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Human activity identification plays a critical role in many Internet-of-Things applications, which is typically
achieved through attaching tracking devices, e.g., RFID tags, to human bodies. The attachment can be inconvenient
and considered intrusive. A tag-free solution instead deploys stationary tags as references, and analyzes the
backscattered signals that could be affected by human activities in close proximity. The information offered
by today’s RFID tags however are quite limited, and the typical raw data (RSSI and phase angles) are not
necessarily good indicators of human activities (being either insensitive or unreliable as revealed by our realworld
experiments). As such, existing tag-based activity identification solutions are far from being satisfactory, not to
mention tag-free. It is also well known that the accuracy of the readings can be noticeably affected by multipath,
which unfortunately is inevitable in an indoor environment and is complicated with multiple reference tags.

In this paper, we however argue that multipath indeed brings rich information that can be explored to identify
fine-grained human activities. Our experiments suggest that both the backscattered signal power and angle
are correlated with human activities, impacting multiple paths with different levels. We present TagFree, the
first RFID-based device-free activity identification system by analyzing the multipath signals. Different from
conventional solutions that directly rely on the unreliable raw data, TagFree gathers massive angle information as
spectrum frames from multiple tags, and preprocesses them to extract key features. It then analyzes their patterns
through a deep learning framework. Our TagFree is readily deployable using off-the-shelf RFID devices and a
prototype has been implemented using a commercial Impinj reader. Our extensive experiments demonstrate the
superiority of our TagFree on activity identification in multipath-rich environments.

CCS Concepts: • Networks → Network mobility; Sensor networks; • Computer systems organization

→ Sensor networks;

Additional Key Words and Phrases: RFID, Backscatter, Activity Identification, Deep Learning

ACM Reference Format:

Xiaoyi Fan, Wei Gong, and Jiangchuan Liu. 2018. TagFree Activity Identification with RFIDs. Proc. ACM Interact.

Mob. Wearable Ubiquitous Technol. 2, 1, Article 7 (March 2018), 23 pages. https://doi.org/10.1145/3191739

1 INTRODUCTION

With the widespread deployment of Internet-of-Things, human activity identification has become a key
service in many IoT applications, such as healthcare and smart homes [1]. It has received significant
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attention from both academia and industry, with diverse solutions based on radars [30], cameras [4],
inertial sensors [3], etc. Among them, RFID (Radio Frequency Identification) is of particular interest given
its low cost, light weight, small footprint, and batteryless-operation. There have been pioneer studies on
tag-based solutions for human activity identification [22][25][6]. That is, an RFID tag is attached to the
human body, and the activities are then captured by a tag reader. Recently, tag-free solutions have also
been suggested [34][23]. Instead of attaching tags to human bodies, which sometimes can be inconvenient
and considered intrusive, multiple stationary tags are deployed as references, whose readings are expected
to be affected by human activities in close proximity. Through analyzing the backscattered signals from
the reference tags, the activities can then be identified.
The information offered by today’s RFID tags are quite limited, and the typical raw data, namely,

received signal strength indicator (RSSI) and the phase angle, mostly target stationary reading scenarios.
As such, existing tag-based activity identification solutions are far from being satisfactory, not to mention
tag-free. Our realworld experiments have shown that the RSSI readings almost have no change with small
human activities, e.g., shaking hands; The phase angle, though being sensitive to activities, is hardly a
reliable indicator. It is also well known that the accuracy of the readings can be noticeably affected by
multipath, which unfortunately is inevitable in an indoor environment.
In this paper, we however argue that mutipath indeed brings rich information that can be explored

to identify human activities. Our experiments suggest that both the backscattered signal power and
angle are highly related to human activities, impacting multiple paths with different levels. In a tag-free
configuration with multiple reference tags, if we can capture these changing features of the paths, the
activities could be identified with high sensitivity.
Inspired by these observations, we present TagFree, the first RFID-based device-free activity iden-

tification system by analyzing the multipath signals. Identifying the relevant features can be very
time-consuming and complicated, so for defining the rules for accurate classification of activities. Different
from conventional solutions that directly rely on the unreliable raw data, TagFree gathers massive angle
information as spectrum frames from multiple tags, and preprocesses them to extract key features. It
then analyzes their patterns through supervised learning. In particular, a deep learning framework with
both Convolutional Neural Network (CNN) [15] and Long Short Term Memory (LSTM) network [13]
is applied for common activity identification, which also scales up well to identify complex high-level
activities (e.g., hour-long, day-long or more).

We conduct extensive experiments to evaluate our TagFree in multipath-rich environments and report
significant performance gains over different state-of-art feature-based solutions. With an alert mechanism,
TagFree can be customized as a monitor for senior patients in healthcare facilities, e.g., identifying
dangerous events such as falling down on floors. Also, we envision that our TagFree can further facilitate
various smart home applications, e.g., activity-based temperature adjustment in homes or exercise assistant
equipment in gyms. It is also worth noting that TagFree is readily deployable using off-the-shelf RFID
readers (a single UHF reader with a limited number of antennas) and allows reuse of existing RFID
readers for indoor activity identification.
The rest of the paper is organized as follows. Section 2 presents the challenges in tag-free activity

identification, and Section 3 illustrates the basic idea of our work. Section 4 provides our data pre-processing
scheme on dealing with frequency hopping and de-coupling multipath signals, and then Section 5 presents
our deep learning approach for activity identification. Section 6 discusses the implementation details.
The performance evaluation results on our approach are presented in Section 7. Section 8 illustrates
the background of the research area and provides a literature review. We then conclude this paper in
Section 9.
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Fig. 1. The limitation of RSSI and Phase

2 RAW RSSI OR PHASE? CHALLENGES FOR TAG-FREE ACTIVITY IDENTIFICATION

Today’s commercial tag readers have very limited programming interfaces, which, through the standard
Low Level Reader Protocol (LLRP)1, report such low-level raw data as the received signal strength

indicator (RSSI) and the phase angle only. The raw RSSI and phase data have been widely used for
tag-based RFID applications. In a tag-free configuration with stationary RFID tags being deployed as
references, e.g., on walls or furniture, the communication link established with fixed readers can be
disturbed by human activities in close proximity, hence changing the RSSI or phase readings as well.
For instance, TASA [34] measures the RSSI changes of signals received by the readers to infer human
movement. Unfortunately, the activity information inferred from the raw RSSI can be quite unreliable
and inaccurate for small movement. We have conducted an indoor experiment using off-the-shelf tags
placed at a distance of 1 m facing polarized antennas. When shaking hands in front of the tag with
different speeds (zero or no-activity, once per 1 sec, and once per 2 sec), we would expect the RSSI or
phase readings be affected. Yet as shown in Fig. 1 (a), we observe an almost constant RSSI value, i.e.,
RSSI is insensitive to such small activities as handshaking. In contrast, the phase readings in Fig. 1 (b)
do change when hands shake, which has the potentials to be explored.

It is worth noting that our experiments have fixed the channel on the 908.25 MHz. The U.S. government
regulation requires frequency hopping to be enabled for RFID readers, with which the effectiveness of
phase measurement can be noticeably affected [11][16]. The phase measurement is affected by multipath,
which is inevitable in an indoor environment [25] [31]. As can be seen from Fig. 1 (b), with multipath,
the changes in phase are often arbitrary, and the readings for “no-activity” in still swings from 1.05◦ to
157.8◦, which can falsely identify activities.

Interestingly, we find that the dense multipath patterns indeed carry rich information about human
activities. Specifically, in a tag-free configuration with multiple reference tags, if we can obtain a
description of the paths along which the tag signals propagate, i.e., both the direction and the power
of the backscattered signals, the human activity could be identified with high sensitivity. Our TagFree
system deploys multiple reference tags to increase the density of multipath, and preprocesses the raw

1Thingmagic M6e reader.http://www.thingmagic.com/
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(a) Spectrum for no-activity
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(b) Spectrum for sitting
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(c) Spectrum for walking
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(d) Spectrum for running

Fig. 2. Spectrum for different activities

phase through the MUSIC (Multiple Signal Classification) algorithm [20]. This algorithm has been widely
used in the multi-path context for calculating the directions of arriving signals. Consider an illustrative
example in Fig. 2. We place a stationary tag in front of a 4-antenna array with 2-meter distance and
continuously collect tag readings with a Thingmagic reader, giving the corresponding spectrums for four
human activities: no-activity, sitting, walking and running. The spectrum shows how the directions of
arriving signals evolve over time, where high-amplitude angles are colored in yellow. Fig. 2 (a) shows
the no-activity scenario and there is only one significant direct path in the environment. The activity of
sitting is shown in Fig. 2 (b), where two more signal paths are produced with the sitting person, which
are relatively stable. In the walking activity, a volunteer walks back and forth between the antenna array
and the tag, where the multipath patterns in the spectrum become explicitly different with sitting as
shown in Fig. 2 (c). Fig. 2 (d) shows the spectrum of running, which the signal peaks shift frequently.
Using the signal multipath spectrum of the reference tags, we can quantify the correlation between the
multipath signal patterns and a specific human activity.
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Fig. 3. TagFree Application Examples

We further have a detailed look into the experiments for sitting and no-activity, respectively. Fig. 3 (a)
demonstrates the spectrums in 2 seconds for the sitting activity, where there exist three signal paths,
namely, path 1, 2, and 3. When the person blocks path 1 at 40◦, the power of path 1 is decreased, which
successfully detects the activity along this directly affected path. Meanwhile, the angles and power of
the other two paths are affected as well, though with different levels: path 2 at 90◦ is shifted to 85◦

with increased peak amplitude, and path 3 has little change. In short, both the signal power and angle
are highly related to human activities, impacting multiple paths with different levels. However, the
peak amplitude on an AoA spectrum estimated by MUSIC is a probability function [20]. As such, the
peak amplitudes in the spectrum data do not necessarily represent the true signal power. In particular,
with “no-activity”, the power of a path should remain stable. Yet as Fig. 3 (b) shows, although the tag
continuously reflects the signals with the same angle from 80◦ and 130◦, the peak amplitudes of paths 1
and 2 have dramatically changed between the 1st and the 2nd second. The multiple signals also twist
with each other and sometimes hide behind noises, so that the relationships to human activities cannot
be easily identified. All these call for solutions to dynamically identify and extract intrinsic features from
the massive spectrum data with high accuracy. We accordingly introduce a deep learning solution, which
is not only effective in uncovering features for the common activities, but also scales up to identify more
complex activities.

3 TAGFREE OVERVIEW

Fig. 4 shows the basic idea of our TagFree system. In Fig. 4 (a), the spectrum shows that there exist
three paths from a stationary tag, where the stationary Tag 1 continuously reflects the signals with the
same angle and power from 40◦, 90◦ and 125◦, respectively. Fig. 4 (b) shows a simple case that when
one person blocks path 1 at 40◦, where not just the peak of the blocked path is decreased, the other
peak amplitudes and angle of other paths change as well. Fig. 4 (c) illustrates another case when there
are many tags in the area. We can see that the number of signal paths increases rapidly with five more
tags. Therefore, such rich and massive multi-path signal information provides an opportunity for activity
identification with RFID tags.
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Fig. 4. Illustration of the basic idea of TagFree

To verify the above hypothesis, we conduct a series of field studies to examine the scenarios in Fig. 4 (a)-
(c).2 The results are plotted in Fig. 4 (d)-(f), which clearly demonstrate that the angle shift and power
reduction are highly related to user activities: (i) In Fig. 4 (d), we place a stationary tag with a distance
of 3 m facing the uniform linear array at the 125◦ direction (as shown in Fig. 4 (a)). We observe that
there are three amplitude peaks in 1200 ms, which matches the “no-activity” situation, although the
peaks are not stable. (ii) In Fig. 4 (e), we keep the tag at the same place and one person blocks the
signal’s propagation along path 1(as shown in Fig. 4 (b)). The peak of blocked path 1 experiences a clear
drop and the angle of path 2 shifts frequently. (iii) In Fig. 4 (f), we place six tags in front of the antenna
array (as shown in Fig. 4 (c)); these signals twist with each other and sometimes hide behind noises,
making the patterns of the relationships between them and human activities hard to observe.

Recall the challenge we discussed in Fig. 3 (b), the peak amplitudes may dramatically change in a short
time, which could be filtered out as noises for activity identification. Each individual spectrum frame
forms only a small part of human activity. The traditional machine learning methods, e.g., support vector
machine (SVM), would have to deal with incomplete information and suffer from much confusion in activity
identification. Learning an activity description in the temporal spectrum data is important for activity

2For ease of exposition, here we disable frequency hopping, which will be further examined in Section 4.
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identification, since the temporal spectrum data provide more information to the activity identification.
Therefore, we employ the recurrent neural network with Long Short Term Memory (LSTM) [13] units to
discover long-range temporal relationships, which uses memory cells to store, modify, and access internal
state. By sharing parameters through time, LSTM networks can learn how to integrate information and
maintain a constant number of parameters while capturing an accurate activity description in the massive
spectrum data.

Based on this basic idea, we propose the TagFree framework to identify the activities shown in Fig. 5.
Our framework consists of three stages: preprocess stage, training stage, and activity identification stage.
We first preprocess a large amount of tag phase readings based on the MUSIC algorithm and stack the
spectrum frames in time series, serving as input for training and learning. It is followed by a deep learning
architecture consisting of CNN and LSTM layer for model training and then activity identification.

4 DATA PREPROCESSING

Before we proceed with the detailed solutions for the individual modules, we first summarize the key
notations in Table. 1.

4.1 Phase Calibration

Accurate AoA estimation is the key part of our activity identification system, which highly depends
on the accurate phase measurements. To limit co-channel interference, FCC regulation requires that
commercial UHF RFID readers must randomly hop across 50 channels within the 902-928 MHz band for
every 400 ms. Such hopping inevitably causes phase offset due to the phase difference of oscillator and
non-uniform frequency response of the tags’ antennas. Our experiment and Tagyro [29] both verify that
the frequency hopping introduces phase offset into the phase measurement.

We measure the phase of a stationary tag for 60 seconds, and plot the phase values versus frequencies
in Fig. 6 (a), where the phase and frequency relation follows a linear model. These experiments imply
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Table 1. Summary of Notations

d distance between two antennas xt input at time t

θ spatial angle y a set of labels
N number of received signals it input gate at time t

fi frequency at channel i ft forget gate at time t

φj(t) measured phase at frequency fi ot output gate at time t

φ(t) calibrated phase at time t ct memory cell at time t

si(t) a signal source i ht hidden state at time t

M number of source signals yt output at time t

s(t) source signal vector (M by 1) γ activity cluster
r(t) received signal vector (N by 1) Rr correlation matrix of received signals
w(t) noise vector (N by 1) Rs correlation matrix of source signals
a(θ) steering vector (N by 1) Us signal subspace
A matrix of steering vectors (N by M) Un noise subspace

that different frequencies induce different initial phase-offsets at the reader. We accordingly design a
mechanism to calibrate the phase difference between frequencies, so that the phase output looks like
coming from a fixed frequency. The calibration is done by collecting an initial phase measurement that
takes about 10 seconds for the tag in stationary. We have frequency fj , ∀j ∈ [1, 50] and set a common
frequency at a common frequency fr (default to 908.25 MHz). Let φj(t) denote the measured phase at

frequency fj at time t, and φ̃j represent the median value of measured phase at frequency j in recent 10
seconds. We map the measured phase φj at frequency fj to the calibrated phase φi as follows:

φ(t) = φj(t)− φ̃j + φ̃r (1)

4.2 Multipath De-coupling

Intuitively, as shown in Fig. 6 (b), the AoA estimation works as follows: A signal source s = ejφ impinges
on the array of N antennas with an angle θ, where φ denotes the phases of the received signal that we
measure at the antennas. Let d be the distance between two antennas and λ be the wavelength of the
received signal. Their relationship can be calculated as φ = 2π

λ
· d · cosθ. Assume the phase measurements

at the first two antennas are φ1 and φ2, we can then estimate the AoA θ as:

θ = arccos(
|φ1 − φ2|

π
) (2)

However, in practice the AoA estimation may not work well because of the multipath effect. To this end,
we adopt the MUSIC (MUltiple SIgnal Classification) algorithm[20], which is the best known algorithm
based on eigenstructure analysis of an N ×N correlation matrix Rr. The entry at the lth column and
mth row is the mean correlation between the lth column and mth antennas’ signals. Consider M signals
s1, . . . , sM (t) a from different angles θ1, . . . , θM , and into a uniform linear array (ULA) of N antennas.
Then we have

s(t) =
[
s1(t), . . . , sM (t)

]⊤
(3)

Let a(θ) be an N × 1 vector which is the array steering vector for that direction. It is given by:

a(θ) =
[

1 e−j 2πd

λ
cos(θ) e−j2 2πd

λ
cos(θ) . . . e−j(N−1) 2πd

λ
cos(θ)

]⊤

(4)
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Fig. 6. Details in the data preprocessing stage

The N × 1 received signal vector r(t) can be expressed as:

r(t) = As(t) +w(t) (5)

where A =
[
a(θ1), . . . ,a(θM )

]
is an N × M matrix of the steering vectors, and w(t) is a noise term.

Hence the array output consists of the signal plus noise components, where r(t) and w(t) are assumed to
be uncorrelated and w(t) is modeled as temporally white and zero-mean complex Gaussian process. The
spatial correlation matrix R of the observed signal vector r(t) can be defined as:

Rr = E{r(t)rH(t)} = ARsA
H + µ2

I (6)

where Rs = E{s(t)sH(t)}, µ2 is the noise covariance matrix, and I is an N ×N matrix. The correlation
matrixRr hasN eigenvalues associated withN eigenvectorsU = [U1, . . . ,UN ]. The largestM eigenvalues
correspond to the M incoming signals while the rest N −M correspond to the noise. The corresponding
eigenvectors in U can be classified into the signal subspace Us and noise subspace Un:

[UsUn] = [U1, . . . ,UM
︸ ︷︷ ︸

Us

,UM+1, . . . ,UN
︸ ︷︷ ︸

Un

] (7)

The MUSIC algorithm utilizes the orthogonality relationship between the signal and noise subspaces [20],
which implies:

a
H(θ)Un = 0 (8)

The direction of the arrival angle can be represented in terms of the signal sources and the noise
subspaces as shown in the following equation:

θMUSIC = argmin
θ

a
H(θ)UnUn

H
a(θ) (9)

The above equation can be represented in terms of its reciprocal to obtain the peaks in a spectral
estimations:
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PMUSIC =
1

aH(θ)UnUn
H
a(θ)

(10)

The M higher peaks are of great power [20] and corresponds to the estimated direction of arrival of
the signal source with the angles θ1, . . . , θM .

5 DEEP LEARNING FOR ACTIVITY IDENTIFICATION

This section describes the main components of our TagFree design. As illustrated in Fig. 7, we construct
a deep learning architecture, which is divided into the three main layers: input layer, hidden layer, and
output layer. The hidden layer is further divided into a CNN (Convolutional Neural Network) sublayer
and an LSTM (Long Short-Term Memory) sublayer, and is stacked as deep networks. We discuss each
layer one by one in the following subsections.

5.1 Input Layer

This part starts from the design of our spectrum frames. The preprocessing stage outputs the spectrum for
each tag, where we utilize the spectrum of all tags to build the spectrum frame, as Fig. 8 (a) shows. The
size of a spectrum frame is 180× n, where n is the number of tags and 180 is the number of angles. The
input layer then takes all the spectrum outputs from our preprocessing stage and build the corresponding
spectrum frames x = (x1, . . . , xT ), where a series of spectrum frames along the time will further serve as
the initial input for the hidden layer.
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Fig. 8. Details in Deep Learning Stage

5.2 Hidden Layer

Our hidden layer includes a CNN (Convolutional neural network) structure for effective object classification
and detection [15], and an LSTM (Long Short-Term Memory) structure for activity identification [13].
Such layers contain rich implicit patterns [2], e.g., object patterns and textures, and thus have been
extensive used in Deep Learning networks where computer vision researchers have achieved tremendous
successes in activity identification [12][14][7][33]. In our framework, we adopt a similar approach that
extracts features at every spectrum frame, like image frame in videos, and stacks those features across
time into a vector as the input of the LSTM structure. The parameters and settings of our deep learning
network will be detailedly examined in Section. 7.

5.2.1 CNN Structure. The CNN takes the spectrum frames as input and provides the output to the
LSTM structure. In this work, we report results using the output of the fully-connected layer, where
these features are outputs of rectified linear units (RELUs) [8]. In particular, each input spectrum frame
is 180× n, where the features are extracted by the CNN. The extracted lower dimension features are
then fed to a fully-connected layer and form the inputs to the The fully-connected layer has commonly
been used to avoid overfitting [14], and we applied dropout in all the convolutional layers and the fully
connected layer.

5.2.2 LSTM Structure. Fig. 8 (b) shows a single LSTM cell [13]. A stacked LSTM first encodes the
frames one by one, taking the output of a fully-connected layer. An LSTM cell allows to easily memorize
the context information for long periods of time in sequence data, which includes three gates: the input
gate it, the forget gate ft, and the output gate ot, which have the controls to overwrite, keep, or retrieve
the memory cell ct, respectively. Each LSTM cell remembers a single floating point value ct. This value
may be diminished or erased through a multiplicative interaction with forget gate ft or additively modified
by the current input xt multiplied by the activation of input gate it. The output gate ot controls the
emission of the memory value from the LSTM cell.
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(a) Thingmagic M6e reader (b) ImpinJ R420 UHF read-
er

(c) Antenna and tag (d) Antenna array

Fig. 9. Commercial hardware used to implement TagFree System

Let σ(x) = (1 + e−x)−1 be the sigmoid function, which controls the inputs to a [0,1] range. We then
have

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (11)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (12)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (13)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (14)

ht = ot tanh(ct) (15)

where the W terms denote weight matrices (e.g. Whi is the input-hidden weight matrix), and the b terms
denote bias vectors (e.g. bf is the bias vector of forget gate).

The LSTM cells are then grouped and organized into a deep LSTM architecture. Inside the architecture,
the output from one LSTM layer will be the input for the next LSTM layer. We fine-tune the LSTM
architecture with varying numbers of layers and memory cells, and chose to use two stacked LSTM layers,
each with 32 memory cells. Following the LSTM layers, a softmax classifier is used to make a prediction
at every spectrum frame.

5.3 Output Layer

The outputs from the last hidden layer is normalized with a softmax function, obtaining the probability
distribution over the activity label y in the activity cluster γ:

Pr(y|xi) =
exi

∑

y′∈γ e
xi

(16)

Our goal is to find the maximum likelihood of all training samples. We use the negative log probability,
i.e., cross entropy error function, as the objective.

E = −
∑

γ

zylnPr(y|xi) (17)

where zy ∈ {0, 1}. Pr(y|xi) is the predicted probability of class y.

6 SYSTEM IMPLEMENTATION

In this section, we describe the key implementation details that are not covered in the previous sections.
Our implementation is entirely done with a commercial reader and requires no modifications to tags.
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(a) Office environment (b) Hall environment (c) Office deployment lay-
out

(d) Hall deployment layout

Fig. 10. Two typical indoor environments and deployment layouts with the positions of arrays and tags

Stand Sit Walk Run WorkWave Bow

Fig. 11. Activities in experiments

RFID Readers: Our system works with today’s commercial off-the-shelf readers, and our prototype
implementation uses a Thingmagic reader3 (Fig. 9 (a)), and an Impinj Speedway R420 reader4 (Fig. 9 (b))
without any hardware or firmware modification. The Thingmagic M6e reader provides the APIs to
customize the frequency hop table, thus we fix the channel on the common frequency 908.25 MHz. We
use the fixed channel configuration of Thingmagic M6e reader to compare with Impinj R420 reader with
frequency calibration, so as to test the performance of our phase calibration. The Impinj Speedway R420
reader has four antenna ports only. The reader is compatible with EPC Gen2 standard and the antennas
work in a time division multiplexing mode. The FCC regulation requires that RFID readers perform
frequency hopping in the range of 902-928 MHz, making phase measurements not accurate enough for
activity classification. Due to the available frequencies of RFID reader, we set the common frequency
f = 908.25 MHz, and the typical wavelength λ is 0.33 m.
Antennas Settings: We connect our Impinj Speedway R420 reader to four omni-directional antennas
as shown in Fig. 9. An important setting is the distance between antennas, where we set d as λ/8 in our
experiments for the following reasons:

• Theoretically, the antenna separation d should be spaced by λ/2, which effectively reduces the
ambiguity caused by the high-resolution grating lobes [25];

• Since RFIDs communicate by backscattering the reader signal, the signal phase reading returned
by the reader reflects the round trip distance instead of the one-way distance. Hence, d should be
reduced to half, giving d = λ/4.

3http://www.thingmagic.com/
4https://support.impinj.com/
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• Most readers can only measure phases within [0, π], including the ThingMagic and ImpinJ readers.
Although the ImpinJ reader can report phase readings ranging from to 0◦ to 360◦, but it has π
radians ambiguity, i.e., the reported phase can be the true phase (θ) or the true phase plus π radians
(θ + π). To account for such period π instead of 2π, the separation d is further reduced by half, i.e.,
d = λ/8.

Deployment: One critical deployment issue is to determine the tag placement. We run experiments in
two typical indoor environments: a multipath-rich office and an empty hall with little multipath effect.
The office with a size of 13.75 m × 10.50 m has many file cabinets and writing desks, as shown in
Fig. 10 (a). The file cabinet has a height of 1.32 m and is made of metal, resulting in rich multipaths and
strong NLoS. The empty hall with a size of 8.75 m × 7.50 m is shown in Fig 10 (b). The deployment
layouts of the environments are shown in Fig. 10 (c) and (d), respectively. In each environment, we deploy
one readers and 6 tags. We place the antenna array at a height of 1.25 m. We use the basic ImpinJ tags
as shown in Fig. 9 (c) and place them facing the antenna array with angles 45◦, 60◦, 75◦, 90◦, 105◦, 120◦,
respectively. The tags are usually placed on the furniture, so their heights are between 1 to 1.5 m above
the ground and their distance to the reader is around 3 to 8 m. Indeed, the tags can be randomly placed
without explicitly knowning their exact locations. Unless specifically mentioned, we use the default setup
for performance evaluation.
Evaluation Metrics: We invite ten volunteers and each volunteer5 stands between the tags and the
antenna array in our experiments. To conduct a comprehensive evaluation, we test seven scenarios
as shown in Fig. 11, including standing, sitting, waving, bowing, walking, running, and working. In
each activity case, each volunteer is required to repeatedly perform the activity and the RFID reader
continuously queries the RFID tags for 10 minutes. Each activity example contains all RFID readings in
one minute period.
Server and algorithm implementation: The system employs a typical client-server architecture. We
run the client on a Lenovo laptop (ThinkPad T560) connecting to the Impinj Speedway R420 reader,
equipped with an Intel Core i5-6200U Dual 2.3/2.8GHz CPU and 8 GB 1333 MHz DDR3 RAM. The
server runs on a customized PC with an Intel Core i7-6850K 3.60 GHz 12-core CPU and Dual Nvidia
GTX 1080 Ti GPUs. The processes on clients adopt the LLRP protocol [18] to communicate with the
reader, with Mercury API6 and Octane SDK Java7 for Impinj R420 reader. It requires the reader to
continuously execute the tag reading operation, and upload tag readings to the backend modules for
further analysis. Therefore, we utilize multi-threading, which returns immediately a sequence of RFID
reads to the calling thread, which then uploads the tag readings to the server. The backend module
on the server accepts and stores the streaming of tag readings as the training data in a database, and
executes our algorithms to identify the activity.

CNN and LSTM classifiers are implemented in Keras8 with cuDNN on Dual Nvidia GTX 1080 Ti GPUs,
and the multiclass classifiers are implemented based on the Scikit-learn library [17]. We compared the
performance of our deep learning system with ten mainstream classifiers: k-Nearest Neighbors, one-vs-all
Linear SVM, one-vs-all RBF SVM, Gaussian Process, Decision Tree, Random Forest, Neural Net, Adaptive
Boosting, Bayesian Net and Quadratic Discriminant Analysis. We treated activity identification as a
multi-class classification problem and considered the detection of each activity as a binary classification
problem.

5Note that those volunteers cover a broad range in age, gender, height, and weight.
6Mercury API Programmer’s Guide. https://www.thingmagic.com/
7Octane SDK Programmer’s Guide. https://support.impinj.com/
8Keras: Deep Learning library for Theano and TensorFlow. https://keras.io/
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Fig. 12. Impact of Phase Calibration

7 EVALUATION AND DISCUSSION

7.1 Model Training

To evaluate the prediction quality, we run an experiment on the real-world data with 5690 activity examples,
where 2845 examples come from multipath-rich environments and 2845 examples from environments with
little multipath. We train the models for the two different scenarios with cross validation to mitigate
overfitting, where 80% of the data is used as a training set and the remaining 20% is used as a test
set. The training includes 500 epochs using stochastic gradient descent (SGD). To combat exploding
gradients, we scale the norm of the gradient, and both hyperparameters are chosen using the training set.
We implement the CNN networks with two convolutional layers with a dropout of 0.5, followed by one
fully-connected layer. Our LSTM networks use 32 memory cells per layer. Throughout training, we save
the model and compute prediction accuracy on the test set for each epoch.
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Fig. 13. Impact of Number of Antennas

7.2 Impact of Phase Calibration

We first evaluate the impact of the reader’s channel hopping on the phase value by measuring the phase
of a stationary tag for 2 minutes. Fig. 12 (a) shows the result of the calibrated phase data with respect to
Fig. 6 (a). It illustrates the phase offset causing by frequency jumping can be effectively eliminated by
our method. Fig. 12 (b) plots the histogram of the phase values. Without calibration, the phases are
almost evenly spread over all possible phase values, where our phase calibration method can reduce the
standard deviation from 49.69◦ down to 2.91◦.
It is worth noting that our phase calibration mechanism contributes toward improving the precision

of activity identification, as shown in Fig. 12. We evaluate how phase calibration benefits TagFree in
Fig. 12 (c) and (d), where the x-axis of the figures represents the model training epochs and y-axis
represents the prediction accuracy. The results show that our calibration method achieves a high accuracy
and minimizes the negative influence of frequency hopping. Specifically, the TagFree system in the
multipath-rich office with phase calibration achieves an activity identification accuracy of 91%, against
the accuracy of 64% without calibration, for our calibration mechanism achieves a high AoA estimation
accuracy. In the low-multipath hall environment, TagFree with phase calibration can reach a 97% accuracy,
against the accuracy of 68% without calibration.

7.3 Impact of Different System Settings

TagFree de-couples the multipaths using an array of antennas. Therefore the number of antennas limits
the number of multipaths that can be detected by our pre-processing scheme. With the information of
more signal paths, TagFree achieves a higher multipath density in the area and improves the activity
identification accuracy. We thus investigate the impact of the number of antennas in two typical
environments, as shown in Fig. 13 (a) and (b), respectively. We can see that when the number of antennas
increases from 2 to 4, more angle information of multipath can be detected, and thus TagFree can
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Fig. 14. Impact of Number of Tags

100 200 300 400 500

Epoch

50

60

70

80

90

100

A
c
c
u
ra

c
y
 (

%
)

RSSI-based LSTM

Phase-based LSTM

CNN with TagFree preprocessing

TagFree

(a) In the office with rich-multipath

100 200 300 400 500

Epoch

50

60

70

80

90

100

A
c
c
u
ra

c
y
 (

%
)

RSSI-based LSTM

Phase-based LSTM

CNN with TagFree preprocessing

TagFree

(b) In the hall with low-multipath

Fig. 15. Impact of Deep Learning Approaches

achieve even higher activity identification accuracy.9 The default setting of our remaining experiments is
4 antennas connecting to the reader.

With more tags, more signals will be reflected, creating more paths to cover the monitoring area and
providing more information for activity identification. In the next experiments, we vary the number of tags
from 1 to 6. Both Fig. 14 (a) and (b) show that more tags are helpful to provide more information and
improve the activity identification accuracy. Since the number of multipath that our data pre-processing
scheme can detect for each tag is limited by the number of antennas on the reader, using more tags
indeed is a better alternative to increase the path diversity in the environment. In an indoor environment,

9Note that Impinj Speedway R420 reader has maximally four ports to connect with antennas.
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Table 2. Comparison of performance with different physical configuration in the office with RICH-multipath

H
ei
g
h
t
(m

)

The distance from tags to antennas (m)
3 4 5 6 7 8

1.0 0.92 0.90 0.88 0.86 0.82 0.80
1.25 0.93 0.91 0.90 0.89 0.83 0.81
1.5 0.94 0.92 0.91 0.91 0.86 0.83

Table 3. Comparison of performance with different physical
configuration in the hall with LOW-multipath

H
ei
g
h
t
(m

)

The distance from tags to antennas (m)
3 4 5 6 7 8

1.0 0.97 0.97 0.97 0.96 0.90 0.89
1.25 0.98 0.98 0.97 0.97 0.91 0.90
1.5 0.98 0.98 0.97 0.97 0.93 0.90

more tags only bring marginal increase to the system cost, which is considerably lower than increasing
the number of antennas on readers [26]. To this end, we use a tag number of 6 as the default setting of
our evaluation.

Tab. 2 and Tab. 3 show the details of activity identification accuracy with different physical configuration
of our TagFree approach, where each row represents the tag heights and each column denotes the distance
from tags to antennas. Also, the experiments are conducted in high and low multipath environments,
as shown in Tab. 2 and Tab. 3 respectively. In the experiments, we evaluate the accuracy with varying
tag heights ranging from 1.0 m to 1.5 m, where the results do not exhibit clear correlation with the
tag heights. Thus, the tag height around 1.0 m to 1.5 m is not a crucial factor affecting the activity
identification accuracy. We use 1.5 meter as the default tag height for the remained experiments. Then
we further examine the activity identification accuracy when applying different distance (3 to 8 m) from
tags to antennas. The results illustrate that the smaller the distance is, the greater the accuracy achieves.
Beyond 6 m, the reduced reading rate of RFID tag makes the activity identification accuracy decrease,
due to many effects, e.g., too weak signals. We use the distance from tags to antennas of 6 meter as
the default setting of our evaluation, since smaller distances may make our design impractical. The
default distance setting of 6 meter yields an average accuracy of 91% and 97% in high and low multipath
environments, respectively.
We compare the results of our TagFree with various combinations of deep learning architectures as

shown in Fig. 15 (a) and (b). First, we compare the performance TagFree with CNN networks, and
both of them integrate the preprocessing scheme of TagFree. TagFree can achieve a 14% higher accuracy
on average than the CNN networks, which demonstrates that the LSTM architecture is necessary for
activity identification. Then, we evaluate TagFree against the phase-based LSTM and the RSSI-based
LSTM networks. It clearly shows that TagFree can achieve a 22% higher accuracy than the RSSI-based
LSTM networks, and a 20% higher accuracy than the phase-based LSTM networks. The results illustrates
that our preprocessing scheme and CNN can efficiently extract the features for activity identification. In
summary, the benefits of TagFree comes from both the preprocessing scheme and the deep learning, which
work jointly to harvest the rich phase information for activity identification in a multipath environment.

As illustrated in Table. 4, using more convolutional layers generally achieves better performance, but
there exists tradeoff between the performance gain and the computation resources. We have tested the
CNN with 1 to 5 convolutional layers. The results in Table. 4 show little gain in precision, recall and
F-Score when using more than two convolutional layers, and hence we use two layers in our implementation.
With this default setting, we then vary the convolution kernel size, and the results in Table. 5 show that
the size of 2× 16 has the best performance. In Table. 6, we summarize the results for various number of
LSTM layers. Again, though a single layer LSTM network is not effective, the 2-layer LSTM achieves
sufficiently good performance. Table. 7 further suggests that increasing the number of LSTM cell per
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Fig. 16. Overall Performance of TagFree System

Table 4. Comparison of performance with different number
of convolutional layers

1 2 3 4 5

Precision 0.69 0.94 0.95 0.96 0.97

Recall 0.74 0.93 0.93 0.97 0.94

F-score 0.69 0.94 0.87 0.95 0.91

Table 5. Comparison of performance with different kernel
size

2 × 2 2 × 8 2 × 16 2 × 32 4 × 64

Precision 0.89 0.93 0.94 0.97 0.93

Recall 0.87 0.88 0.95 0.97 0.92

F-score 0.87 0.90 0.94 0.97 0.92

Table 6. Comparison of performance with different number
of LSTM layers

1 2 3 4 5

Precision 0.84 0.94 0.94 0.92 0.90

Recall 0.77 0.93 0.97 0.93 0.97

F-score 0.73 0.94 0.95 0.81 0.89

Table 7. Comparison of performance with different number
of LSTM cells per layer

1 2 3 4 5

Precision 0.84 0.94 0.94 0.92 0.90

Recall 0.77 0.93 0.97 0.93 0.97

F-score 0.73 0.94 0.95 0.81 0.89

layer beyond 32 cells achieves only marginal performance improvement, and thus we set the number of
LSTM cell to 32.

7.4 Overall Activity Identification Performance

Fig. 16 shows the performance of our TagFree compared with 8 mainstream classifiers, including k-Nearest
Neighbors, one-vs-all Linear SVM, one-vs-all RBF SVM, Gaussian Process, Decision Tree, Random Forest,
Bayesian Net and Quadratic Discriminant Analysis, where all the classification methods take the same
spectrum data as input. TagFree achieves a 94% accuracy of activity identification on average. In the
low-multipath hall environment, we can see that our TagFree performs the best among all approaches
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Table 8. Low multipath environments in hall

Predicted activities
Stand Sit Wave Bow Walk Run Work

Stand 1.00 0 0 0 0 0 0
Sit 0 0.96 0.04 0 0 0 0
Wave 0 0.04 0.96 0 0 0 0
Bow 0 0 0 1.00 0 0 0
Walk 0 0 0 0 0.98 0 0.03
Run 0 0 0 0 0.02 0.98 0
Work 0 0 0 0 0 0.02 0.97

Table 9. Rich multipath environments in office

Predicted activities
Stand Sit Wave Bow Walk Run Work

Stand 0.95 0.03 0 0 0 0 0
Sit 0.05 0.94 0.04 0 0 0 0
Wave 0 0 0.90 0 0 0 0
Bow 0 0.03 0.03 0.91 0.17 0.03 0
Walk 0 0 0.07 0.09 0.83 0.08 0.05
Run 0 0 0 0 0 0.89 0
Work 0 0 0 0 0 0 0.95

with an accuracy 97% on average, which is 20% better than the runner-up (SVM). The 4-antenna array
maximally decouples the three signals paths for each tag, which should be easy to cope with the challenge
of sparse multipath in the hall. Unfortunately, the classical machine learning methods, e.g., linear SVM,
only have an accuracy 77% or lower, reaffirming the effectiveness of our deep learning scheme. The
experiments in a multipath-rich office show that the performance of other classifiers degrades heavily and
TagFree still maintains a high accuracy of 91% on average.

We break down the results of TagFree in Fig. 16 into Tables 8 and 9. The tables illustrate the details
of the experiments in the hall and the office, respectively. Each row denotes the actual activity performed
and each column represents the activity identified by TagFree. Each element in the matrix represents
the percentage of activities in the row that is recognized as the activity in the column. As shown in
the Tab. 8, the average accuracy is 97% in the hall with low multipath for all scenarios, where the
identification of slow activities (stand, sit, wave, bow and work) has achieved an accuracy at least 94%. In
the multipath-rich environments, TagFree can achieve a 91% accuracy on average, where the identification
accuracy for fast moving activities still keeps above 83% . This indicates that TagFree can distinguish
activities at different speeds with high accuracy.

7.5 Discussion and Limitations

TagFree marks an important step toward enabling accurate indoor activity identification, which does not
require users hold or wear any RFID tags. There are however many possible future works to enhance the
basic TagFree design.
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Scalability: So far TagFree focus on accurately identifying a single person’s activity. We expect to scale
the system to identify multiple persons’ activities. Given the complex interaction of the persons, data
preprocessing and analysis will be much more challenging. Yet our preliminary results have shown that
deep learning has great potentials in decoupling the individual activities and is far more effective than
conventional learning tools. Also the coverage of TagFree with a single antenna array is limited to 12 m,
which is the reading range of the Impinj reader. To cover larger areas, one may deploy multiple antenna
arrays with a Impinj antenna hub and place more RFID tags as references.
Model Extension: Our deep learning model trained cannot be directly used in a different environments
with non-identical antenna settings or tag placement. As a result, the model has to be re-trained for
different environments. A possible extension is to tuning the prediction results based on domain-expert
knowledge. For example, suppose there exist several activities that follow a certain sequential order, the
final decision can be made based on both the softmax score and the constraints from expert knowledge.
Training the model with expert knowledge will be an important future work.
User Identification: Our current design can identify only several activities, but cannot differentiate
users. Future research may address this issue by extracting robust and representative user features instead
of activity features to train a model for user identification. We may adopt the solutions based on WiFi
signals [27] in our future work.

8 RELATED WORK

Radio Frequency Identification (RFID) is a promising technology due to its low cost, small form size,
and batterylessness, making it widely used in a range of mobile applications, including detection of
human-object interaction [25], people/object tracking [31] and more complex activity identification [6].
In activity identification, previous solutions exploited the changing of RSSI (received signal strength

indicator) [35][5][19] incurred by human actions. Yet RSSI is insensitive to small body movement, and
thus difficult to achieve high-precision identification. Other works for tag-free localization [32][21] and
body movement [34] rely on RSSI fingerprints; they typically deployed reference tags on a monitoring
region and generated in the training phase by requiring a person to act in different locations. In the
testing phase, they map the resulting RSSI to the closest fingerprint to identify the status of the person.
In our work, we have shown that RSSI is insensitive to such small activities such as handshaking, which
is not suitable to our goal for tag-free activity identification.

Wireless localization techniques using phase measurement have successfully achieved centimeter accuracy.
RF-compass [24] presented a WiFi-based approach to classify a predefined set of nine gestures; E-eyes [28]
proposed a location-oriented activity identification system, which utilized WiFi signals to recognize
in-home human activities; Tagoram [31] assumed that the tag movement velocity and its moving track
are known in advance, and built a differential augmented hologram using the phase values collected from
the antennas; RF-IDraw [25] achieved good tracking accuracy with eight antennas connected to two
RFID readers. Ding et al. [6] further developed FEMO that uses the frequency shifts of the movements to
determine what exercise a user is performing. Although the advanced solutions, e.g., RF-IDraw [25] and
Tagoram [31], achieved high accuracy through exploring antenna arrays, their performance may degrade
heavily in indoor environments with multipath. TagFree tackles the activity identification problem in the
indoor multipath-rich environment. We carefully handle multipath signals and develop a deep learning
approach to solve the activity identification problem.
Deep learning has become a very active research area for general activity understanding. We employ

Long Short Term Memory (LSTM) [13] units to build a recurrent neural network, which discovers
long-range temporal relationships by using memory cells to store, modify, and access internal state. LSTM
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networks have been successfully applied to many tasks such as handwriting [9] and speech recognition [10].
Our research well complements these works by exploring the potential of deep learning to tag-free activity
identification. We demonstrate the necessity and benefits of appropriate data preprocessing to maximize
the performance gain from deep learning approaches.

9 CONCLUSION

In this paper, we have shown that TagFree can identify activities without attaching tags on the targets in
typical indoor environments. TagFree employs a data preprocessing scheme to handle frequency hopping
and de-couple multipath signals, which potentially offers the rich information for activity identification.
We then utilize a Convolutional Neural Network and a Long Short Term Memory network to effectively
solve the tag-free activity identification problem. A prototype has been implemented using a commercial
Impinj reader and our extensive experimental results have demonstrated that TagFree achieves an
activity identification accuracy of 94% on average in multipath-rich environments, which is better than
the state-of-art solutions.
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