopted logarithmic function to reflect the decrease of mar-
ginal quality degradation due to the increase of latency.

Our objective thus is to find desirable and affordable
viewers to take transcoding tasks. Let S(v;) be the estimated
quality of viewer v; in terms of taking transcoding tasks. We
introduce a set of 0-1 variable x;; for each pair of viewer
and channel. Variable z; ; equals one if viewer v; is assigned
for channel c;. Let X denote the total selected viewer set; ¢;
and p; are the total transcoding time and payment per unit
time of viewer v;. [, is the minimum delay requirement for
a satisfying transcoding process. The formal formalization
is as follows:

max

Z S(vi)xij (@D)

s.t. Zpitixi,j < Bj,VBj (2)
dowmi<LVieV ®3)
J
Liwij < lypin, Vo ; € X 4)
Tij S {0, 1} (5)

In constraint (2), the sum of all payments of a channel in
the streaming period should be smaller than its planned
budget. In constraint (3), each viewer can take at most one
transcoding task to mitigate the risk of unreliable transcod-
ing brought by viewers and guarantee transcoding perfor-
mance. In constraint (4), the transcoding time of selected
viewers should be less than the minimum requirement to
guarantee high quality interactive live streaming.

3 CLoOUD-EDGE COLLABORATIONS FOR BIG
VIDEO TRANSCODING

In this section, we first study two offline situations and then
extend our proposed algorithms to a more generic online
scenario. In the first offline case, there is no strict require-
ment on the number of transcoding viewers for each chan-
nel, which means, given the budget limit, a channel ¢; could
have less than R; transcoding viewers. The scheduler makes
best-effort decisions to assign most stable candidates while
providing reasonable payments. In the second offline case,
the requirement on the number of transcoding viewers for
each channel is strict, which means that each channel
should have R transcoding viewers unless there is no such
possibility. In both offline cases, we assume the scheduler
has the bid information from all candidates before the
assigning process. Studying the offline scenario gives us the
understanding to this problem, especially in complexity,
optimality, and provides the baseline situations for us to
compare with the online case. Furthermore, since more and
more personal livecast applications start to allow broadcast-
ers to upload pre-recored content and publish later, like
“Uploads” function in Twitch released in late 2016. Our
solution in offline scenarios also work for these type of
transcoding tasks that are more tolerant to latency brought
by decision making, and can wait until all bids information
are collected. Finally, we further consider the online situa-
tion where the candidates comes to the system sequentially,
and the scheduler has to make a decision on-the-fly.
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3.1 Baseline Scheduler with Flexible Transcoding
Viewers

In this subsection, we consider the first case of the proposed
problem where there is no strict requirement on the number
of transcoding viewers for each channel. With the budget con-
straint, the crux of designing a good algorithm lies in how to
efficiently use the limited budget, and filtering out the valu-
able viewers. We adopt a variant of the proportional share
mechanism introduced in [17], which serves as the basis for
budget-constrained viewer recruitment. To be specific, when
a new transcoding request from a starting channel c; arrives,
the scheduler first generates a threshold according to the bid,
estimated quality information of all candidates, and the given
budget as summarized in Algorithm 2. The resulted threshold
p represents the reasonable price per unit quality value. The
main scheduling algorithm (shown in Algorithm 1) first
orders all candidates in decreasing order of estimated quality
(line 2), and attempts to choose them in a greedy manner: the
most desirable candidate is examined first. For each candi-
date, the scheduler first checks whether its bid is worthwhile
for its estimated quality and budget allow such reasonable
payment S(v;) * p. If it is desirable and affordable, then select
this viewer, pay the corresponding payment, and skip the cur-
rent one if not worthwhile (lines 8-9). Note that in the algo-
rithm S(X) represents the total quality of candidate set X.
Here, we simply sum up the quality of every candidate in X
to get S(X) as we formulated before, While other methods,
e.g., monotone submodular function, can also be applied.
Budget and payment here are all represented as price per unit
time. Eventually, we pay viewers according to its transcoding
service time as well as its price per unit time.

Algorithm 1. Baseline Scheduler

1: Input: Budget B; for channel ¢; and number R of transcod-
ing viewers required

2: Sort V in decreasing order of its estimated quality S(v;)
3: count — 0, index — 0, X; — 0

4: p — GetThreshold(B;)

5: while count < R do
6
7
8

index — index + 1
v; < V]index] and b; is the bid of v;
o ifb < S(wi) xp < Bj— 3, cx, P. then
: J
9: pi < S(v;) *p

10: X]' <—XjU{Ui}
11:  else

12: pi — 0

13:  endif

14: end while
15: return X

Algorithm 2. GetThreshold

: Input: Budget B,

: Sort V in decreasing order of S(v;)/b;

X—0,i<0

: while b; < S(v;)B/S(X Uwv;) do
X— XU (%
1—i+1

end while

: p— B/S(X)

. return p

O 0 NI Ul W =

Since the baseline scheduler chooses the most stable can-
didates until either R assignments are made or it is running
out of budget, it may lead to a great number of cross-region
assignment (turning to cloud) especially when the budget is
low. On the other hand, since there is a portion of candi-
dates not worthwhile judged by the threshold price, some
stable candidates are not selected, which is undesirable
when only few candidates are available. This is the perfor-
mance compromise we have to make given the limited bud-
get constraint. The baseline scheduler runs in linear time
complexity of N, namely O(N), where N is the total number
of qualified candidates.

3.2 Comprehensive Scheduler

Now we consider the second case where the requirement on
the number of transcoding viewers for each channel has to
be fulfilled unless impossible. The problem thus becomes to
choose R viewers such that their quality is maximized while
the sum of their bids does not exceed the given budget. We
can view this problem as a variant of classical Knapsack
problem. If the price is pre-determined by the auctioneer,
given the budget constraint, we are choosing viewers
from the candidate pool to maximize the total value of
the selected viewers (sum of quality metrics). We can
easily extend the baseline scheduling algorithm into a
dynamic programming algorithm (shown in Algorithm 3)
to solve it optimally with the same payment rule. The key
part of this algorithm relies on the three-dimensional
table table, where table[i, B, r] represents the maximum
total estimated quality we could have considering first 4
candidates with budget B for r assignments. For every
transition, there are two cases (line 8 and line 11), repre-
senting (1) current candidate is not worthwhile, or not
affordable, or not needed as all assignments are fulfilled,
and (2) current candidate can be attempted for the assign-
ment, respectively. More specifically, the time complexity
of this approach is O(NBR), where N is the total number
of candidates, B is the budget and R is the number of
transcoding viewers needed.

Algorithm 3. Psudo-Polynomial Optimal Approach

1: p < GetThreshold(B;)

2: for:from1to N do

3 pi=pxS(v)

4: end for

5: initialize table as a three-dimensional table

6: for B from1to B; do

7.  forifrom1to N do

8: forr from 1 to R do

9: if b, > p;orp; > Borr ==0then
10: table[i, B,r] < table[i — 1, B, 7]
11: else
12: v[i, B, r] < max(table[i — 1, B,r], S(v;)+
13: tablefi — 1, B — p;,r —1])
14: end if
15: record such transition in a backtrack table
16: end for
17:  end for
18: end for

19: backtrack and return the whole schedule
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Computational efficiency is extremely important for a
delay-sensitive system like our studied one, while our
pseudo-polynomial algorithm may take a long time if the
given B is large and the minimum budget metric is small.
We therefore improve it with an efficient comprehensive
algorithm using the specifically selected data structures, as
shown in Algorithm 4. Similar to the baseline scheduler, the
comprehensive scheduler calculates the price threshold and
orders all candidates (lines 2-3). Then, in each round, it
pushes the remaining most stable candidate into a priority
queue with its reasonable payment as key (lines 10-16), and
smaller keys means higher priority. Prior to each round, the
scheduler checks whether the budget can afford the cheap-
est R candidates in the priority queue (lines 7-9), and
assigns these candidates if affordable. Finally, if we could
not afford R cheapest ones among all candidates, we select
as many cheapest candidates as we can. As the priority
queue is normally implemented with heap, and R usually
is a small and constant number, the worst case time com-
plexity of Algorithm 4 is O(Nlog(N)), where N is the total
number of candidates. We next show Algorithm 4 can pro-
vide an optimal solution under the given payment rule in
certain situations.

Algorithm 4. Comprehensive Scheduler with Strict
Number of Transcoding Viewers

1: Input: Budget B;

2: p « GetThreshold(B;),i — 1

3: Sort V in decreasing order of S(v;)

4: Denote ( as a priority queue, where items with smaller
value will be at front

5: while: < n do

6:  minCost — the sum of top R reasonable prices in Q

7:  if minCost < B; then

8 select these R viewers and return

9: else
10: pi = S(vi) *p
11: if b < Di then
12: push v; into Q with its reasonable price p; as key
13: end if
14: 1e—i+1
15:  endif

16: end while ~
17: select top R’ viewers from @ which is the maximum num-
ber of viewers B; can afford, return

Notice that when a user abandons the transcoding task
during the process of transcoding, the system will select the
next possible candidate according to the price threshold. If
the budget is running out or no users satisfy the threshold,
cloud will be evoked to guarantee the stability of transcod-
ing processes, which incurs higher cost.

Theorem 1. Algorithm 4 can provide an optimal solution under
the given payment rule, if the bids from viewers are randomly
distributed and the number of viewers N is sufficiently large.

Proof. We prove the above theorem by considering two
cases, i.e.,, when the budget B; is sufficiently large, and
when it is not. In the first case, with a sufficiently large
budget, the optimal solution would choose the top R
most qualified candidates whose b; is no more than its p;,

to maximize the total estimated quality. Since algorithm 4
attempts from the most stable candidates as well, it ends
up with exactly the same schedule as the optimal one, as
it terminates once it finds the top R candidates are afford-
able. In the second case, the budget is not able to afford
the top R most stable candidates. Given the sufficiently
large N and viewers’ Pareto Distribution against their
quality, the optimal solution will contain a set of candi-
dates where the sum of their payment is exactly Bj, as the
payment is proportional to the quality. On the other
}}Band, Algorithm 4 will choose R candidates with quality
7., where p is GetThreshold(B;). Again, the bids of these
candidates are no more than their reasonable payment
(b; < p;i). The scheduling result will have the same total
quality as optimal one. Such selection is also guaranteed
to be made since bids from viewers are randomly distrib-
uted (so that at each quality some candidates have their
bids larger than the reasonable payment and some others
do not) and the number of viewers N is sufficiently large
(so that we can find R candidates at the given quality
level with its bid no more than its reasonable payment).
Therefore, under the given condition, algorithm 4 will
have an optimal result. 0

3.3 Online Implementation

So far we have discussed the problem in an offline manner,
which assumes that we have the whole knowledge of bid
before the selection process. However, the real-world sce-
nario could be more complex, we cannot wait until all bids
are collected from the viewers and make the decision after
that. In fact, in our interactive live streaming services, the
arrivals of new channels require instant selection of viewers.
Therefore, an online algorithm is needed to make the selec-
tion decision on-the-fly.

In this online situation, our objective remains the same,
which is to find R affordable candidates who are as quali-
fied as possible. However, we do not know the arriving
time and order of the responding bids from candidates, yet
we could not wait for all candidates to respond as it may
take too long. We observe one key difference between our
online scenario and most other classic online problems, e.g.,
generalized secretary problems, is that we indeed know
how good these candidates are as we know their individual
quality. Therefore, when receiving responses, we can place
the corresponding candidates in an array according to their
quality rank, and we set a rank threshold representing the
lower bound of candidates we accept. The rank threshold is
initialized to be extremely strict so that only top ranked
(most qualified) candidates can be considered, and we loose
it over time.

The above mechanism is illustrated in Fig. 2, and
described in Algorithm 5 in detail. At the beginning (line 1),
the scheduler sends requests to all available qualified candi-
dates and waits for responses. It also initializes an empty
array A of size N (line 2), where Al[i] will be used to hold
the ith ranked candidate when it responds. A dynamic
array bidArray is also initialized (line 3), which is initially
empty and used keep inserted candidates in increasing
order of their bids. The rankThreshold is set to 1 at the
beginning, meaning we only consider the first ranked candi-
date when we start. We loose the rankThreshold by 1 every
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time a new response is received (line 7). In the meanwhile, if
the candidate at the new rank threshold position has
already responded, insert it into the bidArray (lines 8-10).
Then we add the responding candidate into its correspond-
ing position in A (line 11), and if its rank is smaller than the
rank threshold, insert it into the bidArray as well (lines 12-
14). At the end of each round, we check if we can afford
cheapest R currently considered candidates in the bidArray,
and make such assignment if we can (lines 15-18). In terms
of the payment, the main difference between the online sce-
nario and the offline scenario is, we cannot know the cost
performance, or the threshold, of all candidates, and there-
fore could not provide the reasonable payment to those
selected candidates. Instead, for each selected candidate,
we use the bid of next more expensive candidate in the
bidArray as the payment (lines 15-16), to maintain truthful-
ness. This pricing schemes falls into the generalized second
price scheme, where the bidder in ith position pays the bid
of the (+1)th bidder [18]. Similar to the offline case, when
users abandon the transcoding task, we choose the next
affordable users in the bid array to fill in, and turn to cloud
if no users satisfied the constraints.

Designing mechanisms to handle the strategic players in
the auction usually boils down to designing algorithms in a
certain restricted way. As can be seen from our algorithms,
all above mentioned schedulers are 1) computationally effi-
cient, given their non-exponential time complexity; 2) indi-
vidually rational, as the payment is always higher than or
equal to the bid, leaving selected viewers non-negative util-
ity value; 3) budget feasible, since each assignment is made
only after we make sure that the payment does not exceed
the given budget; and 4) truthful, as the payment is either
pre-determined (for the baseline and comprehensive sched-
ulers), or an uncertain number larger than the bid (for the
online scheduler). Being independent from the bid value of
bidder itself, our payment scheme falls into the posted price
schemes. These schedulers can also be easily deployed at
reassignment time, and we only need to set R to 1 and set
B to the left budget.

4 PERFORMANCE EVALUATION

To evaluate our framework, we have conducted extensive
simulations using large scale data captured by Twitch APL
We first briefly introduce the selected datasets, and present
the methodology as well as the evaluation results after that.

Algorithm 5. Online Scheduler

1: Scheduler broadcast the transcoding request with the
description of the job to all qualified stable viewers

: Initialize an empty array A of size N, where N is the num-
ber of total qualified stable viewers

: Initialize a dynamic array bidArray

: Initialize rankThreshold < 1

: while t < timeout do

Let respondingCandidate be the candidate returning a

response

7:  rankThreshold < rankThreshold + 1

8:  if AlrankThreshold] is not empty then

N

o Ul A W

9: Insert A[rankThreshold) into bid Array,
10: with A[rankThreshold].bid as the sorting key
11:  endif

12:  AlrespondingCandidate.rank] <« respondingCandidate
13:  if respondingCandidate.rank < rankThreshold then

14: insert respondingCandidate into bid Array,
15: with respondingCandidate.bid as sorting key
16: endif

17:  if sumOfBid(bidArray|2 to 1 + R]) < B; then
18: Assign bidArray[l to R], for each assigned candidate
bidArrayli],

19: provide payment bid Array[i + 1];
20: return
21:  endif

22: end while
23: select top R’ viewers from bidArray, where R’ is the maxi-
mum number of viewers the budget B; can afford, return

4.1 Trace-Driven Simulation Configurations
and Metrics

For the simulation, we mainly used the channel-based
viewer trace data captured with Twitch API containing the
join/leave record of viewers in certain channels from Janu-
ary 25 to February 27, 2015. Each entry includes the viewer
ID, time of the action and the action type (“Join” or “part”).
In total, we collected 11,314,442 “JOIN” records and 11,
334,140 “PART” records. The selected part of the record
contains 270,105 unique viewers, and this partial viewer
trace has the same trend as that of the entire record we cap-
tured. Since current video transcoding services offered by
Amazon, the dominant player in cloud industry, still could
not offer live streaming transcoding. Interactive live stream-
ing service providers just purchase instances in laaS to
implement their transcoding services. Therefore, we use the
price of default instance type, m4.large instance, as the cost
for transcoding a task. For each viewer, we randomly assign
a bid between 0 and 2 times the price of cloud instance to
represent the minimum reward this viewer is willing to
receive in order to conduct the transcoding work. As for
channels, since the top 10 percent channels attract around
98 percent of the total viewers, we only regard these top
10 percent channels as our targeted channels, which we will
provide transcoding services to. We then scale up/down
the channel trace to have different viewer to channel ratios
(referred as viewer-to-channel ratio, or V/C ratio) based on
the record of all channels we captured, which was recorded
every five minutes, from February 2015 to June 2015. In
such time-based record we have the detailed information of
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Fig. 3. Stability analysis under different budget levels when V/C=200.

all live channels during the captured period, such as the
total channel number and viewer number, which are used
to estimate the average channel to viewer ratio in our simu-
lation. Also, each channel will be assigned with a random
budget. To test the performance of our approach under dif-
ferent financial circumstances, we have generated 5 groups
of test data at different budget levels. Generally, the budget
of a channel is set to be proportional to the viewer number
of that channel.

We use re-assignment number, cross region assignment
number, and cost as our performance metrics. Re-assignment
number changes when viewers abandon their transcoding
tasks in the middle of streaming process, and the service
provider has to find new viewers to take these tasks. Re-
assignment brings system overhead, especially latency for
reassigning and short absence of the target quality version
during the reassigning period. Cross region assignment num-
ber changes when no qualified viewers can be found locally
under the current budget level, and the service provider
has to turn to cloud for help. Cost is defined as the sum of
payments to finish all transcoding tasks. We thus want these
metrics as small as possible. We evaluate our system per-
formance under different budget constraints and viewer/
channel ratios.

4.2 Evaluation Results
For comparison, we implemented the baseline scheduler,
the comprehensive scheduler, and the online scheduler,
under a variety of budget levels and V/C ratios. The exist-
ing industry solutions apply a pure cloud solution, which is
far more expensive than our cloud-edge collaborative solu-
tions. The difference in cost could reach over 80 percent,
and thus we omit it here and only compare the performan-
ces of our solutions under different offline/online scenarios.
We first conduct simulation to see the number of cross-
region assignments under various conditions. Regarding to
different V/C ratios, the results of three schedulers are similar
in respect to their relative performance. Thus we only report
the results when V//C' = 200 in Fig. 3a. Notably, the advan-
tage of the comprehensive scheduler under low budget level,
compared to the baseline scheduler, is more remarkable at
higher V/C ratio. From Fig. 3a, we can easily see that both
offline approaches (baseline and comprehensive) perform
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similarly at high budget level. On the other hand, the differ-
ence becomes obvious when the budget is scarce, in which
case the comprehensive scheduler has better performance.
The online scheduler however has much better perfor-
mance, as it only has 1/6 to 1/3 cross-region assignments of
the offline strategies. Interestingly, this however is mainly
because the online mechanism does not have the require-
ment on the cost performance for each candidate, so that all
candidates with different bid value (even those with too
high bid) can be chosen.

In terms of the reassignment, as can be seen from Fig. 3b,
the results of the baseline scheduler and the comprehensive
scheduler again are similar, and are around 50 percent
higher than that of the online scheduler, except the case
where the budget level is extremely low. The lower reassign-
ment count at budget level 10 is mainly caused by the high
cross-region assignment count, such that many assign-
ments are not initially made locally and thus will not
trigger reassignment later. The results of the online sched-
uler however remain the same across all budget levels,
indicating that it has more stable performance once the
assignment is made.

We also measure the cost of our approaches under differ-
ent budget levels and V/C ratios. As shown in Figs. 4a, 4b
and 5a, once again we see the results being very similar
under different V/C ratios. The baseline scheduler and com-
prehensive scheduler have similar costs under different bud-
get levels, while the online scheduler has upto 50 percent
higher cost than the previous two. Notice that the online
scheduler achieves lower reassignment and cross-region
assignment counts than other offline approaches, but has
higher cost. This is because the payment made to the viewers
are determined differently in offline scheduler and online
scheduler. On the other hand, offline schedulers can decide
the optimal cost with all bids information in place. While for
the online scheduler, since there is no oracle knowledge on
the arrival of bids, the payment is greatly influenced by the
arriving patterns, which makes the cost higher than the
offline situations.

Additionally, for the online scheduler in particular, we
compare its average result with the optimal case and worst
case. The optimal case is where the responding candidate
come in decreasing order of quality, while the worst case is
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the opposite. Fig. 5b shows the results of reassignment count.
We see the average result is much closer to the optimal case
than to the worst case, especially at high budget level. This
also confirms the overall great performance of the online
scheduler. Note that, the optimal case here can also be
regarded as an offline deployment of the online scheduler.

In short, the online scheduler has significantly better
performance compared to the other two, in terms of reassign-
ment count and cross-region assignment count, while without
having extra cost overall. Interestingly, the online scheduler
however benefits from being not able to calculate the thresh-
old p in the online manner, such that it has more freedom to
choose more stable candidate, even with partially overmuch
payment. The results also indirectly reveal that the threshold-
based mechanism of making reasonable assignment/pay-
ment based on cost performance, which is suitable for crowd-
sourced work in general, may not be suitable in our scenario.

We further measures the reassignment and cross-region
assignment count with low budget and median V/C ratio,
under different waiting threshold, as such settings provide
the most obvious result. From Fig. 6a, we clearly see the
trade-off between cross-region assignment and reassignment
for each scheduler, as in all results they always go towards

x 10°

[ IBaseline
[T Comprehensive
[ Online

w
W
T

Total cost
— g
i (3] W w
]

—_
T

0.5F
0
10 20 30 40 50
Average budget level (V/C=120)
(b) Cost of different approaches (V/C=120)
2000 T

[ JOptimal Case

[ Average Case
I Worst Case
1500 - 1
1000 §
500 §
0 H
20 30 40 50

10
Average Budget Level (V/C=120)

(b) Extreme cases of the online scheduler

Total number of reassginments

the opposite directions. The baseline scheduler and compre-
hensive scheduler have similar results, while the compre-
hensive scheduler has sightly higher reassignment count but
much lower cross-region assignment count. The online
scheduler has much better performance in terms of both met-
rics. With higher the budget level, the results remain similar
overall but the difference between the baseline and compre-
hensive approach become smaller.

Additionally, we present the total cost of different
approaches with median budget level in Fig. 6b. Again, we
see the baseline and comprehensive approach have similar
results, which increase as the waiting threshold goes up.
This is mainly because with a higher waiting threshold,
the selected candidates have higher quality and thus higher
reasonable payment, leading to higher cost overall. The
online scheduler however, has lower cost as waiting thresh-
old increases. This is mainly caused by the increasing num-
ber of cross-region assignment, which is the dominant factor
in this scenario. In conclusion, the large viewer base and
V/C ratio allow us to have a larger waiting threshold upto
200 minutes, and the online scheduler is much less affected
by the change of waiting threshold compared to the other
two schedulers.
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Fig. 7. Stability and delay analysis in the Planetlab-based prototype.

5 SYSTEM-LEVEL EVALUATION

5.1 Prototype Setup

We implemented a prototype of our framework with online
scheduler on the PlanetLab. In our prototype, we use 5 Plan-
etLab nodes with similar network conditions as regional
servers, 2 in North America (NA), 1 in Asia and 2 in Europe
(EU), and other nodes as viewers. In total 377 nodes are
used. During the experiment, each viewer node imitates an
actual viewer behavior by joining the nearest regional
server at a random time, staying for a duration according
to the Pareto distribution, and leaving. Each viewer also
submits a bid randomly. The regional server keeps track of
all stable candidates, and assign transcoding assignment
with a payment calculated at the same time. The selected
candidates use ffmpeg to transcode a high quality video sent
from the regional server using TCP, into a low quality
versions, which are then sent back to the server. We use a
3.5 Mbps 1080p video as our source video and set 2.5 Mbps
720p as the target quality. Each video slice is of 1 second.

5.2 System Performance Results

We first measure the percentage of stable viewers in the sys-
tem after it runs for 60 minutes. As shown in Fig. 7a, with a
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60-minute waiting threshold, around 60 percent of the
online viewers are stable, after the system stabilized at
around 30 minutes. The two red lines show that the por-
tion of stable viewers is always between 49 percent and 76
percent, which also confirms our simulation results. The
experiment scheduling result, in terms of reassignment,
cross-region assignment and cost, is similar to that of our
large-scale simulation. This is expected given that in both
simulations and experiments the viewers statistically fol-
low the same shifted Pareto Distribution. We therefore
focus on the streaming performance. Fig. 7b shows the
streaming delay variance perceived by five regional serv-
ers. We see that the streaming latency in North America is
much lower than that in other regions. This reveals that
viewers watching distinct quality versions of the same chan-
nel may perceive highly different delay, which severely
affects the online interaction between broadcasters and view-
ers. For example, viewers with lower latency may become
spoilers describing a scene (in chat) which is going to be
watched by others a few seconds later. Also, given the delay
variance within the same region, the reassignment even itself
may introduce a new delay difference, which may freeze the
streaming for a short period. A solution to such issue is to
introduce a short pre-set delay for each channel, as well as a
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penalty to the scheduler when assigning candidates with
highly variant delays.

In short, our experiment shows the feasibility of the pro-
posed framework, and confirms the simulation results. It on
the other hand also indicates the potential issues caused
by the candidate delay variance, which calls for further
enhancement as mentioned above.

6 RELATED WORK

The wide popularity of Twitch-like applications indicates
the emergency of novel interactive live streaming services,
where massive immature broadcasters stream their contents
through ordinary video devices over the Internet. Some pio-
neer works have studied such emerging system from both
social perspective (e.g., online community) [8], [10], [19] and
the technical perspective (e.g., streaming performance, user
experience) [20], [21]. Attracted by the elasticity in comput-
ing power and “pay-as-you-go” billing model, cloud natu-
rally becomes the choice for supporting such service. Chen
et al. [22] design cloud leasing strategies to optimize cloud
site allocation for geo-distributed broadcasters. However,
for CLS platforms with massive broadcasters but charge
nothing from the viewers, cloud-based approaches are
expensive. He et al. [16] have studied the potential of edge
viewers in the CLS systems, and put forward a viewer trans-
coding framework based on voluntary participation of view-
ers. Nevertheless, altruistic assumption or naive fixed price
incentive approach could not fully motivate users to take
these computation-intensive tasks and truly reduce cost.
Auctions have been widely used to solve the incentive
problems in various scenarios, like crowdsourcing, spectrum
sharing, P2P networks, etc. For crowdsourced tasks, Singer
et al. [17] have used auctions for providing incentive with
budget constraints. The context-specific requirements in our
personal livecast applications make their approaches cannot
be directly applied to our scenario. For instance, they target
at minimizing payment or maximizing tasks, while we focus
on maximizing the quality of users for conducting the trans-
coding services. For P2P networks, a taxation-based incen-
tive mechanism is proposed to guarantee fairness, efficiency,
and incentive in layered video coding [23]. Maharjan et al.
[24] studies cloud-enabled multimedia crowdsourcing, and
drive the optimal reward for recruiting broadcasters to do
multimedia-based tasks based on the knowledge of utility
functions. Unlike this utility based approach, our auction
approach does not rely on the knowledge of utility function
and tries to make decisions using the bid information as well
as the user history statistics. There are few research works on
addressing incentive problems in interactive streaming con-
text. A recent work studies the same cloud-edge transcoding
services in personal livecast applications[25]. They focus on
applying redundancy principle to improve the reliability
of this service and maximizing the expected social welfare.
Different from works in the pure distributed networks and
the recent works in livecast transcoding, we studied the
incentive issue with budget constraint to maximize the qual-
ity of users directly to improve stability and reduce latency.

7 CONCLUSION

In this paper, we proposed low-latency, cost-efficient mech-
anisms for transcoding big video data in the personal livecast

applications. Specifically, we examined the potential of
involving end viewers into transcoding big video data from
massive broadcasters to lower the computation cost and
reduce latency. Our mechanisms assign qualified viewers to
channels for transcoding tasks and determine the right
amount of money to motivate them under the budget con-
straints. Our large-scale trace-driven simulation proved the
superiority of the online scheduler, while our PlanetLab-
based experiment further revealed a series of potential issues
and suggested corresponding enhancements for practical
deployment. As for further work, involving one viewer for
taking one transcoding task may still be unstable considering
the dynamics of viewers. We could recruit more viewers to
take one task, increasing its reliability through redundancy.
To further reduce cost, we could also consider incorporating
spot instances from the cloud to take the transcoding tasks.
Providing periodic transcoding services to increase viewers’
utility or providing stable transcoding services through
active instance migration can all be studied further.
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