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ABSTRACT
Tile-based approach is widely adopted in adaptive 360° video stream-

ing systems. Existing QoE-driven streaming approaches usually

obtain the tile selection and adjust the bitrate based on the viewport

prediction with a fixed tiling, which fail to consider the unstable pre-

diction performance. However, varying the tiling of the video can

produce different number of tiles with different sizes, and thus can

have distinct impacts on error tolerance for viewport prediction and

on decoding complexity for resource-constrained mobile client. In

this work, we introduce adaptive tiling into the conventional bitrate

adaptation for mobile 360° video streaming. We first analyze the

impacts of tilings on tile selection and decoding time, which verify

the benefit of tiling adaptation in various practical aspects. We then

formulate the QoE optimization problem for adaptive tiling and

bitrate streaming and discuss the design details of our adaptation

algorithm, which can adapt to the performance of viewport predic-

tion and the decoding capabilities of mobile clients in addition to

the conventional influencing factors. Finally, the superiority of our

proposed approach compared with the state-of-the-art methods is

evaluated through extensive trace-driven simulations.
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1 INTRODUCTION
360° video, which provides panoramic views to give users an immer-

sive experience, is now becoming popular on major video sharing

websites and social media channels. Streaming 360° videos is chal-

lenging. First, due to the panoramic nature, 360° videos are much

larger (4x to 6x) than conventional videos under the same per-

ceived quality [19]. Compared to a regular video, the transmission

of a 360° video consumes much higher bandwidth, which can be

scarce especially in wireless and mobile networks. Second, stream-

ing 360° videos introduces higher computation and energy overhead

for mobile end devices [13], which have limited CPU, GPU, storage,

and battery capacities. Commodity 360° video streaming systems

(e.g., YouTube and Oculus) stream entire 360° frames to clients [37],

which directly employ the conventional approach for regular videos.

However, streaming all the pixels of 360° videos is wasteful. When

watching a 360° video, the user views a limited portion of the whole

spherical image, which is often determined by the user’s Field-of-

View (FoV) (also referred to as viewport). To this end, tile-based

approach [30] is proposed for 360° video streaming, which divides

each panoramic frame into smaller-sized non-overlapping rectan-

gular regions called tiles. As each tile is independently decodable,

the clients can only request the tiles that are predicted to be in the

user viewport. In general, tile-based streaming exploits the trade

off between transmission efficiency and user experience. On one

hand, only a subset of tiles are transmitted, which can significantly

reduce bandwidth consumption; on the other hand, this subset may

not necessarily cover the actual user viewport, and thus the user

experience is greatly affected by the quality of tile selection.

Tile-based viewport-adaptive streaming approaches [8, 9, 19]

that integrate tile selection with rate adaptation have been recently

studied and adopted in the literature. Generally, the tiles are selected

by assuming the knowledge of user viewport during the video
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Figure 1: Tile Selections with Different Tilings

playback, which is usually obtained from predicting future user

behaviors (e.g., head/gaze movement) based on historical data [6].

The existing works mostly target to select appropriate tiles and

their bitrates given a fixed tiling of the video, which makes the tile

selection results sensitive to the prediction accuracy. Rather than

selecting tiles with a fixed tiling, in this work we take different tiling

options into account for the adaptation of 360° video streaming.

Since predicting user behavior is difficult by nature, the perfor-

mance of viewport prediction algorithm can vary dramatically. In

the case of low prediction accuracy, tile selection with a fixed tiling

can result in severe user experience degradation. Consider the ex-

ample in Figure 1, which shows the tile selection with the same

prediction error (the same predicted and actual viewports) using

two different tiling settings (6x6 and 5x5). In the case of 6x6 tiling,

three tiles in the actual viewport (tile 15, 16, and 17) are missing

in the predicted viewport and will be given low priorities or even

skipped for download in tile-based streaming, which will cause

video quality drop or rebuffering. Moreover, as tile 26 and 27 are in

the predicted viewport but not in the actual viewport, they will be

given high priorities for download, which may cause unnecessary

bandwidth waste. However, if 5x5 tiling is applied, the tiles in the

actual viewport are exactly the same as the tiles selected based on

the prediction. This example shows the deficiency of fixed tiling in

viewport-adaptive streaming. Another impact of tiling 360° videos

is that tiling introduces extra decoding complexity, which can no

longer be ignored even for modern mobile hardware models [9].

Splitting frames into tiles reduces video encoding efficiency, as

the referencing information between and within frames is reduced.

Meanwhile, more tiles imply more decoding tasks on mobile clients,

which are equipped with limited capabilities and may have difficul-

ties in supporting real-time tile-based decoding for high-resolution

360° videos [5, 9]. Therefore, we advocate that flexible tiling setting

should be adopted during the streaming.

In this paper, besides the common factors such as bandwidth

fluctuation and buffer occupancy, we propose to adapt both tiling

and bitrate to the varying viewport prediction performance and the

limited mobile client’s decoding capability. We first analyze typical

viewport prediction algorithms using real-world traces and identify

their performance instability. We then discuss the impacts of differ-

ent tilings on tile selection and decoding complexity, which justifies

that adaptive tiling should be integrated into the conventional bi-

trate adaptation framework for mobile 360° video streaming. We

show that adaptive tiling can accommodate viewport prediction

errors and help ensure the quality of tile selection. To support real-

time decoding on mobile devices, we build the analytical model for

decoding time, which will be used for choosing appropriate tiling

and bitrate given limited computation resources. Further, we for-

mulate the optimization problem in our featured problem context

and discuss the design of our adaptation algorithm in detail. Finally,

we evaluate our practical and efficient solution and demonstrate its

superior performance through extensive trace-driven simulations.

2 BACKGROUND AND RELATEDWORK
2.1 Adaptive Streaming for 360° Video
Adaptive streaming has long been the research interest for conven-

tional videos [4, 17, 24, 35]. Since the emergence of 360° videos, how

to stream them effectively and efficiently has attracted considerable

attention from researches. Existing studies focus on various aspects

such as adaptation algorithm design, practical system implemen-

tation, and user perceptive experience optimization. Xie et al. [31]

adopted a data-driven approach to predict future viewport and

make download decisions, which estimates the viewing probability

by statistically studying the similarity of user fixations for multiple

viewing events on the same video. As deep reinforcement learning

(DRL) has been successfully applied to develop the representative

adaptive streaming framework, Pensieve [17], this technique has

also been adopted in 360° video streaming. Zhang et al. [36] pro-

posed a DRL-based framework, which leverages deep learning to

predict the bandwidth and the viewports, and allocates the rates for

the tiles by an actor-critic algorithm. From the system perspective,

Flare [19] and Rubiks [9] are two representatives of the state-of-the-

art 360° video streaming systems. Flare integrates and implements

all the necessary components for a real-world streaming system,

while Rubiks develops a tile-based layered streaming framework

that splits 360° video chunks into spatial tiles and temporal lay-

ers. As the perceptive experience varies significantly in 360° video

streaming [21], Guan et al. [8] built a visual quality model that

captures the impact of three 360° video-specific factors and used it

to strike a balance between the perceived quality and the encoding

efficiency. To better support 360° video processing in real-time, Liu

et al. proposed to adaptively offload expensive transformation op-

erations to GPUs according to the video contents [26] and adjust

frame rate based on the user behaviors [12].

2.2 Viewport Prediction Algorithm
As 360° videos require intensive user interactions, user behaviors

and user perceptive experience have been the key concerns. Multi-

ple datasets [7, 14, 27]) have been collected for user behaviors during

video watching. Viewport prediction is a must-be component for

viewport-adaptive 360° video streaming systems [8, 9, 19, 31]. For a

viewport prediction scheme, the key design is to choose a proper

machine learning (ML) algorithm as the basis of the prediction.

In general, there are two types of choices: (1) simple but poten-

tially less accurate algorithms (e.g., regression-based) and (2) more

accurate but complicated algorithms (e.g., neural network-based).

Type-2 designs (e.g., deep/reinforcement learning) are usually

favored by the CV community to predict user interests in different

objects based on the video contents [10, 15, 28, 32]. Regardless of its

accuracy, this content-based approach introduces substantial com-

putationworkloads and significant training time. Another downside

of Type-2 algorithms is that the learning-based approach requires

large-scale datasets and long training periods. This approach’s life

cycle (from data collection on clients, to model training on server,
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Figure 4: Prediction Error Tolerance vs. Tiling

to model update on clients) implies huge implementation overhead

and makes it less practical for real-time systems.

Given the above reasons, Type-1 designs are usually preferred

for developing user-based prediction approaches [9, 18, 19], which

takes historical user behaviors to predict future behaviors. The ra-

tionale of the preference for lightweight ML algorithms is twofold:

first, the prediction algorithm should run fast enough on mobile

clients tomeet the underlying real-time requirements; second, given

the short history window and the short prediction window in the

streaming scenario, lightweight ML algorithms can have compa-

rable performance to complicated algorithms. In particular, He et

al. [9] compared the linear regression with a neural network that

has 3 hidden layers with 30 neurons in each layer, and observed

negligible performance difference for short prediction windows.

3 MOTIVATION AND ANALYSIS
Mobile 360° video streaming faces two challenges: predicting the

right set of tiles for download and decoding multiple tiles fast

enough. We next present our observations on tiling’s impacts on

these two aspects (tile selection and decoding complexity), which

motivate us to integrate tiling adaptation into 360° video streaming.

3.1 Impact of Tiling on Tile Selection
In tile-based 360° video streaming, the tiles for download are se-

lected based on the predicted viewport given the specific tiling

setting. We will show in this subsection: first, the performance of

viewport prediction is unstable due to various factors; second, the

adaptation of tiling setting is able to accommodate the prediction

inaccuracy. We implement four lightweight (Type 1) ML algorithms

(the reasons are as previously discussed) to predict the longitude

and the latitude coordinates of user viewport center (user heading

direction): Linear Regression (LR), Ridge Regression (RR), Supported

Vector Regression (SVR), Long Short-Term Memory (LSTM). We set

the history window and the prediction window to be 2 seconds and

1 second respectively, and set the width and the height of the view-

port to be 100° and 90° respectively. We use 6x6 as the default tiling.

The head movement traces are adopted from an open dataset [7],

which contains the user behaviors for 57 users watching 19 videos.

3.1.1 Inaccuracy of Viewport Prediction. After the prediction al-

gorithm is designed and the ML model is trained, the viewport

prediction performance can still be easily affected. Previous studies

observe that user head movements occur mostly in the horizontal

direction and much less frequently in the vertical direction [7, 23],

which implies that predicting longitude coordinates is the major

challenge. Our result is consistent with this observation. As shown

in Figure 2, compared to latitude prediction error, longitude predic-

tion error dominates. As all the four prediction algorithms show rea-

sonably good performance in predicting latitude, we only present

the analysis for longitude prediction hereafter.

As the user behaviors are captured on the client, one practical

factor that can affect the prediction performance is the capability of

the mobile end device. Given the hardware diversity of commodity

devices, mobile clients are likely to have limited sensing and pro-

cessing capabilities and cannot support high frequency of viewport

sampling. We vary the viewport sampling frequency for viewport

prediction, which directly affects how much information can be

used for prediction. As all the four prediction algorithms show rea-

sonably good performance in predicting latitude, we only present

the analysis for longitude prediction hereafter. We can see from Fig-

ure 2 that, as viewport sampling frequency drops from 5Hz to 1Hz,

the longitude prediction errors of LR, RR, SVR, and LSTM increase

significantly by 32.2%, 40.3%, 41.4%, and 35.8%, respectively.

We next check the prediction performance for different video

type. We classify the videos based on the shooting environment (in-

door or outdoor) and the camera status (static or moving). As shown

in Figure 3, compared to indoor/outdoor environment, whether the

camera is static or moving has a greater impact on prediction ac-

curacy. For all the four algorithms, the average prediction errors

for the camera-moving videos are at least 9% larger than those for

the camera-static videos. Moreover, the variances of the prediction

errors for the camera-moving videos are significantly larger, which

implies the pre-trained ML models do not have stable performance

for this video type.

Remark. After the prediction algorithm designing stage, the view-
port prediction performance is still vulnerable due to various factors.

3.1.2 Tolerating Prediction Error by Tiling. As a tile is selected as

long as any portion of it intersects with the predicted viewport,

tiling can naturally accommodate the inaccuracy of viewport predic-

tion: if the prediction error does not cross a tile, it causes no change

on the tile selection result. Therefore, different tiling settings will

produce tiles with different sizes, which can tolerate prediction

errors to different degrees. Increasing the size of each tile (while

reducing the number of tiles in each frame) can further help absorb

larger errors from the viewport prediction algorithms.
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To justify our discussion, we vary the tiling setting from 4x4

to 10x10 and apply different prediction errors to check the largest

error that a tiling setting can accommodate while keeping the same

quality of the resulting tile selection. We use F1 score to assess the

tile selection quality, which is defined as F1 =
2·precision ·r ecall
precision+r ecall .

Figure 4 plots the tolerances for the prediction error to achieve

different F1 scores. As expected, tilings with larger sizes of tiles

have higher prediction error tolerances. The result suggests that,

with inaccurate viewport predictions, it is feasible to change the

frame tiling to achieve a better tile selection.

Remark. With inaccurate viewport predictions, tiling adaptation
can be applied to obtain better tile selection results.

3.2 Impact of Tiling on Decoding Complexity
Although today’s mobile hardware is rapidly developing, decoding

and processing high-resolution 360° video contents in real-time is

unfortunately still challenging. Previous research efforts [9, 19, 20]

have confirmed that the decoding overhead for tiled videos cannot

be ignored for mobile devices. Even for the recent work [22] that

claims achieving low-latency ultra-high resolution 360° video de-

coding, it actually avoids the problem by downscaling the effective

resolution for different viewport sizes and screen sizes.

Tiling the 360° frames changes not only the number of decoding

tasks but also the video encoding efficiency. As the number of tiles

increases, the size of each tile decreases, which implies lower encod-

ing efficiency because the reference area (the redundant information

that can be compressed) between and within frames is reduced,

e.g., motion vectors that reference the best block matches can be

cut by tile boundaries. To investigate the impact of tiling on de-

coding complexity at the mobile client side, we conduct real-world

measurements. We use FFmpeg [1] and the open-source HEVC

encoder, Kvazaar [2], to prepare the test videos and encode them

into HEVC streams with motion constrained tiling, which ensures

each tile is independently decodable. We use Huawei Mate 30 as

the test device with Kirin 990 CPU and 8GB RAM. We implement a

parallel decoding scheme, which uses multiple decoding instances

to decode tiles asynchronously and a decoding buffer to cache the

portions of the decoded frame. To construct the decoding instances,

we call MediaCodec API [3] for Android to initialize the hardware

codec OMX.hisi.video.decoder.hevc on our test device.

We consider three factors that influence the decoding complexity

directly. First, the decoding time is affected by the number of de-

coded tiles. Second, the video resolution implying the total number

of decoded pixels reflects the amount of computation. Third, the

decoding time further depends on how much resource is utilized

for decoding. We keep one factor fixed and check the influences of

the other two. We plot the normalized decoding time versus the

number of tiles, the video resolution, and the number of decoding

threads in Figure 5, 6, 7, respectively. The results are normalized

over the corresponding baseline in each case (with 2x2 tiling/720p/1

thread). We use the dotted line in Figure 5 to denote the playback

time length for the given resolution and the corresponding tile

count. It indicates the real-time decoding limit, exceeding which

the decoding cannot keep up with the playback. It is not surprising

that the decoding time increases as the number of the decoded tiles

gets larger or the video resolution gets higher, and decreases as the

number of the decoding threads grows.

Another observation from the figures is that the three key influ-

encing factors (number of tiles, video resolution, number of threads)

are empirically mutually independent, as the curves in each of these

three figures are nearly identical. We use Fn (x ) (Fr (x ) or Fc (x ))
to denote the ratio between the decoding time when tile number

(resolution or thread number) is x and that of the baseline case. We

take Fn (x ), Fr (x ), Fc (x )) as three multipliers for different factors

and build the analytical model of as D = D0 ·Fn (x1) ·Fr (x2) ·Fc (x3)
to calculate the overall decoding time for decoding a resolution x2
video of x1 tiles with x3 threads, where D0 is the decoding time

of the baseline case. This model will be utilized in later sections

to help make tiling and bitrate decisions. It is worth noting that,

although using more decoding threads can reduce the decoding

time, the gain can be marginal when the resource limit is hit (for

our test device the thread number should be no more than 4), which

suggests us to decide the appropriate thread number according to

the current available computation resources on the mobile device.

Remark. The analytical model of decoding time can be built by
quantifying the impacts of tile number, video resolution, and decoding
thread number.

4 DESIGN OF TBRA
In this section, we present the design of our tiling and bitrate adap-

tation (TBRA) for mobile 360° video streaming. TBRA attempts to

select appropriate tiling and bitrate by considering the viewport
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prediction performance and the decoding capability, in addition to

the conventional factors such as bandwidth and buffer.

Let S = {s1, s2, ...} be the set of the tiling options for a 360° video,
and for tiling si let |si | denote its number of tiles. Without loss of

generality, we assume |si | < |sj | if i < j . Given a tiling s , let bi, j de-
note the bitrate for tile j in chunk i , where i ≤ total number of chunks

and j ≤ |s |. Our goal is to determine appropriate tiling s and bitrate
bi, j for each tile in the streamed video.

4.1 Tiling Adaptation
4.1.1 Idea of Adaptation. To accommodate the viewport predic-

tion error, existing works usually naively expand the predicted

viewport. We also take this general direction but in a calibrated

way by taking advantage of the underlying tile-based transmission,

which is essentially the tradeoff between user experience and trans-

mission efficiency. As discussed earlier, different tiling options can

tolerate viewport prediction errors to different degrees. When the

frame is split into more tiles, each tile has smaller size, and thus

the viewport can be better fitted but more difficult to predict. In an

extreme tiling case where the frame is cut into single-pixel tiles, the

viewport can be perfectly fitted by the tiles and transmitted with

the least unnecessary pixels, which however has to be predicted

into pixel level. On the contrary, if the tiles get bigger, the viewport

can only be fitted in a coarse-grain, which thus tolerates higher

prediction errors but waste more bandwidth. The extreme case is

letting the whole frame be one tile, which turns into streaming all

the pixels regardless of the predicted viewport. Therefore, our idea

of tiling adaptation is to increase the size of tiles when the viewport

prediction has poor performance, and vice versa. The key question

to answer is which tiling setting is the optimal choice to strike the

best balance between user experience and transmission efficiency.

4.1.2 Tiling Selection. During a video chunk’s playback, the client

usually makes several viewport predictions and selects the tiles

based on the area covering the viewport trace. We extend this

prediction area by r̄d in direction d ∈ {left, right, up, down}, which
is the running average of the prediction error in this direction ed
for the last n seconds and is updated as r̄d = (1−α ) · r̄d +α ·ed . This
prediction area extension is further used for tile selection, which is

dynamic and affected by the recent prediction accuracy.

The next step is to check across different tiling settings to find the

best tradeoff between user experience and transmission efficiency.

For each tilling setting, we compare the tile selection based on the

expanded prediction area with that based on the viewport ground-

truth. We calculate two ratios as the metrics for user experience

and transmission efficiency, respectively:

Miss Ratio =
# of missed pixels in expanded prediction

# of viewed pixels

,

Waste Ratio =
# of unnecessary pixels in expanded prediction

# of viewed pixels

.

The tradeoff is clear between the two ratios as observed in Fig-

ure 8. We evaluate the goodness of a tiling setting using the penalty

calculated as a weighted sum of these two ratios,

Tiling i
penalty

= β · Miss Ratio+ |1/ cos(ϕi ) | · Waste Ratio , (1)
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Figure 8: Tradeoff between Miss and Waste

where ϕi is the latitude of viewport i’s center. It suggests that the
weight of Waste Ratio changes as the viewport moves vertically.

Most 360° video systems adopt Equirectangular projection (ERP),

which maps meridians to vertical straight lines of constant spac-

ing and circles of latitude to horizontal straight lines of constant

spacing. ERP is known to have distortions, which is exaggerated

along with the vertical direction. Hence, we design the weight to

be automatically tuned to the level of distortion. After checking all

the tiling settings, we select the one with the smallest penalty.

4.2 Rate Adaptation
After selecting the tiling setting and classifying the tiles accordingly,

the next step is allocating bitrate. We next formulate and solve the

optimization problem for bitrate adaptation.

4.2.1 Video Quality. Let wi, j denote the weight of tile j during
chunk i’s playback. Although in our current scheme wi, j is 0/1

depending on whether the tile is in the predicted viewport, we

still leavewi, j as an open setting to keep our model generic, as in

certain cases the tiles may be ranked into more tiers with different

weights. Ideally,wi, j is determined based on the tile class at a given

frame, and thus there may be multiple weights for a tile in one

chunk, in which case we setwi, j as the maximal weight over all the

predictions. Let q(bi, j ) be the non-decreasing mapping function

between the tile bitrate selection bi, j and the user perceived quality.
The video quality level of chuck i is defined as

Q
(1)
i =

n∑
j=1

wi, jq(bi, j ). (2)

As recent studies[8, 12] have show that the user perceived quality

should be the quality metric for 360° videos. We adopt the latest

subjective video quality model [16] as q(·),

subjective PSNR: qi = PSNRi · [M (vi )]
γ
[R (vi )]

δ , (3)

where M (vi ) and R (vi ) are the detection threshold and retinal

slip rate, respectively, vi is the viewport moving speed for chunk i ,
γ = 0.172, and δ = −0.267.

4.2.2 Quality Churn. Significant quality change between the con-

secutive video chunks can hurt user QoE. We define the quality

churn as the change between two consecutive chunks

Q
(2)
i = |Q

(1)
i −Q

(1)
i−1 |, i ∈ [2,m]. (4)
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4.2.3 Rebuffering Time. We denoteCi as the predicted throughput
for downloading chunk i , and Bi as the buffer occupancy when

the client starts to download chunk i . Note that B1 = Bdefault,
where Bdefault is the default buffer level filled at the start-up stage.

Downloading chunk i needs time

∑n
j=1 bi, j/Ci . Let L be the length

of each chunk. The buffer status should be updated every round.

The buffer occupancy for the next chunk i + 1 can be calculated as

Bi+1 = max(Bi −
n∑
j=1

bi, j/Ci , 0) + L. (5)

We have the rebuffering time during the download of chunk i as

Q
(3)
i = max(

n∑
j=1

bi, j/Ci − Bi , 0) + tmiss . (6)

The first part is the rebuffering time of the case that the download

takes too long and the buffer runs out of video to play. The second

term tmiss indicates the time for downloading the missing tiles that

are previously assigned with zero bitrate but actually watched in

this chunk. There are two implicit constraints related to rebuffering

for our problem. We will illustrate the details in the later subsection.

4.2.4 Optimization Objective. The overall QoE of chunk i can be

defined as a weighted sum of the aforementioned QoE metrics

Qi = pQ
(1)
i − qQ

(2)
i − rQ

(3)
i . (7)

The first term is positive and the latter two terms are negative since

we want to have the maximal video quality, the minimal quality

change, and the least rebuffering time. Traditionally, we use the

mean QoE for all chunks as the optimization objective. However,

the perfect future information over the entire horizon from chunk

1 tom is difficult to obtain in practice. To handle the hardness of

predicting the long-term throughput and user behavior, we apply

the MPC-based framework [35] and optimize the QoE of multiple

chunks over a limited horizon. Fortunately, the streaming scenario

is friendly for collecting related information for short-term analysis

or prediction. The objective function can be formulated as

max

bi, j ,i ∈[t,t+k−1], j ∈[1,n]

t+k−1∑
i=t

Qi , (8)

where k denotes the size of the optimization window.

Since viewport prediction performance and network conditions

are easy to monitor on short timescales, the QoE optimization can

be done using the predicted information in window [t , t + k − 1].
We then move the horizon forward to [t + 1, t + k], update the

information in the new optimization window, and run the QoE

optimization for the next chunk, so on and so forth. The benefit to

use the MPC-based formulation is that each optimization problem is

practically solvable due to the limited size of the problem instance.

4.2.5 Efficient Solution. The proposed formulation by nature suits

for online execution, as the QoE optimization can be periodically

solved through exhaustive search because of the small instance size

for short windows. Since the optimization should be invoked at a

high frequency, it is still challenging due to the large search space.

To support real-time optimization, we need to efficiently prune

the search space. To this end, we identify the following important

constraints and opportunities for boosting the solution’s efficiency.

Algorithm 1: TBRA: Tiling and BitRate Adaptation

1 Initialization: default buffer level B
default

, optimization

window size k , bitrate set, the objective weights p, q, and r
2 for i ← 1 tom do
3 if client is in startup phase then
4 given a fine-grain tiling, download all the tiles at

highest bitrate;

5 measure the throughput C̄i ;

6 start playback when buffer reaches B
default

;

7 else
8 Ci = ThroughputPrediction(C̄

[1,i−1]);

9 update r̄d from the recent prediction error;

10 get tiling s̄ with the smallest penalty in Eq. 1;

11 setwi, j for s̄ based on the prediction;

12 get the feasible bitrate range by comparing the

decoding time with the playback duration;

13 bi, j = argmax

∑i+k−1
t=i Qt ;

14 download the tiles at corresponding bi, j ;

15 end
16 end

First, the decoding time should be constrained. Besides buffer

draining out under low bandwidth, another cause of rebuffering

can be that decoding cannot catch up with playback. Therefore, our

first constraint is that the decoding time should be less than the

playback length. Given the available computation resource on the

mobile device, we can obtain the largest number of parallel decoding

threads it can support. Further, based on the analytical model of

decoding time, taking that built in Section 3.2 as an example, due

to the monotony of decoding complexity versus resolution, we can

find the maximum quality level that the device is capable to decode

in time, which limits the bitrate selection to a bounded search space.

Second, the bitrate selection should consider the constraint of

throughput:

∑n
j=1 bi, j ≤ LCi . In other words, we do not actively

drain the buffer and leave it to handle the throughput fluctuation.

The only exception is when the buffer hits its maximal limit Bmax .

Third, the bitrate selection should consider the class of the tiles.

The bitrate of a tile should not be lower than that of any other tile

in the same chunk with a lower weight: bi, j ≥ bi, j′∀wi, j > wi, j′ .

Fourth, all tiles belonging to the same class should have the

bitrate selected at the same quality level. This constraint allows

us to perform rate adaptation on a per-class basis instead of on a

per-tile basis, which significantly reduces the search space.

Finally, in the cases where the throughput and the user behavior

are stable over the optimization window (i.e., the throughput does

not vary much and the number of tiles in each class stays the same),

all the chunks in the same window should have the same result.

4.3 TBRAWorkflow
The complete TBRA workflow for our MPC-based optimization is

summarized in Algorithm 1. As a high-level overview, the algorithm

has two stages. At the startup stage, the client downloads all the

tiles to fill up the buffer and measures the effective throughput.

Once the buffer reaches the default setting, it iteratively executes
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Figure 11: Tiling setting in a watch event

three steps (i.e., throughput prediction, tiling and bitrate selection,

and download) in each optimization window. For throughput pre-

diction, we rely on the existing approaches (e.g. the harmonic-mean

predictor [11], the moving average predictor [34]). For tiling and

bitrate selection, we first decide the tiling setting based on the re-

cent viewport prediction performance and assign the tile weights

accordingly. We then identify the feasible range for bitrate selection.

Given the decoding time constraint, the thread number, and the tile

number, we can find the highest resolution that can be decoded in

time without causing a playback stall. The rate adaptation problem

can be solved in a reduced and limited solution space.

Admittedly, as multiple versions of encoded chunks with differ-

ent tilings are needed, our approach introduces certain transcoding

and storage overhead on the server side, which should be further

examined. However, we want to emphasize that our work’s focus

is the mobile client side. Running our algorithm only introduces

negligible overhead on the client. The tiling adaptation problem is

observed to have a nice feature that the global optimal is usually

the local optimal, and thus the computation can be greatly reduced.

The rate adaptation problem can also be solved efficiently using

the optimized MPC-based workflow.

5 PERFORMANCE EVALUATION
5.1 Methodology
5.1.1 Data Traces. To emulate throughput fluctuations, we replay

the bandwidth traces from a 4G/LTE dataset captured during mobil-

ity [25]. Since the bandwidth in some traces is extremely high, we

linearly scale each trace to emulate difference network conditions.

The 360° video viewing traces are from the open dataset [7] ana-

lyzed in Section 3.1. We replay all the 360° video watching events

and for each video watching event randomly select 10 bandwidth

traces from the 4G/LTE dataset.

5.1.2 Algorithms for Comparison. We implement our proposed

TBRA algorithm as well as other two algorithms: (1) Flare [19]: is

an enhanced viewport-adaptive scheme that first selects consumed

tiles according to the viewport prediction and then include more

tiles considering the prediction inaccuracy. (2) Knapsack [33]: is

a tile bitrate adaptation method, which considers the bitrate per

tile as well as the buffer-level per tile, integrating them into the

profit function of a multiclass knapsack problem. Both of them

do not adopt tiling adaptation, which only try to transmit more

tiles or in different bitrates with a fixed tiling. (3) OpTile [29]: like

TBRA, is also an adaptive tiling method but focuses on encoding

the tiles with the optimal size and shape to achieve low storage

and bandwidth cost, which works more like a video preparation

scheme rather than a streaming algorithm.

5.1.3 Settings and Metrics. Empirically, we set the size of the op-

timization window in our MPC-based workflow to be 2 seconds.

We set the size of viewport to be 100° wide and 90° high and set

B
default

= 3s and Bmax = 10s . The viewport sampling frequency is

set to be 5Hz. For the weights in the QoE objective, we set p = 0.1,

q = 0.2 and r = 0.4, which is similar to other commonly used set-

tings in the existing work [9, 19, 35]. By testing the performance of

different settings, we empirically set the parameters for tiling adap-

tation as α = 0.9 and β = 50. For throughput prediction, we adopt

a moving average predictor [34] based on the past 5 samples. We

consider five quality levels with different bitrate settings: (1) 480p

(2.5Mbps), (2) 720p (5Mbps), (3) 1080p (8Mbps), (4) 2K (16Mbps),

and (5) 4K (40Mbps) according to the recommendation of upload

encoding bitrates from YouTube
1
. The default setting for Flare and

Knapsack is 6x6 tiling. To evaluate the performance, we examine

subjective PSNR, quality level change, rebuffering time during the

video playback, and total bandwidth consumption.

5.2 Result and Analysis
5.2.1 Performance Gain from Tiling Adaptation. We first validate

our design of tiling adaptation scheme, by comparing its perfor-

mance to that of Flare without the rate adaptation part. We use Flare

for comparison and omit Knapsack and OpTile here because Flare,

although uses fixed tiling, can adaptively expand the prediction

area based on the prediction accuracy. Knapsack is fully a fixed

tiling approach and OpTile works before the watch event with the

knowledge of viewport’s distribution, both of which cannot adapt

to viewport prediction error. Figure 9 shows the average missed

and wasted pixels for running TBRA’s and Flare’s tile selection

process for the whole dataset, which shows the clear performance

improvement from our tiling adaptation and justifies our idea of de-

sign. Flare transfers 0.352 viewport-size (19.6%) more unnecessary

pixels than our approach to avoid 0.002 viewport-size (4.0%) less

pixels missing, which shows that we trade negligible user experi-

ence degradation for considerable transmission efficiency increase.

Note that we can always tune the weight β in Eq. 1 to strike another

balance point to put more weight on user experience. We further

1
https://support.google.com/youtube/answer/1722171
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sumption with varying bandwidth
(LTE > WiFi)

4 2 4 2 4 2 4 2
Number of Threads

40

45

50

55

60

65

Su
bj

ec
tiv

e 
PS

N
R

TBRA
Flare

Knapsack
OpTile
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different decoding capabilities
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different decoding capabilities
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Figure 19: Total bandwidth con-
sumption with different decoding
capabilities

check a representative video watching event (User 19 watching

Video 17) in Figure 10 and 11. Figure 10 confirms that TBRA can

significantly reduce the bandwidth waste for unnecessary pixels

while keep the same level of missed pixels as Flare. In Figure 11,

we can clearly observe how TBRA timely reacts to the prediction

error increase and decrease.

5.2.2 Performance with Varying Bandwidth. We next check the per-

formance of TBRA, Flare, Knapsack, and OpTile (with 4 decoding

threads) using bandwidth traces for different networks. As WiFi

networks are simulated to have connection interferences, its av-

erage bandwidth is lower than that of 4G. We plot the average

subjective PSNR, quality change, rebuffering time, and total band-

width consumption in Figure 12, 13, 14, and 15, respectively. As

we can see from the figures, TBRA significantly outperforms Flare,

Knapsack, and OpTile in most cases. TBRA achieves 14.8%, 11.6%,

13.8% (9.1%,1.7%, 8.1%) higher subjective PSNR and 9.1%, 27.7%,

37.4% (31.2%, 33.7%, 35.5%) less quality change than Flare, Knap-

sack, and OpTile, respectively under WiFi (LTE) connections. The

only exceptions are that (1) Flare experiences less rebuffering with

LTE; (2) Flare and OpTile use less bandwidth with WiFi. Another

observation is that varying network conditions have less impacts

on TBRA’s performance, while the other three methods are more

unstable under two types of network connections.

5.2.3 Performance with Different Decoding Capabilities. We fur-

ther vary the number of the decoding threads to simulate different

decoding capabilities for mobile devices (using the LTE network

traces). The corresponding results are shown in Figure 16, 17, 18,

and 19. For all four approaches, reducing the number of decoding

threads leads to clear performance degradation except for quality

change and bandwidth consumption. This is because when there is

insufficient decoding capability, more tiles with lower resolutions

are likely to be selected. Similar to the previous results, TBRA has

the best performance in almost all the cases for the four metrics.

Moreover, reducing decoding capability has clearly the least im-

pacts (5.8% higher subjective PSNR, 10.8% lower quality change,

35.7% more rebuffering time, 12.2% less bandwidth consumption)

on TBRA. It implies that our proposed approach can better adapt to

the varying amount of computation resources on the mobile client.

6 CONCLUSION
In this paper, we proposed the design of tiling and bitrate adapta-

tion for mobile 360° video streaming. We first identified that, for

mobile 360° video streaming, the viewport prediction algorithms

have unstable performance and the mobile clients may not have

enough capabilities for real-time decoding. To cope with these two

challenges, we analyzed the impact of tiling setting and justified

the benefit of tiling adaptation. We further presented the detailed

design of our TBRA algorithm, including tiling adaptation scheme,

the QoE optimization problem formulation, and the MPC-based so-

lution. The results from the trace-driven simulations demonstrated

that our proposed TBRA outperforms the three representative state-

of-the-art algorithms.
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