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Abstract—Recently backscatter networks have received boom-
ing interest because, they offer a battery-free communication
paradigm using propagation radio waves as opposed to active
radios in traditional sensor networks while providing compara-
ble sensing functionalities, ranging from light and temperature
sensors to recent microphones and cameras. While sensing data
on backscatter nodes has been seen on a clear path to increase
in both volume and variety, backscatter communication is not
well prepared and optimized for transferring such continuous
and high-volume data. To bridge this gap, we propose a high-
throughput rate adaptation scheme for backscatter networks by
exploring the unique characteristics of backscatter links and
the design space of the ISO 18000-6C (C1G2) protocol. Our
key insight is that while prior work has left the downlink
unattended, we observe that the quality of downlink is affected
significantly by multipath fading and thus can degrade the uplink
and overall throughput considerably. Therefore, we introduce a
novel rate mapping algorithm that chooses the best rate for both
the downlink and uplink. Also, we design an efficient channel
estimation method fully compatible with the C1G2 protocol and
a reliable probing trigger, substantially saving probing overhead.
Our scheme is prototyped using a COTS RFID reader and tags.
The results show that we achieve up to 2.5x throughput gain over
state-of-the-art approaches across various mobility, channel, and
network-size conditions.

I. INTRODUCTION

There is a long-standing vision of ultra-low power ubiqui-
tous sensor networks where many tiny sensors are wirelessly
connected and can perform continuous sensing tasks without
human intervention, e.g., Smart Dust [1]. Backscatter networks
are one of most promising candidates to realize this goal as
backscatter nodes -like RFID tags- can capture power from
propagation radio waves, making battery-free networks possi-
ble. Thanks to the advances of energy efficiency scaling for
microelectromechanical systems, a wide range of applications
that previously are only supported by battery-assisted sensors
become available for backscatter networks, such as tempera-
ture or light intensity sensing [2], acoustic signal capturing [3],
and even video surveillance [4]. While backscatter networks
have seen the future of increasing sensing data coming in,
backscatter communication that supports continuous and high-
throughput transmission is not quite ready yet. Recently there
have been several attempts that focus on revamping the tra-
ditional backscatter protocols for more efficient transmission
[5], [6], [7]. Yet incompatibility with industry standards, e.g.,
ISO 18000-6C (C1G2) specification, and requirements of
customized hardware hinder wide adoption of those proposals.

As such, we aim to design a high-throughput protocol that is
fully compatible with C1G2 using Commercial Off-The-Shelf
(COTS) devices, which can benefit tons of currently deployed
backscatter devices. To achieve this, however, there are several
key challenges:

• Ineffective Rate Selection: Prior work of rate selection for
backscatter networks only focuses on the uplink that is
for transmitting sensor data [8], [9], leaving the impact
of downlink rates largely uninvestigated. Actually, the
downlink is indispensable and implicitly involved in the
uplink transmission because any uplink has a downlink as
its predecessor, which means if the downlink fails due to
incorrect rate settings, the uplink would be discontinued.
This is the unique characteristic of the backscatter link
that a downlink and an uplink are sequentially combined
as a backscatter link. Therefore, if the downlink rate is
left unattended, even the optimal setting for the uplink
may not bring overall throughput gain.

• Probing Overhead: In backscatter networks, all transmis-
sions are scheduled by the reader through an ALOHA-
like MAC protocol because nodes cannot sense each
other. The performance of channel probing would
severely degrade due to MAC collisions when the node
population increases [8]. Although CARA [9] proposes
an estimation algorithm to compensate such collisions,
the probing process still needs to follow the above MAC
scheduling, prolonging the probing time. In addition, the
probing trigger, which is necessary for deciding when
to probe, could exacerbate the issue. For example, Blink
[8] requires measurements of at least 10 channels for its
trigger, and CARA needs to probe at least 5 channels.

• Limited Visibility for Channel Estimation: While it is
common that PHY hints for channel estimation, e.g.,
bit error rate (BER), are not available for most of the
COTS wireless devices, it becomes even worse when we
deal with COTS readers; even the packet level loss rate
is very difficult to obtain because COTS readers only
report the number of successful reads in a time interval.
Previous solutions either use an extra monitoring device,
like USRP, to sniffer messages transferred in the air, or
log commands from the reader into tags’ EPC memory
using Computational RFIDs (CRFID). Yet these methods
not only introduce more cost due to additional hardware
but also are inapplicable to situations where only COTS
devices are available.978-1-5090-6501-1/17/$31.00 © 2017 IEEE



To address the above issues, we propose a high-throughput
Rate Adaptation framework for Backscatter networks, RAB.
It is fast and efficient while being compatible with the C1G2
protocol and existing commercial RFID readers. To do so,
it primarily makes three fundamental optimizations over the
current standard. First, our work provides insights that both the
uplink and downlink affect the overall throughput significantly,
which motivates us to adapt rates for both in contrast to prior
work that only focuses on the uplink [5], [8], [9]. Second, we
describe a novel channel estimation method that uses filter-
based probing to effectively reduce errors brought by MAC-
layer collisions and estimates the loss rate by leveraging the
link timing features of the C1G2 protocol. Third, we present
a correlation-based channel hopping and an accurate mobility
detection approach that uses PHY hints to determine when
to trigger channel estimation, considerably saving channel-
probing overhead.

We build a prototype of RAB using a Thingmagic reader
and 20 Alien Higg3 tags. We compare RAB with Blink and
CARA and results show that across 80 traces with different
mobility, channel, and network-size conditions, RAB achieves
overall throughput gains of 2.5x over Blink and 1.9x over
CARA on average. This gain comes from two sources: First,
RAB reduces probing cost significantly by 8.2x compared to
Blink, and by 4.3x compared to CARA; Second, for data
transmission, our rate selection scheme achieves throughput
gains of 1.8x over Blink and 1.6x over CARA.

The rest of this paper is organized as follows. Section II
presents the primer of backscatter communication. Section III
gives an overview of our solution. Section IV details how we
choose optimal rate that best fits the channel condition. Section
V introduces our novel channel estimation that includes filter-
based probing and loss rate estimation. Section VI describes
the design of our probing triggers. The implementation and
evaluations of the proposal are in Section VII and VIII. The
related work is discussed and compared in Section IX. The
concluding remarks and future work are in Section X.

II. BACKSCATTER PRIMER

Backscatter System. A backscatter system usually is com-
posed of a reader and one or more backscatter nodes 1,
e.g., RFID tags. The reader initiates the communication by
transmitting carrier waves, which serves two purposes. First,
the tag can capture energy from the radios waves and power
itself for computation and communication. Second, the tag
backscatters information bits by modulating the same carrier
waves. While many of the principles are generally applicable
to all RFID devices, here we focus on the UHF RFID devices
whose behaviors are defined in the C1G2 protocol [10].
Backscatter Links. While the reader is usually assumed
powerful, the tag is restricted in terms of computation, commu-
nication, and hardware capabilities since it can only capture
limited power from radio waves. Therefore, the asymmetry
exists almost everywhere in backscatter systems including

1We use sensors and tags interchangeably in this paper.
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ranging from 40 to 160 kbps, is controlled primarily by the length of Tari;
The uplink rate, ranging from 5 to 640 kbps, mainly depends on encoding
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Fig. 2. Reading data from a tag following the C1G2 protocol. The reading
process includes an ID transfer phase and a Data transfer phase, each of which
has a handshaking through several different commands.

backscatter links. For example, the tag typical has a dipole
antenna with a gain of 2.1 dBi and a sensitivity of -13 dBm,
while the reader is with a circularly polarized antenna that has
a gain of 9 dBi and a sensitivity of -80 dBm. Accordingly,
the downlink symbols are amplitude-modulated Pulse Interval
Encoding (PIE) symbols, which are easy to decode because
an analogy comparator is enough. As shown in Figure 1,
downlink symbol ‘0’ is composed of a power-on interval and a
power-off interval of equal length. The total length of symbol
‘0’ defines Tari (Type A Reference Interval) and PW (pulse
width) is half of Tari. A symbol ‘1’ differs from ‘0’ only in
the power-on interval length; The total duration of ‘1’ should
be more than 1.5Tari and less than 2Tari. The C1G2 protocol
specifies the typical values of Tari: 6.25, 12.5, and 25 µs,
which correspond to downlink rates of 160, 80, and 40 kbps
2. In contrast, the uplink data rate is configured by setting BLK
(Backscatter Link Frequency) and different encoding schemes
(FM0, M2/4/8). For example, if the uplink is set at a BLK of
250 kHz using Miller2, its data rate is 250/2 = 125 kbps. Note
that both rates of uplink and downlink are controlled by the
reader.
C1G2 Protocol. The C1G2 protocol specifies how the reader
interrogates tags through several rounds of handshaking. We
briefly describe its data reading as follows 3. As shown in
Figure 2, basically the reading process includes two phases:
ID transfer and Data transfer. First, the reader starts by

2These are maximum rates assumed all symbol-0s.
3For more details please refer to [10].



transmitting a QUERY command that contains a Q parameter,
which specifies how many slots are included in a query round.
Then the tag would choose a random number in [0,2Q-1) as its
slot counter. If this counter is equal to 0, the tag replies a 16-
bit random number (RN16); otherwise, the counter decreases
1 after each QUERY/QUERYREP. On receiving the RN16, the
reader sends an ACK that contains the decoded RN16 to the
tag. If the tag confirms the reader-decoded RN16 is correct, it
backscatters an identifier, EPC (typically 96 bits). This is the
end of the ID transfer phase. If the reader needs data from the
tag, it starts another round of handshaking through REQ RN,
RN16, and ACK messages. If this round of handshaking goes
well, the tag would reply the memory data upon receiving a
valid READ command.

Our focus in this paper is to choose optimal rates for
both the uplink and downlink that can maximize the overall
throughput while conforming to the C1G2 protocol. Opti-
mizations from other aspects, such as rateless coding, energy
efficiency, or the fairness of MAC, are out of this paper’s scope
and thus are not considered.

III. OVERVIEW

Figure 3 presents the framework of RAB. The cornerstone
of RAB is our observation that we should adapt data rates for
both the downlink and uplink to maximize throughput. While
common wisdom says that the uplink rate should be properly
chosen to improve the throughput of the backscatter link, we
argue that the downlink rate should be treated in the same
way as there is a tradeoff in setting the downlink rate. Our
experiments show that too slow downlink rates could lose the
chance to increase throughput when the channel is good, which
motivates us to increase the downlink rate. At the same time,
we also observe that too aggressive downlink rates can bring
down the throughput even to 0 when a bad channel is present
because of the well-known sharp transition between low and
high loss rates [11] due to multipath fading. By using a rate
mapping algorithm, we choose the optimal rates for both the
uplink and downlink using overall loss rates and RSSIs that
capture multipath fading and path loss, respectively.

While RSSIs are the standard output of most readers, loss
rate measurements are not readily available. To measure the
loss rate accurately, we introduce a filter-based probing scheme
that avoids the potential MAC collisions of multiple tags
and thus is able to achieve fast probing regardless of the
tag population. To do so, we leverage the built-in SELECT
command provided by the C1G2 protocol, making our probing
lightweight and suitable for point-to-point measuring. In addi-
tion, we design a link timing based loss-rate estimation to over-
come the invisibility brought by the programming interfaces of
COTS readers. Link timing is another unique characteristic of
backscatter communication, which ensures the compatibility
of devices from different manufacturers. By using such link
timing structure, we can accurately approximate how many
queries have been sent and thus derive the loss rate.

The final module is to answer a question: when to probe.
We design a reliable probing trigger to further reduce the
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Fig. 3. The framework of our rate adaption scheme including three modules:
rate selection, channel estimation, and probing trigger.

probing cost by combing a PHY-assisted mobility detection
and a correlation-based channel hopping. In our mobility
detection, we mainly make use of a PHY-hint, phase, which is
widely used in many localization schemes and supported by
all COTS readers and the LLRP standard [12]. Differing from
[8], [9], it is lightweight and does not need measurements
from multiple channels. Channel hopping is another time
window for probing. We present a fast channel hopping that
is based on the observation that good/bad channels tend to get
together instead of being randomly distributed in the spectrum.
Therefore, our strategy is that staying away from the probed
bad channel and sticking around the good channel.

IV. RATE SELECTION

A. Backscatter Link Characteristics

As discussed before, a backscatter link consists of a down-
link that is Reader-to-Tag and an uplink that is Tag-to-Reader.
Prior work mainly focuses on adapting appropriate rates for the
uplink for two reasons. First, the path loss fading of an uplink
is more severe than its corresponding downlink because, while
power decays with the square of distance for the downlink,
it decays with the fourth power of distance for the uplink.
Second, the uplink is supposed to transfer more important data,
like sensing information, while the downlink is more viewed as
a way to disseminate parameters/commands. However, a key
point that is largely ignored is that if there is anything wrong
with the downlink, e.g., decoding errors, the corresponding
uplink would be discontinued, leading to handshaking failures.

From previous sections, we know that the downlink rate
can be set by adjusting the value of Tari. To examine the
impact of different Tari values on the throughput, we keep
a tag at a fixed place and BLK=250 kHz. Then we vary
different encoding schemes for the uplink link. The results
are shown in Figure 4a. This is a link with good channel
quality where faster rates have better throughput. The optimal
rates in this case are Tari=6.25 for the downlink and FM0
for the uplink. Therefore in the case of good channels, we
would miss the chance to increase throughput if a conservative
Tari is chosen. For example, with M2 for the uplink, the
throughput of Tari=6.25 is 171 reads/s, but it drops to 120
reads/s with Tari=25. This observation motivates us to use the
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Fig. 4. To examine the impact of data rates of both the uplink and downlink, we measure throughput with various settings. (a) is an example of a good
channel, which favors the fastest uplink rate (FM0) and downlink rate (Tari=6.25); (b) is an example of a bad channel. Specifically, both FM0 and M2
encoding settings do not work, and the performance of Tari 6.25 is even worse than that of Tari 12.5, which suggests Tari 6.25 is an aggressive choice. (c)
is the distribution of optimal Tari values across 100 random locations, showing that there is no single Tari value that is dominating.

fastest rate for maximizing throughput. However, this is not
always the case. As we move the tag to an 1-meter away
location, we observe different behaviors. As shown in Figure
4b, this time the link is experiencing some difficulties because
the throughput of both FM0 and M2 encoding schemes is
almost 0. In this case, the optimal rates become that Tari=12.5
for the downlink and M4 for the uplink. This case tells us
that too aggressive rates would not benefit but hurt overall
throughput in the case of not good channels. In addition, we
measure links at 100 random locations and plot the distribution
of optimal Tari values in Figure 4c, which shows that there
is no single Tari value that is dominating. To summarize, the
above observations suggest that the optimal Tari should be
carefully chosen to maximize the throughput based on the
quality of channels.

B. Rate Mapping

To find the optimal rates for the uplink and downlink, we
adopt a classification-based approach that takes loss rates and
RSSIs as input. Although RSSIs are inaccurate in measuring
backscatter signal strength due to self-interference [8], they
are still useful in indicating path loss. At the same time, the
overall loss rate entails multipath fading for both the uplink
and downlink. This feature is very important because our
hypothesis is that multipath fading is the main reason that the
aggressive rate, Tari=6.25, would not always be the optimal
rate for the downlink where path loss is less of a problem.

Our rate selection map is built as in Figure 5. The intuition
behind this mapping is that when the loss rate increases,
more complex encoding schemes should be introduced for
resisting channel errors; when the RSSI decreases, the lower-
throughput uplink is used to combat path loss. In addition,
the impact of both the uplink and downlink under multipath
fading is accounted into the loss rate. Therefore, this mapping
essentially is able to deliver accurate and fast rate selection.
While classes in Figure 5 are only for illustration, the real sizes
and types of classes are empirically learned through a training
set collected in indoor environments. After all the classes are
established (class center and distance), we map a new pair of
measured loss rate and RSSI to the closest class.
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Fig. 5. Optimal rate map of the uplink and downlink. When RSSIs decrease,
we choose the downlink with lower throughput. When loss rates increase, we
use slower encoding schemes of the uplink to combat the interference. Note
that BLK is not considered here for simplicity.

V. CHANNEL ESTIMATION

For rate selection, we assume that the loss rate is known.
However, it is not readily available in practice. In this section,
we show how to efficiently probe and estimate the loss rate.

A. Filter-based Probing

Previous work of backscatter channel probing is neither
accurate nor efficient. The inefficiency of Blink and CARA
comes from the C1G2 MAC that is designed for tags that
cannot sense each other because probing packets still need
to follow the same MAC. There have been many solutions
on how to overcome such inefficiency [5], [13]. While those
efforts achieve significant efficiency by overhauling the C1G2
MAC, they are overkill for just channel probing. Furthermore,
those solutions bring inevitable incompatibility with the C1G2
protocol and thus lose interoperability with many COTS tags.

Our solution for this is that we make use of the built-in
SELECT command of the C1G2 protocol to create a filter for
probing. The SELECT command is designed for choosing a
tag population for inventory and access. One or more tags
are selected by the reader according to user-specified criteria,
which is analogous to selecting records from a database. In
a SELECT command, the reader can specify which Memory
Bank to match, the associated starting address and length, and
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a MASK. There are four types of memory banks: Reserved,
EPC, TID, and User memory. For example, if we know a
tag’s ID in advance, then we can easily make it selected by
simply sending a SELECT command specifying the memory
bank as EPC, starting address as 0, length as 96, and MASK
as the wanted tag’s ID. This way, only the tag that matches
the mask would reply. Note that this method requires the ID
information before probing. As our goal is to maximize the
throughput for reading sensor data, we should know which
sensor we would like to collect data from in advance. Even
sometimes we may not know the sensor’s ID beforehand, as
shown in Figure 2, the data transfer phase is always preceded
by an ID transfer phase. Therefore, knowing the ID of a sensor
before transferring the data is not a problem for us. For the
rest of the paper we assume the IDs of tags are known before
reading sensor data.

Now by using the SELECT command, we enable a point-
to-point probing style that avoids MAC collisions completely.
Usually, a SELECT command is about 45-bit long (excluding
the MASK), which incurs some extra cost. However, such cost
is considerably less than the waste due to the inefficient MAC,
as shown in Figure 6. As seen from the figure, although each
of our filter-based probing slots is larger than that of CARA’s
scheme. But CARA’s probing time increases quadratically with
the number of tags while ours grows linearly, which means
with more and more tags coming in, the probing overhead we
save would be even greater. Note that Blink suffers from the
problem as CARA does.

B. Loss Rate Estimation

After probing, the next step is to estimate the loss rate of the
link. Unlike USRP-based readers, COTS readers do not offer
the way to directly measure the loss rate and are more like
a black box. The only result from probing is the number of
successful reads in a given time interval. Therefore, we need
to estimate how many probes/queries sent in a given period of
time. While many prior efforts try to solve this, they all need
extra hardware. For example, Flit [13] logs all the message
counts into EPC using CRFIDs; [14] uses an extra USRP-
based monitor. To solve this without additional hardware,
we observe an opportunity of making use of precise timing

Select ACK

PC+EPC+CRCRN16

QueryDownlink

Uplink

T4 T1 T2 T1 T2

P

P FS

P

FS

Fig. 7. Link timings of a probe. The C1G2 protocol has strict timing
requirements for each message, giving us opportunities to estimate loss rates.
P denotes either an uplink or downlink Preamble. FS denotes the Frame-Sync
symbol.

structures that are specified in the C1G2 protocol. The original
intent of such timing structures is to ensure the compliance
and interoperability of devices from different vendors. While
it is mainly used for conforming tests for backscatter devices,
we here use its preciseness of the structures as a new way to
do estimation because all the timings of downlink and uplink
messages are strictly bounded.

The timing of probe includes two parts: data transmission
delays for the uplink and downlink, and built-in protocol
delays. Hence, our first step is to take into account of the data
rate and the amount of data to be sent over both the uplink
and downlink. Then we need to find certain delays built in
the protocol, as shown in Figure 7. The first specified timing
limitation is T4, which is the time that the reader has to wait
before issuing another command. The length of T4 is 2RTcal,
where RTCal = 0length+1length. After the QUERY command,
the tag needs to wait for T1, of which the nominal value is
MAX(RTCal, 10Tpri), where Tpri = 1/BLK. If there is a
reply from the tag, the reader must acknowledge it within T2,
ranging from [3Tpri, 20Tpri]. T1 and T2 also apply to the
ACK and EPC messages.

Now let us take a case study to examine the probing process.
Table I gives an example showing the timings of a probe by
walking through all the messages in Figure 7. From the table
we know that a probe using Tari=6.25 and FM0 would take
about 2.5 ms, corresponding to 400 probes/second. However,
in the field study, our measured result is around 250. This
is because there is a hardware-dependant command delay be-
tween two probes. Besides this uncertain hardware-dependent
delay, we model all uncertain parameters in the protocol into
a linear system, including T1, T2, T4, and 1length. To build
the linear system, we make multiple measurements across
different settings and use the constrained least square method
to estimate unknowns. After we have loss-rate estimates, the
final question is when to probe, which is detailed in the next
section.

VI. PROBING TRIGGER

The probing trigger decides when to probe the channel,
which is very important because too often probing poses un-
necessary overhead and too rare probing would lose the chance
to adapt rates. Our probing trigger includes two indicators:
mobility detection and channel hopping.

4For the details of the message format, please refer to [10].
5This includes preambles and FrameSync(FS) symbols.
6This includes a 16-bit PC, a 96-bit EPC, and a 16-bit CRC.



TABLE I
EXAMPLE OF PROBE TIMING ESTIMATION. THE SETTINGS ARE TARI=6.25
µs, BLK=250 KHZ, RTCAL=2.75TARI, TREXT=0, ENCODING=FM0,

1length=1.75TARI, FS=12.5 µs + 3.75TARI, Pdown= FS + 2.05RTCAL,
Pup= 6 BITS.

Messages Length (bits) 4 time (µs) 5 Cumulative time (µs)

Select 141 1247.7 1247.7

T4 - 31.4 1279.1

Query 22 260.2 1539.3

T1 - 40 1579.3

RN16 16 88 1667.3

T2 - 46 1713.3

ACK 18 190.6 1903.9

T1 - 40 1943.9

EPC 128 6 536 2479.9

T2 - 46 2525.9

A. Mobility Detection

When a sensor moves to another location, its channel in-
evitably changes. At this time, a reader may need to choose the
optimal rate for this new position to maximize the throughput.
While many localization schemes have been proposed for
RFID devices, they either require a number of antennas [15],
or are not fast and lightweight enough for channel estimation
purposes [16]. Blink uses link signatures to detect mobility,
yet it requires measurements from at least 10 channels. Be-
cause the channel switching on COTS readers takes at least
30 ms, such multiple-channel detection introduces too much
overhead.

To address this issue, we propose a zero-overhead mobility
detection on a single channel. The solution is to use phase,
a PHY-hint, which is supported in COTS readers as specified
in the LLRP standard. For every successful read, the reader
outputs a phase reading and an RSSI value, making it virtually
zero-overhead. The reported phase is an effective way to
measure the distance between the reader and tag, R. The
relationship between such distance and measured phase, θ, is
as follows [16],

θ = 2π
2R

λ
+ θD + θR + θM +Nπ,

where λ = is the wavelength, θD, θR, θM , are phase errors
brought by tag and antenna diversity, reflection characteristics,
and multipath, respectively, N is the integer ambiguity as
the measured phase is with period π. Therefore the distance
between two locations is approximated as

∆R ≈ λ

4π
∆θ.

To set up a threshold that detects mobility, we conduct
an empirical study. Figure 8 shows 500 phase measurements
when a tag is static. We observe that when the tag is stationary,
the phase measurement is highly concentrated. Specifically, the
variance is only 2.2°, and the gap between the min value and
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Fig. 8. 500 phase measurements across different uplink and downlink rates
when the sensor is static. The high concentration of these measurements shows
that phase difference is a good indicator for mobility detection.
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Fig. 9. Throughput measurements across 50 channels. We observe that a
strong channel correlation exists. For example, channels 17-31 have 0 reading
rate while channels 7-16 have high reading rates. Another observation is the
sharp transition between high and low loss rates.

max value is only 19°(0.33 radians), which only corresponds
to 0.8 cm. Therefore, we set up a threshold θth = 0.33.

Note that to ensure that N is the same for two consecutive
phases, the phase rotation between the two should be less
than π. This requirement is equal to that when the reading
rate is 50 reads/s, it can handle moving objects at velocity
up to 4 m/s, which is fairly enough for indoor applications.
When the reading rate is below this threshold, it could make
false negative alarms. To reduce this alarm, we use RSSIs as
a second metric and set its threshold at RSSIth = 1, which is
the granularity of RSSIs from COTS readers. Therefore, our
mobility detection works as follows. First, we check whether
the phase difference is greater than θth, if so, we label it as
a positive location change; otherwise, we check whether the
RSSI difference is greater than RSSIth, if so, it is positive,
otherwise negative.

Note that environmental mobility, e.g., human/metal objects
moving nearby, could be misidentified as location changes
because link characteristics, e.g., RSSIs and phases, are easily
affected by multipath. In fact, such misidentification is benefi-
cial to our system because it is the channel change that causes
misidentification and thus makes probing necessary.
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Fig. 10. We learn an empirical rate map from over 200 samples as in (a), which can be used to guide the rate selection for measured RSSI and loss-rate
pairs; then we compare RAB’s rate selection against BLINK and CARA, showing that RAB has significant improvement thanks to the optimal rate selection
of downlink rates.

B. Channel Hopping

Our second trigger is based on channel hopping, which is
mandatory as defined in the C1G2 protocol that the reader
can only stay on a channel in a time window. The quality of
channel may change due to hopping so that it is the chance
the reader needs to adapt rates. Prior work, such as selection
in [8], needs to probe all the channels to choose top ones,
incurring substantial unnecessary overhead.

Our hopping scheme is based on the observation that
neighbor channels tend to get together, exhibiting channel cor-
relation. We conduct an empirical study of channel correlation
and plot results in Figure 9. We observe a strong channel
correlation, i.e., good or bad channels could be clustered by
channel indexes. This motivates us to design a correlation-
based hopping scheme. Specifically, when the current channel
is good, we choose to probe the next channel that is within
hg-hop of the current one; if the probed channel one is good,
we stay, otherwise, we will switch to another one that is far
away from the probed one, say hb-hop distance. The channel
gap is empirically set at hg = 3 and hb = 5. To decide a
channel is good or bad, we use a very conservative threshold
5 reads/s. The rationale of this setting is the observation that
the transition between high and low loss rates is sharp, as
shown in Figure 9, which is also confirmed in [11].

VII. IMPLEMENTATION

In this section, we present details of our evaluation.
Reader: We mainly use a Thingmagic M6e reader for imple-
mentation, which is fully compatible with the C1G2 protocol.
Same as [8], the COTS reader has three limitations due to
API constraints: First, the data rate can only be set up at the
beginning of a query round; Second, the channel switching is
not lightweight and takes about 30 ms; Third, the minimum
probing time is 30 ms. We hope these factors will be addressed
in the future readers. Currently, we only use trace-driven
studies to examine the aspects that are bounded by the above
limitations, such as channel switching.
Tag: Although we have tested many tags from different
vendors, such as Impinj, NXP, we do not observe significant
performance differences. Thus we choose a representative, the
Alien Higgs 3 tag, AZ-9640. One of the main reasons that we

extensively use this tag is that it has the largest user memory,
which is 512 bits, among tags in the same price range. As the
content of sensor data does not affect our protocol at all, we
write 512 random bits into the user memory of each test tag
in advance.
Parameter: The Thingmagic M6e provides two BLK options,
640 kHz and 250 kHz, but only FM0 and Tari 6.25 are allowed
with 640 kHz. Thus we mainly use 250 kHz for BLK on this
reader, which allows Tari 6.25, 12.5, 25 and FM0/M2/4/8 on
this frequency. For probing, we set up Q=1 to avoid MAC
collisions and a filter of which the memory bank is EPC, the
starting address is 32, the length is 96, and the mask is the
target tag’s ID. The rates of probing packet are fixed at the
slowest: M8 and Tari 25. The reader power is fixed at 30 dBm.
Competition: We compare RAB with two state-of-the-art
schemes, Blink [8] and CARA [9]. To ensure a fair compe-
tition, rate adaptation schemes from other wireless networks,
e.g., SampleRate [17], are not included as no clear standards or
publications have specified how to adapt them to backscatter
networks, because a backscatter link is two-way not one-way
for other wireless networks.

VIII. EVALUATION

Rate selection: To begin with, we investigate how our rate
selection scheme works. As Figure 5 only shows the intu-
ition how rates would adapt to different locations, the actual
boundaries of different classes could be irregular. Figure 10a is
the empirical rate map we learn from 230 randomly sampled
locations in our testbed of size 4m×5m. At each location,
we measure all possible combinations of downlink and uplink
rates. As expected, we observe that not every class is on
the map and the boundaries are not regular. In addition,
the trend of different classes does go with our prediction
that when the RSSI decreases, the lower throughput of the
downlink is favored; when the loss rate increases, a slower
encoding scheme should be used. Note that our classifier has
some errors. For example, some points of FM0/Tari6.25 and
M2/Tari12.5 are mixed, because the throughput of both is
similar.

To further check the impact of downlink rates, we compare
it with Blink and CARA. Since both Blink and CARA do not
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Fig. 11. We examine our probing scheme in detail. (a) shows that a time interval of 30 ms is enough to accurately estimate loss rates; (b) shows that the
probing costs of Blink and CARA are way larger than that of RAB; (c) shows our lightweight probing benefits the throughput in both static and mobile
scenarios.

TABLE II
APPLYING THE LEARNED MAP TO DIFFERENT SCENARIOS ACROSS TIME

AND PLACES.

Accuracy (%) relative to optimal throughput (%)

Testbed - 1st day 93.4 96.4

Testbed - 2nd day 94.5 98.1

Testbed - 3rd day 92.5 93.1

Classroom 83.2 90.2

Library 76.5 86.3

Lounge 77.9 85.7

consider the downlink rate, we make three variants for them,
each of which has a distinct Tari. The results are plotted in
Figure 10b. Not surprisingly RAB outperforms all the variants
of Blink and CARA because a single fixed Tari cannot bring
too much gain across different location and channel conditions.
One interesting thing to note is that the fastest downlink rate,
Tari 6.25, performs even worse than other Tari values. It is
mainly because that the too aggressive rate hurts the downlink
and makes uplink and overall throughput suffered.

To verify the effectiveness of our rate map, we apply it
to various scenarios that are with different dates and places.
The results are shown in Table II. First, we test this rate map
for three consecutive days in our testbed and obtain testing
data of 200 samples for each day. We achieve more than 90%
rate selection accuracy and more than 90% of the optimal
throughput for three days, which shows the robustness of
our scheme against time. Then, we apply the map at three
different places including classroom, library, and lounge. The
rate selection accuracy decreases a bit due to the different
background of the place, yet the achieved throughput is still
more than 85% of the optimal one. This is because the
boundary errors in the empirical rate map make the rate
selection accuracy degraded, but the similar performance of
boundary points keeps the overall throughput not affected too
much.
Probing cost: Next, we examine the impact of our probing
scheme. First, we need to determine how long should we

probe. Figure 11a shows the probing results across different
time intervals for 3 different tags. We observe that the accuracy
of probing is not sensitive to the time interval for low and high
loss rates. Therefore, we set the probing interval at 30 ms.
Note that 30 ms is the minimal time window that is allowed
on COTS readers.

Furthermore, we compare our probing cost against Blink
and CARA with different tag populations. To avoid the neg-
ative effect of 30 ms minimal window that severely degrades
the probing performance of Blink and CARA, this comparison
is done with traces. Figure 11b demonstrates that the probing
cost of Blink and CARA grows quadratically with the number
of tags while that of RAB increases linearly. Specifically, the
probing costs of Blink and CARA are 1612 ms and 1864 ms,
corresponding to 6.7x and 7.8x more than that of RAB when
there are 20 tags. This is primarily due to the filter-based
probing paradigm that probes tags sequentially while Blink
and CARA need more time to deal with MAC collisions.

To investigate the impact of our lightweight probing scheme
on the throughput, we compare it under static and mobile
scenarios. To eliminate the impact of MAC collisions and
channel hopping, we only use 1 tag and 1 channel. Figure
11c shows that the throughput of RAB is considerably better
than those of Blink and CARA. Also, while there is no much
difference between Blink and CARA in the static setting,
CARA suffers more degradation than Blink does in the mobile
scenario because CARA is not mobility-aware.
Loss rate estimation: Now we look to check link timing
based loss rate estimation. As the number of successful reads
is known from the reader output, we only need to examine
the accuracy of query estimation. For the ground truth, we
use a USRP-based monitor at a very close distance, 10 cm, to
capture messages between the reader and the tag. The results in
Table III show that our estimation achieves less than 5% errors
all the time and thus are quite robust across a range of different
rate settings. Such errors do not affect the rate selection as
shown in Figure 10a. Note that while prior methods can also
obtain loss-rate estimates, they require either a USRP monitor
or CRFID tags [13]. In contrast, our method is accurate and
does not need any extra hardware because we make use of the
link timing feature of backscatter communication.
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Fig. 12. Overall performance comparison under static and mobile scenarios with different tag populations.

TABLE III
QUERY ESTIMATION ACROSS DIFFERENT RATES.

query measured query predicted relative error (%)

FM0/Tari6.25 248.8 258.3 3.8

Miller2/Tari6.25 244.6 256.4 4.8

Miller4/Tari6.25 235.7 224.4 4.7

Miller8/Tari6.25 127.1 130.9 3

FM0/Tari12.5 246.2 255.8 3.9

Miller2/Tari12.5 245.1 241.5 1.5

Miller4/Tari12.5 209.8 214.4 2.2

Miller8/Tari12.5 122.0 123.8 1.4

FM0/Tari25 244.6 233.8 4.4

Miller2/Tari25 243.8 241.1 1.1

Miller4/Tari25 175.6 182.9 4.1

Miller8/Tari25 106.3 105.6 0.6

Mobility Detection: The accuracy of mobility detection is
very important since it decides when to probe. In this eval-
uation, we compare its accuracy across all available rates.
Table IV shows that by using RSSIs and phases together, our
mobility detection achieves less than 7% false positive rates
and less than 1.5% false negative rates with various data rates.
The false positive rate is a bit higher because sometimes phases
could be affected by even minor interferences and internal
hardware imperfections, such as carrier frequency offset. Yet
overall, our mobility detection is very robust and accurate
enough for triggering probe, because such low false positive
rates marginally bring down overall throughput.
Overall performance: We now look at the overall perfor-
mance of the whole framework and compare it with state-
of-the-art systems. First, we study the static case where all
tags are placed randomly. Figure 12a shows that when there
are 5 tags, the throughput of RAB is 3.1x and 2.1x better
than Blink and CARA, respectively. The same trend can be
observed when the number of tags increases. As expected, all
schemes degrade with the increasing number of tags because
of more coordination time needed.

When it turns to the mobile case in Figure 12b, all of the
three systems are affected by mobility differently, but RAB

TABLE IV
ACCURACY OF MOBILITY DETECTION ACROSS DIFFERENT RATES.

False positive (%) False negative (%)

FM0/Tari6.25 6.6 1.3

Miller2/Tari6.25 3.6 0.9

Miller4/Tari6.25 0 0.5

Miller8/Tari6.25 0 0

FM0/Tari12.5 5.8 1.0

Miller2/Tari12.5 4.9 0.8

Miller4/Tari12.5 0 1.0

Miller8/Tari12.5 0 0

FM0/Tari25 3.9 0.3

Miller2/Tari25 4.2 0.2

Miller4/Tari25 0 0

Miller8/Tari25 0 0

is still the best across different tag populations. Particularly,
when the number of tags is 20, RAB achieves 2.5x and 5x
throughput gains over Blink and CARA. CARA is the worst
due to its lack of mobility detection module.

Then we conduct over 80 tests across different mobility,
channel, and network-size conditions. For mobility, we vary
the velocity of tags from 0 to 1 m/s. For channels, we
collect the data across 1-week at two difference places. The
tag population varies from 1 to 20. The overall gains and
its breakdown on average are reported in Figure 12c. RAB
achieves overall throughput gains of 2.5x over Blink and 1.9x
over CARA. We break down this gain and find that RAB
reduces probing cost by 8.2x and 4.3x over Blink and CARA.
The majority of this probing gain comes from the filter-
based probing design as it successfully avoids MAC collisions
while being compatible with the C1G2 protocol. Meanwhile,
regarding data transmission, RAB is 1.8x and 1.6x better than
Blink and CARA. This transmission gain is mainly brought
by the downlink-aware rate selection scheme while all prior
systems, like Blink, leave the downlink unattended.

IX. RELATED WORK

Backscatter Communication Efficiency: Backscatter com-
munication optimizations can be roughly classified into two



categories: C1G2-compatible and C1G2-incompatible. Buzz
[5] introduces a rateless coding for backscatter nodes, which
achieves lossless transmission. Flit [13] designs a new MAC
that enables burst transferring bulk data, significantly reducing
wasted time by the C1G2 MAC. Laissez-Faire [18] and
BiGroup [19] propose to decode parallel transmissions by
analyzing signals in the both time and IQ domains, which
can work at moderate and high SNR scenarios. Those C1G2-
incompatible optimizations achieve substantial performance
gain but fall short of accommodating billions of deployed
RFID readers and nodes. Some C1G2-compatible improve-
ments have been proposed recently. Blink [8] makes use of
unique backscatter link signatures to detect mobility and adapt
rates. CARA [9] observes the opportunity that throughput can
be improved by channel-aware rate selection. Unlike both
that focus on the uplink rate selection, we observe that the
downlink rate could greatly affect the overall throughput as
well. In addition, our filter-based probing tries to efficiently
estimate channels and avoid collision problems that are not
well considered before.
Rate Adaptation: Rate adaptation has been widely researched
in active-radio based wireless networks, like 802.11. BER[20],
SNR [21], [22], and loss rate [23] are the most commonly used
metrics. While our work shares the same idea that chooses
the optimal rate that maximizes the network throughput by
estimating the channel quality. Those methods have limited
applicability to backscatter systems, especially for the C1G2
protocol. For example, the limited visibility of current COTS
readers makes even loss rates hard to observe. To solve this,
we use the link timing features specified by the C1G2 protocol
to approximate the loss rate. In addition, we accurately deduce
mobility hints using RSSI and phase measurements together.
New Backscatter Paradigms: Recently several novel
backscatter systems where nodes are powered by various
sources have been proposed, e.g., WiFi-backscatter [24], [25],
[26], Bluetooth-backscatter [6], FM-backscatter [7]. Those
systems largely extend the operating range of traditional
readers and see a bright future of interconnecting more and
more wireless devices. Yet, their interpretability with C1G2 is
worth further investigation.

X. CONCLUSION AND FUTURE WORK

We have presented RAB, a protocol that is to optimize
throughput within the C1G2 standard from many aspects,
including downlink-aware rate selection, filter-based probing,
and lightweight probing triggers. Our prototype has shown that
considerably throughput gains have been achieved over state-
of-the-art schemes. With more and more backscatter sensors
have been invented, we believe RAB can benefit a range of
Internet-of-Things applications. Our future work includes 1)
introducing multiple-antenna to further improve throughput
as currently only a single antenna is used; 2) investigation
of reading performance with large user memory, e.g., 2K-
bit of ImpinJ Monza tags; 3) extension and interoperability
with other backscatter paradigms that connect more wireless
devices, like WiFi/FM-backscatter.
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