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Abstract— Cardinality estimation is one of the fundamental
problems in large-scale radio frequency identification systems.
While many efforts have been made to achieve faster approximate
counting, the accuracy of estimates itself has not received enough
attention. Specifically, most state-of-the-art schemes share a
two-phase paradigm implicitly or explicitly, which needs a rough
estimate first and then refines it to a final estimate meeting the
desired accuracy; we observe that the final estimate can largely
deviate from the expectation due to the skewed rough estimate,
i.e., the accuracy of final estimates is not rigorously bounded.
This negative impact is hidden because former solutions either
assume perfect rough estimates or rough estimates that can be
produced by uniform random data or perfect hash functions that
can turn any data into uniform random data. Unfortunately,
both of them are hard to meet in practice. To address the
above issues, we propose a novel scheme, namely, “rigorous and
practical cardinality (RPC)” estimation. RPC adopts the two-
phase paradigm, in which the rough estimate is derived in the first
phase using pairwise-independent hashing. In the second phase,
we employ t-wise-independent hashing to reinforce the rough
estimate to meet arbitrary accuracy requirements. We validate
the effectiveness and performance of RPC through theoretical
analysis and extensive simulations. The results show that the
RPC can meet the desired accuracy all the time with diverse
practical settings while previous designs fail with non-uniform
data.

Index Terms— RFID tags, cardinality estimation, pairwise
independent hashing, t-wise independent hashing.

I. INTRODUCTION

ESTIMATING the cardinality of tags is of great
importance in many RFID applications, e.g., warehouse

management, tag identification, and privacy sensitive RFID
systems. Imagine a huge warehouse of large retailer like
Wal-Mart, thousands of mobile phones, ipods, and other office
supplies are intensively piled [1]. It is tempting to quickly
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and accurately estimate the number of those tagged objects
for daily or weekly inventory reports, instead of laborious
and unreliable humanly counting. Important applications also
exist in other scenarios, such as counting the number of
tourists or conference attendees with RFID tickets/cards.
Furthermore, most of the RFID identification schemes [2]–[4]
require an accurate estimate of tag population to set the
optimal frame size. In some privacy sensitive scenarios, the
exposure of unique identification information on tags, such as
driver licenses and e-passports [5], can put important personal
privacy at risk. Therefore, a scheme that can use the non-
identifiable information from tags to compute the cardinality
is necessary.

While exact counting based methods prove to be not
scalable with respect to the rapidly growing number of
tags [6], researchers try to do approximate counting in different
ways [7]–[13]. The most recent state-of-the-art work is pro-
posed by Zhou et al. [12] in which they derive the theoretical
lower bound for RFID cardinality estimation, O((log log n +
ε−2

log 1
ε

) log δ−1), where n is the upper bound of the cardinality
of tags, ε and δ are user-specified thresholds for the relative
error and error probability of estimates. They further prove
that the two-phase paradigm is the best way to achieve near-
optimal solutions, and most of the performance gains in
prior works should be attributed to following this paradigm
implicitly or explicitly. The core of two-phase designs is to
obtain a rough estimate first and then refine it to the desired
accuracy.

While time-efficiency has been greatly improved in prior
methods, the accuracy of estimator has not been well investi-
gated yet. After deep diving into current solutions, we observe
that the final estimate can largely deviate from the expectation
with the skewed rough estimate. This negative impact is
largely hidden because former methods either assume perfect
rough estimates [9], [14] or rough estimates [11], [12] that
can be produced by uniform random data or perfect hash
functions that can turn any data into uniform random data.
Unfortunately, both of them are hard to meet in practice.
Therefore, an intriguing question comes up: whether we can
design a practical two-phase scheme that is able to make the
final estimate rigorously bounded by using constructible and
simple hash functions, irrespective of data distribution?

Our answer is positive; in this work we propose a new
mechanism, Rigorous and Practical Cardinality (RPC) esti-
mation, by using the universal hashing. The RPC adopts the
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two-phase paradigm. In particular, given the required relative
error ε and error probability δ for the final estimate, the RPC
performs a rough estimation using the pairwise independent
hashing in the first phase. We prove that the accuracy of
this rough estimate is constant-factor bounded. In the second
phase, the RPC employs the t-wise 1 independent hashing
to refine the rough estimate using multiple single-slot trials.
Through detailed analysis, we show that the RPC is able to
get an estimate that meets the relative error ε with probability
at least 11

20 in a single two-phase round. After this, a Monte
Carlo algorithm is introduced to boost the error probability
from 11

20 to δ using O(log δ−1) two-phase rounds. Finally,
the RPC achieves O((log log n + ε−2) log δ−1) estimation
efficiency. This efficiency is near-optimal and is within a
small O(log 1

ε ) factor from the theoretical lower bound [12].
Through detailed analysis and comprehensive simulations, we
show that the RPC is practical, scalable, and reliable. More
importantly, its accuracy is rigorously guaranteed regardless
of data distribution.

We view this work as an essential step towards practical
solutions of RFID estimation in large-scale as it eliminates an
underpinning assumption of perfect hash functions in former
schemes. We hope this can fuel more community interests and
future work to design better estimation schemes along this line.

II. PRELIMINARIES

A. Problem and Assumption

An RFID system typically consists of several RFID readers
and a number of tags. Each tag is attached with unique
identification information (tagID) and can perform simple
computation as well as communication by backscattering the
reader’s RF signals. Consider there are N tags in the interested
area. The aim of approximating the cardinality of tags is to
acquire the quantity of tags in the interested region while
meeting specified accuracy requirements. Generally, accuracy
requirements contain two essential parameters, the target rel-
ative error, ε, and the target error probability, δ. Given an
approximated result N̂ , then the actual relative error is derived
as |N̂−N |

N . We define that an (ε, δ) approximation scheme for
N is a probabilistic process that, given any 0 < ε < 1 and
0 < δ < 1 , the result estimate N̂ is within the relative error ε
with probability at least 1− δ. This definition can be formally
defined as

Pr[|N̂ − N | ≤ εN ] ≥ 1 − δ.

For example, if the exact quantity of tags is 1000, the user-
specified relative error ε is 0.01 and the target error probability
δ is 0.01, then the output estimates of an (ε, δ) scheme should
be between 990 to 1010 with the probability no less than
0.99. Table I summarizes the main notations used across this
paper.

B. Communication Model and Tags

Following EPC Class 1 Generation 2 (C1G2) standard [15],
we assume a frame-slotted ALOHA model in RFID systems.

1t is a parameter depicting the strength of independence and will be formally
introduced in IV-A.

TABLE I

MAIN NOTATIONS

We adopt the Reader Talks First mode, which is widely used
in many applications [8], [9]. In this model, the reader first
initializes communication and then wait for tags’ responses in
each slot. If there is no response in this slot, the slot is called
an empty-slot. Otherwise, it would be called a non-empty-slot.
In theory, the reader needs only one bit to encode this simple
response: “1” for busy signals and “0” for idle states. Further-
more, in some situations the reader may need to distinguish
the singleton-slot that receives response from only one tag
from the collision-slot that contains responses from more than
one tag; a long-bit response thus can be used to discern these
two types of non-empty-slot. In the design and evaluation of
our RPC scheme, we only need to distinguish the empty-slot
from the non-empty-slot. Generally there are two types of tags:
(1) active tags that often have their own rechargeable batteries
and thus have a reading distance between 150 to 300 feet;
(2) passive tags that capture energy in the reader’s RF signals
and have a reading range less than 20 feet.

III. SOURCES OF ESTIMATION INACCURACY–
TWO CASE STUDIES

Generally, the two-phase design of cardinality estimation
in RFID includes the first phase that aims to get a rough
estimate and the second phase that refines the rough estimate to
arbitrary user-specified accuracy [10], [12]. While a long line
of research has been done on improving time-efficiency, the
estimation accuracy of prior methods is not well investigated
yet. By carefully examining prior methods, we find that the
accuracy of final estimates could be seriously affected by
skewed rough estimates. In the following, we present empirical
findings and then deduce the reasons for our observations.

A. How Does Rough Estimates Affect Final Estimates?

We focus on two recent solutions, ART [11] and SRC [12],
which use the two-phase design explicitly. Our experiments
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Fig. 1. A detailed investigation of two state-of-the-art schemes ART [11] and SRC [12] with uniformly distributed (a) and normally distributed data (e).
We see that the quality of ART’s rough estimates under the uniform distribution is not that desirable in (c), leading to the final estimates, some of which
meet desired accuracy and the others do not as in (d). With the normal distribution, the quality of ART’s rough estimates is far from ideal, therefore it is not
surprising the final estimates are largely skewed. Similar trends can be observed for SRC in (g) and (h). The major difference is that the quality of SRC’s
rough estimates in the uniform distribution meets its target, so the corresponding final estimates fit the desired accuracy well, but it still fails under the normal
distribution.

with other schemes share similar observations. For brevity,
their results are not included here. For both algorithms, we
conduct experiments2 based on the data following a uniform
distribution and a normal distribution, respectively,3 as shown
in Figure 1a and Figure 1e.

Let’s examine ART first. In the first phase of ART, it
tries to obtain an upper bound of the cardinality of tags,
tm, as a rough estimate, which means it needs the rough
estimate to be always greater than the actual cardinality.
As shown in Figure 1b, for both distributions, not all the
rough estimates are above the ground truth. The results of
the normal distribution are even worse than that of the
uniform distribution. To further study the quality of rough
estimates, we conduct a Binomial test in which the event
is defined as whether a rough estimate achieves the upper
bound for the actual cardinality. In Figure 1c, we report
the estimated probability intervals of the Binomial test with
99.99% confidence intervals. We see that neither the estimated
probability intervals in the uniform distribution nor those
in the normal distribution has intersections with the desired
probability or beyond. But the estimated probability intervals

2Our experiment settings are as follows. Following C1G2 [15], the size of
identification information for each tag (tagID) is 96 bits. The ground truth
for the cardinality is 10,000. THe user-specified relative error ε = 0.01 and
error probability δ = 0.01%, which is sufficiently low to let us focus on the
relative error. Each algorithm takes 50 independent executions. Since here we
focus on accuracy, not time-efficiency, we let each algorithm use enough time
as long as it needs. Since neither of them specifies the type of hash function in
their papers, we use the pairwise independent hashing as an alternative, which
has guaranteed uniformity in theory and is widely used in Bloom Filter.

3We also tested various data under different distributions for prior schemes.
The results are also skewed. The normal distribution is just a representative.

in the uniform distribution is closer to the desired probability
compared to those in the normal distribution, which means the
quality of rough estimates in the uniform distribution is better.
We depict the final results of ART in Figure 1d, which shows a
clear relationship between rough estimates and final estimates.
ART fails to achieve the desired relative error in the normal
distribution, whereas it achieves the desired accuracy for most
of the executions in the uniform distribution. Actually this
finding goes well with the report of [12], in which it says
ART “will actually achieve a relative error that is somewhat
larger than the target ε”.

Next, we check how SRC goes in the same settings. For
SRC, it tries to obtain a rough estimate that should be
within the relative error 0.5 and the success probability 0.9.
In Figure 1f and Figure 1g, we see that in the uniform
distribution, SRC successfully gets the rough estimates as it
expects, whereas in the normal distribution, the quality of
the rough estimates is far from adequate since the estimated
probability intervals is way far from the desired 0.9, even
with the confidence intervals 99.99%. In Figure 1h, it is
not surprising to see that the final estimates in the uniform
distribution perfectly achieve the target relative error. But due
to the bad quality of rough estimates, SRC fails to meet the
desired accuracy in the normal distribution.

B. What Are the Reasons for Skewed Estimates?

For ART, it needs an upper bound of cardinality for the
second phase estimation. Therefore when the rough estimate
fails to be an upper bound, the final estimate is definitely
affected. Although ART designers already try to make their
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TABLE II

A COMPARISON OF MAJOR EXISTING ESTIMATION SCHEMES

Fig. 2. (a) the histogram of AMD RFID data [17]. (b) the histogram of
sampled RFID car license plate data in a city [18]. Both cases show that a
sampled group of tagIDs is not guaranteed to be uniformly distributed. Note
that tagID values are normalized in both figures.

upper bound big enough, they do not characterize the error
probability of rough estimates and further do not take this
error probability into account for computing the final error
probability. Other schemes, e.g., [9], [14], also share this
drawback, since they all need a perfect rough estimate for
the second phase to ensure the quality of final estimates.
So the first reason for skewed final estimates is that the quality
of rough estimates in most existing methods might be lower
than desirable, i.e., they do not realize how accurate the
rough estimate should be to make the final estimate accuracy-
guaranteed.

Probably SRC is the closest one addressing the above
limitation since SRC explicitly requires its rough estimate to
be within the relative error 0.5 and the success probability 0.9
by invoking LOF [7] 10 times in the first phase. However,
LOF may fail to achieve the desired accuracy as SRC
needs. First, the estimate of LOF might be skewed in
the non-uniform distribution which comes from its pre-
stored hash values on tags. We use a toy example to
illustrate this. Suppose we have 1,000 tags of values
(tagID1, tagID2, . . . , tagID1000), which are uniformly dis-
tributed in the range of [0, 2128 − 1]. 4 Then we take out first
50 tags (tagID1, tagID2, . . . , tagID50). Obviously, these
sampled tags are not uniformly distributed in [0, 2128 − 1]
as expected in the algorithm of LoF. We also present two
realworld RFID datasets in Figure 2, which shows a group
of sampled RFID data is not sure to be uniformly distributed.
As there are so many reasons accounting for such non-uniform
distribution such as sampling process and characteristics of

4128 comes from the length of MD5 digest.

data, it is hard to enumerate all of them. Grouping is one of
the major causes. As some bits of tagID are for group IDs
(or for multi-layer grouping), it can make the tagID distrib-
ution even more complicated. For more details regarding to
RFID grouping problems, please refer to [19]. To summarize,
samples from uniform distribution are not guaranteed to be
uniformly distributed.

As one may wonder that whether increasing the trials of LoF
in the first phase would mitigate the skewed estimates. We fur-
ther investigate this aspect with diverse settings. Unfortunately,
we have tried and found that more trials in the first phase do
not help in improving the skewed rough estimates and thus
the final estimates. The main reason is that the underpinning
assumption that the data is uniform random or can be made
uniform random by perfect hash functions is still invalid in the
first and second phase. From a theoretical point of view, this
negative effect comes from that a deterministic hash function
cannot offer any guarantee in the distribution of hash values in
presence of adversaries since the adversaries can even choose
pre-hash values that have exactly the same hashes [20], [21].
In summary, without employing practical hash functions and
properly characterizing such hash functions, the accuracy of
estimators is hard to be rigorously bounded. 5

C. How to Design Accuracy-Guaranteed Estimators?

It is worth noting that we reveal the above limitations
of prior solutions by introducing different data distributions.
Actually, it just comes from one of many practical perspec-
tives, not exhaustive. More specifically, we want to emphasize
that for practical systems, both the rough estimate and the final
estimate needed to be rigorously bounded using practical hash
functions. Table II compares RPC with major existing RFID
estimation schemes.6

IV. RIGOROUS AND PRACTICAL

CARDINALITY ESTIMATION

A. Universal Hashing

The basic idea of universal hashing is to pick up the hash
function randomly from a large family of hash functions,

5We also investigate other well-known hash functions in RFID counting,
e.g., murmur3, lookup3. Unfortunately, we find that they cannot meet the
requirement all the time either.

6We omit δ here, since repeating the algorithm for O(log 1
δ
) times can

meet the target δ by using Monte Carlo randomized algorithms.
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therefore the randomness in choosing the hash function can be
used to ensure a guarantee on the uniform random distribution
of hash values, which fits our design goal quite well. Note that
although the universal hashing is widely used in many hash
related applications, e.g., linear probing [22], bloom filter [23].
We are the first to bring this to RFID estimation.

We give a brief introduction to t-universal hashing which
is also called t-wise independent hashing. For more details,
please refer to the seminal work [20]. Assume we want
to map keys from some universe D into Y bins, a family
of hash functions H = ht : D → [Y ] is t-wise indepen-
dent where [Y ] = {0, 1, . . . , Y − 1}, if for any t distinct
keys (x1, x2, ..., xt) ∈ Dt and any t hash values
(y1, y2, . . . , yt) ∈ [Y ]t, we have

Pr[
t∧

j=1

(ht(xj) = yj)] =
t∏

j=1

Pr[ht(xj) = yj ]. (1)

If t = 2, we also call it the pairwise independent hash
function7 and one typical form is

h(x) = ax + b mod pr,

where pr is a prime, a, b are random integers modulo pr with
a �= 0. Based on this pairwise independence design, it is easy
to extend it to t-wise independence. A formal definition is as
follows.

Let pr be a prime and t ≥ 2 be a integer. Then Zpr =
0, 1, . . . , pr − 1 is a field with operations of addition and
multiplication mod pr. The hash function ht : Z

k
pr → Z

k
pr

is t-wise independent hash function given by

ht(x) =
t−1∑

i=0

aix
i mod pr. (2)

The parameter t can be tuned according to different inde-
pendence requirements. Intuitively, the larger t is, the closer
it is to the truly random hashing.

B. Basic Design

Our RPC adopts a two-phase design, in which the first phase
is to obtain a rough estimate using loglog-counting [24] and
pairwise independent hash functions, and the second phase is
able to provide a finer estimate using “balls and bins” and
t-wise independent hash functions. The basic ideas are briefly
presented as follows.

First-Phase: Let S be a set of N tags,
{tagID1, . . . , tagIDN}. For simplicity, we assume
that there is a pairwise independent hash function
h : [0, D] → [0, 2w − 1]. Let �w = log N�, i.e., 2w ≥ N .
We use ZtagIDi to denote the number of trailing zeros
(rightmost zeros) in the binary form of h(tagIDi) and use
Zmax to denote the maximum trailing zeros of hash values
for all i in S.

The basic algorithm approximates the cardinality of S as

C = 2Zmax

. (3)

7Note that pairwise independence does not imply mutual independence.

Fig. 3. An illustrative example for the RPC.

For example, we assume that a tag set S = {2, 4, 6, 8},
w = 2, and the hash values are {0, 1, 2, 3}. According to
that h(2) = 0 = (00)2, we can obtain Z2 = 2. Likewise,
Z4 = 0, Z6 = 0, Z8 = 1, hence Zmax = 2. Finally the rough
estimate is given by C = 2Zmax

= 4.
Second-Phase: After we obtain a rough estimate C. By

introducing a “balls and bins” approach, we randomly hash
N balls into C bins and use the observed probability of the
first bin being non-empty to estimate the final estimate as,

N̂ =
ln (1 − q̂)
ln (1 − 1

C )
. (4)

Figure 3 shows an example to demonstrate the RPC’s
workflow. Suppose we have 5 tags in total and a rough
estimate C = 8. Then the reader starts probing tags using
t-wise independent hash functions (h1, . . . , h6). After each
probing, the reader just needs to record the status of the
first slot. The probe result is recorded as busy if there is at
least one response from tags, e.g., h1, h4, h6. Otherwise it is
marked as empty, e.g, h2, h3, h5. Therefore we can estimate
the probability that the first slot is non-empty as 3/6. Together
with the rough estimate C, we get a final estimate of N as

N̂ = ln(1−3/6)
ln(1−1/8) ≈ 5.

Next, we are going to detailed examine our two-phase
protocols. In particular, we will prove that the result of the
first phase is a constant-factor approximation, i.e., C = Θ(N),
and the second phase can refine C to (1 ± ε) approximation.
Based on this single round two-phase estimation, we further
quantify how many rounds are needed to boost the success
probability to 1 − δ.

C. Constant-Factor Approximation

In this subsection, we are going to show that the output C
is off by N at most a constant factor. Note that our first-phase
estimation is based on loglog-counting [24] and the major
difference is we use pairwise independent hashing, instead of
perfect hashing. The two important properties of the pairwise
independent function, h, are that: first, for every fixed tagIDi,
h(tagIDi) is uniformly distributed over [0, 2w − 1]; second,
this mapping is pairwise independent.

Definition 1: Let r be an integer between 0 and w. And k
is a positive integer, r1 is the smallest r such that 2r > kN ,
and r2 is the smallest r such that 2r ≥ N

k .



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Lemma 1: Pr[ZtagIDi ≥ r] = 2−r.
Proof: In the above lemma, ZtagIDi ≥ r means that

hash value h(tagIDi) is between 0 and 2w−r − 1. Since
the hash value h(tagIDi) is uniformly distributed in range of
[0, 2w − 1], we can get

Pr[ZtagIDi ≥ r] =
2w−r

2w
= 2−r. (5)

�
Definition 2: Given any specific r, for each tagIDi ∈ S,

we define

xi(r) =

{
1 if ZtagIDi ≥ r

0 if ZtagIDi < r

and X(r) =
∑

tagIDi∈S xi(r).
By Lemma 1, we know that xtagIDi (r) takes 1 with the

probability 2−r, hence the expectation is given by

E[xi(r)] = 2−r. (6)

Also, the corresponding variance is given by

Var[xi(r)] = 2−r(1 − 2−r). (7)

Lemma 2: Pr[X(r1) > 0] < 1
k .

Proof: By the definition of r1 and (6),

E[X(r1)] =
∑

tagIDi∈S

E[xtagIDi(r1)] = N · 2−r1 <
1
k

.

Therefore, by the Markov inequality, we have

Pr[X(r1) > 0] = Pr[X(r1) ≥ 1] ≤ E[X(r1)] <
1
k
.

�
Lemma 3: Pr[X(r2) = 0] < 2

k .
Proof: Likewise, we can obtain

E[X(r2)] = N2−r2 .

Since X(r2) is the sum of pairwise independent variables and
each of which has a variance 2−r2(1− 2−r2), the variance of
X(r2) can be given by

Var[X(r2)] = Var

[
N∑

i=1

xi(r2)

]

=
N∑

i=1

N∑

j=1

Cov (xi(r2), xj(r2))

=
N∑

i=1

Var [xi(r2)]

+ 2
∑

1≤i

∑

<j≤N

Cov (xi(r2), xj(r2)) ,

where Cov() denotes covariance. Note that the last equality
comes from the fact Cov(a, a) = Var[a]. By pairwise
independence, Cov (xi(r2), xj(r2)) = 0 if i �= j. Thus, we
can obtain

Var[X(r2)] =
N∑

i=1

Var [xi(r2)] = NVar[xi(r2)]

= N · 2−r2 · (1 − 2−r2) < N2−r2 .

Further, by the Chebyshev inequality, we know

Pr[X(r2) = 0] = Pr[E[X(r2)] − X(r2) = E[X(r2)]]
≤ Pr[|E[X(r2)] − X(r2)| = E[X(r2)]]
≤ Pr[|E[X(r2)] − X(r2)| ≥ E[X(r2)]]

≤ Var[X(r2)]
(E[X(r2)])2

<
N2−r2

(N2−r2)2

=
2r2

N
.

By the definition of r2, we know that 2r2 < 2·Nk . Otherwise,
r2 cannot be the smallest r satisfying 2r ≥ N

k . Combining this
and the above inequality proves that Pr[X(r2) = 0] < 2

k . �
Theorem 1 (Constant-Factor Approximation Bound): For

any k > 3, Pr[ 1
k ≤ C

N ≤ k] ≥ 1 − 3
k .

Proof: First, we show that if X(r1) = 0 and X(r2) �= 0,
the above theorem is correct. If X(r1) = 0, it means that
there is no tagIDi ∈ S that can give ZtagIDi ≥ r1, and thus
Zmax < r1. Likewise, if X(r2) �= 0, it means that there is
at least one tagIDi ∈ S that can satisfy ZtagIDi ≥ r2 and
thus Zmax ≥ r2. Also, according to the definition of r1, r2,
and Zmax, we can derive that if r2 ≤ Zmax < r1, the above
theorem is correct.

By lemma 2 and lemma 3, we know X(r1) ≥ 1 can happen
with the probability at most 1

k , whereas X(r2) = 0 can happen
with the probability at most 2

k , thus the union bound of two
events happening is at most 3

k . Therefore, the probability of
having ’X(r1) = 0 and X(r2) �= 0’ is at least 1 − 3

k . �
As shown in Theorem 1, the coarse result C is indeed

probabilistically bounded by a interval and is associated with
a non-negligible probability. The constant-approximation here
means the C is constantly deviate from the real N in prob-
abilistic nature and this approximation factor is modeled as
k, which can be any integer greater than 3. Note that the
parameter k is to depict the probability distribution of C

N ,
i.e., in some case, the estimated C might be quite skewed,
but its probability distribution still follows Theorem 1. For
example, if let k be 100, Theorem 1 says, the probability of
1

100 ≤ C
N ≤ 100 is at least 1− 3

100 = 0.97, i.e., the probability
of C

N < 1
100 or C

N > 100 is less than 1 − 0.97 = 0.03. More
specifically, Ĉ/N = 10, 000 is still possible but its happening
probability shall follow Theorem 1. Later, we shall include
such non-negligible probability for skewed Ĉ into the second
phase using the union bound, which is detailed in the proof
of Theorem 2.

D. Refining Rough Estimate to the Desired Accuracy

From the former sub-section, we obtain a constant-factor
estimate C = Θ(N). By introducing a “balls and bins”
approach, we are going to refine this rough estimate to any
desired accuracy ε, i.e., pushing Θ(N) to (1 ± ε)N . The key
intuition is that when randomly hashing N balls into C bins,
the probability that the specific one bin (such as the first
bin) is empty, is highly concentrated about its expectation.
Thus we form this expectation as a function of N and then
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inverting such function provides a good estimate of N with
high probability.

If we randomly hash N balls into C bins, then a
truly random hash function of this process is given by
hc : [D] → [C], where D is the universe of input data (balls).
Thus, the probability that the first bin is non-empty should be

q = Pr[h−1
c (0) ∩ S �= ∅] = 1 − (1 − 1

C
)N . (8)

Then the following lemma shows that if we can obtain a good
estimate q̂ that is close enough to the real q, then inverting
equation 8 can produce an ε approximation of N .

Lemma 4: Let k > 3 and ε > 0. Suppose C and N are such
that 1

2k ≤ N
C ≤ 1

2 . Then if |q − q̂| ≤ λ = min(1
e − 1

3 , ε
6k ), an

estimate N̂ , defined as

N̂ =
ln (1 − q̂)
ln (1 − 1

C )
(9)

satisfies |N̂ − N | ≤ εN
Proof: See Appendix A for proof. �

According to lemma 4, we know that approximating q is
a good way to estimate the cardinality of tags. However,
the ideal hash function hc are not known to be constructible
efficiently. Therefore we choose to employ t-wise independent
hash functions to generate a desired approximation of q.

Specifically, let H be a family of t-wise independent hash
functions from [D] into [C], and p = Prh∈H[h−1(0)∩S �= ∅].
Next we will show if t is large enough, then p can be arbitrarily
close to q.

Lemma 5: Let t be � log 2
λ

log 5 �, then |p − q| ≤ λ
2 where

λ = min(1
e − 1

3 , ε
6k ).

Proof: See Appendix B for proof. �
From the above lemma, we show that p can be at most λ

2 far
from q; therefore if we can obtain an estimate p̂ of p satisfying
|p−p̂| ≤ λ

2 , then |q−p̂| ≤ λ can hold. Hence, we shall examine
how to obtain a good estimate, p̂, that is arbitrarily close to p.

Definition 3: Let Hm = {h1, ...hm} be a subset of a family
H of t-wise independent hash functions from [D] into [C].
Then for each hi ∈ Hm we define a variable

xhi(Hm) =

{
1 if h−1

i (0) ∩ S �= ∅
0 otherwise

and the estimate of p is given by

p̂=X(Hm)=
1
m

∑

hi∈Hm

xhi(Hm)=
1
m
|{i|h−1

i (0) ∩ S �= ∅}|.

Lemma 6: Let m be �− 72k2

ε2 ln 1
42�, then Pr[|X(Hm)−p| >

λ
2 ] ≤ 1

21
Proof: See Appendix C for proof. �

Now we know that if we get a family of t-wise independent
hash functions of size m, the estimate p̂ can be close to p
within λ

2 . Hence, we put all the above lemmas together, an
ε estimation is given by the following theorem.

Theorem 2 (Epsilon Approximation Bound): Let k be 7, t

be � log 2
λ

log 5 �, and the size of subset Hm be �− 3528
ε2 ln 1

42�, then

Pr[|N̂ − N | ≤ εN ] ≥ 11
21 .

Proof: By theorem 1, let k = 7, the constant estimation in
the first phase gives an error probability of 3

7 at most, as N
k ≤

C′ ≤ kN ⇒ 2k · N
k ≤ 2k ·C′ ≤ 2k ·kN ⇒ 2N ≤ C ≤ 2k2N

with the probability of 1− 3
7 . Combing lemma 5 and lemma 6,

we know that the estimate p̂ of q gives the error probability
of at most 1

21 , since |p − q| ≤ λ
2 holds when t = � log 2

λ

log 5 �and
|p̂ − p| ≤ λ

2 with the probability at least 20
21 . Therefore, the

union bound that the probability of as least one of the two
events happening is at most 3

7 + 1
21 = 10

21 . This is sufficient to
establish theorem 2. �

E. Boosting Success Probability

The theorem 2 shows that an ε-estimate N̂ can be given
with the probability at least 11

21 . But this success probability
does not seem very impressive. To meet the requirement of
some high standard applications, it may need to be able to
succeed with a probability arbitrarily close to 1, i.e., δ can be
arbitrarily close to 0.

We independently select f hash subsets Hmi (1 ≤ i ≤ f)
from a family H of t-wise independent hash functions. Let
N̂i be the estimate for each subset Hmi . Then we use N̂ to
denote the median of N̂1, . . . , N̂f . Thus, we can define random
variables as

x(Hmi) =

{
0 if |N̂i − N | ≤ εN

1 otherwise

and X =
∑f

i=1 x(Hmi).
Theorem 3 (Delta Approximation Bound): For any δ

between 0 and 1, there is an f = O(log δ−1) ensuring that
Pr[|N̂ − N | ≤ εN ] ≥ 1 − δ.

Proof: From theorem 2, we know that x(Hmi) takes 1
with the probability at most α = 10

21 . So we can assume that
E[x(Hmi)] = α < 1

2 and E[X ] = fα. If X is less than f
2 , we

can see that |N̂i − N | ≤ εN definitely holds since N̂ is the
median of N̂1, . . . , N̂f . Thus, if the event X ≥ f

2 happens with
the probability at most δ, the argument in the above theorem
is correct. Towards this, by the Chernoff bound, we have

Pr[X ≥ f

2
] = Pr[X − E[X ] ≥ f

2
− E[X ]]

≤ Pr[|X − E[X ]| ≥ f

2
− E[X ]]

= Pr[|X − E[X ]| ≥ f

2
− fα]

= Pr[|X − E[X ]| ≥
1
2 − α

α
· fα]

≤ 2e−
( 1
2 −α)2

3α2 ·fα ≤ δ.

Therefore, if we set f = � 3α2

( 1
2−α)2

ln 2
δ � = �1200 ln 2

δ � =

O(log δ−1), we can make Pr[X ≥ f
2 ] ≤ δ, and then the

complement event X < f
2 happens with the probability at

least 1 − δ. �

F. Complexity Analysis

From the before, in the first phase, the time slots needed
are O(log log n). In the second phase, it needs O(ε−2) time
slots. By theorem 3, it also requires O(log δ−1) independent
estimation rounds. Therefore, the total time complexity is
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O((log log n + ε−2) log δ−1), which is nearly constant for
a given (ε, δ). More importantly, compared with previous
approaches our final result is a rigorously bounded (ε, δ)
estimate. Note that this efficiency is only within a small
O(log 1

ε ) factor from the theoretical lower bound in [12].

V. IMPLEMENTATION ISSUES

Hardware Requirement: The RPC algorithms require the
programmability on both readers and tags. For readers, the
programmability is easy to achieve since both software radio
defined readers [25] and commercial-off-the-shelf readers, are
able to support user-defined commands. For tags, while being
unable to be supported by off-the-shelf C1G2 tags, the RPC
can be implemented by programmable passive and active tags,
such as WISP or OpenBeacon [26].

Thanks to advances of hash function designs for ultra low-
power devices including passive tags [27], the hardware imple-
mentation of many complicated hash functions, e.g., AES-128,
SHA-256, and universal hashing, become easier. In our case,
we can employ the Weighted NH-Polynomial with Reduc-
tion (WH) method in [27]. WH exploits the same register to
hold the hash of previously processed blocks, which obviates
the need for extra temporary registers and results in the perfect
serialization. In particular, under 0.13 μm logic process, the
total power consumption of WH is 11.6 μW at 500 KHz,
of which the dynamic power consumption is 2.26 μW and the
the leakage power consumption is 9.4 μW. For a passive tag
that consumes on average 600 μA at 1.8 v [28], this power
consumption is fairly acceptable as it only amounts to 1.07%
of the total power consumption of a passive tag.

Another point worth noting is that due to the limited power
supply of the daughterboard of USRP (e.g., only 200mW for
the RFX900 daughterboard ), the reading range is limited
to tens of centimeters, making the test of a large number
of tags infeasible. A possible solution is to use an external
RF amplifier to increase the power of transmitted signals.
Two important things deserve careful attention for the above
solution. i) Legality. A radio-related certificate is required
in most countries to get and operate amplifiers. ii) Safety.
Significant RF power needs to be treated with utmost respect
to ensure the operator’s safety.

Programmability & t-Wise Independent Hash Function:
While we realize that the required programmability may affect
large-scale applicability due to the cost, we believe as more
and more realworld applications and new programmable and
configurable RFID architectures are coming out [29], the cost
of programmable tags shall decrease dramatically in the near
future. Besides, the theoretically achievable bound provided in
this paper can be a useful guide for designing efficient network
protocols in many backscatter networks, as the cardinality of
tags is such a fundamental parameter.

C1G2 Compatibility: As we show that the RPC requires
slight updates to the C1G2 protocol. Actually, most exist-
ing solutions are not fully compliant with the C1G2, such
as [7], [8], [9], and [12]. There are many reasons for this.
One important reason is that the C1G2 was designed purely
for the identification purpose many years ago, exposing quite

Fig. 4. Quality of rough estimates in RPC. (a) rough estimates. (b) Binomial
test of rough estimates.

limited configuration space for other applications, including
RFID estimation, missing-tag applications. Another reason is
each slot in the C1G2 usually takes at least 16 bits, which is
quite inefficient as compared to the single-bit slot used in the
RPC and many other state-of-the-art schemes [9], [12].

VI. EVALUATION

We evaluate the performance of the RPC under extensive
simulations. First, we study the estimation accuracy of the
RPC. Then we compare the RPC with three state-of-the-art
methods, ZOE, ART, and SRC with data under different
distributions.

A. Setup and Metrics

We use the settings in Figure 1 as default, unless otherwise
specified. We assume the communication between tags and the
reader is reliable. By default, we take 400 runs and report the
average. Besides the accuracy requirement of relative error
ε = |N−N̂

N | and error probability δ, we also include two

other metrics, standard deviation, σ =
√

E[(N̂ − N)2], and
normalized standard deviation, σn = σ

E[N ] .

B. RPC Investigation

Quality of Rough Estimates: As shown in Figure 4a, some
rough estimates are good and some are not for both distribu-
tion. But note that the RPC only requires the rough estimate C
to satisfy

Pr[
1
k
≤ C

N
≤ k] ≥ 1 − 3

k
.

In the general protocol implementation, we set k = 7. So the
RPC’s rough estimates should follow

Pr[
1
7
≤ C

N
≤ 7] ≥ 4

7
.

To test whether rough estimates fulfill the above requirement,
we conduct a Binomial test and report the estimated proba-
bility intervals. As shown in Figure 4b, we observe that both
the rough estimates from the uniform and normal distribution
meet the goal. This also agrees with our analysis that the RPC
can provide rigorously bounded rough estimates with any data
distribution.

RPC With Different Frame Sizes: Next, we study how
the RPC performs with different frame sizes. In Figure 5,
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Fig. 5. Relative error of estimate N̂

Fig. 6. Standard deviation of estimate N̂

Fig. 7. Normalized std deviation of estimate N̂

we can see that as the frame size increases, the relative
error is getting smaller. In particular, with only 256 time
slots, the RPC maintains the relative errors around 0.25. The
relative error is reduced to around 0.06 when 2048 time slots
are used. Figure 5 also shows that the relative errors are
insensitive to the number of tags. In other words, the RPC
can obtain accurate estimates in near-constant time for any
size of tags, without any priori about the actual number of
tags. We examine standard deviations and normalize standard
deviations in Figure 6 and 7, respectively. Figure 6 demon-
strates that the larger frame size effectively diminishes the
standard deviation of estimates. As illustrated in Figure 7,
we again see that the number of tags has little influence
on the normalized standard deviation. In particular, using
512 time slots, the normalize standard deviations are mostly
between 0.2 to 0.3.

C. Performance Comparison

We compare the RPC with three state-of-the-art schemes,
ZOE,8 ART, and SRC, in terms of actual relative error.
We synthesize 10,000 tagIDs from four typical distributions:
a uniform distribution in range [0, 232]; a normal distribution
with μ = 215, σ = 212; a poisson distribution with λ′ = 107;
an exponential distribution with λ′ = 105. Note that the
types and parameters of distributions are just representatives
of different data, which is by no means exhaustive. Each of
four methods is executed for 50 independent times. As shown
in Figure 8, we can see that with the uniform distribution,
all methods behave well except several outliers from ZOE
and ART, which are due to not rigorously bounded rough
estimates.9 With other three non-uniform distributions, ZOE,
ART, and SRC fail to meet the desired relative error. As the
analysis in section III, it is mainly because the largely skewed
rough estimates in the non-uniform distributions seriously
affect the accuracy of final estimates. On the contrary, the
RPC accomplishes its goal in those non-uniform distributions.
The reason is that differing from prior schemes, the RPC do
not assume uniform random data or perfect hash functions
that can make any data into uniform random data. We can
conclude that the rigorously bounded rough estimate and final
estimate make the RPC achieve its goal and insensitive to data
distributions.

Also, we compare the time efficiency of the RPC with
other schemes. Specifically, we examine this comparison in
two cases: (1) the execution time of different schemes with
the same predefined estimation accuracy ε; (2) the actual
estimation accuracy of different schemes with the same exe-
cution time under various distributions. For case 1, we vary
target relative errors at 0.01, 0.03, and 0.05, and fix the error
probability at 0.01. The results are shown in Figure 9a. First,
we observe that as the ε requirement increases, the execution
time decreases, which shows tradeoffs between execution time
and accuracy requirement. Second, we observe that the RPC
takes more time than the others schemes. This is exactly as
we expected since the RPC achieves tradeoffs between time
efficiency and estimation accuracy. In particular, the RPC
scarifies its time-efficiency for guaranteed accuracy, i.e., the
number of time slots needed in the RPC is more than that of
state-of-the-art schemes due to the additional overhead brought
by the universal hashing. Note that although the former
schemes might have better time efficiency than the RPC, such
performance is achieved at the cost of accuracy, which is
proved by aforementioned experiments and theoretical analysis
since the perfect hash assumption does not exist in practice.
For case 2, we fix the execution time at 50 s, targeted ε at 10%
and compare those schemes with three different distributions
in Figure 8. The results are shown in Figure 9b. Under the
uniform distribution, the relative errors of the RPC, SRC, and
ZOE meet the requirement while ART achieves 12% which is
a bit over the target 10%. However, for the normal and poisson
distributions, only the RPC achieves its goal and other schemes

8Since ZOE is the advanced version of LOF and PET, we omit LOF and
PET here for brevity. Comparisons with LOF and PET can be found in [10].

9This point is also confirmed in work [12].
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Fig. 8. Relative error investigation of three state-of-the-art schemes, ZOE, ART, and SRC with four different distributions. With the uniform distribution, RPC
and SRC consistently meet the desired ε while ZOE and ART have little outliers. With other three non-uniform distributions, ZOE, ART, and SRC all fail to
meet the desired accuracy. In contrast, the RPC achieves the accuracy requirement in all the distributions. (a) Uniform distribution [0,232]. (b) Relative error
comparisons under uniform distribution. (c) Normal distribution, μ = 215, σ = 212 . (d) Relative error comparisons under normal distribution. (e) Poisson
distribution, λ′ = 107. (f) Relative error comparisons under poisson distribution. (g) Exponential distribution, λ′ = 105. (h) Relative error comparisons under
exponential distribution.

Fig. 9. N = 10, 000. (a) Comparison of time overhead with the same
ε settings. (b) Comparison of actual estimation accuracy with the same
execution time (50 s).

fail because of the unbounded rough estimates and the too
ideal hash assumption. The results of different execution time
settings are quite similar to Figure 9b, which are not included
here.

VII. RELATED WORK

A number of probabilistic approaches are designed to
quickly obtain the approximated cardinality of tags. Kodi-
alam and Nandagopal [6] first propose probabilistic schemes,
Unified Simple Estimator (USE) and Unified Probabilistic
Estimator (UPE). Qian et al. [7] proposes LOF algorithms,
in which the geometric distribution hashing is used to itemize
tags in order to fast acquire estimates with O(log n) time slots.
Zheng and Li [8] further improve the efficiency of estimation
to O(log log n) by designing a Probabilistic Estimating Tree
(PET). Shahzad and Liu [11] introduce Average Run based
Tag estimation (ART) scheme to fast estimate the cardinality.

ZOE is proposed by Zheng and Li [9] to fast estimate the
cardinality of tags using only single-slot trials. Most recent
work by Zhou et al. [12] derives the lower bound for RFID
estimation and insightfully points out that the two-phase
design is the source gain of most prior methods. Although
so much work has been done to efficiently solve this problem,
as demonstrated in section III the accuracy itself has yet to
be well investigated. In particular, final estimates can largely
deviate from the expectation due to skewed rough estimates.
The RPC distinguishes itself by providing rigorously bounded
results using constructible hash functions and working well
with any data distribution.

Recently, several other counting schemes that focus on fine-
grained quantities of multiple RFID sets are proposed. A fine-
grained batch authentication is introduced to provide accurate
estimates of the number of counterfeits and genuines [30].
Gong et al. [31] build a generic framework to count tags under
arbitrary set expressions. While these approaches efficiently
estimate more complex tags quantities (e.g., counterfeits) of
multiple tag sets, the RPC concentrates on the overall number
of tags and is complementary to them.

Probabilistic counting problems are also extensively studied
in data-stream algorithms. Durand and Flajolet [24] first design
the well-known FM-Sketch algorithm for approximating the
number of distinct elements in data stream. But they assume
some ideal properties of hash functions such as the random
oracle. Alon et al. [32] proposes to use random pairwise
independent hash functions to substitute the random oracle.
Bar-Yossef et al. [33] give three algorithms with different
space-time tradeoffs for approximating the cardinality of data
streams. Our two-phase solution is inspired by the work
in [33], however, those algorithms can not be directly applied
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in RFID systems because the model of RFID is very different
from that in data streams. In fact, the RPC design, including
algorithms, protocols, and the implementation, is specifically
devised for RFID systems.

VIII. CONCLUSION

This paper concerns the fundamental problem of tag esti-
mation. By observing that most prior methods fail to meet the
desired accuracy due to skewed rough estimates, we propose
a rigorous and practical two-phase design for approximating
the cardinality and achieve O((log log n+ε−2) log δ−1) time-
efficiency. In contrast to prior schemes, our method works with
any data distribution and uses constructible hash functions.
Through analysis and experiment comparisons, we show that
our design is able to meet the desired accuracy all the time
while other state-of-the-art schemes might fail in some cases.
We hope this work could inspire more future work to pay more
attention to designing better accuracy-guaranteed schemes for
large-scale RFID systems.

APPENDIX A
PROOF OF LEMMA 4

Proof: We prove this by using some well-known bounds
and a little calculus. As C ≥ 2N , hence C ≥ 2 and 1

C ≤ 1
2 .

Also we know that (1 − x) ≥ e−2x when x ≤ 1
2 . Therefore

1 − 1
C

≥ e−
2
C ⇒ q = 1 − (1 − 1

C
)N ≤ 1 − e−

2N
C ≤ 1 − 1

e
.

By definition, λ ≤ 1
e − 1

3 , thus q +λ ≤ 2
3 , so we can obtain

1
1 − (q + λ)

< 3. (10)

Meanwhile, as we know that ln (1 − x)+x < 0 when x < 1,
so when C > 1, we can have

− 1
ln (1 − 1

C )
≤ C. (11)

The calculus we use is that for any continuous function
there is |f(x)− f(x̄)| ≤ ε|supy∈(x,x̄)f ′(y)| if x̄ is close to x.
Hence, for f(x) = ln (1 − x) , we know that

| ln (1 − x) − ln (1 − x̄)| ≤ |x − x̄|
max(1 − x, 1 − x̄)

. (12)

Combing (10), (11), and (12), it gives that

|N̂ − N | =
| ln (1 − q) − ln (1 − q̂)|

− ln (1 − 1
C )

≤ C · |q − q̂|
max (1 − q, 1 − q̄)

≤ 3 · 2kN · ε

6k
= εN.

�

APPENDIX B
PROOF OF LEMMA 5

Proof: Let Hi ⊆ H be the subset of hash functions
that map the i-th element of S into 0. As p is to count
the percentage of the number of hash functions that map

some element to 0, to the number of all hash functions,
so p = |�N

i=1 Hi|
|H| . By the inclusion-exclusion, we have

p =
∑

i

Prh∈H[h ∈ Hi] −
∑

i<j

Prh∈H[h ∈ (Hi ∩Hj)] + · · ·.

Let Tl to be the l-th term in the above equation. Therefore,
for any odd t > 0, we can get

t−1∑

l=1

(−1)l+1Tl ≤ p ≤
t∑

l=1

(−1)l+1Tl.

Since the hash functions in H are t-wise independent, the
probabilities of all

(
N
l

)
subsets can multiple together, i.e.,

t−1∑

l=1

(−1)l+1

(
N

l

)
C−l ≤ p ≤

t∑

l=1

(−1)l+1

(
N

l

)
C−l. (13)

At the same time, by the binomial expansion we can change
the expression q into

q = 1 − (1 − 1
C

)N =
N∑

l=1

(−1)l+1

(
N

l

)
C−l

and for odd t, we have

t−1∑

l=1

(−1)l+1

(
N

l

)
C−l ≤ q ≤

t∑

l=1

(−1)l+1

(
N

l

)
C−l. (14)

Since both (13) and (14) are sandwiched, we know that if
t is sufficiently large, the difference between two terms q
and p can be arbitrarily small. As derived by (13) and (14),
the interval of width is

(
N
t

)
C−t and t is � log 2

λ

log 5 �,
we have

|p − q| ≤
(

N

t

)
C−t ≤ (

eN

tC
)
t

≤ (
1
5
)
t

≤ λ

2
.

�

APPENDIX C
PROOF OF LEMMA 6

Proof: By the definition, we know that xhi(Hm) takes 1
with the probability p. Hence, we can derive E[xhi(Hm)] = p
and Var[xhi(Hm)] = p(1 − p). As X(Hm) is the sum of m
independent variables, we know that

E[X(Hm)] =
1
m

∑

hi∈Hm

E[xhi ] =
1
m

· mp = p

Then by the Hoeffding’s inequality [34], we obtain

Pr[|X(Hm) − p| >
λ

2
] ≤ 2e−2m( λ

2 )2

= 2e−2·(− 72k2

ε2 ln 1
42 )

ε2

36k2
4 =

1
21

.

�
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