
When Cloud Meets Uncertain Crowd: An Auction Approach for
Crowdsourced Livecast Transcoding

Yifei Zhu

School of Computing Science

Simon Fraser University, Canada

yza323@sfu.ca

Jiangchuan Liu

School of Computing Science

Simon Fraser University, Canada

jcliu@cs.sfu.ca

Zhi Wang

Graduate School at Shenzhen

Tsinghua University, China

wangzhi@sz.tsinghua.edu.cn

Cong Zhang

School of Computing Science

Simon Fraser University, Canada

congz@sfu.ca

ABSTRACT
In the emerging crowdsourced livecast services, numerous amateur

broadcasters livestream their video contents to worldwide viewers

and constantly interact with them through chat messages. Live

video contents are transcoded into multiple quality versions to

better service viewers with di�erent network and device con�gura-

tions. Cloud computing becomes a natural choice to handle these

computational intensive tasks due to its elasticity and the “pay-

as-you-go” billing model. However, given the signi�cantly large

number of concurrent channel numbers and the diverse viewer

geo-distributions in this new crowdsourced livecast service, even

the cloud becomes signi�cantly expensive to cover the whole com-

munity and inadequate in ful�lling the latency requirement. In

this paper, after observing the abundant computational resources

residing in end viewers, we propose a Cloud-Crowd collaborative

system, C2, which combines end viewers with cloud to perform

video transcoding in a cost-e�cient way. To quantify the hetero-

geneity and uncertainty of viewers and pass the asymmetric in-

formation barrier, we incorporate statistical descriptions into our

bidding language and design truthful auctions to recruit stable

viewers with appropriate incentives. We further tailor redundancy

strategies for workloads with di�erent Quality of Service require-

ments to improve the stability of our system. Desirable economic

properties, like social e�ciency, ex-post incentive compatibility,

individual rationality, are proved to be guaranteed in our studied

scenarios. Using traces captured from the popular Twitch platform,

we show that C2 achieves up to 93% more cost saving than a pure

cloud-based solution, and signi�cantly outperforms other baseline

approaches in both social welfare and system stability.

KEYWORDS
Crowdsourced livecast transcoding; auction mechanism; cloud com-

puting; edge computing; uncertainty
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1 INTRODUCTION
The advances of personal computing devices and the prevalence

of high-speed Internet access have pushed video streaming over

the Internet into a new era. The crowdsourced livecast service

(CLS) platforms, represented by Twitch, Periscope, and so on, have

emerged in the market and have achieved tremendous success in

recent years. In such services, numerous amateur broadcasters lively

stream their video contents to viewers around the world. Fellow

viewers watching the same channel constantly interact with each

other and the channel broadcaster through chat messages. Twitch

alone supported 9.7 million active users per day, hosted over two

million broadcasters per month, and witnessed 14.2 billion chat

messages in 2016 [6].

Similar to other traditional video streaming services, CLS providers

transcode the same video content into di�erent quality versions,

and distribute appropriate versions to viewers to better match their

varying network conditions and provide the best possible user

experience [10]. Because these transcoding tasks are extremely

CPU-intensive and require signi�cant hardware, cloud becomes a

natural choice for conducting such tasks due to its elasticity and

the “pay-as-you-go" billing model. For example, major streaming

hosting providers like Zencoder, Wowza, Ustream all provide their

live streaming transcoding services based on public clouds.

The massive number of concurrent broadcasters, heterogeneous

source contents and device con�gurations of end viewers in the

CLS platforms generate substantially more codec and bit rate com-

binations for transcoding than classical content streaming services.

As a result, this massive computational demand even makes a cloud-

based solution prohibitively expensive. For instance, the existing

Wowza Streaming Engine for transcoding charges as high as $2.77

per hour [3]. Consequently, covering 5% of Twitch peak concurrent

broadcasters with one 150-minute session each would cost over

$11,000 without considering other storage, bandwidth cost
1
. There-

fore, in spite of Twitch’s desire to o�er transcoding services to the

whole community, it instead o�ers transcoding services to a small

portion of premium broadcasters and only extends to normal broad-

casters when its capacity allows. In addition, the requirement on

streaming latency in our studied CLS application is even more strin-

gent due to the unprecedented level of interaction occurring in the

1
In Twitch, top 5% broadcasters are regarded as in�uencers [2]; Peak concurrent

broadcasters reach 35,610 [6]; Over 50% sessions last over 150 minutes [36].
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community. High latency can severely a�ect the viewer-broadcaster,

viewer-viewer interactive experience [32]. Yet considering the di-

verse geo-distribution of broadcasters, the closest cloud datacenter

may still be far away from broadcasting sources, which inevitably

increases network latency [33]. We thus seek a more cost-e�cient,

low-latency solution to cover more broadcasters.

Looking deeper into these CLS platforms, we observe the abun-

dant computational resources residing in edge viewers. Advanced

processors (e.g., Intel i7), powered with dedicated video transcoding

core like Intel Quick Sync, are becoming the main stream setting

for desktops, especially among high-end game devices. According

to Steam, 50% of its PCs have 4 physical CPUs; 8.93% of proces-

sors operate at 3.7 GHz and above; 74.76% of PCs runs DirectX 12

GPUs [8]. The computing power of mobile devices is increasing

even more surprisingly, like Apple’s newly released A10 Fusion

chip achieves close to workstation-level performance in the single-

thread situation [5]; Google leverages mobile devices to run text

recommendation training in its Gboard app [24]. As a successful

game-oriented CLS provider, 65% of Twitch viewers come from

desktop computers [30]. Even if we only focus on its high end

devices, the transcoding performance of these devices (e.g., i7 4

GHz, 4 cores, 16 GB, built-in GPU with Intel QuickSync) is already

comparable to, sometimes even better than, compute-optimized

instances (e.g., c4.8xlarge ) in the public cloud [4]. In addition,

unlike traditional live streaming services where viewers of popular

streams tend to be evenly distributed [21], geo-distribution of view-

ers for a speci�c broadcaster is highly skewed (48% of broadcasters

have their viewers totally in the same province/state [23]) in our

studied CLS platform. Since most viewers that consume a channel

are located in the same region as the broadcaster, allowing local

viewers to transcode streams will greatly reduce the communication

distance from broadcasters to viewers. Inspired by this observation

and the massive viewer base in these services, combining these

viewers (crowd) with the cloud to do transcoding seems to be a

promising solution.

However, unique challenges emerge if we want to conduct transcod-

ing on a cloud-crowd system. Since transcoding inevitably costs

extra power and bandwidth consumption, viewers’ willingness to

take on such tasks varies from person to person. Though we notice

the formation of channel-oriented online communities, involving

these viewers into taking computational intensive transcoding tasks

still needs much stronger incentives to guarantee eventual perfor-

mance. Thus we plan to recruit quali�ed viewers to take on these

tasks and incentivize them with monetary rewards. Providing this

incentive in a cost-e�cient way requires the valuations of view-

ers for taking these tasks, which unfortunately are private and

depend on their own pro�les in most cases. In addition, even if

they accept these tasks, their uncertainty in completing the tasks

presents another challenge since viewers may not guarantee contin-

uous transcoding for the whole live session or fail to complete the

task due to their heterogenous computing power. What is worse,

quantifying these uncertain behaviours may also require privacy

information which creates cost as well; namely, this uncertainty

information is also private. The heterogeneity and uncertainty of

viewers as well as their private status all present serious challenges

in viewer selection and pricing.

Therefore, in this paper, motivated by the abundant computa-

tional resources residing in edge viewers and the possible close

distance from viewers to broadcasters in CLS platforms, we propose

a cloud-crowd collaborative system, C2, to provide transcoding ser-

vices at lower costs and with smaller delays. To pass the asymmetric

information barrier in cost and uncertainty, we incorporate their

statistical descriptions into our bidding language, design truthful

auctions to recruit stable viewers and reward them with the right

amount of incentive. To further o�er reliable services, we devise

redundancy strategies accordingly to di�erent workload types. The

mapping we present from our studied social welfare maximization

problem to the min-cost �ow problem not only guarantees optimal

social e�ciency but also is capable of absorbing di�erent capacity

requirements. We prove theoretically that our designed mechanisms

guarantee social e�ciency, incentive compatibility, and individual

rationality in expectation. To the best of our knowledge, this is

the �rst work to incorporate uncertainty directly into such hy-

brid transcoding architecture and study how applying redundancy

might help. Large scale simulations driven by real traces demon-

strate that our system can provide reliable transcoding services at

low costs and achieve social e�ciency.

The remainder of this paper proceeds as follows: Section 2 dis-

cusses the challenges for having a cloud-crowd collaborative sys-

tem. Section 3 presents the formal formulation of our problem and

other desirable goals. Section 4 presents the detailed mechanism de-

sign for broadcasting workloads. Section 5 extends our mechanism

to handle pre-recorded video workloads. We evaluate our design

through trace-driven simulations in Section 6, followed by related

works in Section 7. Section 8 concludes the paper.

2 CHALLENGES AND PRINCIPLES
Most CLS platforms start primarily as a place to watch livestreamed

contents and recently have began to diversify their content sources.

Take Twitch for example, broadcasters normally livestream their

game content to viewers and interact with them through chat mes-

sages. Besides these broadcasting workloads, Twitch also enables

"Uploads" in late 2016, allowing broadcasters to upload pre-recorded

content and publish later [7], to which we refer as pre-recorded video
workloads. For both of types of workloads, the heterogeneous source

formats and network/viewer device con�gurations require videos

to be transcoded into multiple representations. For broadcasting

workloads, each live session requires non-stop transcoding service

with low latency, so that viewers can receive their desired video

formats with small startup delay and keep interacting with broad-

casters. Pre-recorded workloads, however, are interruption-tolerant

as long as the user-de�ned playback deadline is met. The diversity

of service types with a doubt increases the demand for computa-

tional resources and calls for more e�cient cost management to

meet heterogeneous Quality of Service (QoS) requirements.

Although assigning transcoding tasks to viewers may help re-

duce cost and latency, involving these viewers actually presents

unique challenges for each workload type. First, to lower the accep-

tance barrier of such system, we envision that viewers would only

do transcoding when they are sur�ng CLS platforms, which means

that their duration for transcoding varies. Unlike entirely relying

on cloud where instances are guaranteed by strict Service Level
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Figure 1: Redundancy illustration: simultaneous redun-
dancy for broadcasting live video workloads and sequential
redundancy for pre-recorded video workloads

Agreements (SLA), analysis of our trace shows that the duration of

viewers for staying in the platform follows Pareto distribution with

varying parameters. This heterogeneous participation behaviour

greatly challenges the broadcasting transcoding workloads, since

assigning tasks to unstable viewers de�nitely makes the transcod-

ing inconsistent. Second, task execution performances of viewers

(e.g., total task execution time) greatly vary due to their heteroge-

neous computing power. The diverse task execution time greatly

challenges pre-recorded video workloads since assigning tasks to

random viewers may make tasks miss their deadlines.

The redundancy principle has been widely applied to mitigate

uncertainty and improve system performances in distributed sys-

tems [17, 28, 29, 31]. In our scenario, we devise di�erent redundancy

strategies for di�erent types of workloads. Essentially, we recruit re-

dundant viewers simultaneously to mitigate viewers’ uncertainty in

broadcasting workloads and recruit redundant viewers sequentially

to mitigate viewers’ uncertainty in pre-recorded video workloads.

For instance, as illustrated in Fig.1, for a broadcasting task in the

left sub�gure, assume that each viewer i has its own probability pi
for leaving the system within a given session period. Introducing

one more redundant viewer, viewer 2, to work along with the initial

viewer, viewer 1, changes the probability of successfully transcod-

ing a live session without interruption from 1 − p1 to 1 − p1p2. For

pre-recorded video workloads in the right sub�gure, assume that

each worker has an individual probability for �nishing the task

before deadlines re�ecting its heterogeneous computing power and

load situations. Assigning a pre-recorded video task to a viewer,

viewer 1, with smaller capability (usually with smaller cost as well)

�rst, followed by a more powerful one, viewer 2, may be more cost

e�cient than simply assigning this task to the viewer with the

strongest computing power, viewer 3.

3 SYSTEM MODEL AND PROBLEM
FORMULATION

3.1 System Model
Globally, our system is divided into multiple regions, where each

region has its own regional datacenter (referred to as “ingress

server”) for ingesting source videos, assigning transcoding tasks to

viewers or cloud. The streaming segments after being transcoded

are forwarded to CDN for further delivery. Fig. 2 illustrates the

overall design of our cloud-crowd transcoding system. Speci�cally,

source broadcasting contents are �rst collected by the ingress server

through protocols such as RTMP (Real Time Messaging Protocol).

Several viewers will then be selected for transcoding according to

Broadcaster

Broadcaster Cloud

Broadcaster

Broadcaster

Viewer

Viewer

Viewer

CDN
Ingress
server

Crowd

Crowd

Figure 2: Cloud-Crowd system overview

certain criteria. Unmatched tasks after this selection or during the

broadcasting process will be sent to cloud if no further satis�able

transcoding viewers can be found locally. The selected viewers

and cloud servers transcode video contents into di�erent quality

versions and send them to CDN serving all viewers.

A live session with source format 1080p60fps will be transcoded

into 720p60fps, 720p30fps, 540p30fps, etc., according to current

twitch settings. Each representation of this live session represents

a task that needs to be transcoded in our scenario. We leverage

similar streaming test module like Twitch Inspector
2

in the existing

Twitch platform to evaluate the network performance of viewers.

Only viewers passing the minimum bandwidth requirement can be

added into the candidate pool. After this initial capability evaluation,

we have a viewer set N = {1, 2..., |N |} and a transcoding task

set M = {1, 2, ..., |M |} in our system. Let cli, j denote the cost of

viewer i ∈ N for taking a transcoding task j ∈ M in broadcasting

workloads, and pli, j denote the probability for failing to complete

task j, namely viewer i leaves the platform before the end of its

serviced transcoding task j. Similarly, we have cdi, j for the cost of

viewer i in taking the pre-recorded video task j and pdi, j for the

probability of completing its assigned task before the deadline. The

cost of viewers re�ecting their willingness to accept the task can

be in�uenced by various factors, like their regional electricity price,

making their willingness vary from person to person.

Each viewer thus has a type θi = (c
τ
i ,p

τ
i ) where τ ∈ {l ,d}

represents the total type set of workload. Speci�cally, (cli ,p
l
i ) =

{(cli, j ,p
l
i, j ),∀j ∈ M} for broadcasting tasks; (cdi ,p

d
i ) = {(c

d
i, j ,p

d
i, j ),∀j ∈

M}for pre-recorded video tasks. Let
ˆθi = (ĉ

τ
i , p̂

τ
i ) denote the de-

clared type (bid) of viewer i since sel�sh viewers may misreport

their types to gain better utility. Let θ−i = (θ1, ...,θi−1,θi+1, ...,θN )
be the pro�le types of all viewers except i , and (θi ,θ−i ) completes

the whole pro�le of all viewers, θ . We adopt the direct revelation

principle in mechanism design to design auctions since it provides

clear input information and allows us to focus on devising direct

mechanisms in our auction. Following the direct revelation princi-

ple, a mapping function π , which includes an allocation mechanism

(also known as social choice function) f and a payment mechanism

λ, maps collected types to result R. θ1×θ2× ...×θn → R in our auc-

tion mechanism. Given one collected type input, the allocation and

2
https://inspector.twitch.tv
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Table 1: Table of important notations

Symbol De�nition
π auction mechanisms, including f and λ
f , λ allocation policy, payment policy

τ workload type set

θi = (p, c) type of viewer i , including uncertainty p and cost c
Vj valuation for task j

w(π (θ )) expected social welfare under current pro�le type θ
Bj redundancy capacity of task j
γ eventual execution result

ci, j cost of viewer i in taking task j

payment results of all viewers, (f1, f2, ... f |N | , λ1, λ2, ..., λ |N |), form

one resulting result r ∈ R. Since the selected viewer may leave the

transcoding task during the transcoding process or fail to complete

the transcoding task before the deadline probabilistically, we denote

the eventual task execution result as a vector γ , where γj ∈ γ is 1 if

the task j allocated to viewers is completed, 0 otherwise. The utility

for viewer i follows commonly used quasi-linear utility form and is

denoted as ui = E{λ(θi ,γ ) − ci (fi (θi ))}. Utility for the ingest server,

acting as the auctioneer, is E{
∑
j ∈M Vj (θi ,γ ) −

∑
i ∈N λ(θi ,γ )}. The

valuation for a transcoding task j ,Vj , can be de�ned as any valuable

metrics that are important to service provider measured in currency,

like possible revenue of this channel. The social welfare in turn is

w(π (θ )) = E{
∑
j ∈M Vj (θ ,γ ) −

∑
i ∈N ci (fi (θi ))}. Social welfare can

be regarded as a generalization of common performance metrics,

such as utilization, to a setting with utility-weighted tasks and

operation costs.

A good mechanism is expected to satisfy social e�ciency, in-

dividual rationality and incentive compatibility. We summarizes

important notations in Table 1 and present the formal de�nition

of these desirable properties in the following for clari�cation and

proof purpose.

De�nition 3.1. A mechanism is ex-post incentive compatible, if

for every bidder i and valuation type θi = (c
τ
i , c

τ
i ), declaring their

true type θi is the best response given all other players declare their

true type θ−i . Namely,

ui (π (c
τ
i , c

τ
−i ,p

τ
i ,p

τ
−i )) ≥ ui (π (ĉ

τ
i , c

τ
−i , p̂

τ
i ,p

τ
−i ))

De�nition 3.2. A mechanism is ex-post individual rationality, if

for every bidder i , any pro�le type θi = (c
τ
i , c

τ
i ) and θ−i , its expected

utility is always non-negative if being selected. Namely,

E{ui (π (cτi , c
τ
−i ,p

τ
i ,p

τ
−i ))} ≥ 0

De�nition 3.3. A mechanism achieves ex-post social e�ciency,

if, given any pro�le types θ , its allocation policy f ∗ maximizes

the sum of utilities of all bidders and auctioneer in the system in

expectation. Namely,

Ef ∗ {w(π (θi ,θ−i ))} ≥ Ef ′{w(π (θi ,θ−i ))}

3.2 Social Welfare Maximization for
Cloud-Crowd Collaboration

In our studied cloud-crowd collaborative system, we aim at maxi-

mizing the system wide utility, social welfare, in expectation given

the private cost and uncertainty for �nishing di�erent type of work-

loads. To help describe our formulation, we introduce a set of 0-1

variable xτi, j for each pair of viewer and task. Variable xτi, j equals

one if viewer vi is assigned for task j of type τ . B is maximum

number of viewers allowed for each task j. We formally formulate

our problem in the following:

max E{
∑
j ∈M

Vj (θ ,γ ) −
∑
i ∈N

ci (fi (θi ))} (1)

s.t.

∑
i
xτi, j ≤ Bj ,∀j ∈ M,∀τ (2)

xi ∈ {0, 1},∀i,Bj ∈ Z∗+,∀j (3)

Constraint (2) denotes that the number of viewers selected for

a task j should be smaller than the required redundancy capacity;

Previous works in cloud-based transcoding propose methods to

estimate the transcoding resources needed by each transcoding

task, and assign tasks to instances within their capability during

the task assignment process[10]. Thanks to the abundant candidate

pool from the crowd, we design our system to require each viewer

only transcode one task of one type at one time to simplify the

complex estimation process. If we choose to multiplex multiple

tasks on a single viewer, we can easily relax this constraint to other

values which does not a�ect the mechanism we proposed to get

the optimal solution.

4 MECHANISM DESIGN FOR CLOUD-CROWD
COLLABORATIVE TRANSCODING

In this section, we demonstrate how to design mechanisms to han-

dle broadcasting workloads and apply the redundancy principle to

improve social welfare further. For broadcasting workloads, each

live session requires non-stop transcoding service with low latency,

so that viewers can constantly receive their desired video formats.

To guarantee this continuity in transcoding service, it is suboptimal

to just select one viewer for transcoding one representation of a

channel and start selecting another new viewer after the previous

viewer abandons task abruptly. In contrast, having multiple view-

ers transcode one representation of a channel simultaneously can

greatly improve social welfare and guarantee availability of the live

session at all representations.

Following direct revelation principle, if we want to involve uncer-

tain viewers into our transcoding process, explicitly asking for their

probabilities of completing those transcoding tasks seems to be the

most straightforward approach. However, self-interested viewers

may misreport their probability, claiming to be more competent

than they really are, to win the rewards. Even worse, the classi-

cal auction mechanism, like VCG mechanism, cannot be directly

applied to our scenario to guarantee truthfulness in bidding due

to its deterministic nature. Naively adding probability into it can

jeopardize the truthfulness of the whole mechanism [26]. In our

game theoretic scenario, our objective hence is to design a practical

auction mechanism to guarantee desirable economic properties,

like incentive compatibility in cost and likelihood for �nishing the

transcoding and maximize social welfare at the same time.

Our mechanism, presented in Algorithm 1, has two parts: the

allocation mechanism and the payment determination mechanism.

For the allocation part, we select viewers to transcode our tasks so
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that the expected social welfare of the whole system can be maxi-

mized. We need to solve our problem optimally, since any non-exact

solution can harm the incentive compatibility and individual ratio-

nality of our mechanism as we will see in the proof. After observing

that every scheduling decision binds with a quanti�able cost, we

plan to adopt a graph-based declarative description to our prob-

lem. However, �nding the appropriate graph structure to encode

the constraints and our goals is not that straightforward. Bipar-

tite matching with N and M on each side can describe one-to-one

channel-to-task assignments, but fails to capture the redundancy

design in our mechanism. By adding another set of vertex other

than source/sink, N , and M , we manage to represent our social

welfare maximization problem into a min-cost �ow problem.

We refer to the viewers that being selected for a task as the

viewer group setting for this task. Given a set of viewers N , a set of

transcoding task M , and the constraints de�ned in formulation, we

construct a �ow networkG = {N∪D∪M∪{s, t},E}, whereD repre-

sents possible combinations for all tasks (v1,v2, ...,v |B |),∀vi ∈ N .

The supply of s and the demand of t are all |M | in value. The capac-

ity of any edge between D and M is set to be 1. The cost of any edge

between D and M is set to be −ue = Vj (1 −
∏

pli, j ) −
∑
i ci, j ,∀j ∈

N ,∀i ∈ D. Notice that normally a min-cost �ow problem works

when all costs are non-negative. We can transform edges with

negative cost to edges with non-negative cost using edge reversal

transformation techniques. After transforming to min-cost �ow

problem, based on the integral �ow theorem [9], we know that our

min-cost �ow problem can be solved optimally. Equivalently, our

social welfare maximization problem can be optimized, given the

truthful telling from viewers.

In practice, we can improve the availability of a channel further

by leveraging stable cloud instances. For example, cloud instances

can take on tasks that correspond to the lowest quality representa-

tion of a channel and the rest higher quality representations are left

to the powerful viewers. By doing this, even failures in all selected

transcoding viewers of the channel will not lead to total channel

unavailability. The involvement of cloud enables us to guarantee

this availability which is crucial for user experience in our applica-

tion and cannot be easily solved by previous pure peer solutions.

We can also trim the edges between D and M constructed in previ-

ous networks by only assigning a transcoding task to viewers who

follow or show preference to this broadcaster.

Achieving incentive compatibility in the uncertainty of viewer

behaviour thus becomes the key challenge of our whole mechanism.

We solve this by binding payment for a viewer with the actual

outcome of its assigned transcoding task, namely, whether the

allocated task for this viewer has been successfully transcoded or

not. Speci�cally, the payment for a selected viewer i would be the

expected social welfare of others (excluding the cost of i) minus

the expected social welfare without the existence of viewer at all,

w(π (cl
−i ,p

l
i ,θ−i )) − w(π (θ−i )), if viewer i �nished this task. The

�rst item in this payment formula excludes the cost of its own to

avoid manipulation. The dependence of payment on real execution

result further guarantees incentive compatibility. If the selected

task is not successfully transcoded, our mechanism incurs a penalty

for this viewer, which equals the expected social welfare without

the existence of viewer, −w(π (θ−i )). This penalty is necessary for

us to prove the incentive compatibility in uncertainty. Since some

tasks may fail to �nd desirable viewers and uncertain viewers may

still leave the task during the transcoding process, we use cloud to

guarantee a continuous transcoding process. Cloud thus is treated

as a special bidder in our system whose cost is a public information.

Algorithm 1 The auction mechanism for C2

1: //The allocation mechanism

2: for all task j in M do
3: Construct a �ow network G = {N ∪M ∪ D ∪ {s, t }, E }
4: Select Bj viewers for each task j based on the solution of min-cost

�ow problem argminj∈N (
∑
cost (e)), ∀e ∈ E

5: end for
6: //The payment mechanism:

7: while a live session ends or a channel reaches its publishing deadline

do
8: if γj = 1 then
9: λi = w (π (c l−i , p

l
i , θ−i )) −w (π (θ−i )), ∀i ∈ {i |fi = j }

10: else
11: λi = −w (π (θ−i )), ∀i ∈ {i |fi = j }
12: end if
13: end while

Before the formal proof, we use a small, simpli�ed example to

help understand how our mechanism works in one task scenario,

even though our previous mechanism is designed to work under

multiple tasks scenarios. Suppose we have one broadcasting task

of value 10, two viewers, A and B, with type (2, 0.3) and (4, 0.2)

respectively. The redundancy level of task is 1. The optimal strategy

thus is to choose viewer A with the expected social welfare 5 (social

e�ciency). The payment for viewer A is 10 − (0.8 × 10 − 4) =

6 if it succeeded, and -4 otherwise. Its expected utility becomes

0.7 × 6 − 0.3 × 4 − 2 = 0.1, which is greater than 0 (individual

rationality). Even if B lies about its probability as 0, it actually has a

negative expected utility: 0.8× 5− 0.2× 5− 4 = −1, which prevents

it from doing that (incentive compatibility).

Theorem 4.1. Our proposed auction mechanism guarantees social
e�ciency in expectation.

Theorem 4.2. Our proposed auction mechanism guarantees ex-
post individual rationality.

Theorem 4.3. Our proposed auction mechanism guarantees ex-
post incentive compatibility in expectation.

Theorem 4.1 is obvious since we solve our problem optimally. We

prove Theorem 4.2 by comparing the utility gained from truthful

telling and misreporting. We prove Theorem 4.3 by constructing

the targeted social welfare form by analyzing the expected utility

of a viewer. See the tech report for their detailed proofs [1].

5 TRANSCODING PRE-RECORDED VIDEO IN
C2

In this section, we demonstrate how our mechanism can handle

pre-recorded video workloads with a di�erent redundancy strategy.

Unlike broadcasting videos, the uploaded short videos only need to

be transcoded before a certain deadline. Speci�cally, we de�ne the

SLA on how quickly the uploaded videos need to be available in de-

�ned representations as the duration of a video/constant time [20].
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The transcoding time of each video depends on various factors like

its duration, complexity of scenes, computating power of viewers.

Due to e�cient performance isolation and mature virtualization

techniques, most of previous works assume the performance of

instances are homogeneous and stable. In contrast, viewers in C2

obviously have heterogenous computing power, not to mention that

the competition with local workloads also makes the transcoding

time even more unpredictable. This heterogeneous task execution

time greatly challenges decision making in assigning pre-recorded

video workloads. Most of previous works deterministically estimate

the transcoding time to do further allocation, where methods range

from simple linear model [19] to complex neural networks [14].

Considering the di�culty in deterministically estimating transcod-

ing time in practice, Zhang et.al in [37] take empirical approaches

that treat the transcoding time as a distribution. In this paper, we

also assume the transcoding time on a viewer follows its own distri-

bution from a statistical perspective, given its device con�gurations,

a video task and its targeted resolution.

Recall that cdi, j denotes the cost of viewer i in taking the pre-

recorded video task j and pdi, j for the probability of completing

its assigned task before the deadline. Facing this private informa-

tion, our goal is to select viewers to complete the task before the

deadline. Since each selected viewer may �nish the task any time

and transcoding pre-recorded videos allows interruptibility, it is

suboptimal to select redundant viewers to transcode the same video

concurrently in the beginning anymore. On the contrary, since a

viewer may not �nish the task before the deadline, it could help if

we invoke another viewer when we think that the previous viewer

will miss the deadline. In short, our problem becomes which view-

ers to select, and when redundant viewers can be selected to help

�nishing the task. The order of viewers for each task also matters

now, we thus denote the permutation of all viewer grouping setting

options as D ′, replacing the combination result D in the previous

broadcasting workloads. For pre-recorded video tasks, the expected

social welfare is

w(π (θi ,θ−i )) =
∑
j ∈N
(Vj (1 −

∏
(1 − pdi, j )) −

∑
i ∈D′

ci, j

i−1∏
k=1

(1 − pdk, j ))

In our scenario, if the distribution of transcoding time is public

information and has the memoryless property, like the exponential

distribution, we may derive a closed form solution for invocation

time given viewer group settings. However, it turns out that distri-

butions of transcoding time do not necessarily have this property,

like the Gamma distribution found in [37]. Without having distri-

bution with memoryless property or even without knowing the

distribution information of viewers at all, calculating which viewers

to choose and when to select redundant viewers is NP-hard, while

solving it sub-optimally endangers our incentive compatibility. To

guarantee our mechanism is still incentive compatibility, we design

our auction to operate in discrete time slots, where the duration of

one time slot is determined according to the duration of channels. In

addition, due to limited bandwidth capacity, management complex-

ity, and diminishing marginal gain by having extra viewers, each

task j in our system is upper bounded by Bj . These two settings

in turn reduce the feasible solution space. According to theoretical

results in [25], it is then possible to run the optimal algorithm on

this restricted solution space to achieve the incentive compatibil-

ity. Based on this, we can now �nd out the optimal viewer group

setting and the time to invoke redundant viewers in polynomial

time. Calculating payment for each selected viewer still follows

the policy we de�ned in the previous section only with di�erent

calculations for expected social welfare.

Theorem 5.1. After reducing the solution space through time dis-
cretion and bounding redundancy level, our proposed auction mecha-
nism still guarantees ex-post incentive compatibility in expectation.

We prove this theorem by proving that our mechanism �nds the

maximal solution under restricted solution space according to [25].

See the tech report for the detailed proof [1].

Complexity analysisThe known worst-case complexity bound

on the min-cost �ow problem for a graph with E edges andV nodes

is O{EloдV (E +Vloд(V ))}[27]. Since our system has far more view-

ers than broadcasting channels, the overall complexity for running

the mechanism in broadcasting workloads is O{N Bloд(N )}. Simi-

larly, for pre-recorded video workloads, covering at most T time

slots, we have the overall complexity equal O{|N |BT B−1}.

6 EVALUATION
6.1 Dataset and Experiment Settings
We collected the channel/broadcaster trace through Twitch’s public

API from January 25 to February 27, 2015. This public API provides

the game name, viewer number, and some other related information

of every broadcast channel. In the mean time, we further captured

the channel-based viewer trace through connecting to the Internet

Relay Chat (IRC) interface o�ered by Twitch. This trace contains

over 10 million join/leave records of viewers in certain channels

in the same period. We use the price of the default instance type,

m4.large, as the cost for transcoding a task in the cloud. Bids are

generated randomly between 0 and this price. The value of a channel

is calculated proportional to its accumulated popularity, number of

viewers watching this channel over the entire time span. Default

SLA on transcoding deadline in pre-recorded video workloads is

de�ned to be 1, namely a 150-minute duration video uploaded at

time t is expected to be available in t + 150 time.

Uncertain behaviour For broadcasting workloads, the prob-

ability for transcoding an entire live session is derived from the

Pareto distribution with its parameters varying from 0.5 to 0.9 as

observed in our trace. This varying likelihood for completing the

task re�ects the heterogenous behaviour of viewers in taking our

tasks. For pre-recorded video workloads, we follow the same sta-

tistical model as in [37] where transcoding time of a speci�ed �le

is determined by its size and a random variable t re�ecting the

transcoding time of a unit size segments. The distribution of t can

be modelled by a Gamma distribution function in their study, with

the shape parameter ranges from 4.868 to 5.209, and the scale pa-

rameter ranges from 0.101 to 0.145. Since not all viewers are capable

of taking the transcoding tasks, we sample only 1% of viewers from

our enormous viewer pool to simulate the eligible viewers
3
.

3
According to the Steam and Twitch statistics mentioned in Sec. 1, roughly 2% Twitch

users have PCs with 4-core CPUs operating at 3.7GHz and above, and DirectX 12 GPUs.

Sampling 1% of viewers here is a conservative choice to test the performance of C2.
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Figure 3: Impact of redundancy level (varying B)
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Figure 4: Impact of timeslot size

Baseline For broadcasting workloads, we compare our solution

with a fully cloud-based approach and a stability-based method

where viewers are selected greedily based on its average historical

duration per cost [18]. Similarly, our baseline algorithm in pre-

recorded video workloads is another greedy algorithm, greedy-

e�ciency, which selects viewers with the largest probability for

�nishing the task within the deadline per cost. We set a static price

as thirty percent of the cloud counterpart to motivate viewers in

the stability-based and greedy-e�ciency approach.

Metrics To examine the performance of C2, we measure two

important metrics: social welfare and total service cost for both

two types of workloads. The �rst one is the ultimate optimization

goal in our mechanism, re�ecting the overall system e�ciency. The

second one is the overall cost for covering the transcoding demand

of all channels. In addition, speci�cally for broadcasting workloads,

we also measure reassignment count, which measures the number

of times all transcoding viewers leave the assigned transcoding

process. This re�ects the stability of our system. Similarly, for pre-

recorded video workloads, we measure the fail count, which denotes

the number of times a channel missed the transcoding deadline.

6.2 Sensitivity Analysis
We �rst conduct sensitivity analysis to see the impact of time slot

size and redundancy level on system performance, and then com-

pare the performance of C2 with baseline approaches.

Impact of redundancy level Fig. 3 presents the impact of the

redundancy level on di�erent workload types. For broadcasting

workloads in Fig. 3a , introducing one more redundant viewer can
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Figure 5: Performance comparison for broadcasting work-
loads (B = 2)

already reduce up to 65% reassignment than the baseline situation.

This advantage sustains over 55% in the B = 2 cases. This gain

diminishes as the redundant level increases. The average gain for

increasing one more redundant viewers changes from 56% (B = 1

to B = 2) to around 25% (B = 2 to B = 3), and eventually drops to

5% (B = 3 to B = 4). For pre-recorded video workloads in Fig. 3b,

introducing one more redundant viewer achieves around 70% less

fail count reduction. The marginal bene�t of introducing extra

redundant viewers also decreases from 70% to 25% on average.

Impact of time slot size We next examine the impact of time

slot size on service cost and social welfare in pre-recorded video

workloads in Fig. 4. Service cost for transcoding the speci�ed num-

ber of channels increases with the increase of time slot size. Cor-

respondingly, social welfare of C2 decreases with the increase of

time slot size. A smaller time slot means we can determine when

to select redundant viewers in much �ner granularity, which con-

sequently leads to higher social welfare. Similarly, we also observe

the decreasing of marginal performance gain in service cost and

social welfare cases.

6.3 Comparison with Baseline Methods
Fig. 5a presents the service cost for transcoding speci�ed numbers

of channels in broadcasting workloads. C2’s exploitation of nor-

mal viewers signi�cantly reduces cost when compared with pure

cloud implementation (e.g., by ≈ 93% compared to EC2 on-demand

instance) and outperforms static pricing schemes used in stability

approach (by ≈ 86% ). This demonstrates the superiority of dy-

namic pricing in incentivizing viewers without introducing severe

underpricing or overpricing problems. Fig. 5b demonstrates that

C2 achieves 58% to 62% more social welfare than the stability-based

approach. We omit the comparison of reassignment count in these

situations due to the excess advantage in C2. The reassignment

count of the stability-based approach ranges from 220 times in 480

channels to 877 times in 2500 channels. On the other hand, C2 just

experiences reassignment 8 times in the 2500 cases. It is because

that C2 does not rely on average duration history to �lter reliable

viewers, instead it directly elicits true probability of �nishing the

task from viewers.

For pre-recorded video workloads, C2 achieves over 28% service

cost reduction in most cases than the pure cloud approach except

when channel number reaches 5000 in Fig. 6a. The average service

cost of C2 usually is around 10% more than that of greedy-e�ciency
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Figure 6: Performance comparison for pre-recorded video workloads

approach. Notably, C2 in this setting procures two viewers for each

transcoding task. With a little more investment in recruiting re-

dundant viewers, C2 achieves at least 41% more social welfare than

the greedy-e�ciency approach in Fig. 6b. The social welfare gain

even reaches 100% more than the greedy-e�ciency approach when

channel number is 4500. Thanks to the e�cient invocation of re-

dundant viewers, C2 is capable of �nishing much more transcoding

tasks than the greedy-e�ciency approach in Fig. 6c.

7 RELATEDWORKS
Attracted by the elasticity in computing power and the “pay-as-you-

go" billing model, cloud naturally becomes the choice for supporting

video transcoding services [10, 15, 22]. Aparicio-Pardo et al. in [10]

study the appropriate target representations for transcoding to max-

imize viewers’ satisfaction. Chen et al. in [11] propose a generic

cloud renting framework to minimize leasing cost through service

migration. Gao et al. in [15] present a dynamic resource provision-

ing algorithm to minimize the transcoding cost based on task pre-

emption. Driven by the high cost in cloud transcoding, researchers

have also studied novel architectures to help reduce transcoding

cost [20, 34]. Krishnappa et al. in [20] outsource transcoding tasks

to CDN and leverage online transcoding to improve user experi-

ence. The involvement of viewers brings unprecedented level of

uncertainty and heterogeneity to computing resources which sel-

dom appears in previous SLA guaranteed clouds. The altruistic

assumption or naive �xed price incentive approaches also could

not fully motivate users to take these computation-intensive tasks

and truly reduce cost. In addition, peer transcoding in P2P systems

shares some familiarity with our work in leveraging peer nodes to

do transcoding [35]. However, these works mainly focus on how a

tree structure can be constructed by peer information exchange in

a distributed way. Our system still keeps a global control plane on

task scheduling; essentially, each viewer still works as a powerful

node to transcode alone. We focus on addressing the heterogeneity

and uncertainty issues by using auction to do task allocation and

incentive provisioning. What is more, cloud component is indis-

pensable to our system due to its critical role in keeping stability

and availability for our applications. Our solution echoes with the

emerging paradigm of edge computing [16], while we do not rely

on extra deployment of dedicated edge servers. Our mechanism

also o�ers insights to scheduling in other distributed computing

infrastructures with heterogenious computing power and under

the control of di�erent entities.

Auctions have been widely used to solve the resource allocation

problem and incentive issues in varies application scenarios, like

crowdsourcing [13], spectrum allocation [12], etc. It strives to elicit

the private information from players through bidding and deter-

mines the appropriate reward as incentive. Since most previous

auction mechanisms treat user behaviour as a static status, they are

no longer applicable to our scenario due to the stochastic viewer

computing behavior. We instead take a statistical description to-

wards this uncertainty and incorporate it into our bidding language.

There are few research works on addressing incentive problems

in video streaming context. We tailor our mechanisms to explic-

itly meet the requirements of our studied applications. The most

related work [18] studies a fully crowd transcoding approach. They

select stable altruistic viewers based on the knowledge of viewer

distribution. We propose a cloud-crowd solution to better improve

system stability and assume no knowledge in viewers’ distribution.

8 CONCLUSION
In this paper, we presented a novel transcoding system, C2, with a

hybrid architecture which combines the computing power of cloud

and crowd together to accomplish transcoding tasks in the emerging

crowdsourced livecast systems. Facing the heterogeneity of viewers

and the asymmetric information situation, we designed truthful auc-

tion mechanisms to select stable viewers for transcoding and tailor

redundancy strategies for di�erent types of workloads. We further

proved theoretically that our proposed mechanism achieves social

e�ciency, individual rationality, and ex-post incentive compati-

bility. The trace-driven simulation demonstrated that our system

achieves higher social welfare and lower service cost than the pure

cloud solution.
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