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Abstract—The deep penetration of Online Social Networks 
(OSNs) have made them major portals for video content sharing. 
It is known that a significant portion of the accesses to video 
sharing sites are now coming from OSN users. Yet the unique 
features of video sharing over OSNs and their impact remain 
largely unknown. In this paper, we present a measurement study 
towards understanding the video requests from OSNs. We closely 
collaborated with a large-scale Facebook-like OSN to analyze its 
user access logs spanning over four months. Our measurement 
reveals a number of distinctive features on the popularity distri­
bution of videos shared over the OSN. In particular, we observe 
that the OSN amplifies the skewness of video popularity so largely 
that about 2% most popular videos account for 90% of total 
views; the video requests distribution also exhibits perfect power-
law feature; video popularity evolution shows more dynamics. All 
these noticeably differ from that of conventional videos, such as 
YouTube videos. To further understand the characteristics, we 
model the video viewing and sharing behaviors in OSNs, leading 
to the development of a practical emulator. It reveals the gap 
between the sharing rate and the viewing rate, and generates 
user requests that well capture the video popularity distribution 
and dynamics as observed in our empirical data. 

I. INTRODUCTION 

Traditionally, users have discovered videos on the Web 
by browsing or searching. Recently, word-of-mouth [13] has 
emerged as a popular way of discovering the videos, particu­
larly over online social network (OSN) sites such as Facebook 
and Twitter, where users discover video contents following 
their friends' shares. It has also been a key driving force for the 
traffic from many video sharing sites (VSSes). A measurement 
[1] based on YouTube data showed that between April 2009 
and March 2010, 25% of views on YouTube come from social 
sharing. YouTube reported that as of January 2011 more than 
500 tweets per minute containing a YouTube link, and over 150 
years worth of YouTube video is watched by Facebook users 
every day [18]. Till June 2012, the numbers have increased to 
700 tweets and 500 years. Yet the characteristics of requests 
from OSNs have not yet been comprehensively measured at 
large scales, not to mention video requests generation. 

To unveil the characteristics of video viewing in OSNs, we 
closely collaborate with a large-scale Facebook-like OSN in 
China to analyze its server access logs. Starting from March, 
2011, we collected the detailed user video viewing and sharing 
behaviors over four months. Leveraging the proprietary data, 
we characterize the user requests from the aspects of video 
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popularity distribution and evolution, unveiling a number of 
distinctive characteristics compared with the video requests 
directly from VSSes. In particular, we observe that OSNs 
amplify the skewness of video popularity so largely that about 
2% most popular videos account for 90% of total views 
(compare to 20%-90% in conventional YouTube statistics [2]). 
We also observe that the video requests distribution exhibits 
perfect power-law feature, where in YouTube, it exhibits a 
power-law waist with a long truncated tail for huge unpopular 
videos [2]. 

To further understand the characteristics observed in the 
empirical analysis, we build an emulator to model the video 
viewing and sharing behaviors in OSNs. Our emulator gen­
erates user requests that well capture the video popularity 
distribution and dynamics observed in our empirical data. 
Using this emulator as a tool, we find that although the top 
popular videos mostly have large sharing rate (sharing rate 
(ShRi) is defined as the probability viewers will reshare the 
video i after viewing), videos with high ShR do not definitely 
gain large user requests. We also confirm that the dynamics 
of the number of sharers' friends is a major reason for the 
video popularity dynamics. Our emulator can also be used 
to synthesize user requests for examining video sharing with 
assistances from peer-to-peer, content distribution networks, 
or cloud platforms [16] [17]. 

The rest of the paper is organized as follows. We present 
related works in Section II. Section III presents the mea­
surement results on the video popularity distribution. Section 
IV presents the design, validation, and analysis of our video 
requests emulator. Finally, we conclude in Section V 

II. RELATED WORK 

There are some pioneer data-driven analysis of content prop­
agation in OSNs. Rorigues et al. [13] studied the propagation 
of URL links posted in Twitter, using large data gathered from 
Twitter. They presented the distribution of height, width, and 
size of propagation trees. Sun et al. [15] studied distribution 
chains and large-scale cascades across Facebook. Scellato 
et al. [14] focused on the geographic property of social 
cascades of videos by tracking social cascades of YouTube 
links over Twitter. Cha et al. [3] [4] conducted a large-scale 
measurement study on Flickr social network. They found that 
even popular photos spread slowly through the network. While 

978-1-4673-5946-7/13/$31.00 ©2013 IEEE 50 



2013 Proceedings IEEE INFOCOM 

we found that the videos in an OSN spread much faster. 
This comparison indicates that different kinds of contents 
propagate in diverse patterns in OSNs. A very recent work 
[16] studied the propagation-based social-aware replication for 
social video contents. They found similar power-law video 
popularity distribution in another large OSN in China. Instead 
of making a comprehensive measurement and analysis as we 
do in our paper, they focused on the system optimization based 
on these new traffic patterns. 

Comparing with the characteristics of the videos shared 
in VSSes can provide us more in-depth understanding of 
the characteristics of the videos shared in OSNs. There are 
plenty of measurement works on the VSSes videos either by 
crawling meta-data their websites [2] [6] [5] or tracing traffic 
from a set of network routers/switches [7] [20]. Cha et al. [2] 
presented an in-depth study of the static popularity distribution 
of videos in two large-scale VSSes, finding that the video 
popularity shows a power-law waist with a long truncated tail 
for huge unpopular videos. Figueiredo et al. [6] found that the 
popularity growth pattern depends on the choice of the video 
dataset. Crane et al. [5] categorized videos by their popularity 
evolution patterns into three types: viral videos, quality videos, 
and junk videos. Gill et al. [7] and Zink et al. [20] both 
analyzed YouTube video requests from a campus network and 
observed that the video requests follow a Zipf-like distribution. 
Our work focuses on similar aspects as pervious works, yet 
aiming to demonstrate the distinctive characteristics due to 
the word-of-mouth based sharing mechanism. In particular, we 
find more skewed popularity distribution, and more complex 
popularity evolution patterns. 

III. MEASUREMENT OF VIDEO REQUESTS FROM AN OSN 

In this section, we first present the measurement results 
on the video popularity distribution in OSNs. We then study 
whether these videos always keep the same positions in the 
distribution and receive corresponding requests over time. 

A. Measurement Methodology 
To understand the characteristics of the video requests from 

OSNs, we closely collaborate with an large Facebook-like 
OSN in China. Like Facebook, users can post video links 
from VSSes and the video propagation is based on the friend 
links. Starting from March 24*'*, 2011, we collect detailed 
user video viewing and sharing behaviors. Our dataset includes 
more than 1.1 billion viewing requests over four months. When 
a user clicks a shared video, an individual record will be 
sent to the log server. The data format of viewing action 
is: (Starting Time, Viewer ID, Video URL, Direct Sharer 
ID, Original Sharer ID). From these trace, we can obtain 
such statistics as the video popularity distribution, popularity 
evolution, and inter-arrival times distribution. Moreover, our 
dataset enables us to analyze the video propagation process 
in OSNs by tracing viewer-sharer relationships. Tracing the 
video propagation process helps find the major factors that 
affect a video's popularity, thus providing inspiration in our 
model construction. 

B. Video Popularity Distribution 

The Pareto principle (also known as the 80-20 rule) is 
widely used to describe the skewness in distributions. Earlier 
measurement of YouTube shows that 10% of the most popular 
videos account for 80% of user requests [2]. We expect word-
of-mouth based sharing mechanism leads to a less skewed 
request distribution across the videos in an OSN, since all 
videos have equal chance to become popular. As shown in 
Fig. 1, we see a counter-intuitive result that 0.4% videos 
account for more than 80% of requests; the rest 99.6% of 
the videos, on the other hand, only account for 20% requests 
(the ir-axis of this figure represents the videos sorted from 
the most popular videos to the least popular ones, with video 
ranks being normalized between 0 and 1). We believe that 
this is because the popular videos will become even more 
popular since the users are more likely to recommend these 
videos to their friends. The unpopular videos, however, will 
fade out very soon in the social communities. An immediate 
implication from this popularity skewness is that a high hitrate 
can be achieved, even if only a small set of popular videos 
are cached. 

To further analyze the user requests distribution, we take a 
closer look at the videos that are initially shared in the same 
day (March 24"1). Since users are generally more interested 
in newly updated videos, this analysis will avoid the possible 
bias due to video aging. We count the cumulative requests of 
those videos after one day, two days, one week and one month 
respectively, and plot the results in Fig. 2. The popularity 
of those videos again exhibits such a high skewness that 
2% popular videos account for 90% of total requests. We 
also notice that the skewness increases as the time-window 
increases, and converges after one week. To further understand 
the reason for the skewed popularity distribution, we count the 
frequency of video views in one month, finding that 90% of 
videos only receive less than 10 requests. These videos were 
never reshared by viewers since they were introduced to the 
OSN. It means that these videos ever vanished from the OSN 
and thus have no chance to be found and requested again. 
While in VSSes, any videos can always be searched if they are 
not deleted from the system. The unpopular videos in VSSes 
can slowly accumulate their views for a long time. Thus, 
we conclude that the difference in the number of extremely 
unpopular videos is the direct reason for more skewed video 
popularity distribution in OSNs than VSSes. 

The power-law model [11] has been increasingly used to 
explain various statistics appearing in the computer science 
and network systems. To check the power-law pattern for the 
videos in OSNs, Fig. 3 plots the requests versus video ranks 
of all videos initially shared on the same day. We find that 
the plot exhibits perfect power-law (the exponent value is also 
given in the figure) pattern, and the curves of different days 
are very similar except for some top videos. While Cha et 
al. [2] found that the video popularity in YouTube shows a 
power-law waist, with a long truncated tail for huge unpopular 
videos and sharp decay for popular videos. They guessed some 
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Fig. 1. Skewness of requests across all videos Fig. 2. Videos initially shared in the same day Fig. 3. Requests versus video ranks (log-log) 

potential reasons for the truncated tail, but did not provide 
confident conclusion whether it is the nature shape or because 
of some design issues. Our later model verifies that it is the 
nature shape of the power-law video popularity distribution in 
OSNs. A very recent work [16] also showed the power-law 
video popularity distribution in another large-scale OSN. 

C. Popularity Dynamics 
Although the videos show similar popularity distribution 

along the time, we find that their relative positions in the 
distribution are highly non-stationary. In other words, some 
current rarely-requested (or low-ranked) videos may become 
frequently-requested (top-ranked) videos in the near future. In 
this subsection, we characterize such dynamics. 

For every 500,000 user requests, we snapshot the numbers 
of added requests across all videos that were initially shared 
on March 24th. Fig. 4 shows scatter plots for the number of 
added views received by a video at snapshot 1 and snapshots 2, 
3, 4. It also shows the Pearson correlation coefficient (pp) [12] 
and Spearman's rank correlation coefficient (ps) [10] between 
the number of added views at different snapshots. With our 
notion of added views at a snapshot, this figure illustrates 
the change in viewing rate between two snapshots. Overall, 
we observe substantial non-stationarity in the popularity of 
individual videos. Although the added views of two adjacent 
snapshots shows strong correlation, it is not the case for two 
non-adjacent snapshots. The correlation declines quickly with 
the distance of two snapshots. Note that the scatter plots have 
fewer points for later snapshots owing to the increasing videos 
that received no views in these snapshots (and hence are not 
shown on the log-log plots). While in YouTube, prior study 
found that the early views have relatively high correlation with 
future views even after one month [2]. 

IV. MODELING VIDEO VIEWING BEHAVIORS IN O S N S 

In this section, we emulate the users' video viewing behav­
iors in OSNs. Our emulator is designed to assign a sequence 
of user requests to a set of videos, and the generated requests 
should capture the video popularity distribution and dynamics 
observed in the empirical data. Leveraging this emulator as a 
tool, we can analyze above measurement results and various 
factors that impact the video popularity in OSNs. It can also 

be used to generate synthesize user requests, which are helpful 
for such related researches as video caching algorithms. 

A. Modeling Request Distribution 
This paper only focuses on the effect of the word-of-mouth 

on the dissemination of content. This mechanism is widely 
adopted by a large number of OSNs (e.g., Facebook, Tittwer, 
Flicker, and etc.) as the basic information dissemination mech­
anism. It is also a distinctive feature of OSNs from traditional 
VSSes. Other mechanisms, such as featuring, links between 
content, and search results, are undoubtedly at play in some 
OSNs, but studying their impact requires a richer dataset and 
is beyond the scope of this paper. 

Now we model how the user requests are distributed across 
videos, in order to capture the video popularity distribution and 
evolution observed in the empirical data. We denote Pi as the 
probability that a new request is assigned to the video i. One 
simple model is distributing requests according to a constant 
distribution, which is taken in some previous work [8]. This 
method must assume that the relative popularity of videos 
maintain stable in a certain time, which is not observed in our 
empirical data. Another alternative method is using rich-get-
richer distribution mechanism [19]. In our case, it is expressed 
as Pi = Zji , where M is the number of videos in the 
system, and Vi is the number of historical views of video i. 
Pi is proportional to Vi. The most important property for this 
process is that it generates a distribution following a power 
law in its tail, as is observed in our empirical dataset. Yet it 
it can not well reflect the video propagation process in OSNs 
and hance fail to capture the dynamics of propagation. 

Besides viewing history, we try to leverage the video 
propagation process to provide a more reasonable requests 
distribution mechanism. Our model assumes that users can 
only find and view videos shown in the "News Feed" of their 
homepages. And all these videos are shared by their friends 
and be pushed to their "News Feed" in a chronological order. 
Therefore, videos will have more chance to be found and thus 
be viewed in the future, if they have already been shared by 
many sharers and at the same time these sharers have plenty 
of friends. Besides, another two factors are also important: 
how many of these potential viewers have already watched, 
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Fig. 4. Scatter plot of the number of added views at snapshot 1 versus snapshots 2, 3, 4 

and the probability that users will view the video if it appears 
in their "News Feed". We define Ei as the expected number 
of requests for all Si existing shares of the video i. 

Si 
Ei = £)(£>,* * ViRi) (1) 

fc=i 
where Si is the number of sharers of video i until now; Df 
is out-degree of the kth sharer of the video i; D\ indicates 
how many users the video i can be exposed to if the kth sharer 
shares it. ViRi (short for Viewing Rate) is the probability that 
a viewer will view the video i shared by her/his friend. Note 
that similar to Vi and Si, Ei is a variable changing over time. 
Accordingly, we get the following rich-get-richer equation: 

Ei 

Y.UiEj-Vj) (2) 

where the value of Ei — Vi reflects the number of expected 
viewing requests in the future. Larger value of Ei — Vi means 
more chances to be assigned for the next new request. 

B. Emulator 
Based on the above model, Algorithm 1 describes an 

implementation of our emulator for the video viewing and 
sharing behaviors in an OSN. It introduces a new request to 
system after each inter-arrival time (T). For each request, the 
emulator assigns it to the video i according to the Pi defined 
in Eq. 2. For the chosen video i, the number of its views (Vi) 
is increased by one. After that, this video should be judged 
whether to be reshared with the probability ShRi (short for 
Sharing Rate of video 0- ShRi . If so, the number of shares 
(Si) of this video is increased by one, and the expected views 
(Ei) of this video is increased by V * ViRi. 

In this emulator, the input parameters include T>, video 
ShRi, and ViRi for each video. The emulator distinguishes 
the attractiveness of videos by assigning different ShRi and 
ViRi to them. Note that it does not distinguish the difference 
of individual users in the probability of viewing and sharing 
the same video. The ViRi and ShRi are the properties of 
videos not users. The distribution of V reflects topological 
property of the targeted OSN. 

Algorithm 1 Emulator of video viewing and sharing behaviors 
l 
2 
3 
4 

5 
6 

7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

for request = 1 to N do 
generate a inter-arrival time T; 
current time t=t+T; 
a new request arrives, and be assigned to the video i 
with the probability P^, 
V++; 
extract a random variable U, with continuous uniform 
distribution U(0,1); 
if U < ShRi then 

Si++; 
extract a random variable V; 
for i=l to V do 

extract a random variable U; 
if U < ViRi then 

Ei++; 
end if 

end for 
end if 

end for 

C. Performance Evaluation 
We now validate the efficiency of our emulator in reflecting 

the video popularity distribution and dynamics by inputting the 
parameters extracted from real-world trace. For the number of 
videos and requests, we configure the same values (M=63,591 
and AT=2,905,276) as those in Fig. 3. The distribution of ShR 
was given in our previous work [9]. Instead of parameterizing 
ViR and V separately, the emulator needs only the product of 
them, which is denoted as BrF (short for Branching Factor). 
This parameter was also given in our previous work [9]. 

With the above parameters as the input, we first examine 
the video popularity distribution of the generated user requests. 
One key observation from the empirical data about the video 
popularity distribution is the power-law distribution under the 
plot of video views versus ranks. Another key observation is 
that the popularity shows high skewness. As shown in Fig. 5, 
we can see the simulation result and real-world data are pretty 
matched. We also count the skewness of the video popularity 
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distribution, and the simulation result shows that the top-2% 
videos account for 85% of the total requests, which is very 
close to our observation (2%-90%). The most popular videos 
in our simulation are not as popular as that in the empirical 
data. In our examined OSN system, a small number (e.g., 120) 
of popular videos are featured as the most popular videos and 
are listed in a public page. This behavior can further increase 
the popularity of the featured videos. We do not include this 
exogenous factor in our current emulator, considering that it is 
not a generally case in other systems and also does not affect 
the overall pattern of user requests. 

Then, we examine the popularity dynamics. We calculate 
the Pearson correlation coefficient (pp) and Spearman's rank 
correlation coefficient (ps) between the numbers of added 
views at different snapshots, and shown the results in Table I. 
Overall, the coefficients are very close for the simulation 
result and the empirical data. A closer look will find that 
our emulator produces less dynamics. This is because our 
simulation simply configures each video with a constant ShR 
that never changes over time. In fact, the ShR of different 
videos change over time with diverse patterns, which can 
also affect the video popularity dynamics. Considering the 
complexity of ShR evolution pattern yet much less importance 
to the popularity dynamics, we do not model the evolution of 
ShR in the current emulator and leave it for our future work. 

TABLE I 
CORRELATION COEFFICIENTS BETWEEN THE NUMBERS OF ADDED VIEWS 

AT DIFFERENT SNAPSHOTS (SI VS SJ) 

Op, Ps) 
simulation 
empirical 

SI vs S2 
(0.8459,0.7224) 
(0.8211,0.6470) 

SI vs S3 
(0.6234,0.3834) 
(0.5129,0.3386) 

SI vs S4 
(0.1834,0.1754) 
(0.1756,0.1616) 

Based on the verified emulator, we analyze the impact of 
ShR value to a video's popularity. Fig. 6 shows the scatter 
plots for ShR and views. On one hand, we find the high 
ShR does not definitely result in many requests. As shown in 
this Figure, the correlation coefficients between them are very 
low. On the other hand, almost all frequently-viewed videos 
have high ShR. For example, 87.8% videos which gain more 
than one thousand views have ShR with value 0.17 or 0.18. 
It indicates the popularity of a video shared in OSN exhibits 
much randomness and unpredictability, for example owing to 
the randomness of friends' number of sharers. 

V. CONCLUSIONS 

In this paper, we studied the characteristics of video requests 
from OSNs, by analyzing the logs of video viewing actions 
in a large-scale OSN over serval months. Our measurement 
unveiled both static and temporal characteristics of video 
requests from OSNs, highlighting several distinctive features 
from the requests directly from VSSes. To better understand 
the characteristics observed in our empirical data, we built 
an emulator to model video viewing and sharing behaviors 
in OSNs. Although simple, our emulator well capture the 
observed characteristics in the empirical data, including the 
video popularity distribution and dynamics. 
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