Tweeting Videos: Coordinate Live Streaming and
Storage Sharing’

Xu Cheng
School of Computing Science
Simon Fraser University, BC, Canada
xuc@cs.sfu.ca

ABSTRACT

User generated video sharing (e.g., YouTube) and social-
networked micro-blogging (e.g., Twitter) are among the
most popular Internet applications in the Web 2.0 era. It
is known that these two applications are now tightly cou-
pled, with many new videos being tweeted among Twitter
users. Unfortunately, video sharing sites are facing critical
server bottlenecks and the surges created by Twitter fol-
lowers would make the situation even worse. To better un-
derstand the challenges and opportunities therein, we have
conducted an online user survey on their personal preference
and social interest of Internet video sharing. Our data anal-
ysis reveals an interesting coexistence of live streaming and
storage sharing, and that the users are generally more inter-
ested in watching their friend’s videos. It further suggests
that the users are willing to share their resources to assist
others with close relations, implying node collaboration is a
rationale choice in this context.

In this paper, we present COOLS (Coordinated Live
Streaming and Storage Sharing), an initial attempt to-
ward efficient peer-to-peer tweeting of user-generated videos.
Through a novel ID code design that embeds nodes’ loca-
tions in an overlay, COOLS leverages stable storage users
and yet inherently prioritizes living streaming flows. Pre-
liminary evaluation results show that, as compared to other
state-of-the-art solutions, COOLS successfully takes advan-
tage of the coexistence of live streaming and storage sharing,
providing better scalability, robustness, and streaming qual-
ity.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms

Design, Human Factors, Performance

*This research is supported by a Canada NSERC Strate-
gic Project Grant, an NSERC Discovery Grant, an NSERC
DAS Grant, and an MITACS Project Grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NOSSDAV’10, June 2—4, 2010, Amsterdam, The Netherlands.

Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

15

Jiangchuan Liu
School of Computing Science
Simon Fraser University, BC, Canada
jcliu@cs.sfu.ca

Keywords

Live Streaming, Storage Sharing, Social Network

1. INTRODUCTION

In the recent years, Web 2.0 has been dominating the
Internet as well as mobile networks. Many such applica-
tions are backed by vast user-generated content (UGC); typ-
ical examples include YouTube! for video sharing and Face-
book?, Twitter® for social networking. The pervasive pene-
tration of wireless LANs and 3G networks further stimulates
the development of such applications, where the content can
be generated at anytime and anywhere.

YouTube, established in 2005, is now serving well over
a billion views a day [11]. Watching online video has no
doubt become one of the most important entertainments in
people’s daily life. Through Twitter, a user can post text-
based status called tweet, and the user’s subscribers called
followers can receive the tweet update in real-time. So far,
people have already posted more than 10 billion tweets* and
the number is still fast growing. More importantly, the two
Web 2.0 applications have close interactions, e.g., YouTube
enables an automatic post through Twitter, so that the fol-
lowers can quickly be notified and then watch a new video.
New feed applications such as FriendFeed® (by Facebook)
and recently introduced Google Buzz [10] are trying to fur-
ther couple video sharing and social networking.

Unfortunately, YouTube-like sites are facing critical server
bottlenecks and the surges created by Twitter followers
would only make the situation worse [4]. In fact, even
the text-based Twitter has encountered system-wide out-
ages during some critical events, e.g., the Obama’s inaugu-
ration and Michael Jackson’s tragical death [1, 9]. While
peer-to-peer has long been advocated as a solution for TV
or movie content streaming, it remains unclear whether it is
doable for the short user-generated videos with independent
asynchronous viewers.

To better understand the challenges and opportunities
therein, we have conducted a user questionnaire survey on
their personal preference and social interest of Internet video
sharing. Our data analysis reveals an interesting coexistence

Thttp://www.youtube.com

http://www.facebook.com

3http:/ /twitter.com

4The IDs of tweets are assigned sequentially. With
the Twitter API (http://twitter.com/statuses/show/
10000000000.xml), we can find the latest posted tweet.
®http://friendfeed.com

live video

f weaming/sharing
U Y N
/
/

followers

Figure 1: Application Scenario

of live streaming and storage sharing; that is, some users ex-
pect to watch the video immediately while some expect later.
As illustrated in Figure 1, a user could use a digital cam-
corder or mobile phone to record video, and the live video
is then sent to a server. Through Twitter-like services, the
server can broadcast the live video to the user’s followers,
who can be wired Internet user or mobile device users. A
follower has three options:

e Watch the live video, and thus have stringent require-
ment on streaming quality;

e Do not watch the live video, but expect to watch it
later. Such a user is delay-tolerant, and some of them
may also switch to the first option at some time during
the live streaming;

e Not interested in the video at all. Some celebrities or
organizations have thousands of followers and their fol-
lowers probably do not know each other. In this case,
if such a user does not want to watch the video now
or later, he/she may not want to share the resources
with other followers, either.

The coexistence clearly makes a system design more com-
plicated. It however also suggests that semi-synchronized
user for live streaming may reach a critical mass for col-
laborative streaming, and that the relatively stable storage
nodes could be leveraged to combat node churns. More im-
portantly, our survey reveals that many of the users are
willing to share their resource to assist others with close
relations. Also, although people are not necessarily fully
satisfied with the playback quality provided by most of the
current video streaming services, their concern is more about
the video content, which largely determines the viewing du-
ration. Consequently, if their friends upload videos, they
will be more interested and likely watch the entire video.
All these imply collaborative peer-to-peer is a rationale and
promising choice in this context.

In this paper, we present COOLS (Coordinated Live
Streaming and Storage Sharing), an initial attempt to-
ward efficient peer-to-peer tweeting of user-generated videos.
Through a novel ID code design that embeds nodes’ loca-
tions in a tree overlay, COOLS leverages stable storage users
and yet inherently prioritizes living streaming flows with
short startup delay. It also gracefully accommodates users’
switch from the second option (storage) to the first one (live
streaming), as well as node dynamics.

16

Preliminary evaluation results show that, as compared to
other state-of-the-art solutions, COOLS successfully takes
advantage of the coexistence of live streaming and storage
sharing, providing better scalability, robustness, and stream-
ing quality.

2. RELATED WORK

Web 2.0 applications are emerging in the recent years,
and there have been quite a few related measurement stud-
ies, particularly on understanding YouTube for video shar-
ing [3, 4, 5, 8], Facebook, MySpace and LinkedIn for social
networking [2, 8], and etc. Different from these measure-
ments that indirectly infer user behavior and interests, we
have conducted an online questionnaire survey that directly
obtains such data. The survey also motivates our study on
the coexistence of live streaming and storage sharing, and
implies that peer-to-peer is a rationale choice in this new
context.

Numerous peer-to-peer protocols have been developed for
live or on-demand video streaming, which can be broadly
classified into two categories according to their overlay struc-
tures [7], namely, tree-based (e.g., ChunkySpread [13]) and
mesh-based (e.g., CoolStreaming [14]). We have seen ear-
lier attempts toward joint live and on-demand peer-to-peer
streaming. For example, BitTorrent has enabled a stream-
ing mode, so that user could watch on-demand video while
downloading it [12]; also, peer-to-peer streaming platforms
such as PPLive now provide both live and VoD modes [6].
However, efficient implementation and more importantly,
seamless integration of the two types of users, particularly
in the social network context, remains a great challenge.

3. A USER QUESTIONNAIRE SURVEY

Most of existing studies on video sharing measure the net-
work usage to derive user-related statistics. Trying to di-
rectly understand the Internet users’ preference and social
interests on viewing and sharing online videos, we instead
create a Web survey and invite people worldwide to fill it
in. The survey contains 13 single-choice questions plus sev-
eral questions on personal information. So far, 114 people
have participated the survey. 58.8% of them are from North
America, 33.3% from Asia, and 7.0% from Europe, with var-
ious network connections, refer to Figure 2. Most of them
are of ages 19 and 30, which is exactly the core generation
of YouTube and Twitter users.

The survey questions and detailed results can be found
at http://netsg.cs.sfu.ca/survey.html. We now sum-
marize the key observations we have seen from the sur-
vey results. We find that 62% participants usually leave
a video streaming session after selecting it and return af-
ter a while, rather than stay and wait, and most of them
(84.2%) consider playback quality as the key factor of this
behavior (55.2% and 61.4% are satisfied with the startup
delay and playback continuity, respectively). Then, if they
leave, 46.3% of them will come back after a quarter of the
video has been downloaded, and 68.3% will come back after
half of the video has been downloaded; 22.0% of them will
wait until the entire video is downloaded. Regarding waiting
time, most of them (69.2%) will spend less than 5 minutes
for waiting, and no one will wait more than 30 minutes. In
short, for the same video content, viewers of live streaming
and that store-and-play both exist.

21%
WiFi

28%

Yes, but with friends

Yes, with anyone
Cable Modem
61%

20%

2%

Fiber

20%

Ethernet

Figure 2: Break- Figure 3: User’s
down of user’s net- willingness of con-
work connections tribute

Second, the survey asks users if they are willing to share
their resources while streaming or downloading, regardless
any particular implementation. The result, as shown in Fig-
ure 3, is gratified that only 11% of users do not want to
contribute. Over 60% of the users do not care who they are
sharing with, and 28% users only want to share the resource
with close relations, e.g., in the same Twitter follower set.

Third, in general, only 55.9% of the people tend to watch
the entire video. Not surprisingly, this behavior is affected
by the video content, as people concern more about the video
content than the playback quality, as shown in Figure 4. In-
terestingly, when a video is uploaded by a friend, a user are
more likely to watch the entire video. Figure 5 shows the
comparison of the possibility of watching the entire video,
uploaded by a friend and someone the user followed. We con-
sider a weighted possibility that “100%”, “probably”, “likely”,
“maybe” and “don’t care” are 1, 0.9, 0.7, 0.5 and 0, respec-
tively. The figures then will be 76.8% and 55.6% to watch
the entire video.

4. SYSTEM OVERVIEW

We consider a video tweeting system, in which a server
accepts user-generated video from networked camcorders or
multimedia-ready mobile phones, and distributes the video
to the uploader’s followers.

4.1 Streaming User and Storage User

As suggested by the survey, there exist two types of follow-
ers interested in the tweeted video, namely, streaming users
and storage users. The streaming users expect to watch the
live video, and the storage users expect to download and
then watch the video at a different time, due to the pres-
ence of other concurrent events.

A streaming user would leave after a while if finding the
video is out of its interest. On the other hand, a storage user
that downloads the video asynchronously does not have the
concern of interest nor playback quality, until he/she starts
to watch the live video. Therefore, such users are relatively
stable, though they could switch their options. There is
another significant difference between this video tweeting
and conventional streaming: conventionally, users may join
and leave at any time, while in our scenario, all the users
join the system at the beginning but can leave at any time,
i.e., the initial number of users is the upper-bound.

Figure 4:
down of user’s con-
cern on videos

17

60.00%

. friend

45.00%
19%

Only Content

30.00%

Content > Quality

56%

Quality > Content

0
23% 15.00%

0%

100% probably likely maybe don't care

Break-

Figure 5: Comparison of the pos-
sibility of watching the entire
video

source

3
‘....‘.neXtID
O storage node ‘ streaming node

Figure 6: Example of overlay tree with IDs

4.2 Overlay Tree

Considering the above factors, we advocate a tree over-
lay design for video tweeting. It is known that a tree with
data push is more efficient than a mesh with data pull, but
constructing and maintaining the tree with peer churns is a
daunting task. Fortunately, since the users are followers of
the tweeted video, they are generally interested in watching
the whole video as our survey suggests, and the existence
of storage users implies that their churns are much less fre-
quent, which can thus be strategically placed to improve the
robustness of a tree.

To efficiently coordinate the two types of users, our
COOLS implements a labeled tree that embeds node lo-
cations in the overlay. For ease of exposition, we explain
it with a binary tree, in which each node is assigned an 1D,
represented by a binary code. The two children of the server
node (the source) have IDs 0 and 1, respectively, and, for a
given node, its left child’s ID is the node’s ID appended by
a 0, and the right child’s ID is that appended by a 1. As
such, the ID embeds the location of a node and also that of
its all ancestors, and the number of digits (length) indicates
its depth in the tree.

We now define a partial order of the IDs: if two IDs are
of identical length, the one with greater value is considered
greater, e.g., 010 is greater than 001; otherwise, the longer
ID is greater, e.g., 000 is greater than 11. We then define
an increment operation of the ID: if not all the bits of the
ID is 1, an increment operation will increase the ID value

9”3& -
®

(1

source

v
nextID

(4)

Figure 7: Example of overlay construction: creating, merging and promotion

by 1; otherwise, the length of ID will be increased by 1 and
all the bits are set to 0. The operation of decrement can be
defined similarly.

Since the storage nodes are relatively more stable, we ex-
pect that the storage nodes’ IDs are smaller than that of
streaming nodes after the tree is stabilized; in other words,
the storage nodes will be placed at more critical locations
of the tree. Figure 6 shows an example of such an overlay
tree. We will detail the construction and maintenance of
the overlay in the next section, particularly on both achiev-
ing robustness with storage users and minimizing delay for
streaming users.

5. DESIGN DETAILS
5.1 Overlay Construction

5.1.1 Creating Storage Tree and Streaming Tree

As mentioned, the storage nodes are expected to be close
to the source. However, we also need to guarantee short
startup for the streaming nodes, which requires them to be
close to the source, too. Fortunately, since the storage users
are delay-tolerant, the dilemma can be eliminated by prior-
itizing the streaming nodes in the initial stage.

Specifically, COOLS first constructs two trees, one con-
tains all the streaming nodes, referred to as streaming tree,
and the other contains all the storage nodes, referred to as
storage tree. After the two trees are established, and the
streaming nodes have buffered enough data, the two trees
will be merged to one overlay tree.

For each tree, we let source record the next value of the
current maximum ID, which is initially set to 0. To make it
clear, the value for the streaming tree is nextI D, and that for
the storage tree is firstID (the meaning will be explained
later). The source adds nodes to the trees sequentially. Each
newly added streaming user will be assigned an ID of value
nextlI D, and nextID is then increased by one. The node
thus knows its parent’s location by checking the prefix of
the ID. If the source has enough children, it will provide the
address of one of its children whose ID is the same as the
first digit of the node’s ID, i.e., which branch should the
new node go; otherwise, the new node will be source’s child.
The construction for the storage tree is similar, except that
firstI D will be used.

It is worth noting that each node only keeps the local in-
formation of the parent, two children, and the source, while
the source only keeps the information of the four depth 1
children as well as the nextID and firstID.

18

5.1.2 Tree Merging and Node Promotion

At the beginning, the source dedicates to the streaming
tree. When the streaming nodes have buffered enough data
for starting playback, the source will start to push data to
the storage tree. In the meantime, the source searches for the
node(s) that should be the parent(s) of two new nodes, and
then performs a merge. Specifically, it stops pushing data
to the streaming tree and notifies the two streaming tree
children to connect to the parent(s). Since the streaming
nodes have sufficient amount of the video data, they will
seamlessly join the storage tree without interruption. The
first step in Figure 7 shows the procedure of merging two
trees.

Since the source records the next value of the current max-
imum ID in the storage tree as firstID, the new ID of the
left streaming child node will change to firstID, and this
is the reason we name this value; the right child node is
assigned the next value of firstID. Note that the value
of firstID is not changed. Moreover, the source also re-
computes a new nextID, which is the next value of the
maximum ID in the storage tree, e.g., 0000 in Figure 7.
Then the source disseminates this value in the tree.

After the two trees are merged, the overlay tree is prob-
ably not a complete tree, as some streaming nodes may lo-
cate deeper than expected, referring to the value of nextID.
These nodes are in an unsteady state, e.g., node 0000, 0001,
1100, 1101 and 1110 in the second step of Figure 7. Some
leaf storage nodes are also unsteady if they should have chil-
dren but haven’t yet, also based on nextID, e.g., nodes 00,
01 and 10; other nodes are in a steady state. Since most of
the unsteady streaming nodes will move upwards, we call
this procedure as node promotion.

The unsteady nodes will send control messages toward
the source. If it finds that its ID is no smaller than nextID,
it sends a promotion message; if its potential children’s ID
is smaller than nextID, it send a child requiring message.
A rendezvous (not necessary the source) receiving such mes-
sages will match them, notifying two senders to connect with
each other. For example, in the figure, node 00 matches it-
self with node 0000, node 0 matches node 01 with node 0001,
node 1 matches node 10 with nodes 1100 and 1101, and at
last the source matches node 01 with node 1110.

Suppose the heights of the original two trees are H; and
H,, respectively. To merge and promote, in the worst case,
all the promotion and child requiring messages are matched
at the source. Thus in each round, the nodes in the highest
depth send promotion message and get matched, which takes
(Hs+ HJ) time, where H; is decreased by 1 each round. The

() ()
5, . FLFSEID .
VN

Figure 8: Example of node demotion

tree’s height will eventually become H, and all the nodes
between depth H, and depth H are streaming node. There
will be (H; + Hs — H) rounds. For complete trees, all the
three heights are bounded by O(log N), and the time to
complete the promotion is thus bounded by O((log N)?).

5.2 Handling Node Dynamics

A storage user may have time to watch the live video
after a while, and thus becomes a streaming node. There
is also possibility that a streaming user finds the video of
no interest, and thus stops watching and leaves the system.
Given that the users are more likely to watch the entire video
being uploaded by their friends, such events are relatively
rare in our application scenario; yet proper handling is still
necessary, as addressed below.

5.2.1 Node Demotion

For switching from storage to streaming, we need to de-
mote the node in the tree. It is worth clarifying that the
demotion will not degrade the playback quality, as it only
lowers the depth of the node in the tree, since it becomes
more possible to leave the overlay.

Figure 8 shows an example of the demotion process. Sup-
pose user 0 starts to watch the live video, it first informs the
source and gets the value of firstID from the source, and
the source then decreases the value of firstID by one. In or-
der to minimize the overhead, only the demoting node (node
0) and the last storage node (node 10) will perform a switch,
so that node 0 will become the first streaming node. Then
the two nodes exchange the IDs, as well as their connections
of children and parents. The demotion is then completed.
Since the demoting node have already downloaded sufficient
data, it can immediately start watching without any startup
delay. Obviously, the demotion will not affect other nodes’
playback.

5.2.2 Node Leave and Crash

Certain streaming users may stop watching after finding
that the video, though uploaded by a friend, is of no interest.
Node crash is also possible. Storage nodes however will not
leave unless crash.

When a node gracefully leaves the system, it will notify
the source, its parent and its children about its current in-
formation of the connections. When the source receives the
notification, it will compute a new nextlID and disseminate
the new value. All the right child nodes along the path will
be promoted, and all the left child nodes remain unchanged.
An example is shown in Figure 9.

When a node crashes, neither the source nor its connected
node will be notified. With our ID design, the crashed
node’s children can quickly locate their grandparent, and
the grandparent can thus knows the connection information

19

®

® @
@ QO
Figure 9: Example of node leave

of its grandchildren. The source will also be notified by
these children. Then these nodes will repair the tree as if
the crashed node graceful leaves.

Note that the crash of a storage node may cause that the
new tree violates the requirement that all the storage nodes’
IDs should be smaller than that of the streaming nodes.
This can be addressed by the source through computing a
new firstlD value, and switching the last storage node and
the streaming node that should be demoted.

6. PERFORMANCE EVALUATION

6.1 Simulation Settings

We now present our preliminary evaluation results for
COOLS. We have also implemented ChunkySpread- [13] and
CoolStreaming-like [14] overlays for comparison, which are
typical tree and mesh designs, respectively. In our evalua-
tion and comparison, we use the following three typical met-
rics, which together reflect the quality of service experienced
by end users.

Data loss rate. It is defined as the fraction of the data
blocks missing their playback deadlines;

Startup delay. It is the time taken by a node between its
requesting to join the overlay and receiving enough
data blocks to start playing;

Playback delay. It is the time for a data block from being
sent out by the source to being played at a node.

We also examine the control overhead, and record the
number of the control messages sent by each individual node
over time.

Unless otherwise specified, the following default param-
eters are used in our simulation: the session length is set
to 3600 seconds and each data block is of 1-second video
data; there are 2000 overlay nodes, 60% of which are stor-
age nodes at the beginning. All the nodes join the overlay at
the beginning. To emulate node dynamics, loosely based on
our survey results, a storage node will switch to streaming
with a probability of 0.02 per second after 5 minutes, and a
streaming node will leave the system with a probability of
0.02 after viewing 10 minutes of the video.

6.2 Sample Results

Figure 10 shows the cumulative distribution function
(CDF) of data loss rate. The pure tree-based solution per-
forms the worst. The mesh-based solution is resilient to node
dynamics, and thus performs better than the pure tree-based
approach. While our COOLS is also tree-based, through dif-
ferentiating the two types of nodes and making the stable

0%
0 0.005 0.01 0.015 20 40 60 80
Data Loss Rate Startup Delay (second)

Figure 10: CDF of data CDF

loss rate

Figure 11:
startup delay

storage nodes close to the root, it performs even better than
mesh in this application scenario.

Figure 11 shows the CDF of startup delay. The pure tree-
based solution performs slightly better than the mesh-based,
but our COOLS takes much shorter time to start playing.
This is because the mesh needs a longer time to search for
partners, and the pure tree-based solution is unaware of the
coexistence of the two types of nodes and thus does not
explicitly optimize the service to the streaming nodes.

Figure 12 shows the CDF of playback delay. Again, our
COOLS and the pure tree perform better than mesh, show-
ing the superiority of data push in terms of delay minimiza-
tion. Our COOLS performs slightly worse than the pure
tree, mainly due to the computing and updating of node
IDs. Nevertheless, our ID design helps nodes quickly locate
their positions, improving the system robustness as demon-
strated by the data loss evaluation.

Finally, Figure 13 compares the control message overhead
of the three approaches. Not surprisingly, with data pull,
the mesh suffers from much higher overhead than the other
two. Our COOLS is tree-based and hence experiences simi-
lar overhead as the pure tree, though slightly higher because
of the switching operations.

7. CONCLUSION AND FUTURE WORK

This paper presented Coordinated Live Streaming and
Storage Sharing (COOLS). The COOLS design was moti-
vated by a questionnaire survey on real users of Internet
video sharing, which reveals a coexistence of live streaming
and storage sharing for social-networked video and the inter-
est of different users. Through a novel ID code design that
inherently reflects nodes’ locations in a peer-to-peer overlay,
COOLS leverages stable storage users and yet inherently pri-
oritizes living streaming flows, providing better scalability,
robustness, and streaming quality.

COOLS offers an initial attempt to promote the coexis-
tence of the two types of users for peer-to-peer streaming.
There are many possible avenues to explore in this frame-
work. We expect to extend the tree structure with flexible
degrees, so as to further reduce its height and hence delay.
Since there are wired Internet user and wireless mobile user,
their heterogeneity may also need to be addressed in the
overlay construction and maintenance. Moreover, we are
now conducting a systematical measurement to further un-
derstand and utilize the interest and behavior Twitter users.

8. REFERENCES

[1] AppScout. Inauguration: Twitter Reports 5 Times
Normal Tweets Per Second. http://www.appscout.

—cooLs

of

Figure 12: CDF of play-
back delay

20

7
Il Data Message
oI control Message

Number of Messages
©w & o

—CooLs
1

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

20 cooLs Tree Mesh

40 60 80
Playback Delay (second)
Figure 13: Comparison
of messages transimitted

com/2009/01 /inauguration_twitter_reports_5.php,
20009.

F. Benevenuto, T. Rodrigues, M. Cha, and

V. Almeida. Characterizing User Behavior in Online
Social Networks. In Proc. of ACM IMC, 2009.

M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and

S. Moon. I Tube, You Tube, Everybody Tubes:
Analyzing the World’s Largest User Generated
Content Video System. In Proc. of ACM IMC, 2007.
X. Cheng, J. Liu, and C. Dale. Understanding the
Characteristics of Internet Short Video Sharing: A
YouTube-based Measurement Study. IEEE
Transactions on Multimedia, 2010.

P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube
Traffic Characterization: A View From the Edge. In
Proc. of ACM IMC, 2007.

Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and

C. Huang. Challenges, Design and Analysis of a
Large-scale P2P-VoD System. In Proc. of ACM
SIGCOMM, 2008.

J. Liu, S. G. Rao, B. Li, and H. Zhang. Opportunities
and Challenges of Peer-to-Peer Internet Video
Broadcast. Proceedings of the IEEE, 96(1):11-24, 2008.
A. Mislove, M. Marcon, K. Gummadi, P. Dreschel,
and B. Bhattacharjee. Measurement and Analysis of
Online Social Networks. In Proc. of ACM IMC, 2007.
paidContent. Twitter Search Fails Under Thursday’s
Celebrity News Rush. http://paidcontent.org/article/
419-twitter-search-fails-under-thursdays-celebrity-
news-rush, 2009.

The Official Google Blog. Introducing Google Buzz.
http://googleblog.blogspot.com/2010/02/
introducing-google-buzz.html, 2010.

The Official YouTube Blog. Y,000,000,000uTube.
http://youtube-global.blogspot.com/2009/10/
y000000000utube.html, 2009.

TorrentFreak. BitTorrent Launches Ad Supported
Streaming. http://torrentfreak.com/bittorrent-
launches-ad-supported-streaming-071218,

2007.

V. Venkataraman, K. Yoshida, and P. Francis.
Chunkyspread: Heterogeneous Unstructured
Tree-Based Peer-to-Peer Multicast. In Proc. of IEEE
ICNP, 2006.

X. Zhang, J. Liu, B. Li, and T.-S. P. Yum.
CoolStreaming/DONet: A Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming. In
Proc. of IEEE INFOCOM, 2005.

