
Towards Bridging Online Game Playing and Live
Broadcasting: Design and Optimization

Ryan Shea, Di Fu, and Jiangchuan Liu
Simon Fraser University

Burnaby, Canada
{rws1, dif, jcliu}@cs.sfu.ca

ABSTRACT
Recent years have witnessed the emergence and growth
of Cloud Gaming, where players interact with the re-
mote game instance and receive rendered game scenes
in video stream. Meanwhile, broadcasting and viewing
games through live streaming platforms, e.g., Twitch.tv,
have become increasingly popular. The interaction and
performance of the many modules involved in this new
generation of gaming and streaming platforms have yet to
be closely investigated. In this paper, we present an initial
experiment-based performance study, in which we profile the
architecture of realworld gaming and streaming platforms,
namely the Open Broadcast Software (OBS) module and its
connection to the Twitch server. Our investigation shows
that the recording operation can greatly increase the CPU
utilization and the power consumption can increase over 60%
on the game streaming computer. The use of advanced
hardware encoding found on modern GPUs can greatly
alleviate these performance issues. Yet, through profiling,
we show that hardware encoding can introduce remarkable
delays to the whole pipeline. We track this to a complicated
interplay between the CPUs power saving methods and the
implementation of hardware encoders.

Categories and Subject Descriptors
H.5.1 [INFORMATION INTERFACES AND PRE-
SENTATION]: Multimedia Information Systems

General Terms
Design, Performance, Measurement

Keywords
Cloud Gaming, Graphics Processing Unit

1. INTRODUCTION
Live broadcasting video games has seen an amazing

increase in popularity in the last few years. A large factor of
this growth is fuelled by the rising popularity of organized

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
Copyright is held by the owner/author(s).
NOSSDAV ’15 March 18-20, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3352-8/15/03$15.00
http://dx.doi.org/10.1145/2736084.2736089

video game competitions often referred to as e-sports. It
is now estimated that over 30 million Americans watch or
participate in competitive e-sports [1]. This rapid expansion
has also attracted the interest of major corporate sponsors
such as Coca-Cola and HBO.

One of the largest and most successful live broadcasting
systems is provided by Twitch.tv. Twitch now attracts
over 1 million monthly active broadcasters and 45 million
monthly viewers [7]. Gamer player can live stream to Twitch
users through such broadcasting software as the widely
deployed open-source OBS (Open Broadcast Software).1

There have been significant studies on online gaming and
on live streaming. The combination of them opens many
more opportunities but also new challenges. The interaction
and performance of the many modules involved in this new
generation of gaming and streaming platforms have yet to
be closely investigated.

In this paper, we present an initial experiment-based
performance study and profile the architecture of realworld
gaming and streaming platforms, particularly on the OBS
module and its connection to the Twitch server. Our in-
vestigation of live game streaming shows that the recording
operation can greatly increase the CPU utilization and the
power consumption can increase over 60% on the game
streaming computer. In the worst case, OBS can drop the
frame rate of some game scenes by over 20%. The use of
advanced hardware encoding found on modern GPUs can
greatly alleviate these performance issues. Yet, through
profiling, we show that due to blocking calls, hardware
encoding can face significant delays in the whole pipeline.
We track this to a complicated interplay between the CPUs
power saving methods and the implementation of hardware
encoders. We provide a simple modification to OBS, which
can improve the performance without greatly increasing the
power consumption of the system. Finally, using what we
learned from profiling, we show that broadcastings can be
enhanced by integration with a public cloud and a real
world cloud gaming platform. Our initial experiments on
this hybrid platform indicate that cloud-gaming and live
game streaming can be combined with only a 2% cost to
performance of the system.

2. GAME STREAMING ARCHITECTURE
In this section, we explore the framework of a real world

game streaming service using Twitch, the most popular
gameplay streaming site as a case study. We begin our

1https://obsproject.com/

61

discussion by looking inside the Open Broadcast Software
(OBS), a key component for Twitch-like game streaming.
OBS is widely deployed and and one of the top recommended
software for the Twitch streaming service. Since the OBS
project is open-source, it allows us to uncover the framework
of the system, as well as measure performance issues using
profiling techniques and finally implement improvements.

2.1 OBS Architecture

Twitch

Video
Streamer

Encode
Image

Image
Conversion

H.264
Frame

CDN

 NV12
Raw Image

 Open Broadcasting System

 YUV 444
Raw Image

 RTMP
Stream

Video
Decoder

Image
Capture

HTTP-LS
 Stream

 HTTP-LS
 Stream

 Web Browser

Figure 1: Game Capture and Streaming Pipeline

Through systematic source code and runtime analysis, we
have produced a high-level framework of the OBS system,
shown in Figure 1. It tracks the game image frame from its
capture, to its transmission to Twitch, and then finally to
the end-user.

As can be seen, OBS first captures the image in YUV444
format. Using advanced graphic hooking techniques, the
user can either capture the whole desktop or a specific
window depending on which API the game is programmed
in, for example, DirectX or OpenGL. The image will be
down sampled a raw YUV420 (NV12) format, which is then
fed to an H.264 encoder. On most systems, this is handled
by the open source x2642 H.264 software encoding engine,
which is highly optimized and supports parallel encoding
on multiple CPUs. On newer platforms, OBS also supports
H.264 encoding with not only the x264 software encoder but
also NVIDIA’s advanced NVENC3 hardware encoder, thereby
offloading the computationally expensive encoding operation
to a dedicated piece of hardware. We will discuss hardware
versus software encoders in the next section.

After the image is encoded, OBS sends the frame to the
streaming engine, which for Twitch is an implementation
of the RTMP (Real-Time Messaging Protocol) streaming
protocol. We have captured packets at both the game
streamer side and the viewer side and performed a protocol
analysis. In our case, the RTMP packets are sent from our
local client to a Twitch server located in California, which
converts the stream into a HTTP Live Stream (HLS). This
conversion can include transcoding as well as distribution to
content distribution networks (CDNs) in different regions.
For our purposes, we treat Twitch as a black-box, though
more information on certain internal architecture of Twitch
can be obtained from an interview with a Twitch founder.4

2http://www.videolan.org/developers/x264.html
3http://developer.download.nvidia.com/compute/
nvenc/
4http://highscalability.com/blog/2010/3/16/

Encoding CPU OBS CPU Total Energy (Wall)
Game Only N/A ˜40% 157 W
SW (30 FPS) ˜37% ˜79% 250 W
SW (60 FPS) ˜57% ˜100% 244 W
HW (30 FPS) ˜10% ˜50% 158 W
HW (60 FPS) ˜15% ˜55% 183 W

Table 1: CPU and Energy Consumption

Figure 2: Amperage Measurement

3. GAME STREAMING PERFORMANCE

3.1 Measurement Platform Configuration
Our streaming server contains an Intel Haswell Xeon E3-

1245 quad core processor and the motherboards chip-set
is Intel C226. The server has 8 GB of 1600 MHz DDR-
3 memory installed. Networking is provided through a
Intel i217LM 1000 Mb/s ethernet card. We have also
installed a NVIDIA GTX 970 with 4 GB of GDDR5 memory,
a representative for advanced GPUs on the market that
support hardware H.264 encoding. The operating system
is Windows Server 2008 64 bit edition, with the latest
service packs and DirectX versions installed. We start our
discussion with the power consumption of different encoding
methods.

3.2 CPU Usage and Power Consumption
As we intend to measure energy consumption of the

system using hardware or software encoding, we employed
a digital multimeter with PC-link capability, namely the
MASTECH MS2115B clamp meter (precision of ± 2.5%).
It was used with an AC-line splitter so we could directly
record the input current of the power supply, as can be seen
in Figure 2. We recorded samples every 500 ms from our
multi-meter using the PC-link over USB, and also recorded
the CPU usage of the OBS executable every second for
the duration of the test. For a capture target, we utilized
the Unigine benchmark Heaven5, which supports graphics
rendering techniques such as DirectX 11 and OpenGL 4.0.
We used a 1920 x 1080 resolution, with all high detail
settings enabled, and configured OBS to record the heaven
benchmark and stream it to Twitch. We set both the
software x264 and the NVENC based hardware encoder to
the optimal settings for streaming to Twitch at 1080p. That
is, using constant bit rate encoding (CBR), at a bit-rate
of 3500 kb/s, and a key-frame interval of 2 seconds. For

justintvs-live-video-broadcasting-architecture.
html
5https://unigine.com/products/heaven/

62

both the software and hardware encoders, we recorded and
streamed an entire run of the benchmark, recording at both
30 frames per second (FPS) and 60 FPS, and collecting the
average energy consumption and processor usage over the
run.

The results for this experiment are given in Table 1. We
first report the CPU consumption and energy consumption
of the heaven benchmark running on the system with no
recording or streaming. As can be seen, processing and
rendering the heaven benchmark on our system require
approximately 40% of the system’s available resources, as
well as 158 watts at the wall. The power consumption for
this game is dominated by the CPU and GPU, since there
is no pre-load, and it pre-caches everything from the disk
before running. Next, we configured OBS to record at 30
FPS using the x264 encoder, and see a dramatic increase
in terms of both the CPU and energy consumption. OBS
utilizing the x264 software encoder consumes nearly 37% of
the CPU on its own, and the combined usage has doubled to
79%. The power consumption of the system has also greatly
risen by a staggering 100 watts, an increase of nearly 60%.
We also reconfigured OBS to once again utilize the x264
software encoder but increase the encoding rate to 60 fps. At
this setting, the CPU became completely saturated by the
encoding task, which takes up nearly 60% of the available
CPU and the Heaven benchmark itself. Surprisingly, the
total energy consumption in the system drops slightly, from
250 watts in the 30 FPS experiment to 244 watts in 60
FPS experiment. We probed deeper into this interesting
anomaly and found it was actually due a reduction in the
GPU utilization. The reduction in GPU utilization was
mainly due to major task interference between the CPU
3D physics operations of the Heaven benchmark and OBS’s
x264 encoding engine. This led the GPU to be starved of
scenes to render, creating a drop in the number of frames
rendered per second by the GPU. We will explore this task
interference issue in detail in section 3.3.

We now measure the performance of encoding using the
advanced NVENC hardware H.264 encoder. Once again the
results can be seen in Table 1. As can be seen, the hardware
encoder consumes only 10% of the available CPU. This is
a huge improvement over the software x264 encoder, which
takes nearly 4 times the amount of CPU to accomplish the
same thing. The energy consumption provides yet another
interesting result, being nearly identical to the base line
energy consumption case. Further, exploration on this issue
has led us to find that this happens for two interesting
reasons. First, the GPU download phase causes a slight
drop in GPU utilization and frame rate, which causes the
GPU to slightly reduce its energy consumption. The second
reason has to do with the advanced power management
features found in modern operating systems and CPUs.
Encoding only takes 10% of the CPU for a total of 50%
of the total available CPU when we factor in the game logic,
as encoding and game logic can be processed on only two of
the cores of our 4 core CPU. When compared to the base
case of the game running alone, we still consume 40% of
the CPU, which still requires 2 cores of our 4 core platform.
We have confirmed this by looking at the Windows power-
management system and watching the cores enter their sleep
states (c-states). Further, evidence of the phenomena is
given in our 60 FPS hardware encoder. As can be seen,

Encoding Before Streaming (FPS) Streaming (FPS)
SW 85 65
HW 85 75

Table 2: Dota 2

the encoding only increases the CPU usage by 5% but the
energy consumption increases almost 16%.

From these experiments, it is clear that, in terms of both
CPU and energy consumption, the hardware encoders are
far superior. Whereas this looks intuitive, in the next
section, we will show that due to blocking calls, hardware
encoding can face significant issues in the whole pipeline.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Baseline

H
ardw

are

Softw
are

F
ra

m
e
 R

a
te

 (
fp

s
)

Combined37.45

33.36

28.72

Physics

24.28

21.34

18.53

Figure 3: 3DMark Results Local Stream

3.3 Gaming Performance While Streaming
To determine the performance impacts that streaming

has on gaming, we first utilize Futuremark’s widely used
gaming benchmark 3DMark.6 Specifically, we use the Fire

Strike module, which is a 1080p benchmark utilizing
the latest DirectX features (DX11) that stresses not only
the 3D rendering capabilities of the system but also
the physics calculations done on the CPU. Although
3D mark provides a proprietary score for comparing
different systems, we are only interested in performance
degradation due to recording/streaming. For this reason, we
compare only the FPS lost between trials on two particular
benchmarks. The first benchmark, the Fire Strike combined
test, applies maximum stress to both the GPU and CPU.
The second benchmark is the Physics benchmark, which has
a performance limited due to the CPU. We again utilize OBS
streaming 1080p video at 30 FPS, with a CBR of 3500 Kb/s
using both hardware and software encoders.

The results for this experiment are given in Figure 3.
Using the combined benchmarks, we experience a drop of
just over 10% for hardware encoding. Further, if we are
using the software x264 encoder, the combined benchmarks
falls by over 23%. A similar story can be seen with
the Physics test, where the performance of 3DMark falls
by just over 12% when NVENC is utilized for encoding.
The software encoding once again suffers the largest drop
in performance falling by almost 24%. Based on our
previous results on the CPU consumption of these two
encoding methods, it is not surprising that x264 massive
CPU requirements would interfere with the frame rate of a
game benchmark.

Although synthetic benchmarks like 3DMark are great for
running consistent experiments across different platforms,

6http://www.3dmark.com/

63

we expect to make sure our observations in 3DMark could
be generalized to real games. To this end, we employed
the use of the extremely popular game Dota 2 (Defense
of the Ancients 2). Dota 2 makes a perfect candidate for
our real world game test because not only does it utilize
advanced graphics, it is also one of the most popular games
to be streamed on Twitch, often attracting hundred’s of
simultaneous live streaming channels and tens of thousands
of viewers. We set every detail level to maximum and
also configured the game to run in ultra high definition
(UHD) 4096 x 2160 resolution. Since OBS and Twitch do
not currently support 4K streaming, we configure OBS to
capture 4K and down sample to 1080p. We again utilize
OBS optimal 1080p streaming settings of 30 FPS CBR of
3500 Kb/s. To benchmark the game, we find a high detail
location on the map with stable FPS performance. We
then enable streaming, first utilizing x264 software encoder
and then using the hardware H.264 encoder. We stream
to Twitch for one minute using both encoding methods
and give the performance results in table 2. As can be
seen, the results verify our earlier results from the 3DMark
streaming experiment. Like the previous synthetic gaming
benchmark, both software and hardware encoding methods
cause measurable decreases in the game’s performance. The
software encoding reduced the performance of Dota 2 from
85 to 65 FPS, a drop of over 23%. The hardware encoding
method did much better, dropping at only 12%.

4. PROFILING OBS
Beyond looking at performance and resource consumption

issues, we also expect to improve the performance of the
OBS streaming system. To that end, we profiled different
stages of the encoding and streaming pipeline to determine
finding significant issues with certain components. Referring
back to Figure 1, we see that a streaming pipeline can be
roughly broken down into 4 main stages: image capture,
image conversion, encoding, and streaming. For each of
these stages we calculate the average time in milliseconds
taken to complete the stage. To determine which stages
suffer latency increases with the resolution of the input frame
we tested both 720p (1280x720) and 1080p (1920x1080), for
both the hardware and software encoder. We again employ
the Heaven benchmark to provide an image source, and we
report the average time taken by each stage after a complete
run of the benchmark, which is multiple thousand samples
per run.

We give the results for the profiling in Table 3. As
can be seen, some intuitive patterns emerge from the data,
namely that as the input frame resolution increases, so does
the amount of time needed to prepare the frame. Also,
the average time to prepare and stream the frame stays
small regardless of the encoding method or input frame size.
However, hardware encoding seems to be significantly slower
at both capturing the raw image source and converting the
image from YUV444 to YUV420. For example, in the 1080p
case, capturing the image takes nearly 75% longer when the
hardware encoder is utilized. Also, at 1080p the colour
conversion takes over 50% longer, when we are utilizing
the hardware encoder. This is very surprising, given the
fact that hardware and software encoding both perform
this operation on the CPU using identical functions. In
fact, by viewing the source code for OBS we find that the
only difference between using the hardware and software

encoding should come from the encoding phase, since that is
the only module in the pipeline directly changed by choosing
either hardware or software encoders. The latency of this
pipeline is of critical importance, especially when streaming
at higher frame rates. For example, at 60 FPS streaming a
new frame should exit the pipeline approximately every 16
ms in order to provide a stable video stream. We will discuss
what causes this increased latency, and how to optimize it
in the next section.

4.1 Optimizing Hardware Encoding
Through our profiling of OBS and paying particular

attention to the CPU sleep states, we find that when the
software encoder enters the convert image phase seen in
Figure 1 all cores are active and running at their max clock
speed. This is because all 4 cores on our test platform were
just engaged in encoding the raw image into a compressed
H.264 stream, a very CPU intensive operation. However,
when the hardware encoder enters convert phase only 2 of
the cores are running at their maximum performance. We
have discovered this is because the call to the hardware
encoder is a blocking call; that is, once OBS encodes a
frame utilizing the hardware, it can sleep for over 10 ms.
Due to this period of low utilization, the operating system
and processor respond by down clocking the CPU cores and
putting some of them to sleep to conserve energy. As such,
when OBS reaches the image conversion phase the cores are
in their energy conservation state, which creates a lag time
before they are running again at high performance.

We present two possible solutions to this issue. The
naive solution is to completely disable power management.
Although, this will alleviate the issue by forcing the cores
to constantly be at maximum performance, we will lose
all the power saving advantages of using a hardware
encoder. We propose a more elegant solution of advertising
to the operating system that we will be needing the
maximum performance of the CPU before we enter the
image conversion section and then restoring the power
state after converting the colours. We have implemented
this idea in OBS and the results are given in Table 47.
When compared to the previous encoding latency results
in Table 3, we see that our modification has greatly
improved the encoding efficiency of the hardware encoder
by decreasing the latency of both the capture-image and
convert-image phase of the OBS pipeline. Further, our
initial power measurement indicates that our solution only
increase the power consumption by approximately 32 watts
to 190 watts while recording using the hardware encoder,
which is much more efficient then the software encoders
performance at 250 watts.

5. BRIDGING CLOUD GAMING AND
LIVE BROADCASTING

The last topic we explored is how to bridge a real-
world cloud gaming system. Bridging cloud gaming and
game streaming has a number of appealing features for
both developers and gamers. First, residential broad-band
connection often offer asymmetric download and upload
speeds, with the upload speeds being severely limited. For
example, according to OOKLA8 the average uplink speed in

7Code Available:http://www.sfu.ca/~rws1/game-stream/
8Net Index:http://www.netindex.com/upload/

64

Encoding Capture-Image Convert-Image Encode Frame Stream Frame Total OBS
SW 720p 6.4 ms 4.4 ms 2.8 ms 0.2 ms 13.8 ms
SW 1080p 11.0 ms 4.9 ms 3.0 ms 0.3 ms 19.2 ms
HW 720p 7.2 ms 6.5 ms 12.4 ms 0.2 ms 26.3 ms
HW 1080p 19.3 ms 7.5 ms 16.4 ms 0.3 ms 43.5 ms

Table 3: Timing across OBS pipeline

Encoding Capture-Image Convert-Image Encode Frame Stream Frame Total OBS
HW 720p (opt) 5.2 ms 2.8 ms 11.8 ms 0.2 ms 20.0 ms
HW 1080p (opt) 9.6 ms 2.5 ms 14.1 ms 0.1 ms 26.3 ms

Table 4: Improved Latency Hardware Encoding

Germany is 4.1 Mb/s, Canada is 6.6 Mb/s and the USA is
9.6 Mb/s. The low average uplink speeds of many countries
are a serious impediment to streaming higher quality FHD or
for future streaming at UHD. Also, with such low up uplink
speeds, game streaming could interfere with the players QoE
while playing online games due to network congestion, even
at twitches recommended 3.5 Mb/s. Further, our profiling
in section 4 indicates that OBS can have issues streaming at
seriously effecting the games performance.

Figure 4: Cloud Gaming With Live Streaming Support

5.1 System Overview
Our research group has implemented a fully virtualized

cloud gaming system called Rhizome. Next, we briefly
introduce Rhizome and its architecture.9 A sketch of the
Rhizome’s architecture extended to stream to twitch is given
in Figure 4.

The first module is the Game Logic, which in essence is
the gaming application that the user is playing. Together
with the Thin Client Interaction module, it intercepts the
user’s keystrokes sent from the remote client to the game
and computes the game world changes. The rendering is
then performed by the GPU that is assigned to the VM,
e.g., an NVIDIA GRID GK104. The rendered scenes are
passed to the Video Encoder module that contains a video

9More Info:http://www.sfu.ca/~rws1/cloud-gaming/

encoder and a discrete framer. The video encoder, which
we will highlight later, is selectable, consisting of either a
software or hardware H.264 encoder. In either case, the
encoder needs additional support to be adapted for real-
time streaming, namely, a discreet framer, which allows the
Live555 streaming library to request live frames from the
encoders at a desired video stream frame rate. The encoded
video stream is then encapsulated and transported in a UDP
RTSP stream to our think client.

Our design and implementation are platform-
independent, although a NVIDIA GRID GPU is required
for our hardware encoding implementation. We have
deployed and experimented the system on Amazon EC2
GPU Instances (G2), a new type of cloud instances backed
by the Intel Xeon E5-2670 (Sandy Bridge) processors and
the NVIDIA GRID-K520 board that contains a GK104
GPU with 1536 CUDA cores and 4GB of video memory.
The GRID’s on-board hardware video encoder supports up
to 8 live HD video streams (720p at 30 fps) or up to 4
live FHD video streams (1080p at 30 fps), as well as low-
latency frame capture for either the entire screen or selected
rendering objects, enabling a G2 instance to offer high-
quality interactive streaming such as 3D game streaming.

We modify our gaming platform to provide a secondary
video stream to a new module, the relay proxy. The
relay proxy converts the video stream to the encapsulation
format specified by a streaming service, in this case RTMP
over TCP for Twitch. We implement the relay proxy
using FFMPEG, which can either run directly on our cloud
gaming virtual machine or, for maximum performance, on
its own VM. The proxy has a number of additional usages
such as combining multiple video streams together, such as
the game stream and the thin clients web-cam, as well as
transcoding to different formats. Further, thanks to the
large bandwidth available in EC2 (up to 1000 Mb/s on a EC2
large instance) the proxy itself could distribute the content
to many viewers.

5.2 Performance
To determine the performance impacts that live game

streaming has on gaming we again utilize Futuremark’s
widely used gaming benchmark 3DMark. For a comparison
between our modified cloud gaming platform and traditional
game streaming we utilize OBS streaming 1080p video at
30 FPS, with a CBR of 3500 Kb/s. We also compute a
base-line performance of 3DMark running on our platform
with all streaming and encoding tasks disabled. Although
disabling all video outputs from our platform implies that
you would have to physically be in the data-centre with a

65

monitor to see the game, it does provide a useful best case
scenario for what the maximum gaming performance of the
EC2 instance is.

The results are given in Figure 5. When we supply a live
gaming stream from our cloud platform using OBS gaming
performance drops from 26.28 to 25.16 FPS, a measurable
drop of just over 8%. The impact on game physics caused by
OBS is much larger dropping nearly 25%. Our cloud gaming
implementation on the other hand suffers a performance
drop of less than 2% to either its combined or physics
performance. The reason our cloud gaming platform has
such a large advantage over OBS is mainly to do to our
implementation of the capture, convert, and encode stage of
the rhizome pipeline. In OBS each of these stages involve
a copy from the GPU, converting using a set of threads,
and finally encoding using x264 or NVENC. However, we
combine these into a single stage utilizing the GPU for
capture, conversion, and encoding. Thus, unlike OBS we
only need a single copy from the GPU in order to receive a
fully encoded H.264 frame. We have profiled Rhizome and
find that the average latency of this phase takes on average
less than 12 ms to complete, which is 39.2% faster than our
best case of OBS we tested. Further, our analysis shows
that Rhizome only consumes 10% of the CPU leaving more
resources available for the gaming process.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Baseline

OBS
Rhizom

e

F
ra

m
e

R
at

e
(f

ps
)

Combined

26.28
24.16

25.75

Physics

23.11

17.11

22.72

Figure 5: 3DMark Results Cloud Game Stream

6. RELATED WORK
Recently there have been some significant studies sur-

rounding issues related to live game streaming. Pires et
al. [8] discuss enhancing Twitch with DASH to improve QoE
and reduce infrastructure costs. Others have explored the
design issues and implications of participatory mixed-media
environments such as Twitch [3][6].

Further studies have been performed to understand the
user-perceived QoE in cloud gaming systems, Jarschel et
al. [5] conducted a subjective study, in which the selected
participants were asked to play videogames of slow, medium,
and fast gameplay through their setup under different
latency and packet-loss conditions. A recent study from
Claypool et al. [2] provided a detailed study of OnLive,
a commercially available cloud gaming system, and closely
analyzed its bitrates, packet sizes and inter-packet times for
both upstream and downstream game traffic. To further
clarify its streaming quality, Shea et al. [9] measured the
real-world performance of OnLive with different types of
network and bandwidth conditions. The authors carefully
studied the streaming quality and revealed critical challenges

toward the widespread deployment of cloud gaming. Wu et
al. [10] further conducted a series of passive measurements
on a large-scale cloud gaming platform and identified the
performance issues of queueing delay as well as response
delay among users. Huang et al. [4] provided an open-source
cloud gaming system GamingAnywhere, which has been
deployed on the Android OS with extensive experiments
performed.

7. CONCLUSION
In this paper we have systematically investigated game

streaming, both with traditional CPU based encoders and
more advanced hardware encoding devices. We found that
in general hardware encoders can greatly reduce both the
energy usage and performance implication of live game
streaming. Our profiling of these systems shows that due
to some interesting interplay between the CPU and GPU
based hardware encoders some practical optimizations can
be made to greatly decrease the encoding latency. Finally,
we took the first steps towards implementing live streaming
to many viewers in a cloud gaming context. Our prototype
implementation indicates that combining these platforms
is not only feasible but also results in nearly negligible
performance degradation while live streaming.

8. REFERENCES
[1] Sizing and profiling esports popularity.

http://www.newzoo.com/insights/
free-report-sizing-profiling-esports-popularity/.
Accessed: 2014-12-8.

[2] M. Claypool and D. Finkel. On the performance of onlive
thin client games. Springer Multimedia Systems Journal,
Special Issue on Network Systems Support for Games,
PP(9):1–14, 2014.

[3] W. A. Hamilton, O. Garretson, and A. Kerne. Streaming
on twitch: fostering participatory communities of play
within live mixed media. In Proceedings of the 32nd annual
ACM conference on Human factors in computing systems,
pages 1315–1324. ACM, 2014.

[4] C. Huang, C. Hsu, D. Chen, and K. Chen. Quantifying user
satisfaction in mobile cloud games. in Proceedings of ACM
MoViD, 2014.

[5] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hossfeld.
Gaming in the clouds: Qoe and the users’ perspective.
mathematical and computer modelling. ACM Transactions
on Computer Systems, 57(11):2883–2894, 2013.

[6] M. Kaytoue, A. Silva, L. Cerf, W. Meira Jr, and C. Räıssi.
Watch me playing, i am a professional: a first study on
video game live streaming. In Proceedings of the 21st
international conference companion on World Wide Web,
pages 1181–1188. ACM, 2012.

[7] Matthew DiPietro. Twitch Hits One Million Monthly
Active Broadcasters. http://blog.twitch.tv/2014/02/twitch-
hits-one-million-monthly-active-broadcasters/.

[8] K. Pires and G. Simon. Dash in twitch: Adaptive bitrate
streaming in live game streaming platforms. In Proceedings
of the 2014 Workshop on Design, Quality and Deployment
of Adaptive Video Streaming, pages 13–18. ACM, 2014.

[9] R. Shea and J. Liu. Cloud gaming: Architecture and
performance. IEEE Network, 27(4):16–21, 2013.

[10] D. Wu, Z. Xue, and J. He. icloudaccess: Costeffective
streaming of video games from the cloud with low latency.
IEEE Transactions on Circuits and Systems for Video

Technology, PP(99):1–12, 2014.

66

