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ABSTRACT
In-network data storage and retrieval are fundamental func-
tions of sensor networks. Among many proposals, geograph-
ical hash table (GHT) is perhaps most appealing as it is very
simple yet powerful with low communication cost, where the
key is to correctly define the bounding box. It is envisioned
that the skeleton has the power to facilitate computing a
precise bounding box. In existing works, the focus has been
on skeleton extraction algorithms targeting for 2D sensor
networks, which usually delivers a 1-manifold skeleton con-
sisting of 1D curves. It faces a set of non-trivial challenges
when 3D sensor networks are considered, in order to properly
extract the surface skeleton composed of a set of 2-manifolds
and possibly 1D curves.

In this paper, we study the problem of surface skeleton
extraction in 3D sensor networks. We propose a scalable
and distributed connectivity-based algorithm to extract the
surface skeleton of 3D sensor networks. First, we propose
a novel approach to identifying surface skeleton nodes by
computing the extended feature nodes such that it is robust
against boundary noise, etc. We then find the maximal inde-
pendent set of the identified skeleton nodes and triangulate
them to form a compact representation of the 3D sensor
network. Furthermore, to react to the dynamics of the sen-
sor networks caused by node failure, insertion, etc., we de-
sign an efficient updating scheme to reconstruct the surface
skeleton. Finally, we apply the extracted surface skeleton to
facilitate the data storage protocol design. Extensive sim-
ulations show the robustness of the proposed algorithm to
shape variation, node density and network dynamics, and
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its effectiveness for data storage application with respect to
load balancing.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communication

Keywords
3D Sensor Networks; Surface Skeleton; Data Storage

1. INTRODUCTION
In-network data storage and retrieval are fundamental

functions of sensor networks. While centralized-based schemes
suffer from bottleneck at nodes near the sink, distributed
in-network data storage is desirable for its scalability and
robustness, etc. Among many proposals, geographical hash
table (GHT) [26] is appealing because 1) it can greatly re-
duce the communication and energy cost by avoiding fre-
quent in-network flooding for information retrieval [30], and
2) it is very simple yet powerful [9]. GHT names events with
keys and hashes the keys into geographic location; and the
sensor node, referred to as home node, geographically closest
to the hash of its key stores the (key, value) pair. GHT then
uses GPSR [15] as the low-level routing scheme to greedily
forward the data and query packets to the corresponding
home node. Upon reaching a local minimum, GPSR adopts
the perimeter mode forwarding strategy. Considering the
dynamics of sensor networks (e.g., caused by node mobility,
insertion or failure due to energy depletion, etc.), GHT pro-
poses to replicate each key-value pair at nodes (referred to as
replica nodes) on the home perimeter, in order to guarantee
data persistency.

Despite its desirable properties, GHT has some disadvan-
tages. For example, inherited from GPSR, in complex net-
works such as the Y-shaped network shown in Fig. 1(a), the
boundary nodes will be overloaded due to the extensive us-
age of the perimeter forwarding [9] especially in 3D sensor
networks where there are arbitrarily large number of perime-
ters to be explored [35]. If the bounding box defining the
range of coordinates for hash functions is not properly com-
puted, the imbalance of storage load, together with traffic
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Figure 1: (a) The Y-shaped 3D network has 12,545 sensors with
average node degree 15.36; (b) The bounding box with voids
used in [26, 37]; (c) A cross-section of the Voronoi diagram with
bounding box in (b); (d) The extracted Surface Skeleton; (e) The
bounding box computed based on the Surface Skeleton in (d); (f)
Comparison of storage performance with the two bounding boxes.

load, will become more severe [29]. This is because by hash-
ing the keys to geographic coordinates, the underlying 3D
space is actually divided into a set of Voronoi cells, within
each of which there is one and only one sensor node, and thus
each sensor node stores the data mapped to its Voronoi cell
(see Fig. 1(c)). Obviously, the storage load of a node is pro-
portional to the volume of its cell [29], i.e., the larger the
volume of the cell is, the larger the storage and communica-
tion cost of the node. And if there exist voids unoccupied
by sensors, as shown in Fig. 1(b) which is utilized by Reg-
ular GHT solutions such as [26] and typical segmentation
algorithms such as [37], all data hashed into the voids will
be finally stored at boundary nodes surrounding the voids,
and consequently, these boundary nodes (especially when
replica nodes on the boundary are used for data persistency)
tend to have a higher storage and traffic load [37]. Please
see Fig. 1(f). Similarly, DIM [20] also maps multi-attribute
event to the sensing field; the nodes near an empty zone
unoccupied by any sensor store the data mapped to this
zone. Accordingly, the key for data storage application is to
precisely define the bounding box of sensor networks with an
arbitrary shape, in order to evenly distribute the storage load
of sensor nodes; Fig. 1 shows that the bounding box results
could vary greatly with different methods.

(a) (b)

Figure 2: Bounding box computed based on C-Skeleton and S-
Skeleton, respectively. (a) C-Skeleton (blue line in left) and the
bounding box (green cubic in right); (b) The S-Skeleton (shaded
surface in left) and the bounding box (green polyhedron in right).

The difficulties of computing the precise bounding box for
a complex network mainly stem from the presence of concave
valleys (and thus bridges between adjacent peaks) and/or,
holes or tunnels, which often leads to the failure of finding a
tight bound of the network based on convex hull, as shown
in Fig. 1(b). At first glance, it seems quite intuitive to locate
concave nodes by computing the concavity. Unfortunately,
without coordinate information, it is rather difficult to cal-
culate the depth of the concave valley, a traditional way to
compute concavity in computer graphics, while the neigh-
borhood size based algorithm and CATL [32] do not work
well in long-and-narrow networks, making it a challenge to
compute concave nodes in 3D sensor networks. On the other
hand, the surface skeleton (referred to as S-Skeleton) of a 3D
object is a generic and compact representation of the under-
lying object which can preserve the object’s genus and the
topological features very well [4]. In continuous 3D space,
S-Skeleton, also called medial surface or medial axis, of a
3D object is defined as the interior points with at least two
nearest boundary points, as shown in Fig. 2(b). Also we
notice that another kind of skeletons of 3D objects is curve-
skeleton (referred to as C-Skeleton), composed of 1D curves
locally symmetric to the object [28]. While C-Skeleton has
been used in 3D sensor networks to improve routing perfor-
mance [24], inherently it is not a proper way to compute a
tight bounding box; Fig. 2(a) shows an example. Between
above two definitions of skeleton in 3D sensor networks, we
emphasize that typically, the presence of a concave valley
(or hole, or tunnel) will incur a bent S-Skeleton. Thus, if
the location where the S-Skeleton deforms is identified, then
the concave valley can be easily located, and accordingly,
the computed bounding box is supposed to be tight and
precise, as shown in Fig. 2(b). That is, we envision that
S-Skeleton of a 3D sensor network, as shown in Fig. 1(d),
can efficiently facilitate defining a tight and precise bound-
ing box, as shown in Fig. 1(e), and balancing the storage
loads, as shown in Fig. 1(f).

Related work. Skeleton has been widely used as an ef-
ficient way to facilitate routing [5], segmentation [40],local-
ization [17] and navigation [19, 34], etc., in sensor networks.
The usefulness of skeleton has inspired many algorithms for
its computation in sensor networks, e.g., [12, 13, 22, 23,
39]. However, these algorithms primarily target at 2D sen-
sor networks, and deliver a 1-manifold skeleton composed
of 1D curves. More recently, there are many practical de-
ployments of sensors on 3D environments [7, 33], triggering
growing demands for studies on 3D sensor networks. Com-
pared with 2D cases, it is much more difficult to compute
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Figure 3: An illustration of the S-Skeleton of a cubic. There are thirteen sheets formed by the Y-curves and the boundary of the cubic
while only the middle sheet is shaded. The solid red lines represent the Y-curves where two sheets meet. (a) Continuous space where
the Euclidean distance between points are given. The feature points of x, z, s are shown by solid rectangles. Points x is an ordinary
S-Skeleton point, z is a Y-curve point (and is also a junction point), and s is not an S-Skeleton point; (b) The distance between nodes
are measured by integers (e.g., in hops). Node x in the shaded sheet should be an S-Skeleton node while s shouldn’t. However, the
non-skeleton node s has two extended feature nodes. The void bounded by the polygon in the shaded sheet is generated because of the
even width of the cubic; (c) Node x has two connected components x1, x2 while s has only one.

the S-Skeleton of 3D objects [31], because the S-Skeleton of
a 3D object consists of 2-manifolds (or skeletal sheets), and
possibly 1D curves. Thus, it faces non-trivial challenges to
extend the existing protocols to 3D settings.

We are aware that one close work to ours is done by Xia et
al. [34], aiming at constructing the medial axis for navigation
and data storage in 3D sensor networks. They first establish
the unit tetrahedron cell (UTC) mesh structure and then
iteratively “peel” off a layer of the UTC mesh structure to
yield the medial axis. Principally, such a morphological thin-
ning based method, attempting to realize Blum’s grassfire
model [3], is very sensitive to the distance metric and typi-
cally fails to accurately localize medial surface points [4], and
it is also sensitive to boundary noise. That is, a small change
in boundary surface may result in a considerable change in
the surface skeleton. As such, a post-processing operation
for pruning spurious branches is needed. Further, the unit
tetrahedron cell (UTC) structure requires high node den-
sity and nice tetrahedron mesh [36], which is difficult to
obtain when only connectivity information is available and
thus small interior holes are not identified [35]. Last but not
least, it cannot adapt to network dynamics since the UTC
mesh must be constructed in advanced. When the network
topology changes due to node failure or insertion, etc., the
reconstruction of UTC mesh is costly owing to its high time
and message complexity.

Our contributions. In this paper, we study the problem
of S-Skeleton extraction in 3D sensor networks, and propose
a connectivity-based, scalable and distributed S-Skeleton ex-
traction algorithm which is robust again boundary noise and
node density, etc., and can quickly react to the network dy-
namics. Whereafter, based on the extracted S-Skeleton, we
propose the method to find the tight and precise bounding
box followed by the solution for load-balanced data storage.
Different from [34], we do not require any special structure
like unit tetrahedron cell, which is difficult to obtain in a
3D network, especially with low node density. In our work,
each node identifies itself as an S-Skeleton node by comput-
ing the extended feature nodes instead of the exact feature
nodes, due to the discreteness of sensor networks and the
presence of boundary noise. Then, the maximal indepen-
dent set of the identified S-Skeleton nodes is constructed,
followed by a triangulation procedure to form a compact
representation of the underlying 3D sensor network. The

merits of our S-Skeleton extraction algorithm are that it is
robust against boundary noise and does not suffer from low
node density, and thus can be applied in more generic cases
than [34]. Further, to react to the network dynamics caused
by node failure or insertion, etc., for the first time we propose
an efficient updating scheme to reconstruct the S-Skeleton.
Finally, we apply the extracted S-Skeleton for the design of
load-balanced data storage protocol in 3D sensor networks.
We conduct extensive simulations to show the robustness
of the algorithm to shape variation, node density, network
dynamics, and so on.

The reminder of the paper is structured as follows. In
Section 2 we briefly introduce the motivations and prelim-
inary knowledge of this work, and detail our algorithm in
Section 3. Section 4 is devoted to the application of the S-
Skeleton. To show the efficiency of the proposed algorithm,
we conduct extensive simulations in Section 5. Finally, Sec-
tion 6 concludes the paper.

2. MOTIVATIONS AND PRELIMINARIES
In continuous domain, as mentioned earlier, the S-Skeleton

of a 3D object D ⊂ R3, denoted by SK(D), is a collec-
tion of the interior points having more than one nearest
boundary point (referred to as feature point). More for-
mally, we first define the distance transform DT : D → R

as DT (x) = miny∈∂D d(x, y) if x ∈ D\∂D and 0 otherwise,
where ∂D is the boundary surface of D and d(x, y) is the
(Euclidean) distance of point x to y. Further, we define the
feature transform F : D → P(∂D) where P is the power set,
assigning to each point x ∈ D the set of feature points on
∂D to x. That is, F (x) = {y ∈ ∂D|d(x, y) = DT (x)}. Since
an S-Skeleton point has more than one feature point, its fea-
ture size should be larger than one, and if a point has only
one feature point, it must be a non-skeleton point. Thus,
there is an easy way to identify an S-Skeleton point based
on the feature size. Formally, we have

Definition 1. A point x is an S-Skeleton point if its fea-
ture size |F (x)| ≥ 2.

Based on Definition 1, we can deliver the S-Skeleton com-
posed of 2-manifolds, or sheets, and possibly 1D curves.
Fig. 3 (a) shows an example of the S-Skeleton of a cubic.
In degenerated cases like a cylinder, the S-Skeleton may
contain only curves, which is quite unusual and thus not
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Figure 4: The principle of skeleton node identification in [40] and
its drawback. Boundary nodes are shown by circles, ordinary
interior nodes and skeleton nodes are shown by empty rectangles
and solid rectangles, respectively. (a) The nodes in solid pink
circles, e.g., q, are skeleton nodes such that their feature nodes
form more than one interval, and p is not a skeleton node since
there is only one interval of feature nodes; (b) The small bump
in the boundary (shown by the solid blue circle) generates a new
skeleton node s indicated by the solid blue rectangle.

considered in this paper. Two sheets may meet along a Y-
intersection curve [6], called Y-curve, or Medial Scaffold [10,
11], on which any point has at least three feature points and
is referred to as a Y-curve point. Hence, a sheet is bounded
by some Y-curves and possibly the boundary of the object.
In particular, we also call as junction points the Y-curve
points where more than two sheets intersect.

Definition 1, however, can not be directly applied for sen-
sor networks where the coordinate information of each sen-
sor is often costly to acquire and in most scenarios, we can
only use connectivity information. Many factors, such as the
rounding error of distance between nodes, low node density,
boundary noise, etc., pose great challenges to identify skele-
ton nodes in sensor networks. We first take a look at the
challenges and present the solutions in 2D sensor networks,
and then we extend these solutions to the 3D counterparts.

First, due to the rounding error of distance between nodes,
low node density or even “width”, etc., many interior nodes
may only have one nearest boundary node (referred to as fea-
ture node), potentially degrading the performance of skele-
ton extraction. In order to tackle this problem, we can com-
pute the extended feature nodes defined below.

Definition 2. For an interior node p having a minimum
hop count distance k to the boundary, its extended feature
nodes of p, denoted by F (p), are the boundary nodes which
are k or k + 1 hops to p.

Second, there are many unstable nodes (e.g., p in Fig. 4(a))
having two or more close feature nodes. As a result, the de-
livered skeleton will contain too many spurious branches,
especially when the extended feature nodes are introduced.
An approach to tackle this problem is proposed by Zhu et al.
[40] where a node identifies itself as a skeleton node (e.g., q
in Fig. 4(a)) if it has two or more intervals, i.e., ordered and
consecutive sequences, of feature nodes; the nodes with only
one interval, e.g., p in Fig. 4(a), are ordinary nodes. Note
that this approach is invalid for 3D sensor networks as the
boundary nodes cannot be ordered to form intervals. Be-
sides, it suffers from boundary noise in 2D sensor networks,
as mentioned in [21, 22], and more greatly in 3D cases. That
is, a small bump in the boundary will cause an unwanted
skeleton branch needed to be pruned. For instance, when
the boundary node s1 in Fig. 4(a) moves to s2 in Fig. 4(b),
the only one consecutive sequence of feature nodes of node
s in Fig. 4(a) will be divided into two intervals in Fig. 4(b),
and thus s will identify itself as a skeleton node. The solu-

tion to this problem is to introduce an equivalence relation
∼ε as in [27]:

Definition 3. If the geodesic distance between two bound-
ary nodes a, b is less than ε(>0), we say that a and b are
geodesic ε-equivalent, denoted by a ∼ε b.

Similarly, for each node p, if the minimum of the geodesic
distances between nodes belonging to two intervals I1, I2 is
less than ε, we say that the two intervals are geodesic ε-
equivalent, and can be treated as one ε-interval. A node
identifies itself as a skeleton node if and only if it has two or
more ε-intervals. Clearly, we have

Theorem 1. A small bump in the boundary, separating
an interval I of p into two intervals I1, I2 with geodesic dis-
tance less than ε, does not change the identity of p.

Proof. Since the two intervals I1, I2 have a geodesic dis-
tance less than ε, they are regarded as one ε-interval. Thus,
if p has only one interval before the bump, then after the
bump p still has only one ε-interval and remains a non-
skeleton node; otherwise, p keeps its identity as a skeleton
node, which proves the claim.

Theorem 1 shows that such a process of skeleton node
identification is robust to boundary noise. One can easily
prove that it is also robust to many other factors, such as
low node density or node failure, etc.

Note that these challenges will become more severe in 3D
environments. That is, some true S-Skeleton nodes may not
identify themselves as skeleton nodes due to even “width”,
etc. Consequently, there might be holes in the skeletal sheets,
as shown in Fig. 3 (b), resulting in that the S-Skeleton does
not preserve the network’s genus. At the same time, there
might be more unstable S-Skeleton nodes and thus many un-
wanted faces. Further, it is noted that the solutions to these
problems in 2D sensor networks can not be directly applied
in 3D cases, as here the boundary surfaces are 2-manifolds
and the boundary nodes cannot be ordered in sequence, as
mentioned earlier.

Now we extend the solutions in 2D sensor networks to 3D
cases. Observe that in 2D sensor networks, the boundary
nodes in a consecutive sequence must be connected, thus
an interval of boundary nodes implies a connected compo-
nent of boundary nodes. Hence, in 3D sensor networks, we
can identify an S-Skeleton node based on the number of
connected components. More specifically, for each node p,
we compute its extended feature nodes F (p). Clearly, even
for an ordinary interior node, it may have more than two
extended feature nodes and any two of them are not neces-
sarily neighboring, as shown in Fig. 5 (b). To address this,
we first group these extended feature nodes into connected
components, as shown in Fig. 3 (c), and then use equivalence
relation ∼ε to merge these connected components into big-
ger component(s); two components are ε-equivalent if their
distance (defined as the minimal geodesic distance between
pairwise nodes belonging to different components) is less
than ε, and form a virtual component called ε-component.
Denote by F ε(p) the set of virtual components of node p.
Obviously, each ε-component here serves as the feature point
in the continuous domain. As such, we can identify an S-
Skeleton node as follows.

Proposition 2. For an interior node p, if |F ε(p)| ≥ 2,
then p identifies itself as an S-Skeleton node.
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By Proposition 2, we can identify the S-Skeleton nodes
based on only one parameter ε, which is used to avoid suf-
fering from rounding noise, boundary noise, and node den-
sity, etc. Clearly, for Definition 1, ε = 0, and only the
exact feature points are used. That is, the skeleton nodes
identified based on Proposition 2 is a subset of those iden-
tified based on Definition 1, while Proposition 2 can yield a
more stable result in 3D sensor networks, which is validated
by extensive simulations in Section 5. With the identified
S-Skeleton nodes, we perform a triangulation procedure to
form a compact representation, i.e., the S-Skeleton, of a 3D
sensor network, which will be detailed in next section.

3. ALGORITHMS
In this section, we present the details of our algorithm for

S-Skeleton extraction in 3D sensor networks. Since bound-
ary recognition is out of the scope of the paper, we thus
assume that boundary nodes have already been recognized,
e.g., by [14, 18]. Further, we do not assume that the location
information of nodes are known, and our work is based on
mere connectivity information.

3.1 S-Skeleton Node Identification
As mentioned in Section 2, an interior node is an S-Skeleton

node if it has at least two ε-components formed by extended
feature nodes. Thus, the first step of our algorithm is to
identify the extended feature nodes of each interior node.
This can be done in a distributed fashion as follows. Each
boundary node issues a flooding within the network at roughly
the same time. The flooded message includes the ID of the
boundary node, and a counter, which is set to be zero by de-
fault, to indicate the distance of a node to the origin of the
flooded message. When receiving a flooded message from a
boundary node, say q, each node p executes the following
rules:

• If p has yet not received the flooded message from any
boundary node, it appends q to the list of nearest
boundary nodes of p (denoted by List(p)), increases
the counter by one and forwards the updated message
to its neighbors;

• else if the distance of p to q is equal to, or larger by one
than, the minimal distance of p to the nodes in List(p),
p keeps record of the boundary node q, increases the
counter by one and forwards the updated message to
its neighbors;

• else p simply discards the arrived message.

Consequently, each interior node keeps record of its extended
feature nodes and the distance (in hops) to the feature nodes.

Subsequently, these extended feature nodes issue a limited
flooding to construct connected component(s), followed by
a hop-by-hop expansion process as given in [24] to merge
these components into ε-component(s). More specifically,
each component is firstly assigned a unique identifier, and
then each extended feature node initiates a flooding message
including its identifier and a counter (initialized to be zero),
which indicates how far (in hops) the message has travelled.
When a boundary node p receives a flooded message from a
boundary node q which has been assigned an identifier and
has a counter no greater than ε, it executes the following
rules:

• if p has no identifier, then p will be assigned the same
identifier as q′s, increase the counter by one, and for-
ward the updated message to its neighboring boundary
nodes;

• else if p and q have different identifiers, and the sum of
the counters of p and q is less than ε, then p increases
the counter by one, and forwards the updated message
to its neighboring boundary nodes;

• else p simply discards the arrived message from q.

This way, the communication cost of ε-component con-
struction can be very low. An interior node with more than
one ε-component identifies itself as an S-Skeleton node, as
shown in Fig. 5(a); and the interior node with only one
component is a non-skeleton node, as shown in Fig. 5(b).
Finally, Fig. 5(c) draws the identified S-Skeleton nodes of
the Y-shaped network in Fig. 1(a).

3.2 S-Skeleton Establishment
With the identified S-Skeleton nodes, we now connect

them to form a set of 2-manifolds, i.e., the S-Skeleton. Note
that the identification of an S-Skeleton node is based on the
extended feature nodes, in order to guarantee that the true
S-Skeleton nodes will not be ignored. Unfortunately, this
may incur that some S-Skeleton nodes are redundant in a
given scenario, e.g., with parallel boundaries, which brings a
non-trivial challenge to construct the S-Skeleton. To address
this issue, we propose to construct the maximal independent
set of the S-Skeleton nodes, followed by triangulating them
to form the S-Skeleton.

Given the undirected S-Skeleton graph Gs = (Vs, Es)
where Vs denotes the set of the identified S-Skeleton nodes,
and Es is the set of links between S-Skeleton nodes, an
independent set is a subset V ′

s ∈ Vs such that no nodes
in V ′

s are adjacent; and a maximum independent set is a
maximum-cardinality independent set [1]. We will not com-
pute the maximum independent set of Vs, which is an NP-
hard problem [16]. Instead, we find the maximal indepen-
dent set, which is an independent set where no node can be
inserted without violating the independence. Since the S-
Skeleton consists of 2-manifolds, the maximal independent
set of the S-Skeleton nodes can be similarly constructed in a
distributed fashion as given in [38]. As a result, any pair of
independent nodes have a separation greater than one and
smaller than three hops, as shown in Fig. 5 (d). One ad-
vantage of this procedure, as pointed out in [38], is to main-
tain the independent nodes uniformly distributed. Clearly,
the independent nodes serves as sites which decompose the
S-Skeleton nodes into Voronoi cells. With the Voronoi dia-
gram, we can easily obtain its dual, the Delaunay triangula-
tion, e.g., by the method in [38], and the S-Skeleton is thus
generated, as shown in Fig. 1(d).

3.3 Complexity Analysis

Theorem 3. The proposed S-Skeleton extraction algorithm
has a linear time and message complexity.

Proof. The algorithm has two steps: S-Skeleton node
identification and S-Skeleton establishment. During the first
step, each interior node only forwards a small number of
packets, and thus in total the flooding from boundary nodes
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(a) (b) (c) (d)

Figure 5: An illustration. (a) An S-Skeleton node (shown by the big red rectangle) with three feature node components (in blue); (b)
A non-skeleton node (shown by the big red rectangle) with one feature node component; (c) The S-Skeleton nodes; (d) The maximal
independent set of the S-Skeleton nodes.

incurs an O(N)(N is the number of sensors) time and mes-
sage complexity. To compute the number of the connected
components of the extended feature nodes, for each node,
the algorithm only incurs at most O(Nf ) time and message
complexity, and thusO(NfN) for all nodes, whereNf (� N)
denotes the largest number of extended feature nodes among
all interior nodes. For the second step, the construction of
the maximal independent set and the triangulation both in-
cur a linear time and message complexity [38, 29]. In total,
the algorithm has a linear complexity.

3.4 Network Dynamics
As well known, wireless sensors networks are resource-

constrained, and many factors can cause their failures. For
instance, sensor nodes are fragile and may fail due to energy
depletion or destruction by external events (e.g., natural dis-
asters, adversarial attacks, etc. [2]), and congestion may also
cause packet loss. Besides, occasionally some sensors may
be added to the network for a better performance [29]. In
other words, nodes/links may come and go [8], which con-
sequently incurs the dynamics in the network topology. To
show the performance of our algorithm under such harsh en-
vironments, we consider the S-Skeleton reconstruction prob-
lem for dynamic networks. When the network topology
changes, the algorithm does not necessarily compute the
S-Skeleton from scratch, which is otherwise time/message
costly. Instead, as will be proven, the dynamic of the net-
work topology will cause a local impact on the S-Skeleton,
and thus only a local operation on the reconstruction of the
S-Skeleton is conducted to speed up the reconstruction pro-
cess.

We first present some results in continuous 3D space.

Lemma 4. A local deformation on the boundary surface
of a 3D space only poses a local impact on the S-Skeleton .

Proof. Let x be an arbitrary S-Skeleton point. Then, x
has at least two feature points. Suppose that the bound-
ary surface deforms at a local surface, say, from LS to LS′.
For an S-Skeleton point x, let T (x), T ′(x) denote its dis-
tance transform before and after deformation, respectively.
Generally, there are four cases:

1)Case 1. T (x) = T ′(x) and F (x)
⋂

LS = ∅. This means
that no feature point of x in LS, and the deformation does
not change x′s existing feature points because they are still
at the minimum distance to x. Although some new feature
point may lie in LS′, but x has more than one feature point,
and thus is still an S-Skeleton point.

2) Case 2. T (x) = T ′(x) and F (x)
⋂

LS 
= ∅. This
means that at least one feature point lie in LS, and af-
ter the deformation, the feature size |F (x)| decreases. If
|F (x)\{F (x)

⋂
LS}| ≥ 2, then x is still an S-Skeleton point;

otherwise, it is not.
3) Case 3. T ′(x) < T (x). This means that after de-

formation, x has the minimum distance to LS′, and the
new feature points F ′(x) = {y ∈ LS′|d(x, y) = T ′(x) =
miny∈LS′d(x, y)}. If |F ′(x)| ≥ 2, then x is still an S-Skeleton
node; otherwise, it is not.

4) Case 4. T ′(x) > T (x). This means that all feature
points of x lie in LS, and the boundary deforms such that
the distance of the new boundary LS′ to x is larger than
T (x). Clearly, x should re-identify its identity since after
deformation, it is unclear whether |F (x)| ≥ 2 or not.

In summary, if the S-Skeleton point x has at least one
feature point in LS, and/or the deformation will change the
distance transform of x, then x may re-identify its identity;
otherwise, x remains an S-Skeleton point. Clearly, the af-
fected S-Skeleton points are all within a small distance to LS
or LS′, thus the local deformation on the boundary surface
will only have a local impact on the S-Skeleton.

Lemma 5. The emergence of a new hole or tunnel has
only a local impact on the S-Skeleton.

Proof. Clearly, the emergence of a new hole or tunnel
will generate a new boundary. For an S-Skeleton point
x, some feature points may disappear, while new feature
points may appear at the new boundary. Thus, similar
to Lemma 4, only the S-Skeleton points closest to the new
boundary should re-identify their identities because of the
change of distance transform, and thus the impact of the
emergence of a new hole or tunnel on the S-Skeleton is lo-
cal.

Similarly, we have

Lemma 6. The disappearance of a hole or tunnel has only
a local impact on the S-Skeleton.

Lemma 4 to 6 imply that in sensor networks, the failure
of boundary nodes 1 and interior nodes 2, and the insertion

1It will incur neighboring interior nodes to be new bound-
ary nodes, and is thus a discrete analog of the boundary
deformation in continuous space.
2It is a discrete analog of the emergence of a new hole or
tunnel in continuous space.
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Figure 6: The segmentation result and the bounding box.

of new nodes into a void for better coverage 3 only have a
local impact on the delivered S-Skeleton. Thus, we have

Theorem 7. The network dynamics caused by node fail-
ure or insertion have a local impact on the S-Skeleton.

It can be easily shown that a non-skeleton node might be-
come an S-Skeleton node due to the network dynamics such
that the connectivity of the S-Skeleton is maintained and the
genus can be preserved. Clearly, such a node must be near
where the topology changes. Roughly speaking, if the dis-
tance transform of a node changes, its identity may change
as well. Thus, we can narrow the S-Skeleton reconstruction
down to the nodes whose distance transform change and the
nodes whose feature nodes fail. When new S-Skeleton node
identify themselves, and at the same time old S-Skeleton
nodes give up their identities, we can easily reconstruct the
S-Skeleton. Note that we do not necessarily reconstruct the
S-Skeleton from scratch. In fact, we have

Theorem 8. The network dynamics affect S-Skeleton re-
construction locally.

Proof. When an old S-Skeleton node p fails, only the
triangles containing p need to be reconstructed; if there is
a new S-Skeleton node q nearest to an S-Skeleton node p,
then q will not join the independent set otherwise the in-
dependence is violated, and there is no need to update the
triangles. Hence, the impact of network dynamics on the
S-Skeleton reconstruction is local.

As such, only a local triangulation is conducted to form an
updated S-Skeleton.

4. THE APPLICATION OF THE S-SKELETON
FOR DATA STORAGE

As mentioned in Section 1, the S-Skeleton can be used to
define a tight and simple bounding box, which can balance
the storage node in GHT [26] and DIM [20].

Clearly, the bounding box should better be regular as the
logical data space is often regular [29]. As such, our objec-
tive is to identify a small number of critical boundary nodes
used to define a tight and simple bounding box. To that
end, we first identify the boundary edge of the S-Skeleton
which is not shared by any other triangles. The nodes on

3If the insertion incurs the disappearance of a hole or tunnel,
then it is a discrete analog of the disappearance of a hole
or tunnel in continuous space; otherwise, a hole or tunnel
shrinks, which is a discrete analog of the boundary defor-
mation in continuous space.

the boundary edges are boundary nodes (referred to as S-
boundary nodes) of the S-Skeleton. Then we compute for
each S-boundary node p its k-hop curvature, denoted by
ck(p), which is defined below.

Definition 4. For an S-boundary node p, denote by Nk(p)
the nodes at most k hops away from p; let p1, p2 ∈ Nk(p)
be two S-boundary nodes such that the shortest paths be-
tween any two nodes of p1, p2, p will not pass through the
S-Skeleton. Denote by Dk

p (p1, p2) the set of nodes on the
shortest path between p1 and p2 using the nodes in Nk(p)
(When Nk(p) is disconnected, some auxiliary nodes can be
used as in [25]). Then the k-hop curvature of node p, i.e.,
ck(p), is defined as

ck(p) =
|Dk

p (p1, p2)| − 1

π × k
(1)

With the k-hop curvature, we define the concave/convex
node of the S-Skeleton (referred to as S-concave/S-convex
node), as follows.

Definition 5. For the given δ1, δ2 ∈ (0, 1) and k, an S-
boundary node p is an S-convex node if ck(p) < 1 − δ1, or
an S-concave node if ck(p) > 1 + δ2.

Based on the identified S-concave nodes, the S-Skeleton
can be decomposed into regular pieces by connecting nearby
S-concave nodes. Then, S-Skeleton nodes flood within the
network, and the nodes nearest to the same regular piece
of the S-Skeleton naturally form a connected component.
At the same time, each boundary node computes its dis-
tance (referred to as local feature size) to the S-Skeleton.
The boundary nodes, whose nearest S-Skeleton nodes are S-
convex/S-concave nodes and their local feature sizes are lo-
cally maximal, identify themselves as critical convex/concave
nodes. As such, the bounding box is obtained where the
vertices of the bounding box are critical convex nodes and
critical concave nodes, and interestingly, the network is de-
composed into regular components, as shown in Fig. 6.

With the computed bounding box, we first map each data
item x produced by a node to a geographic location g in the
sensing space bounded by the bounding box via a random
hash function h, i.e., h(x) = g. Then the node nearest to the
location g, referred to as home node, stores the data. Finally,
similar to [5, 22, 24], we adopt the S-Skeleton based routing
protocol as a low-level routing scheme for the producer to
forward the data to the home node such that the traffic load
is evenly distributed and the delivery can be guaranteed. For
the robustness to node failures, we let the nodes surrounding
the location g, referred to as replica nodes, also store the
data. As the bounding box is tight, the sensing space can
be divided into Voronoi cells with almost equally volume.
Thus, the storage load of the nodes can be well balanced.
We validate the proposed scheme by extensive simulations
in Section 5.

5. SIMULATIONS
We conduct extensive simulation tests on various 3D sce-

narios to show the performance of the algorithm. In our
simulations, sensor nodes are randomly deployed inside the
underlying 3D space, and the boundary nodes are recognized
by [14]. The parameter ε is set to be one by default. We do
not compare with [34] since it requires high node density and
nice tetrahedron mesh, as mentioned before, which are not
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(a) Seabed (b) H (c) Snake (d) Man

Figure 7: The performance under various 3D scenarios. The S-Skeletons are shaded. (a) 5,537 nodes, average node degree 15.37; (b)
16,156 nodes, average node degree 15.69; (c) 19,313 nodes, average node degree 15.78; (d) 15,288 nodes, average node degree 15.31.

(a) (b) (c) (d)

Figure 8: The performance under different node densities. (a) avg.deg 13.12; (b) avg.deg 17.38; (c) avg.deg 21.64; (d) avg.deg 24.76.

available in our settings where the average node degree are
all in between 15 and 16, pretty low for 3D sensor networks.
We first examine the robustness of the algorithm to shape
variation and node density, and then test the performance
under dynamic networks. Finally, we show the applicability
of the S-Skeleton for data storage.

Robustness to shape variation. We conduct the pro-
posed algorithm under difference scenarios, namely, Seabed,
H, Man, and snake, as shown in Fig. 7, with network size
ranging from 5,537 to 19,313 and average node degree in
between 15 and 16. We can clearly see that the derived
S-Skeletons in Fig. 7(a) to (d) correctly capture the main
topological features, e.g., the irregularity, of the underlying
networks, showing that our algorithm is robust to shape vari-
ation. Since the average node degree are all relatively low
for 3D sensor networks, one can imagine that our algorithm
can work for small-scale networks as well.

Robustness to node density. We vary the communi-
cation radio range to generate four networks with different
node densities. Please see Fig. 8. Fig. 8(a) shows the result
under low density, where the average node degree is only
13.12, below which the network becomes disconnected. We
can observe that the extracted S-Skeleton correctly captures
the salient features of the network. From Fig. 8(b) to (d),
we can see that with the increasing of node density, the S-
Skeleton becomes thinner, because less and less S-Skeleton
nodes are joined to the maximal independent set, without
violating the independence, for constructing the S-Skeleton.
But overall our algorithm delivers a very stable result and
the irregularity of the underlying network is correctly cap-
tured by the S-Skeleton, showing that our algorithm is ro-
bust to node density.

Algorithm Y H Man Snake Seabed

Our algorithm 0.0058 0.0053 0.0057 0.0053 0.0057

Bottleneck 0.0111 0.0107 0.0079 0.0122 0.0067

Regular GHT 0.0124 0.0117 0.0109 0.0122 0.0107

Table 1: Comparison study on maximum storage load.

Reaction to network dynamics. We next show the
performance of our algorithm under dynamic networks by
allowing node failure and insertion. In Fig. 9(a), the blue
nodes are dead, e.g., due to energy depletion. Compared
with Fig. 1(c), the reconstructed S-Skeleton correctly reflects
such a dynamic behavior by moving away from these failed
nodes. In Fig. 9(b), some nodes are added to the network
in the upper valley of the network, and there the S-Skeleton
accordingly becomes fatter than Fig. 1(c) while the other
remains the same.

Application for data storage. We apply the S-Skeleton
to compute a tight and precise bounding box. As the storage
of each node is proportional to the volume of the Voronoi cell
generated by the node, we expect that our bounding box can
guarantee a balanced storage load. To show its advantage,
we compare our algorithm with Regular GHT [26], and the
method in [37] (referred to as Bottleneck) which segments a
3D network by identifying bottlenecks, and then computes
the bounding box of the network. No replica nodes are con-
sidered in the comparison study.

We propose three metrics, namely, maximum storage load,
standard deviation coefficient and loading ratio of a node, to
quantitatively measure how the storage load spreads across
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(a) (b)

Figure 9: The performance of the algorithm under dynamic net-
works. (a) The new S-Skeleton when some nodes (shown in blue)
fail; (b) The new S-Skeleton when some nodes are inserted into
the upper valley.
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Figure 10: The comparison study on storage load. (a) Standard
deviation coefficient distribution; (b) Load ratio distribution.

the network. The maximum storage load is closely related to
the maximumVoronoi cell volume, and the total storage load
is normalized to be 1. The standard deviation coefficient
(referred to sdc) of storage load, is defined as the ratio of
the standard deviation of the storage load of nodes to their
average. A smaller sdc means the loads are more evenly
distributed while a larger sdc indicates that the distribution
is more uneven, namely, the storage load is more imbalanced.
The loading ratio of a node is the ratio of the storage load
of a node to the average storage load of the network.

Table 1 depicts the comparison study on the maximum
storage load for the five networks in Fig. 5 and Fig. 7. We
observe that our algorithm outperforms the other two algo-
rithms in the five networks. Especially, for Y, H and Snake-
shaped networks, Bottleneck produces near the same maxi-
mum storage load as GHT since no bottlenecks are correctly
identified and thus the bounding box is not accurately com-
puted. In Man and Seabed-shaped networks, Bottleneck
performs better than GHT because it identifies some bot-
tlenecks and thus the bounding box is tighter than GHT,
but Bottleneck performs worse than our algorithm since it
ignores some concave points, e.g., at two knees of the Man-
shaped network, resulting in an imprecise bounding box.

Fig. 10(a) presents the sdc distribution for the five net-
works by these algorithms. Clearly, we can see that our al-
gorithm yields the smallest sdc for all networks, because the
bounding box computed based on S-Skeleton tightly bound
the network and no large voids exist; Regular GHT produces
the worst result since the computed bounding box based on
convex hull incurs large voids, resulting in that the bound-
ary nodes are inevitably overloaded. As for Bottleneck, it

identifies a few bottlenecks in the Man and Seabed-shaped
networks, and thus the quality of the bounding boxes is fair.
That is the reason why the sdc is relatively small. In the
other three networks, however, there is no bottleneck iden-
tified and thus the result is undesirable.

Fig. 10(b) describes the load ratio distribution of the nodes
in the investigated five networks by the three algorithms.
As expected, our algorithm produces a near-ideal result, ob-
serving that over ninety percent of nodes have a loading
ratio smaller than 2. Since the bounding box computed by
our algorithm is tight and precise, the Vonoroi cell of each
node has almost equal volume, and hence storage load can
be evenly distributed. The result by Bottleneck is again fair
where about seventy percent of nodes have a small load. But
there do exist nodes having a large loading ratio (greater
than 6), because some concave points are not identified.
Thus, the computed bounding box possibly incurs bridges
and voids. As a result, the nodes on the pockets, i.e., the
boundary nodes surrounding the voids, are heavily loaded.
Regular GHT produces a long-tailed loading ratio distribu-
tion where only near sixty percent of nodes have a small
load ratio. Besides, five percent of nodes, mainly on the
boundary of voids caused by the poorly computed bounding
box, are overloaded. Overall, the load ratio distribution is
skewed, implying that the storage load by Regular GHT is
highly unbalanced. In summary, our algorithm outperforms
the other two algorithms in terms of load balance.

6. CONCLUSION
We present a connectivity-based surface skeleton extrac-

tion algorithm in 3D sensor networks. The identification of
skeleton node is based on the computation of the extended
feature nodes such that it is robust against boundary noise,
node density, and so on. To react to the dynamics of the
sensor network caused by node failure or insertion, etc., we
propose an efficient updating scheme to reconstruct the sur-
face skeleton. We finally apply the surface skeleton to find
a tight bounding box, which is then used for load-balanced
data storage protocol. Extensive simulations are conducted
to validate the performance of the proposed algorithm.
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