
2132 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Truthful Online Auction Toward Maximized
Instance Utilization in the Cloud

Yifei Zhu , Student Member, IEEE, Silvery D. Fu, Student Member, IEEE, Jiangchuan Liu, Fellow, IEEE,

and Yong Cui , Member, IEEE

Abstract— Although infrastructure as a service (IaaS) users
are busy scaling up/out their cloud instances to meet the
ever-increasing demands, the dynamics of their demands, as well
as the coarse-grained billing options offered by leading cloud
providers, have led to substantial instance underutilization in
both temporal and spatial domains. This paper systemati-
cally examines an instance subletting service, where sublettable
instances can be leased to others within predetermined periods
when underutilized, from both theoretical and practical perspec-
tives. The studied instance subletting service extends and comple-
ments the existing instance market of IaaS providers. We identify
the unique challenges and opportunities in this new service, and
design online auction mechanisms to make allocation and pricing
decisions for the instances to be sublet. For static supplies of
instances, our mechanism guarantees truthfulness and individual
rationality with the best possible competitive ratio. We then
incorporate a multi-stage discount strategy to gracefully handle
dynamic supplies. Extensive trace-driven simulations show that
our service achieves significant performance gains in both cost
savings and social welfare. We further pinpoint the challenges in
implementing such a service in the real-world system and validate
our modeling assumptions through a container-based prototype
implemented over Amazon EC2.

Index Terms— Cloud computing, auction design, resource allo-
cation, online algorithm, dynamic supply.

I. INTRODUCTION

INFRASTRUCTURE as a service (IaaS) is one of the
prominent service forms of current cloud services, where

computing resources, such as CPUs and memory, are packed
in the form of virtual machines, i.e. instances, and sold to
users. As the fastest growing segment in the cloud ecosystem,
the market of IaaS grew 31% in 2016 to total $22.1 billion [1].

Manuscript received May 25, 2017; revised December 2, 2017 and
July 14, 2018; accepted July 16, 2018; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor A. Wierman. Date of publication
September 10, 2018; date of current version October 15, 2018. This work
was supported in part by the Industrial Canada Technology Demonstration
Program Grant, in part by an NSERC Discovery Grant, and in part by an
E. W. R. Steacie Memorial Fellowship. The work of Y. Cui was supported by
the National Key Research and Development Program of China under Grant
2017YFB1010002. (Corresponding author: Jiangchuan Liu.)

Y. Zhu and J. Liu are with the School of Computing Science, Simon
Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail: yza323@sfu.ca;
jcliu@sfu.ca).

S. D. Fu was with Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
He is now with the Department of Electrical Engineering and Computer
Sciences, University of California at Berkeley, Berkeley, CA 94720-1234 USA
(e-mail: silvery@berkeley.edu).

Y. Cui is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
cuiyong@tsinghua.edu.cn).

Digital Object Identifier 10.1109/TNET.2018.2864726

Amazon EC2 as the leader in the IaaS market currently pro-
vides 57 types of pre-configured instances under 13 categories
with pricing options ranging from prevalent fixed-priced on-
demand instances to niche auction-based spot instances [2].
From the user side, it is estimated that 30% of applications will
be migrated to the public cloud by the end of 2017, up from
14% in 2016 [3]. For both IaaS users and providers, the grow-
ing reliance on IaaS inevitably makes cost management their
primary concern.

Although IaaS users are busy scaling up and out their cloud
instances to meet their demands, the resource utilization of
their instances is far from being efficient. This inefficiency,
in turn, incurs extraneous expenditure for IaaS users. For
example, Netflix reported one of its Amazon EC2 clusters
had reserved 5x more instances overnight to support peak-time
services; during off-peak times, more than 1500 3.4xlarge
EC2 instances are mostly unused [4], translating into almost
$10 million unnecessary costs per year [2]. In general,
instance underutilization can occur in both temporal and spa-
tial domains [5]. In the former case, it occurs when IaaS users
purchase instances for a fixed amount of time (i.e. the billing
cycle, ranging from minutes to years) but make no use of
them during certain time intervals as in previous Netflix case.
The latter may happen when users are running workloads with
heterogeneous demands on various resources. For instance,
statistics show that the ratios of memory-to-CPU of tasks
running in Google’s data centers spread over more than three
orders of magnitude [6]. CPU thus may become underutilized
when running memory-bounded applications, and vice versa
for memory.

Jointly solving instance underutilization in both domains
is challenging. Existing studies have focused on dynamically
provisioning cloud resources [7], [8], an approach that allows
customized instance types to mitigate underutilization in the
spatial domain only. Fine-grained pricing schemes have also
been investigated in academia [9] and adopted by some cloud
providers (e.g., Microsoft Azure), in which instances are billed
in a shorter time interval. Users in turn can timely turn off their
idle instances to avoid extra charges. It unfortunately does little
help to the underutilized instances, and discourages users from
purchasing long-term instances with significant price discounts
from the wholesale market of the cloud providers [10].

Recently, an instance subletting service has been sug-
gested [11], [12], which allows underutilized instances to be
sublet to others in need (in spatial and/or temporal domains).

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4352-6507
https://orcid.org/0000-0002-5171-739X

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2133

If carefully designed, this service can make instance owners
monetize their underutilized instances without introducing
unnecessary downtime, and meanwhile make other users enjoy
low-cost and high-quality computing resources. It can also
help providers to gain profit by serving a wider range of
potential users not yet covered by existing markets. Being a
complement and extension to the current cloud market, it has
great potentials towards building an efficient and sustainable
cloud ecosystem.

Making instances sublettable however involves both prac-
tical and theoretical challenges. A core issue is to deter-
mine the trading price accordingly. An auction appears to
be a natural candidate due to its efficiency in allocating
scarce resources and its capability in deciding market-based
prices [13], [14]. Instance subletting, however, presents a series
of new challenges that are yet to be addressed in the existing
auction designs. Previous auctions make decisions either in
the offline setting, assuming all bids are given at once, or only
deals with the online arrival of bidders given a static known
supply [8], [15], [16]. In instance subletting, given the dynamic
arrivals of underutilized instances, the supply of auction is
largely unknown and fluctuates, too. In addition, instances
cannot stay in the market forever. These instances also have
distinct deadlines for subletting, after which they will be
reclaimed by their original owners. As such, these extra time
constraints also need to be dealt with in auction. Furthermore,
by allowing multiple users to share a single instance, instances
are no longer traded as the classical one-to-one exchange, but
many-to-one exchange, which makes the pricing of co-located
requests even more challenging.

In this paper, we systematically examine the instance sub-
letting service from both theoretical and practical perspectives.
We start by revealing that the algorithmic side of our auction
for subletting service is a unique multiple multi-dimensional
knapsack problem (MMKP)1 that has yet to be addressed in
existing auction mechanisms. We present an online auction
mechanism with a carefully designed pricing function based
on the real-time availability of resource usage. We show
that the solution provides the best provable competitive ratio
with static supply, and guarantees truthfulness and individ-
ual rationality simultaneously. It is then extended with a
deadline-aware heuristic to handle dynamic supply. We include
time constraints into service level agreements (SLA) of the
subletting service to provide running time guarantee for buyers
in this dynamic supply market. Pricing functions are also
enhanced with a multi-stage discount strategy, agilely adapting
to the elapse of time without sacrificing truthfulness and
individual rationality. Large scale simulations driven by real
traces demonstrate that our solution can achieve significant
performance gains in social welfare and cost savings. We fur-
ther discuss the practical issues in implementing the instance
subletting service, including the platform API for resource
bidding, resource isolation after request placement, and the
resource management architecture under the dynamic supply.

1MMKP solely refers to multiple multi-dimensional knapsack problem in
this paper, not multiple-choice multi-dimensional knapsack problem used in
some application scenarios.

Accordingly, we design and implement an EC2 based pro-
totype, which offers seamless and low-overhead operation
thanks to the latest containerization techniques (Docker [17]
in particular).

The remainder of this paper is organized as follows: Sec. II
discusses related work; Sec. III presents the formal formulation
of our problem; Sec. IV presents the design and analysis of our
online auction mechanism in the static supply case, and Sec. V
extends it to handle dynamic supply; extensive simulations
are presented in Sec. VI, followed by discussions of practical
challenges in Sec. VII; Sec. VIII concludes our work.

II. BACKGROUND AND RELATED WORK

Most of the previous literature focuses on studying
dynamic resource provisioning from a single cloud service
provider’s perspective [8], [14], [15]. As one of the early
works, Zhang et al. [18] propose an online auction mecha-
nism for allocating a single type of resource in the cloud.
Zhang et al. [14] further study the multi-dimensional resource
provisioning problem. They consider the operation cost in this
model, and design deterministic/randomized auction mecha-
nisms to maximize social welfare and revenue. These works
assume that the service provider has a static resource capacity
on the supply side and consider at most the online arrival
of instance requests. For multi-dimensional scenarios, they
consolidate massive resources into a monolithic resource pool
without either distinguishing the underlying barriers between
different servers or considering the actual request placement
process. While the computing resources in our system are
contributed by distributed sporadic users, even the resource
capacity can be dynamically changing which increases the
challenge in auction design further [19]. In addition, we can
no longer ignore the underlying instance barrier to place the
requests like before. Otherwise, severe resource fragmentation
problems occurs to indivisible instances, leaving the system
useless.

Existing IaaS providers also provide several types of
low-cost instance options other than their regular instances2

to attract cost-conscious users. This pricing advantage is usu-
ally accompanied with constrained instance capability, which
are further realized in two ways: (1) low-cost instances are
interruptible and can be reclaimed by the provider at its
will, like spot instances in EC2 and preemptible instances
in Google Compute Engine (GCE). (2) low-cost instances
are configured with small base capacity only and can burst
to higher capacity opportunistically, like burstable instances3

in GCE. Instance subletting services discussed in this paper
are implemented using market-based auction mechanism and
offers a different SLA in both time and spatial dimensions
compared with existing instance options, making it a comple-
mentary part to the existing cloud market. For example, unlike
preemptive spot instances, instance subletting services offer
nonpreemptive instances where accepted instances are guar-
anteed to run without interruption during its requested period.

2On-demand and reserved instances
3f1-micro instances in GCE get 0.2 of a vCPU and can burst up to a full

vCPU for short periods.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2134 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 1. Design space and the position of sublettable instance: Maximum
achievable capacity ∈ {High, Medium, Low}. SI for EC2 spot instances,
PI for GCE preemptable instances, OI for on-demand intances, and BI for
GCE burstable instance.

Unlike small sized burstable instances, instances in instance
subletting services have larger base capacity. The difference in
these two service models fundamentally separates target user
groups and presents new theoretical challenges in resource
allocation. Fig.1 presents a more intuitive illustration to our
design space and the position of our sublettable instance in
it. In addition, as the first large scale attempt in applying
market-based pricing on preemptible VM provisioning, pricing
in spot instance has been discovered to be not truly market-
driven [20], which can induce complex strategic behaviour
(e.g., untruthful bidding) of users. We strive to design auction
mechanisms where truthful bidding is the dominant strategy
for all users.

Attracted by the low cost of existing spot instances
and reserved instances, novel cloud services complementing
current cloud ecosystem have also become a focal point
of the recent academic literature. Brokerage is a popular
approach that takes benefit of reserved instances [21], [22].
Wang et al. [22] propose to use a broker to resale the reserved
instance bought from the cloud provider to the users. They
focus on making reservation decisions at the supply side to
reduce the total cost of a broker. Qiu et al. [23] study the
interaction between private clouds and a broker, and formulate
the trading problem as a Stackelberg game, which deprives
the pricing power of the users. Yi et al. [24] incorporate
fulfilment ratio requirements of batch jobs to maximize the
revenue of the provider. Other works try to exploit spot
instances through building a platform from a system’s per-
spective without taking pricing issues and strategic behaviours
into consideration [25], [26]. Some preliminary results on
subletting services have been presented in [27] with the focus
only on the static supply situation. We study a more realistic
scenario with the dynamic supply case and also examine the
feasibility of subletting services from the practical perspective.

A large group of cloud providers, including the 5th IaaS
provider Rackspace and some small niche cloud providers
like, VPS.NET,4 still offer on-demand instances in an hourly
rate or even longer. Users’ continuous attraction to the per-
sonalized services provided there and the fear of vendor
lock-in all make these users possible sources for the instance
subletting service. The supply of our service is not restricted
to on-demand instances only, rather any type of instances with
explicit leasing period can come to our service. For example,
reserved instances usually need commitment in 1 or 3 years.

4VPS.NET: https://www.vps.net/

Fig. 2. Auction market in our instance subleting system.

The marketplace for reserved instances trades instances in
the unit of month, which are still too coarse for exploiting
hourly or even minutely fluctuations.

III. INSTANCE SUBLETTING: SYSTEM MODEL

AND PROBLEM FORMULATION

A. System Model

The instance subletting service can be implemented either
in the major IaaS market or in a secondary market oper-
ated by another third-party platform. In the former, IaaS
users can directly purchase sublettable instances offered by
the major cloud provider. In the latter case, they can also
purchase sublettable instances purchased from the existing
cloud markets, e.g., Amazon EC2 on a third-party platform.
We assume there are M instances for sublet in this market.
Each instance consists of R types of resources (e.g., CPU,
memory). We index each type of resources in an instance as r
where r ∈ R. The capacity of resource r in an instance j ∈ M
is denoted as Cr

j . Each instance j joins the market at time T j
s

and has a deadline T j
ddl for sublet, after which the instance

will be collected back to its owner. In our one-sided auction,
the instance subletting service provider acts as an auctioneer
selling these M instances to N buyers through auctions. Fig.2
provides an overview of this auction market. Each buyer i ∈ N
comes to the market at time tis and acts as a bidder bidding
for an instance to meet its computing demand. This demand
is specified from two aspects: resource configuration for its
intended instance, and the minimum running time for this
instance, denoted as < �dr

i , ti > where r ∈ R. Each buyer i
then attaches a bid valued at bi along with its requirement
< �dr

i , ti >. These bids are sent to the auctioneer. Since each
bid corresponds to a request of a bidder, we use bid and request
interchangeably in this paper.

After receiving a bid i, the auctioneer decides immediately
whether to accept this bid or not, and the amount of price pi

this bid should be charged if accepted. Buyers behind the
accepted bids will be allocated to the instance as specified in
their bid. The minimum running time requirement ti turns into
a service level agreement (SLA) between the service provider
and this buyer i. To be specific, our instance subletting service
provider commits to make this instance available to this buyer
within the bid-defined running time ti without interruption.
This commitment applies separately to each accepted bid.

In addition, the winning buyer i pays the corresponding
price pi to the auctioneer. We denote the private valuation of

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2135

TABLE I

TABLE OF NOTATION

buyer i for having its intended instance as vi. The utility of
a buyer i follows commonly used quasi-linear utility form,
which in turn is defined as ui = vi − pi if this buyer wins
this instance with price pi, and zero otherwise. Since we are
studying a strategic environment, buyers in such environment
may choose to misreport their bids other than their true
valuation to improve their utility; truthfulness becomes the
cornerstone in a well-managed auction. It is crucial because
only after eliciting the true valuation from the buyers can a
mechanism achieves social efficiency. In addition, a buyer’s
utility should be non-negative to guarantee their incentive to
join the auction, known as individual rationality in the auction
theory. We present the formal definitions of these three goals
in the following:

Definition 1: An auction achieves truthfulness if the dom-
inant strategy for each player in the auction is to report its
true valuation. Namely, reporting its true valuation generates
the optimal utility: u(vi) ≥ u(bi), ∀bi �= vi.

Definition 2: An auction achieves individual rationality if
the utility of the selected player is non-negative, namely,
u(bi) ≥ 0.

Definition 3: An auction achieves social efficiency if
the sum of utilities of all players and auctioneers are
maximized.

As can be seen, our instance subletting service only involves
buyers directly participating in the auction in order to mini-
mize users’ effort to devise complex bidding mechanisms for
their instances and maximize resource utilization. Correspond-
ingly, since this is a one-sided auction, social welfare naturally
is the sum of utilities of buyers and the utility of the auctioneer
(also acts as the seller with online supply contributed by
the subletting users). Social welfare becomes the sum of
valuations of all buyers after the prices cancelled out. Notice
that the cost for the users to sublet their underutilized instances
is the monetary cost determined once they purchase these
instances. This cost becomes constant once they determined
their own usage time and decide to join the subletting service
to monetize their underutilized instances. Important notations
are summarized in Table. I for clarity.

B. Auction in the Subletting Service: Problem Formulation

The implementation of the instance subletting system
involves challenges from both the theoretical and the practical
sides. We first examine its theoretical aspect and discuss its
practical challenges in Sec. VII. We start from analyzing its
offline scenario with all the information available in advance,
and focus on maximizing social welfare of the system, which
is defined as the sum of utilities of all buyers and auctioneer,
to ensure system-wide efficiency and stability. Social welfare
is a commonly-used objective in resource allocation literatures
and can be regarded as the generalization of utilization maxi-
mization to a setting with utility-weighted requests. We intro-
duce a binary variable xi,j , which equals 1 if a request i is
allocated to instance j or equals 0 if this request is rejected
by our system. In the offline situation, our problem can be
formally formulated as follows:

max
∑

i∈N

∑

j∈M

xi,jvi (1)

s.t.
∑

j∈M

xi,j ≤ 1, ∀i ∈ N (2)

∑

i∈N

dr
i xi,j ≤ Cr

j , ∀r ∈ R, ∀j ∈ M (3)

tixi,j ≤ T j
ddl − tis, ∀i ∈ N, ∀j ∈ M (4)

xi,j ∈ {0, 1} (5)

Under truthful bidding, we have the objective value as∑
i

∑
j xi,jbi. Constraint (2) indicates that each user request

can only be allocated to one instance; Constraint (3) indicates
that the total requests allocated on an instance cannot consume
more resources than the capacity of this instance in all
resource types; and Constraint (4) indicates that the selected
instance should have enough remaining time to guarantee the
continuous running of its hosted requests.

Theorem 1: The offline social welfare maximization prob-
lem, in its general form, is NP-hard.
The offline problem studied here is essentially a MMKP
problem. Both knapsacks (instances) and items (requests)
are defined by multi-dimensional size vectors, and we have
multiple knapsacks to choose from. We can easily reduce an
instance of multi-dimensional knapsack problem, an NP-hard
problem [28] into an instance of this problem to prove that
our problem is also NP-hard.

Considering the online situation of our problem, it is known
that the online knapsack problem is inapproximable to within
any non-trivial multiplicative factor in general cases [29].
Fortunately, in our scenario, the value reflected in bid value
under the truthful mechanism does not have to be arbitrarily
large. We can interpret it as the willingness to pay for our
subletting service, which is upper bounded by the on-demand
instance price, since any clearing price higher than the price
of this alternative will drive buyers to the on-demand instance.
Under such condition, we present an α−competitive5 mecha-
nism in the following Sec. IV.

5α is the competitive ratio we will reveal in Sec. IV-B

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2136 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

IV. MECHANISM DESIGN UNDER STATIC SUPPLY

In this section, we first study the static supply scenario
where all instances are already in the marketplace in the
beginning and only buyers arrive over time. Since we have
the static supply situation here, there is no notion of time limit
(leasing deadline) on each instance in this scenario any more.
Otherwise, the lifetime of the whole market is determined by
the instance with the longest leasing time, leaving our market
no way to sustain.

Notice that simply integrating capacities of multiple knap-
sacks (instances) into a unified one, transforming our problem
into the knapsack problem that previous works target at, does
not solve our original problem. Consider the following small
example: given two items with weight 1 and 3, the result of
allocating these two items into two knapsacks with capacity 2,
2 respectively is obviously not the same as that of allocating
these two into a single knapsack with capacity 4 after the
simple capacity integration. Therefore, the internal barriers
between different instances need to be handled properly.

A wide range of real world problems, like resource alloca-
tion problems [14], [18], secretary problems [29], and keyword
auctions [30], can be formulated into variants of knapsack
problem. The online versions of these problems attract more
attention among researchers due to their greater application
potential. As a more complicated variant of knapsack, it is
still unclear whether there exist online algorithms to solve
our studied MMKP problem with a similar O(ln(U/L)) com-
petitive ratio. Leveraging the primal-dual scheme, we design
an effective algorithm and prove that it is (ln(U/L) + 1)-
competitive with static supply. We then design pricing schemes
to complement it into an auction mechanism, guaranteeing
truthfulness and individual rationality. We present the detailed
design of our mechanism based on the primal-dual scheme in
the following.

A. Mechanism Design

The primal-dual approach has been widely used to reveal
the pricing attribute in a problem from the economical
perspective [31]. We leverage a primal-dual scheme with
Lagrangian relaxation for the social welfare maximization and
we show that the specific structure of this problem leads to a
competitive online mechanism.

We introduce non-negative Lagrangian multipliers λ =
{λr,j , r ∈ R, j ∈ M} for all r, j pairs in constraints (3).
Since our Lagrangian relaxation problem is the upper bound
of our original problem, we have the Lagrangian dual problem
as: min P (λ) s.t. λ ≥ 0. where P (λ) is defined as:

max
∑

i∈N

∑

j∈M

xi,jbi +
∑

r∈R

∑

j∈M

λr,j(Cr
j −

∑

i∈N

dr
i xi,j)

s.t.
∑

j∈M

xi,j ≤ 1, ∀i ∈ N (6)

xi,j ∈ {0, 1} (7)

A subproblem then emerges for each request i from this
dual problem.

max
∑

j∈M

xi,j(bi −
∑

r∈R

λr,jd
r
i) (8)

s.t.
∑

j∈M

xi,j ≤ 1 (9)

xi,j ∈ {0, 1} (10)

Observing this subproblem, we can interpret λr,j as the
unit price for each type of resource r in instance j. If we
define pi =

∑
r λr,jd

r
i , it indeed represents the price charged

to request i from instance j. In other words, the subproblem
essentially chooses the right instance to maximize the utility of
a request i. Once we have interpreted the dual variable as the
marginal price, the difficulty in online implementation lies in
how to update this dual variable. In fact, the crux of designing
a competitive algorithm lies in determining the appropriate
threshold to absorb the worthwhile inputs so that the desired
outcome can be reached. To be specific, we need to design a
marginal price updating function such that the platform does
not accept too many low-value bids in the beginning, leaving
no room for those high-value bids coming in the future. It also
should not be too conservative to leave the overall resources
underutilized in the end.

We introduce a usage ratio zr
j where zr

j =
�

i xi,jdr
i

Rr
j

to reflect the level of used resources of type r in current
instance j. As we have mentioned, in our case, we can
interpret the upper bound of a bidding price as the on-demand
instance counterpart. Accordingly, we define Lr and U r as
the lower/upper bound of user’s value per unit of resources
respectively. We have U = maxU r, r ∈ R. For each type
of resources, we design our unit price updating function as
follows:

λ(zr
j) = (U re/Lr)z(Lr/e). (11)

Our problem in static supply is similar to the previous
dynamic resource provisioning problem [32]. Different price
updating function could lead to different competitive ratio.
Our mechanism provides a cleaner price updating function
and the best possible competitive ratio in our problem setting.
The intuition behind defining a unit price updating function
like this is that when the usage ratio zr

j starts with zero,
the marginal price is set to be smaller than the unit price
lower bound. It ensures that the price is low enough to accept
as many bids as possible. With the increasing of zr

j , instance
becomes more and more conservative to admit new requests.
This marginal price as a selection threshold built from pre-
vious selected bids also guarantees that only relatively high
value bid can be admitted. Once zr

j equals one, the marginal
price is set to be the upper bound of the user’s value per
unit of resources. Under such circumstance, no bid can win
the auction, guaranteeing the capacity constraint is satisfied.
Otherwise, the charging price will be greater than their bid
value, violating individual rationality.

After having the updated unit prices (dual variables), we can
again make allocation and pricing decisions in the primal prob-
lem. We allocate request i to instance j iff i doesn’t overfill
the instance j, and instance j provides the maximum utility
to request i. The detailed algorithm is presented in Algo. 1.
Notice that when there is more than one instance offering
the same utility to the request, we allocate the request to the
most similar instance, where this similarity is calculated as the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2137

Algorithm 1 Online Auction Mechanism (OA)

1: Initiate λ(z) = (Ue/L)z(L/e), xi,j = 0, Lr, U r

2: while Receiving bid i do
3: Calculate utility:ui = bi −

∑
r

λ(zr
j)dr

i

4: j∗ = arg maxj(ui), ∀j
5: if ui > 0 then
6: if |j∗| > 1 then
7: j∗ = argmaxj∗(Sim(j∗, i))
8: end if
9: xi,j∗ = 1

10: pi =
∑
r

λ(zr
i)dr

i

11: else
12: xi,j = 0
13: end if
14: end while

dot product of two examined resource vectors in Euclidean
spaces, denoted as Sim(). This strives to keep the relative
relationship of resources in the chosen instance, avoiding to
use up a single type of resource, keeping the competence of
a instance for future use. We next prove that our mechanism
can guarantee truthfulness, individual rationality and a tight
competitive ratio.

B. Theoretical Analysis

Theorem 2: Our online auction mechanism guarantees indi-
vidual rationality and truthfulness in bid value.

Our mechanism is truthful because its pricing scheme falls
into the family of sequential posted price mechanisms [33].
The decision process also guarantees the individual rationality.
Detailed proofs of all important theorems in the following can
be found in the supplementary material .

Theorem 3: Our online pricing mechanism provides
α-competitive in social welfare with α = ln(U/L) + 1.

We prove the competitive ratio of our MMKP problem based
on the monotonicity of our pricing function, which is derived
from the primal-dual scheme.

Theorem 4: The competitive ratio of our online algorithm
is tight.

We prove the tightness of our algorithm by comparing
it with the classical knapsack problem (one-dimension, one
knapsack).

V. MECHANISM DESIGN UNDER DYNAMIC SUPPLY

We next extend the solution to consider dynamic supply sit-
uation in which even the capacity of instance pool is unknown
and fluctuates. Users with idle instances arrive overtime. These
instances are of different sizes and only available within
the user specified time for subletting. Requests also come
dynamically requiring different sizes of instances and time
requirements.

Time plays a crucial role in this context, which also
makes the problem much more complicated. Unlike other
resources, the remaining lifetime (if regarded as a resource)
in each instance is reusable as long as other resource

Fig. 3. Adversary situations because of the time constraint.

requirement satisfy. Take the simple case in Fig.3 as an
example. In the left subfigure, a request m is rejected due to
the high price of instance i, while a feasible instance j may be
available in the near future. In the right subfigure, when request
m arrives, there are two instances, instance i and instance j
available (satisfying both time and resource constraints). If we
accept request m and allocate it to instance j, the unit price in
instance j may increase so high that the later request n will be
rejected by j; and due to SLA violation, instance i is unable
to serve it, either.

The introduction of the time component makes our problem
similar to the real-time scheduling problems in real-time sys-
tems, like in an operating system, different tasks with varying
computation time and deadline compete to win the occupation
of processors. Correspondingly, a line of research works
focus on allocating single dimensional resource, e.g., CPU
computing time [34]–[36] or homogeneous instance6 [37]
in cloud environment. Jain et al. [34] study preemptive job
scheduling problems under parallelization limits in an offline
fashion. Azar et al. [35] study preemptive job scheduling
problems under soft deadlines. Chawla et al. [36] study the
resource scheduling problem in stochastic settings with the
known distributions on the demand side. Wang et al. [37]
study selling homogeneous instances with customer defined
reservation time. These works all try to circumvent known
lower bound by adding extra assumptions on either deadline,
resource types, distributions, etc. They relate more to spot
instance services or the job scheduling problem in Hadoop-like
computing framework from the application perspective. The
initial positioning of our services separates us with spot
instance and these works in that: (1) preemption is not allowed;
(2) users can customize the size of their multi-dimensional
instances; (3) we request instant decision-making and resource
accessing without any delay; (4) the proposed mechanism
can handle the game theoretic environment and solve the
pricing problem simultaneously›; (5) most importantly, not
only instance requests, those sublettable instances also arrive
online. Unfortunately, we first have to present a negative
result under our dynamic setting situation here. We present a
practical heuristic algorithm based on our previous mechanism
after that.

Theorem 5: No deterministic truthful mechanism can
achieve better than (U/L)-approximation to social welfare.

We prove this negative result by examining two adversary
cases when both sides of our markets are online.

A. Mechanism Design

Naturally, we need to incorporate time in our decision mak-
ing process. To be specific, we plan to save those long-lived

6Number of instances is the only input in demand

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2138 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 4. Illustration of price discount and stage separation (initial price P,
Tj = 16, tmin = 2, no requests are admitted).

instances so that they can meet better bids, and fully exploit the
capacity of those soon-expired ones. In the previous example,
if we allocate request m to the soon expired instance i,
the instance j may be able to serve request n as well. Such
a design idea also echoes with the earliest deadline first
policy in real-time scheduling. On the other hand, in order
to guarantee truthfulness, we still need to select the instance
with the largest utility with respect to a request.

Hence, we modify the unit price updating function in a
way that our market will discount the price of resources
in an instance with the elapse of time. In the meantime,
reducing the unit price means we are lowering the threshold
of admitting new requests. Without sacrificing social wel-
fare too much, ideally, we want the discounts to be quite
small at first. As times elapses, discounts become more and
more aggressive. Inspired by equity evaluation in portfolio
management [38], we incorporate a discount strategy here.
We assume the minimum task time is tmin (it can also be
set as the system unit time, here we study a general case).
An instance can never accommodate any requests when the
remaining lifetime of this instance becomes smaller than tmin.
We separate an instance with the lifetime Tj = T j

ddl−T j
s into

�log2
Tj

tmin
� + 1 stages in the time unit of tmin. For stage i

where i ∈ {1, 2..�log2
Tj

tmin
�}, unit price is discounted at time

step ti where ti = Tj − 2�log2
Tj

tmin
�−i

tmin at the scale of

Di = 2i/2�log2
Tj

tmin
� (as in percent off).

Therefore, we have our new unit price updating function as
follows:

λ(zr
i , t) = (U re/Lr)z(Lr/e)(1 − Di) (12)

As can be seen, we increase discount exponentially as the
elapse of time. In the last stage, when the remaining time
is tmin, the price has become small enough to accommodate
any requests if resources permit. Fig.4 illustrates how our
design discounts the unit price during the lifetime of an
instance given no requests are admitted during its lifetime.
Details of the algorithm for dynamic supply can be found in
Algo. 2.

Theorem 6: Our online auction mechanism guarantees indi-
vidual rationality and truthfulness in bid value in the dynamic
supply situation.

The proved competitive ratio in the static case is not
guaranteed here since we cannot guarantee that the value of the
rejected bid is too low to all the instances in the total timespan
and the uncertainty in instance supply. But our mechanism
can still guarantee truthfulness and individual rationality, two
crucial properties for a mechanism to handle strategic players.
Furthermore, the simulation results illustrate that the social
welfare is also improved in most cases, proving this to be an

Algorithm 2 OA Under Dynamic Supply
1: while t < T do
2: while Receiving bid i do
3: Calculate utility:ui = bi −

∑
r

λ(zr
i , t)dr

i

4: j∗ = argmaxj(ui), ∀j

5: if ui > 0 and ti ≤ (T j
ddl − t) then

6: if |j∗| > 1 then
7: j∗ = arg minj∗(T j∗

ddl − t)
8: end if
9: xi,j∗ = 1

10: pi =
∑
r

λ(zr
i , t)dr

i

11: else
12: xi,j = 0
13: end if
14: end while
15: while Receiving an instance j do
16: Initiate λ(z, t) = (Lr/e)
17: end while
18: if t = ti then
19: Update discount and time step: Di = 2Di, ti = T j

ddl−
2�log2

Tj
tmin

�−i
tmin

20: Update unit price: λ(zr
i , t) = (Ue/L)z(L/e)(1 − Di)

21: end if
22: end while

efficient heuristic improvement. The proofs of truthfulness and
individual rationality are similar to the proofs of Theorem.2
since important principles used in proving these two properties
are not violated. Thus we omit them here.

In addition, as for the truthfulness in lifetime, if the instance
subletting service is provided by the same service provider
selling the original instances (major market scenario), the ser-
vice provider will have the complete information about the
lifetime of the instances, leaving no room for misreporting
in instance lifetime. In other cases, subletters will not submit
lifetime claims larger than the true lifetime because it incurs
another round of billing cycle. They also have no incentive for
declaring their instance lifetime shorter than the true lifetime
because it deprives the opportunity to further amortize the cost
of owning these instances.

VI. PERFORMANCE EVALUATION

A. Trace-Driven Simulations: The Case of Static Supply

1) Experimental Settings: Our evaluation uses Google Clus-
ter trace [39] consisting of 3,535,030 entries, reporting each
tasks’ ID, active time and resource demand (CPU, memory;
normalized to values between 0 and 1) in an approximately
6 hours period. We identified 176,580 unique tasks after
removing the reported anomalies and merging entries of the
same task. We then sampled requests and instances from
these task entries with varying sample rates. For each request,
we derive the resource demands and time requirements directly
from the entries of a task. Its bid value bi is further calculated
based on its resource demands dr

i and a unit resource valuation

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2139

variable vr randomly generated from 0 to U r, namely,

bi =
∑

r

dr
i vr, vr ∈ [0, U r] (13)

For simplicity and consistency with the data trace,
we assume an instance has the maximum allowable resource
capacity specified in the trace (namely 1.0). To simulate the
amount of available resources in each instance, i.e., how much
resources the user wishes to sublet, we extract the CPU and
memory usage information from a sampled task entry Dj , and
apply the formula: Ccpu

j = 1.0−1.0×Dcpu
j /(Dcpu

j +Dmem
j)

to get available CPU. We compute the available amount
of memory likewise. The simulated sublet instance can in
turn preserve the CPU-to-memory usage ratio information
of the data trace. We do not include disk nor networking
resources in our simulation, because unlike the pricing of
CPU and memory, the pricing of disk and networking are
usually decided by the resource consumption, not based on
instance type [2]. We vary the total number of bids from
1000 to 8000 with an increasing number of instances to ensure
the rejected requests on the baseline algorithm stay lower
than 50%. In the static supply simulation, the simulator reads
in requests chronologically based on their start time.

2) Services Compared and Performance Metrics: We com-
pare our service with two dominant commercial services:
the spot instance service and the reserved instance service,
and two other close-related works on cloud pricing in [32]
and [37]. Our solution is further compared with the optimal
solutions obtained from an ILP solver.7 Since the spot instance
service actually has a proprietary pricing scheme, we adopt
a straight forward implementation of its released approach.8

Only when a request with a bid value greater than the current
spot price can the request be admitted into an instance. Once
we allocate a request to an instance, we set its charging
price and the corresponding spot price of this instance as
the value of the lowest bid residing in that instance.9 The
reserved instance service adopts a fixed pricing scheme. The
fixed price for a reserved instance is set to be 70 percent
of its on-demand instance based on the difference between
the price of a m4.large instance (default reserved instance
type) in 1-year term to its on-demand counterpart [2]. As for
two other close related research works, they all determine
the posted price based on the utilization of the resources in
their contexts. Zhou et al. [32] propose online auction mecha-
nisms for dynamically Provisioning cloud resources with Soft
Deadlines and operation costs. We directly implement their
proposed mechanisms under hard deadline and zero provision-
ing costs situation as a comparison. Wang et al. [37] propose
mechanisms to Sell Reserved Instances in cloud, where users’
request on provisioning deadline can be tight or delayable
and prices for instances are determined based on how many
instances have been sold (single dimension). We select their
mechanisms under the tight deadline situation as a comparison.
We further calculate the prices for our multi-dimensional

7PuLP: https://pythonhosted.org/PuLP/
8http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/how-spot-

instances-work.html
9The spot price for the first request is its bid.

Fig. 5. Comparison with the optimal objective value under different bidding
upper bounds (U).

subletting instances by summing the price of each resource up
based on their single-dimensional pricing scheme. For notation
convenience, we refer to the first one as PSD and refer to the
latter as SRI.

Since works in [32] and [37] all focus on proposing pricing
schemes for the traditional instance trading scenarios with a
fixed capacity from a theoretical perspective, we also examine
their performances under two important economical metrics:
social welfare and cost saving: social welfare and cost saving,
where social welfare is the sum of valuations of all accepted
requests and cost saving is the average cost reduction rate
for users to finish their tasks compared with the on-demand
counterparts. The former reflects how efficient the underlying
mechanism in a service is in allocating limited resources; the
latter measures how much benefit a service brings to bidders.
To complement the study of our service, we further discuss
the practical challenges in our subletting services including
the system performance overhead in Section.VII, which have
not been covered in those works.

3) Results and Discussion: Fig.5 and Fig.6 illustrate the
results in the static supply case. First, we compare the per-
formance of our online mechanism with the offline optimal
solution in Fig.5. Overall the ratio tends to become smaller
with the increase of the number of bids. It starts at slightly
above 7 across all U values at 100 bids and plunges to 4 when
the bids are 600. This is because the higher the total demand
of resources, the more instances are provisioned; as shown
in Eq. (8), an instance with the lowest price is chosen for
each coming bid, hence the solution space becomes larger with
more instances. As such, more allocation options are available,
which leads to better performance.

Next, we compare the achieved social welfare of our
instance subletting service with other instance options and
research works in Fig.6a. As can be seen, the reserved instance
service achieves considerably less social welfare than the
other four services in most cases because its fixed pric-
ing scheme cannot adapt to the changes in demand. To be
more specific, we find that it rejects more requests than the
other four; namely, it creates the overpricing problem for
more requests than its alternatives. The rest four approaches
presented in Fig.6a adopt dynamic pricing, which aims at
efficiently reflecting market situations. Interestingly, the social
welfare of the spot instance service drops at 7000 bids. It is

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2140 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

Fig. 6. Performance comparison in the static supply case. (a) Social welfare with varying bid numbers. (b) Cost saving with varying bid numbers.

because that, once the low-value bids are accepted, they
directly affect the spot price. We find that instances directed
by this low spot price accept 7% more low-value bids than
that in other bid settings, leaving instances no room for future
high-value ones. On the other hand, our instance subletting
service still outperforms the spot instance service by 32.4% in
social welfare when bid number reaches 8000. The underlying
problems in static supply situation we study here is also similar
to the scenarios that SRI and PSD targets at.10 The instance
subletting service achieves 31.9% more social welfare than
SRI in 8000 bids. However, the gap between our mechanism
with the PSD is very small in the static supply situation.
The close gap between these two originates from the similar
primal-dual scheme and the price update function they choose.
We will demonstrate later that our mechanisms outperform
PSD in the dynamic supply case after the improvement.

We further compare the cost saving generated by these
five services. Overall spot instances, PSD, and our instance
subletting service all bring over 83% cost saving to users. Cost
saving of SRI stays around 60%. Though our instance achieves
less cost saving than PSD and spot instances at 8000 bids,
it generates 28.3% more utility than spot price at this time.
After comparing the transactions, we find that this difference
is mainly because the instance subletting service at this setting
accepts more bids than the spot instance one. For average
utility per bidder, the instance subletting service is 18% less
than the spot instance service. In fact, thanks to this extra
number of accepted requests, the instance subletting service
also attains 63.1% more revenue than the spot instance service
at 8000 bids.

The fixed price adopted by reserved instances extracts more
surplus from the bidder side, leaving the accepted bidders less
utility. This extreme surplus turns out to bring the largest
revenue to the seller side. In reality, our studied instance
subletting service is expected to complement the fixed-price
model, rather than fully replace it. Dierks and Seuken [40]
have already proved that a hybrid market (coexistence of both
spot instances and fixed-price instances) always maximizes

10Notice that differences also exist as we elaborated before. We implement
the key ideas of both mechanisms and adapt them to our scenario.

the provider’s profit, even if it decreases their revenue. This
claim still holds true for our envisioned scenario, where both
fixed-price instances and instance subletting services exist.11

What is more, in a highly competitive public cloud market,
social welfare would be preferred to guarantee user base.

B. Trace-Driven Simulations: The Case of Dynamic Supply

1) Experimental Settings: For the dynamic scenario, we use
the same trace and settings except that we now incorporate the
time attributes for all sublet instances and requests. Time unit
in our simulation is set as the minimum time unit in the Google
trace, 300 seconds. A request or instance will be pushed into
the simulator when its start time arrives. An instance will
remain active, capable of accommodating requests, until its
leasing deadline is reached.

2) Results and Discussion: The dynamic arrivals of both
requests and instances greatly complicate our scheduling.
In Fig.7a, we first depict the demand and supply relationship
in this dynamic supply situation using CPU as an example
(N = 5000, M = 200). The solid line denotes the fluctuation
of the total available CPU, i.e., the supply, in each time
unit. Both dashed lines denote the requested demand of CPU,
where the one sitting on the bottom represents instantaneous
demand, the demand from the requests that just arrive in the
current time unit; the other represents cumulative demand,
the total demand that our platform is facing taking all active
requests into account. The shaded area denotes the difference
between cumulative demand and supply. The supply is almost
always higher than the instantaneous demand, however, it is
overwhelmed by the cumulative demand, especially during
the 30-145 minutes timespan. As commonly occurs in reality,
this exceeding amount of demand tests if an auction is well
designed or not, because it needs to ensure that the highly
scarce resources are well allocated.

Fig.7b illustrates the interaction between prices and
resources of a 75-minute-long instance in our instance sublet-
ting service. Its memory usage grows close to 100% between
5 minutes to 30 minutes. The unit price of memory, in turn,

11Preemption or not does not affect this general result

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2141

Fig. 7. Dynamic demand and supply in our market and a snapshot of an instance. (a) Overview of demand/supply on CPU. (b) Dynamics of price and usage
ratio in an instance.

Fig. 8. Performance comparison in the dynamic supply case. (a) Social welfare with varying bid numbers. (b) Cost saving with varying bid numbers.

doubles in the first 10 minutes and remains at this high price
for another 20 minutes, making the instance quite selective to
admit new requests. The latter half of its life cycle is where
our discount strategy starts to take effect. The memory usage
fluctuates due to the admission of new requests, and price
drops generally with the elapse of time to attract bids, which
successfully allows memory to be fully utilized in the last
5 minutes. Similar trends also happen on the CPU usage.
Memory is the obvious capping resource on this instance,
thereby both the CPU’s usage and price stay relatively low.

We now present the comparison of our instance subletting
service with two dominant service models, reserved instances
and spot instances, and two related studies, SRI and PSD,
in this dynamic environment. In terms of social welfare
(Fig.8a), the subletting service achieves the highest perfor-
mance. The difference to spot instance service increases from
0.3% at 1000 bids to 7.7% at 8000 bids. The expansion of
this gap illustrates the efficiency of our mechanism in picking
out the valuable requests when the solution space is large.
Recall that, to further handle the dynamics from the demand
side, we devise the multi-stage discount strategy. It guides
the requests to soon-expired instances and saves long-lived
instances for the future using the invisible hand, price. Our
result shows that the multi-stage discount based mechanism
gains over 10% more social welfare than the discount-free

version in all above 5000 bids situations. Overall, two research
works for comparison all perform better than the dominant ser-
vice models, reflecting a trade-off of complexity in allocation
process and efficiency in allocation results happened in real
world implementation. The difference to SRI increases from
11% at 1000 bids to 38% at 8000 bids. The instance subletting
service also keeps achieving 7% more social welfare than the
state of the art approach, PSD, in all the bid-over-2000 cases.
This proves the efficiency of our multi-stage discount
policy.

We demonstrate average cost savings of these five services
in Fig.8b, which is defined as the savings of an instance over
its on-demand counterpart. The cost saving of the reserved
instance repeatedly stays at 30% due to its price setting. The
cost saving of the spot instances ranges from 64% to 93%
with the average at 78%, which also accords with the official
cost saving information about the spot instance service.12

Our instance subletting service outruns two other commercial
service models and related research works in all cases and
steadily stays above 98%. The closing gap between the spot
instance and our service is because the introduction of more
bids brings higher possibility in having low spot price. It is
worth noting that the presented performance of spot instances

12https://aws.amazon.com/ec2/spot/

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2142 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

is the best possible case. The performance of spot instances
in real life would be worse under the same rules. In reality,
each type of instance in each region follows the same spot
price. In our case, we create a spot price for each individual
spot instance regardless of their region or type. According
to the price discrimination principle in pricing theory, such
a fine-grained pricing approach is better at adapting to the
fluctuations of the demand and supply than the real-world spot
instance setting. Similar to the performance in social welfare,
our service keeps achieving over 10% more cost saving than
SRI in all cases(except bid number = 1000), and 3% more
cost saving than PSD.

As a conclusion, from both the static and dynamic simu-
lations, our proposed online auction mechanisms can indeed
attain high overall system performance under real-world work-
load patterns.

VII. PRACTICAL CHALLENGES AND

PROTOTYPE VALIDATION

The proposed auction mechanism is a general framework:
it is not tied to a specific implementation of instance subletting
service. Still we are keen in pointing out a few practical
concerns that we found critical in implementing such ser-
vice. This will not only allow us to inspect our modeling
assumptions in the theoretical part but also further complement
our mechanism into a fully integrated service. To this end,
we built a prototype of instance subletting service on Amazon
EC2 public cloud. But before presenting our prototypes and
experiment results, we will first list out the challenges and
concerns in what follows.

The crux of implementing the subletting service lies in
enabling multiple users to share an instance. Specifically,
the platform should provide an API for hosting users to
quantify the amount of resources they prepare to sublet and
allocate the right amount of instance resources for each tenant
user. (Challenge 1). In addition, the platform should maintain
an isolated runtime environment for each tenant user, ensuring
they can use only their own share of resources and preventing
them from interfering each other (Challenge 2). Furthermore,
the platform should be capable of managing a large cluster of
instances, including the dynamics of instance joining and leav-
ing, and providing a consistent view of the cluster states for
the auction mechanism (Challenge 3). Given these challenges,
we believe that the latest container technology is a promising
tool for implementing the subletting service. Container is
a lightweight, application-oriented virtualization technology
that is becoming increasingly popular among public cloud
providers [41].

Container meets the design requirements of our auction
mechanism (by addressing the above challenges); although
other forms of implementation, like nested virtualization,
would be possible, too. To address Challenge 1 and 2,
the subletting system (in this case, our prototype) leverages
cgroups module in the container to enforce each workload
only use their own resource allocation share. The cgroups
module defines a collection of kernel controllers for system
resources including CPU, memory, network, etc. These con-
trollers are assigned to the container runtime in the form of

function hooking. As such, the hosting users can now specify
how much resource share are made available to the tenant
users, and the platform will refer to these specifications when
it receives new resource requests. When the container starts
running, those hooks ensure that the container does not use
more than it is allowed to use. Meanwhile, every container
will be associated with a unique set of resource identifiers
for its PID, IPC, network, and file system etc., known as
the namespace isolation, a feature that provides iso-
lated runtime environments for in-container workloads. We use
Docker [17] in our prototype to perform container-related
operations.

To address Challenge 3, we leverage the Amazon EC2 con-
tainer service (ECS), featuring a cluster state management
module. Specifically, the module will run a consensus-based
transactional journal to keep track of the cluster state informa-
tion, maintaining a consistent view on the pool of instances.
The ECS service also provides a customizable scheduler
module allowing us to implement our auction mechanism.

We preliminarily evaluate the prototype with two typical
types of cloud workloads: multi-tier web applications and
batch workloads. We chose the RuBBoS13 multi-tier web
server benchmark for the web application. We emulate the web
client using Apache Benchmark and use a load balancer
to dispatch the web requests to servers. We use sysbench
as the batch workload, and the invocations of sysbench are
independent from each other. On each sublet instance, we run
these workloads inside containers, one for the web server and
the other for the batch job.

For the web application, we consider the average request
rate and the average web request completion time. These two
metrics correspond to the throughput and latency performance
of the web application. We are also interested in how these
metrics change as the service scales out to having more sublet
instances. To do this, we keep the cluster under load by
constantly submitting buyer requests that comprise these two
types of workloads. In fact, each round of our experiments can
be regarded as the static supply case in Sec.IV. We obtained
the baseline performance for the web application by running
a single web server on an on-demand instance without using
container. The baseline performance for the batch workload
is likewise obtained, except it is run inside a container with
specified resource usage, which allows us to examine whether
Challenge 1 and 2 are addressed.

The average request completion time in the web appli-
cation is reported in Fig.9a. Compared to the baseline,
the completion time of web requests is much increased under
one sublet instance. This is an expected case for work-
loads using the instance subletting, because other running
workloads on the same host are also consuming resources.
Fortunately, this deficiency can be remedied by placing addi-
tional web servers when more instances are available. The
performance of web application catches up with the baseline
from 5 sublet instances. In Fig.9b, the throughput performance
also sees similar improvement with the increase of sublet
instance. While adding more web servers to sustain high

13RUBBoS Bulletin Board Benchmark: http://jmob.ow2.org/

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2143

Fig. 9. Prototype performance on web and batch workloads. (a) Avg. web request completion time. (b) Avg. web request rate. (c) Avg. batch task completion
time.

performance may sound costly, the total monetary cost of
acquiring these sublet instances can still be much lower
than the original instance as described in Sec.VI. Specifi-
cally, as a common challenge, application service providers
would need to properly scale their services in the face of
bursty workloads (e.g., a flash crowd). This is usually done
through autoscaling at VM-granularity or overprovisioning
VMs. In our instance-subletting platform, because containers
allow finer-grain resource offerings that can be provisioned
much faster than VMs, provisioning can happen just-in-time
and with smaller resource consumption, e.g., when we detect
surging queue-depth at the load balancer, and hence the cost
of overprovisioning can be greatly reduced.

Note that with the increased throughput, though the latency
of completing all requests will certainly be shortened, the per-
request latency may not. For example, Fig.9a shows the
10 sublet instance setup can still give worse per-request
latency performance than the baseline. This is because the
load balancer can add an extra queuing delay to each request.
Users can opt in more powerful load balancer to remedy such
latency. Also, we observed that the 1000 connection setup
yields lower performance than the 100 connection one as our
emulated client becomes the bottleneck when the concurrent
connection is high.

For the batch workload, as shown in Fig.9c, with sublet
instances, the batch workload performance makes no sta-
tistically significant difference (< 1%) as compared to the
baseline. This shows that containerization did allow us to
enforce the resources usage guarantees. Note that sysbench has
a fairly stable resource requirements across its runs. In reality,
a batch workload may have variable resource demands. Due
to the use of container, if the batch workload running inside
exceeds the resource usage, the workload will get throttled.
Therefore, the owners of such workloads should tailor their
container requests accordingly to achieve expected and mean-
ingful performance.

Overall, these initial results are promising, suggesting that
instance subletting with our online auction mechanism can
indeed be built on current public cloud with minimal impact
on users’ perceived performance. Before concluding, it is
worth discussing a few additional concerns that may limit
the real-world deployment of instance subletting. Though we
have yet to explore these issues on our current prototype,

we do observe technological trends that can help alleviate
these issues. First, both container and nested virtualization
solutions may result in OS tie-ins, because certainly not
all OSes support these technologies. OS tie-ins could limit
the types of workloads that can be run on the instance
subletting service. Fortunately, standardization efforts in the
container technology, e.g., the Open Container Initiative [42],
demonstrate the on-going trend across OS vendors to support
containers. In addition to Linux distributions, which natively
support containers, other major OSes such as Windows are
adding kernel supports for containers. This trend is thus one
of the key reasons we chose containers in the prototype and
the modelling assumption.

Meanwhile, it is also worth investigating how to effectively
implement our allocation mechanism. Our prototype relies on
Amazon ECS’s default replication scheduler to allocate the
benchmark workloads, which supports replacing the schedul-
ing policy with user-supplied, customized ones. In our future
work, we plan to port our simulator’s allocation mechanism
to the ECS scheduler and perform end-to-end, system-level
evaluation over the instance subletting service. In addition,
though higher server utilization may lead to higher power
usage to the providers, increasing it is critical to maximize the
energy efficiency because server power consumption responds
differently to varying utilization levels [43]. Higher resource
utilization can help cloud providers to amortize their capital
better. So overall, we believe an instance subletting service is
promising as cloud providers can exploit subletting services as
another form of differentiated, value-added service to attract
diverse user groups, gain extra revenue.

VIII. CONCLUSION

In this paper, we systematically examined instance sublet-
ting, a new cloud service that explores the idle resources from
users, making them available to the public. Instance subletting
offers a trading market for low-cost yet high-quality instances
with enforced service level agreement on time. The market
works with dynamic demand, and more importantly, it has
a dynamic supply and time constraint on each item, which
is not available in past products and studies. We presented
an online auction mechanism with provable truthfulness and
individual rationality, as well as the best possible competitive

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

2144 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 5, OCTOBER 2018

ratio with known supply information. We then extended it
to cope with dynamic supply. Large scale simulations have
indicated that our mechanism can achieve near optimal social
welfare with significant cost savings. Its feasibility has been
further validated through an Amazon EC2 based prototype.

REFERENCES

[1] Gartner Forecast: Public Cloud Service, Wordwide, 2013–2019.
Accessed: Aug. 21, 2018. [Online]. Available: http://
www.gartner.com/newsroom/id/3188817

[2] Amazon EC2 Pricing. Accessed: Jun. 21, 2018. [Online]. Available:
https://aws.
amazon.com/ec2/pricing/

[3] (2016). Morgan Stanley CIO Survey. [Online]. Available:
https://goo.gl/5NDrjK

[4] Creating Your Own EC2 Spot Market. Accessed:
Aug. 21, 2018. [Online]. Available: http://techblog.netflix.com/
2015/09/creating-your-own-ec2-spot-market.html

[5] L. Chen and H. Shen, “Consolidating complementary VMs with
spatial/temporal-awareness in cloud datacenters,” in Proc. IEEE
INFOCOM, Apr./May 2014, pp. 1033–1041.

[6] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis,” in Proc. ACM SoCC, 2012, Art. no. 7.

[7] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “An online
auction framework for dynamic resource provisioning in cloud com-
puting,” IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 2060–2073,
Aug. 2016.

[8] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “A truthful (1-ε)-optimal
mechanism for on-demand cloud resource provisioning,” in Proc. IEEE
INFOCOM, Apr./May 2015, pp. 1053–1061.

[9] H. Jin, X. Wang, S. Wu, S. Di, and X. Shi, “Towards optimized fine-
grained pricing of IaaS cloud platform,” IEEE Trans. Cloud Comput.,
vol. 3, no. 4, pp. 436–448, Oct./Dec. 2015.

[10] Amazon EC2 Reserved Instance Marketplace. Accessed: Aug. 21, 2018.
[Online]. Available: http://goo.gl/myvRvr

[11] A. Bestavros and O. Krieger, “Toward an open cloud marketplace: Vision
and first steps,” IEEE Internet Comput., vol. 18, no. 1, pp. 72–77,
Jan. 2014.

[12] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “The
rise of RaaS: The resource-as-a-service cloud,” Commun. ACM, vol. 57,
no. 7, pp. 76–84, 2014.

[13] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proc. ACM SIGCOMM, 2015, pp. 71–84.

[14] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, “Online auctions
in IaaS clouds: Welfare and profit maximization with server costs,”
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1034–1047, Apr. 2017.

[15] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud
computing: A randomized auction approach,” in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 433–441.

[16] G. Goel, V. Mirrokni, and R. P. Leme, “Clinching auctions with online
supply,” in Proc. ACM-SIAM SODA, 2013, pp. 605–619.

[17] Docker. [Online]. Available: https://www.docker.com/
[18] H. Zhang et al., “A framework for truthful online auctions in cloud com-

puting with heterogeneous user demands,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 1510–1518.

[19] M. Babaioff, L. Blumrosen, and A. Roth, “Auctions with online supply,”
in Proc. ACM EC, 2010, pp. 13–22.

[20] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing Amazon EC2 spot instance pricing,” ACM Trans. Econ.
Comput., vol. 1, no. 3, 2013, Art. no. 16.

[21] A. A. Hossain and E.-N. Huh, “Refundable service through cloud
brokerage,” in Proc. IEEE CLOUD, Jun./Jul. 2013, pp. 972–973.

[22] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE ICDCS, Jul. 2013,
pp. 400–409.

[23] X. Qiu, C. Wu, H. Li, Z. Li, and F. C. M. Lau, “Federated private
clouds via broker’s marketplace: A Stackelberg-game perspective,” in
Proc. IEEE CLOUD, 2014, pp. 296–303.

[24] X. Yi, F. Liu, Z. Li, and H. Jin, “Flexible instance: Meeting deadlines
of delay tolerant jobs in the cloud with dynamic pricing,” in Proc. IEEE
ICDCS, Jun. 2016, pp. 415–424.

[25] N. Chohan et al., “See spot run: Using spot instances for mapreduce
workflows,” in Proc. USENIX HotCloud, 2010, p. 7.

[26] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “SpotOn:
A batch computing service for the spot market,” in Proc. ACM SoCC,
2015, pp. 329–341.

[27] Y. Zhu, S. Fu, J. Liu, and Y. Cui, “Truthful online auction for cloud
instance subletting,” in Proc. IEEE ICDCS, Jun. 2017, pp. 2466–2471.

[28] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Germany: Springer-Verlag, 2004.

[29] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “Online auc-
tions and generalized secretary problems,” ACM SIGecom Exchanges,
vol. 7, no. 2, 2008, Art. no. 7.

[30] Y. Zhou, D. Chakrabarty, and R. Lukose, “Budget constrained bidding
in keyword auctions and online knapsack problems,” in Proc. WWW,
2007, pp. 1243–1244.

[31] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. Chelmsford, MA, USA: Courier Corporation,
1982.

[32] R. Zhou, Z. Li, C. Wu, and Z. Huang, “An efficient cloud market
mechanism for computing jobs with soft deadlines,” IEEE/ACM Trans.
Netw., vol. 25, no. 2, pp. 793–805, Apr. 2017.

[33] S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, “Multi-parameter
mechanism design and sequential posted pricing,” in Proc. ACM STOC,
2010, pp. 311–320.

[34] N. Jain, I. Menache, J. Naor, and J. Yaniv, “Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters,”
ACM Trans. Parallel Comput., vol. 2, no. 1, 2015, Art. no. 3.

[35] Y. Azar et al., “Truthful online scheduling with commitments,” in Proc.
ACM EC, 2015, pp. 715–732.

[36] S. Chawla et al., “Stability of service under time-of-use pricing,” in
Proc. ACM STOC, 2017, pp. 184–197.

[37] C. Wang et al., “Selling reserved instances in cloud computing,” in Proc.
IJCAI, 2015, pp. 224–230.

[38] Z. Bodie, A. Kane, and A. J. Marcus, Essentials of Investments.
New York, NY, USA: McGraw-Hill, 2013.

[39] Google Cluster Data. Accessed: Feb. 21, 2017. [Online]. Available:
http://googleresearch.
blogspot.com/2010/01/google-cluster-data.html

[40] L. Dierks and S. Seuken, “Cloud pricing: The spot market strikes back,”
in Proc. Workshop Econ. Cloud Comput., 2016, pp. 1–28.

[41] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57, 2016.

[42] Open Container Initiative. Accessed: Aug. 21, 2018. [Online]. Available:
https://www.opencontainers.org/

[43] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

Yifei Zhu (S’15) received the B.E. degree from
Xi’an Jiaotong University, Xian, China, in 2012,
and the M.Phil. degree from The Hong Kong Uni-
versity of Science and Technology in 2015. He is
currently pursuing the Ph.D. degree with the School
of Computing Science, Simon Fraser University,
British Columbia, Canada. His areas of interest are
cloud computing, multimedia networking, Internet
of Things, and crowdsourcing.

Silvery D. Fu (S’15) received the B.Sc. and B.Eng.
degrees from the dual degree program of Zhejiang
University, China, and Simon Fraser University,
Canada, in 2016, and the M.Sc. degree from Simon
Fraser University in 2017. He is currently pursuing
the Ph.D. degree at the University of California,
Berkeley. He is interested in system and networking
research.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

ZHU et al.: TRUTHFUL ONLINE AUCTION TOWARD MAXIMIZED INSTANCE UTILIZATION IN THE CLOUD 2145

Jiangchuan Liu (S’01–M’03–SM’08–F’17)
received the B.Eng. degree (cum laude) in computer
science from Tsinghua University, Beijing, China,
in 1999, and the Ph.D. degree in computer science
from The Hong Kong University of Science
and Technology in 2003. He is currently a Full
Professor (with the University Professorship) with
the School of Computing Science, Simon Fraser
University, BC, Canada. He is also a Steering
Committee Member of the IEEE TRANSACTIONS
ON MOBILE COMPUTING. He is an IEEE Fellow

and an NSERC E. W. R. Steacie Memorial Fellow. He was a co-recipient
of the ACM Multimedia Best Paper Award (2012), the ACM TOMCCAP
Nicolas D. Georganas Best Paper Award (2013), and the Test of Time
Paper Award of IEEE INFOCOM (2015). He is an Associate Editor of the
IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS

ON BIG DATA, and the IEEE TRANSACTIONS ON MULTIMEDIA.

Yong Cui received the B.E. and Ph.D. degrees in
computer science and engineering from Tsinghua
University, China, in 1999 and 2004, respectively.
He is currently a Full Professor with the Computer
Science Department, Tsinghua University. He has
authored over 100 papers in refereed conferences
and journals with several best paper awards. He has
also co-authored seven Internet standard docu-
ments (RFC) for his proposal on IPv6 technologies.
His major research interests include mobile cloud
computing and network architecture. He is currently

the Working Group Co-Chair of the IETF. He served or serves on the Editorial
Boards for the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, and the
IEEE INTERNET COMPUTING.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:34:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

