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SiFi: Pushing the Limit of Time-Based WiFi Localization Using A Single
Commodity Access Point

WEI GONG and JIANGCHUAN LIU, Simon Fraser University

�ere has been a booming interest in developing WiFi localization using multi-antenna (MIMO) access points (APs). Recent
advances have demonstrated promising results that break the meter-accuracy barrier using commodity APs. Yet these state-of-
the-art solutions require either multiple APs that are not necessarily available in practice, or multiple-channel measurements
that disrupt normal data communication. In this paper, we present SiFi, a single AP-based indoor localization system that
for the �rst time achieves sub-meter accuracy with a single channel only. �e SiFi design is based on a key observation:
with MIMO, the multiple (typically three) antennas of an AP are frequency-locked; although the accurate Time-of-Arrival
(ToA) estimation on commodity APs is fundamentally limited by the imperfect time and frequency synchronization between
the transmi�er and receiver, there should be only one value for the ToA distortion that can cause three direct-path ToAs
of the antennas to intersect at a single point, i.e., the position of the target. We develop the theoretical foundations of SiFi
and demonstrate its realworld implementation with o�-the-shelf WiFi cards. Our implementation introduces no hardware
modi�cation and is fully compatible with concurrent data transmission. It achieves a median accuracy of 0.93 m, which
signi�cantly outperforms the best known single AP single channel solution.
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In the past few years, we have witnessed a growing interest in developing ubiquitous indoor localization systems
using WiFi infrastructure, which have broken the meter accuracy barrier using o�-the-shelf devices [21, 33, 37].
�ey however have yet to enable ready-to-use indoor navigation service as what GPS does for outdoors. Taking
the characteristics of current WiFi infrastructure into consideration, an ideal WiFi-based localization system
should meet the following requirements:
Universal: It should use standard WiFi interfaces on both the AP and target devices, without introducing
specialized hardware modi�cation or extra hardware (e.g., camera, accelerometer, gyroscope, and etc) that are
not readily available on all sizes of WiFi-devices.
Compatible: As data communication is the essential task of WiFi, the localization sub-system should be
compatible with data transmission, without blocking it.
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Fig. 1. We compare SiFi with the state-of-the-art WiFi-based localization systems that can achieve sub-meter accuracy.
While all of them can deliver desirable accuracy, they require either multiple APs or multiple channel measurements. In
contrast, SiFi requires only a single AP with a single channel. Note that here we only include systems that can achieve
sub-meter median accuracy. Thus, some schemes are not involved. For example, CUPID achieves 2.7 m median accuracy
using 3 APs.

Accurate: �e pursuit of accuracy is boundless. Experiences have suggested that one meter or below is considered
practically useful, which is also the design goal of state-of-the-art localization systems [16, 29, 33].

�e above requirements seem simple but are hard to meet at the same time. �e �ngerprint-based schemes
require densely deployed APs to deliver desirable accuracy [35, 37]. �e single AP-based approaches for smart-
phones su�er from meter level accuracy and require extra inertial sensors [21, 25]. Recently a number of
Angle-of-Arrival (AoA)-based techniques are proposed with high accuracy [11, 16, 32]. �ey however need at
least three APs working together, which are not necessarily available in practice [25]. �e recent Time-of-Arrival
(ToA)-based advances on a single AP can deliver decimeter accuracy by creating a virtual wide band (or even
ultra wide band) [29, 31], but their channel-hopping mechanisms disrupt data communication. We compare our
scheme with state-of-the-art WiFi localization systems in terms of the number of channels and APs as in Figure 1.
In short, indoor localization with a single commodity AP that enables concurrent data transmission (one single
channel) remains a challenging goal.

With this goal in mind, we �rst carefully examine the physical layer design of WiFi to characterize the root
causes of inaccuracy in channel measurement, i.e., Channel State Information (CSI). We �nd that the residual
errors from the Symbol Time O�set (STO) 1 and Sampling Frequency O�set (SFO) are two major sources. While
both the SFO and STO contribute delay distortions to all paths, they vary vastly in time scales. Speci�cally,
SFOs may keep stable on the order of minutes, whereas STOs are di�erent from packet to packet. As such, the
ToA-based WiFi localization faces three critical challenges:
Dynamic time distortion: ToA estimates, even in channel coherence time, are highly dynamic due to STOs
that are di�erent across packets. �is complicates super-resolution-based ToA estimations, as they need multiple
measurements from the same distribution [27].
Direct path identi�cation: Di�erentiating the direct path from re�ection paths is vital for ToA-based localization
since only the direct path captures the true ToA. Unfortunately, the prior insight for direct path identi�cation
becomes invalid due to fast-changing STOs, which contradicts the assumption that the variation of direct path
is less than that of re�ection paths across packets. Furthermore, inevitable spurious estimates arise due to the
inaccurate estimate of path cardinality.

1It is sometimes called packet detection delay.
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contrast, SiFi requires only a single AP with a single channel. Note that here we only include systems that can achieve
sub-meter median accuracy. Thus, some schemes are not involved. For example, CUPID achieves 2.7 m median accuracy
using 3 APs.

Accurate: �e pursuit of accuracy is boundless. Experiences have suggested that one meter or below is considered
practically useful, which is also the design goal of state-of-the-art localization systems [21, 33, 37].

�e above requirements seem simple but are hard to meet at the same time. �e �ngerprint-based schemes
require densely deployed APs to deliver desirable accuracy [39, 41]. �e single AP-based approaches for smart-
phones su�er from meter level accuracy and require extra inertial sensors [25, 29]. Recently a number of
Angle-of-Arrival (AoA)-based techniques are proposed with high accuracy [14, 21, 36]. �ey however need at
least three APs working together, which are not necessarily available in practice [29]. �e recent Time-of-Arrival
(ToA)-based advances on a single AP can deliver decimeter accuracy by creating a virtual wide band (or even
ultra wide band) [33, 35], but their channel-hopping mechanisms disrupt data communication. We compare our
scheme with state-of-the-art WiFi localization systems in terms of the number of channels and APs as in Figure 1.
In short, indoor localization with a single commodity AP that enables concurrent data transmission (one single
channel) remains a challenging goal.

With this goal in mind, we �rst carefully examine the physical layer design of WiFi to characterize the root
causes of inaccuracy in channel measurement, i.e., Channel State Information (CSI). We �nd that the residual
errors from the Symbol Time O�set (STO) 1 and Sampling Frequency O�set (SFO) are two major sources. While
both the SFO and STO contribute delay distortions to all paths, they vary vastly in time scales. Speci�cally,
SFOs may keep stable on the order of minutes, whereas STOs are di�erent from packet to packet. As such, the
ToA-based WiFi localization faces three critical challenges:
Dynamic time distortion: ToA estimates, even in channel coherence time, are highly dynamic due to STOs
that are di�erent across packets. �is complicates super-resolution-based ToA estimations, as they need multiple
measurements from the same distribution [31].
Direct path identi�cation: Di�erentiating the direct path from re�ection paths is vital for ToA-based localization
since only the direct path captures the true ToA. Unfortunately, the prior insight for direct path identi�cation
becomes invalid due to fast-changing STOs, which contradicts the assumption that the variation of direct path
is less than that of re�ection paths across packets. Furthermore, inevitable spurious estimates arise due to the
inaccurate estimate of path cardinality.
1It is sometimes called packet detection delay.
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Tangled time delay: As both the STO and SFO add delay distortions to all paths, they are tightly coupled with
the true ToA as will be shown in section 2.1. �e prior solution for correcting tangled time delays rely on either
pilot subcarriers in the data symbol [1] or additional measurements from other channels [35, 37], both of which
become inapplicable if only the CSI on a single channel is available.

In this paper, we show that it is possible to address the above three challenges using only a single o�-the-shelf
AP on a single channel. In a nutshell, our method is based on an important observation: there is only one value for
the delay distortion that should cause all three direct-path ToAs of the receiving antennas to intersect at a single point
where the signals physically come from. Based on this insight, we develop a set of key techniques that deliver
accurate localizations. First, we build a super-resolution algorithm based on Hankel matrix decomposition that
can work with a single packet, avoiding the dynamic delay distortion. �en, leveraging the insight that STOs
have a Gaussian distribution, we design a clustering scheme using ToA spreads across packets to remove STOs
and identify the direct path at the same time. �is clustering algorithm also evaluates the estimated direct path
and outputs a likelihood score for it. By utilizing an advantage of the MIMO design that three antennas on an AP
are frequency-locked, we make a key observation that although the delay distortion due to SFO is unknown,
there is only one true value for the three direct-path ToAs to intersect. We accordingly model our localization
process into a weighted iterative least square problem that estimates the unknown time delay distortion and
location at the same time.

To demonstrate the feasibility of our design, we build SiFi, a single AP-based localization system for indoor
environments, using Intel 5300 commodity WiFi cards. We evaluate it under the same se�ings and environments
with two state-of-the-art single AP-based systems, Splicer [35] and CUPID [29]. Our experiments show that on
a 40 MHz channel, SiFi achieves a median localization accuracy of 0.93 m, signi�cantly outperforming Splicer
(2.96 m) and CUPID (5.11 m). We also show that SiFi works robustly in challenging Non-Line of Sight (NLoS)
scenarios, where Splicer and CUPID fail to provide desirable results.
Contributions: To our knowledge, SiFi is the �rst single AP-based localization system that achieves sub-
meter accuracy using a single channel. SiFi does not require any hardware modi�cation for both the AP and
target devices, nor does it a�ect regular data transmission. Due to its simplicity, a range of indoor localization
applications shall greatly bene�t from SiFi.

1 RELATED WORK
�e research of WiF-based indoor localization has a long history and thus numerous systems have emerged,
we only survey methods that are closely related to ours here. For more complete surveys, please refer to [40].
Broadly speaking, there are three di�erent types of approaches: ToA, AoA, and �ngerprinting.
ToA: Early ToA-based methods use RSSI and the prorogation model to deduce the range between the transmi�er
and receiver [5, 9]. �ese methods are fundamentally limited by the RSSI that is an indirect measurement.
CUPID [29] combines the range that is estimated by the energy of direct path, the angle that is based on AoA-
MUSIC, and human movements together to realize single AP-based localizations. SAIL [25] further improves
CUPID by coupling a built-in 88 MHz clock of an Atheros WiFi card and CSI to measure the ToA, leading
to a median localization accuracy of 2.3 m. Other schemes that rely on maintaining highly accurate time
synchronization between access points [26, 27] or between the transmi�er and receiver [4], are quite hard to
implement on commodity APs. Recently several advances use the physical layer information to accurately deduce
the ToA/TDoA, breaking the meter accuracy barrier [33, 35, 37]. Although the localization accuracy has been
greatly improved, they require information from other channels, resulting in data communication disruptions.
However, SiFi is quite di�erent from those methods, since it can deliver sub-meter accuracy with a single AP
while keeping concurrent data transmission una�ected.
AoA: Due to the MIMO design of commodity APs, many AoA-based techniques are proposed using antenna-array
[16]. ArrayTrack [36] pioneers MIMO-based WiFi localization by using WARP and USRP so�ware radios. Later,
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Ubicarse [22] and LTEye [23] use synthetic aperture radar to improve accuracy. More recently, SpotFi [21] and
Phaser [14] successfully apply phased array on commodity APs. Nevertheless, almost all AoA-based methods
need at least three APs working together due to the triangulation requirement. While SiFi also makes use of
the MIMO design, it only requires a single AP. Actually, SiFi can be an excellent complement to state-of-the-art
AoA-based systems if more APs are available.
Fingerprinting: Fingerprinting based methods assume that every distinct location should have a distinct radio
frequency �ngerprint. While early �ngerprinting based methods [41] always require the manual site survey,
recent crowdsourcing-based schemes [39] receive lots of a�entions. Although decent accuracy is not a problem
for �ngerprint based methods, e.g., a median accuracy of 0.6 m is achieved in [41], the major problem is its
slow adaption to environment changes. For example, the replacement of AP or the movement of large indoor
objects might require a sweeping new site survey/crownsourcing. Another problem is the performance would
have degraded signi�cantly when only a limited number of APs are available. Unlike those approaches, SiFi is a
universal, easy-to-maintain, and cost-e�ective solution.

�ere are also a number of sensor-based localization schemes on mobile devices, e.g., acoustic sensor [8, 11],
RFID [13, 15]. Yet, those schemes are not as ubiquitous as WiFi-based localization systems, which can deal with
all sizes of devices, from desktop, laptop to tablet, cell phone, and even tiny-size tags [2].

2 SINGLE AP LOCALIZATION

2.1 CSI Primer
In wireless communication, multipath is the phenomenon that a signal reaches a receiving antenna by two or
more paths. �e mathematical model of multipath propagation can be presented using the channel impulse
response function, i.e., h(τ ) = ∑K

k=1 akδ (τ − τk ), where h is the impulse response of channel, τ is the time, K is
the number of received impulses (paths), δ is the Dirac delta function, τk and ak are the time delay and complex
amplitude of k-th path. We call the estimates (τ̂1, τ̂2, ..., τ̂K ) an estimated ToA spread and one of the estimates,
e.g., τ̂i , that is associated with the direct path, the true ToA. By Fourier transform, an impulse response can be
equivalently converted to a channel frequency response, i.e.,

H ( f ) =
K∑
k=1

ake−j2πτk f . (1)

In a WiFi OFDM receiver, the frequency response is discretized by subcarriers, i.e., H [fi ] =
∑K

k=1 ake−j2πτk fi ,
where fi is the frequency of i-th subcarrier.

�e main di�culty of solving Equation 1 is in the nonlinear dependence of frequency responses on unknown
delays. Fortunately, a bunch of well-researched super-resolution algorithms can be used to tackle this [32].
MUSIC [28] is probably the most prominent representative due to its robustness and e�ectiveness in many areas.

Unfortunately, the CSI in practice always contains errors, of which the STO and SFO are two major sources 2.
�e STO stems from the residual error of symbol synchronization module in the receiver a�er the detection of
frame start. According to the standard [1], the requirement of symbol synchronization is one sample resolution.
To put this in context, as the subcarrier spacing is 312.5 KHz in WiFi, a useful symbol time is 3.2 µs (excluding
long⁄short guard interval). For a 20 MHz channel, there are 64 samples (including null subcarriers) per symbol, then
the time of one sample is 3200/64 = 50 ns, which is corresponding to a distance of about 15 meters. Di�erently,
the SFO 3 comes from that the sampling frequency of DAC at the transmi�er, ft , and the sampling frequency of

2In this paper, we do not discuss other errors that are intractable by so�ware methods, e.g., thermal noise, quantization error.
3It is also called sampling clock error sometimes.
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Fig. 2. (a) The channel distorted by STO&SFO, H ′, has an added phase across subcarriers to the true channel H . (b) The
phase di�erences between H and H ′ are linear with subcarriers. (c) The STO manifests in a constant o�set to all symbols. (d)
The SFO manifests in accumulated o�sets across symbols.

Unfortunately, the CSI in practice always contains errors, of which the STO and SFO are two major sources 2.
�e STO stems from the residual error of symbol synchronization module in the receiver a�er the detection of
frame start. According to the standard [1], the requirement of symbol synchronization is one sample resolution.
To put this in context, as the subcarrier spacing is 312.5 KHz in WiFi, a useful symbol time is 3.2 µs (excluding
long⁄short guard interval). For a 20 MHz channel, there are 64 samples (including null subcarriers) per symbol, then
the time of one sample is 3200/64 = 50 ns, which is corresponding to a distance of about 15 meters. Di�erently,
the SFO 3 comes from that the sampling frequency of DAC at the transmi�er, ft , and the sampling frequency of
ADC at the receiver, fr , are not in sync. So, the fractional SFO of sampling frequency correction in the receiver is
de�ned as ζ = ft

fr
− 1.

�e common e�ect of those two errors in frequency domain is the phase rotation of CSI 4 across subcarriers as
shown in Figure 2a. �e magnitude of this added phase varies linearly across subcarriers as shown in Figure 2b.
In time domain, these two errors result in delay distortions to all paths for a single packet, i.e.,

τ ′k = τk + τf + τt ,k ∈ [1,K], (2)

where τk is the true time delay of k-th path in theory, τ ′k is the tangled time delay of k-th path in practice, τf and
τt are the delay distortions by the SFO and STO, respectively.

Nevertheless, the e�ects of STO and SFO on time-domain symbols are quite di�erent. �e STO leads to a
constant symbol o�set for all symbols as shown in Figure 2c, whereas the SFO results in accumulated symbol
o�sets across symbols as shown in Figure 2d. So an initial small fractional STO, ζ , (e.g., the �rst few symbols of
a packet) can lead to a signi�cantly larger o�set in Long Training Fields that are directly used to estimate the
channel. More importantly, the STO and SFO vary di�erently in time scales. While the STO varies from packet to
packet, the SFO may keep stable on the order of minutes [15, 31].

1.2 Localization framework
We present the framework of SiFi and how it tackles challenges of the ToA estimation as follows.

2In this paper, we do not discuss other errors that are intractable by so�ware methods, e.g., thermal noise, quantization error.
3It is also called sampling clock error sometimes.
4Here, we do not discuss phase distortions that have li�le impact on the ToA estimation. For example, the carrier frequency o�set manifests
in a constant added phase for all subcarries [11, 31].
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Unfortunately, the CSI in practice always contains errors, of which the STO and SFO are two major sources 2.
�e STO stems from the residual error of symbol synchronization module in the receiver a�er the detection of
frame start. According to the standard [1], the requirement of symbol synchronization is one sample resolution.
To put this in context, as the subcarrier spacing is 312.5 KHz in WiFi, a useful symbol time is 3.2 µs (excluding
long⁄short guard interval). For a 20 MHz channel, there are 64 samples (including null subcarriers) per symbol, then
the time of one sample is 3200/64 = 50 ns, which is corresponding to a distance of about 15 meters. Di�erently,
the SFO 3 comes from that the sampling frequency of DAC at the transmi�er, ft , and the sampling frequency of
ADC at the receiver, fr , are not in sync. So, the fractional SFO of sampling frequency correction in the receiver is
de�ned as ζ = ft

fr
− 1.

�e common e�ect of those two errors in frequency domain is the phase rotation of CSI 4 across subcarriers as
shown in Figure 2a. �e magnitude of this added phase varies linearly across subcarriers as shown in Figure 2b.
In time domain, these two errors result in delay distortions to all paths for a single packet, i.e.,

τ ′k = τk + τf + τt ,k ∈ [1,K], (2)

where τk is the true time delay of k-th path in theory, τ ′k is the tangled time delay of k-th path in practice, τf and
τt are the delay distortions by the SFO and STO, respectively.

Nevertheless, the e�ects of STO and SFO on time-domain symbols are quite di�erent. �e STO leads to a
constant symbol o�set for all symbols as shown in Figure 2c, whereas the SFO results in accumulated symbol
o�sets across symbols as shown in Figure 2d. So an initial small fractional STO, ζ , (e.g., the �rst few symbols of
a packet) can lead to a signi�cantly larger o�set in Long Training Fields that are directly used to estimate the
channel. More importantly, the STO and SFO vary di�erently in time scales. While the STO varies from packet to
packet, the SFO may keep stable on the order of minutes [15, 31].

1.2 Localization framework
We present the framework of SiFi and how it tackles challenges of the ToA estimation as follows.

2In this paper, we do not discuss other errors that are intractable by so�ware methods, e.g., thermal noise, quantization error.
3It is also called sampling clock error sometimes.
4Here, we do not discuss phase distortions that have li�le impact on the ToA estimation. For example, the carrier frequency o�set manifests
in a constant added phase for all subcarries [11, 31].
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Unfortunately, the CSI in practice always contains errors, of which the STO and SFO are two major sources 2.
�e STO stems from the residual error of symbol synchronization module in the receiver a�er the detection of
frame start. According to the standard [1], the requirement of symbol synchronization is one sample resolution.
To put this in context, as the subcarrier spacing is 312.5 KHz in WiFi, a useful symbol time is 3.2 µs (excluding
long⁄short guard interval). For a 20 MHz channel, there are 64 samples (including null subcarriers) per symbol, then
the time of one sample is 3200/64 = 50 ns, which is corresponding to a distance of about 15 meters. Di�erently,
the SFO 3 comes from that the sampling frequency of DAC at the transmi�er, ft , and the sampling frequency of
ADC at the receiver, fr , are not in sync. So, the fractional SFO of sampling frequency correction in the receiver is
de�ned as ζ = ft

fr
− 1.

�e common e�ect of those two errors in frequency domain is the phase rotation of CSI 4 across subcarriers as
shown in Figure 2a. �e magnitude of this added phase varies linearly across subcarriers as shown in Figure 2b.
In time domain, these two errors result in delay distortions to all paths for a single packet, i.e.,

τ ′k = τk + τf + τt ,k ∈ [1,K], (2)

where τk is the true time delay of k-th path in theory, τ ′k is the tangled time delay of k-th path in practice, τf and
τt are the delay distortions by the SFO and STO, respectively.

Nevertheless, the e�ects of STO and SFO on time-domain symbols are quite di�erent. �e STO leads to a
constant symbol o�set for all symbols as shown in Figure 2c, whereas the SFO results in accumulated symbol
o�sets across symbols as shown in Figure 2d. So an initial small fractional STO, ζ , (e.g., the �rst few symbols of
a packet) can lead to a signi�cantly larger o�set in Long Training Fields that are directly used to estimate the
channel. More importantly, the STO and SFO vary di�erently in time scales. While the STO varies from packet to
packet, the SFO may keep stable on the order of minutes [15, 31].

1.2 Localization framework
We present the framework of SiFi and how it tackles challenges of the ToA estimation as follows.

2In this paper, we do not discuss other errors that are intractable by so�ware methods, e.g., thermal noise, quantization error.
3It is also called sampling clock error sometimes.
4Here, we do not discuss phase distortions that have li�le impact on the ToA estimation. For example, the carrier frequency o�set manifests
in a constant added phase for all subcarries [11, 31].
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Unfortunately, the CSI in practice always contains errors, of which the STO and SFO are two major sources 2.
�e STO stems from the residual error of symbol synchronization module in the receiver a�er the detection of
frame start. According to the standard [1], the requirement of symbol synchronization is one sample resolution.
To put this in context, as the subcarrier spacing is 312.5 KHz in WiFi, a useful symbol time is 3.2 µs (excluding
long⁄short guard interval). For a 20 MHz channel, there are 64 samples (including null subcarriers) per symbol, then
the time of one sample is 3200/64 = 50 ns, which is corresponding to a distance of about 15 meters. Di�erently,
the SFO 3 comes from that the sampling frequency of DAC at the transmi�er, ft , and the sampling frequency of
ADC at the receiver, fr , are not in sync. So, the fractional SFO of sampling frequency correction in the receiver is
de�ned as ζ = ft

fr
− 1.

�e common e�ect of those two errors in frequency domain is the phase rotation of CSI 4 across subcarriers as
shown in Figure 2a. �e magnitude of this added phase varies linearly across subcarriers as shown in Figure 2b.
In time domain, these two errors result in delay distortions to all paths for a single packet, i.e.,

τ ′k = τk + τf + τt ,k ∈ [1,K], (2)

where τk is the true time delay of k-th path in theory, τ ′k is the tangled time delay of k-th path in practice, τf and
τt are the delay distortions by the SFO and STO, respectively.

Nevertheless, the e�ects of STO and SFO on time-domain symbols are quite di�erent. �e STO leads to a
constant symbol o�set for all symbols as shown in Figure 2c, whereas the SFO results in accumulated symbol
o�sets across symbols as shown in Figure 2d. So an initial small fractional STO, ζ , (e.g., the �rst few symbols of
a packet) can lead to a signi�cantly larger o�set in Long Training Fields that are directly used to estimate the
channel. More importantly, the STO and SFO vary di�erently in time scales. While the STO varies from packet to
packet, the SFO may keep stable on the order of minutes [15, 31].

1.2 Localization framework
We present the framework of SiFi and how it tackles challenges of the ToA estimation as follows.

2In this paper, we do not discuss other errors that are intractable by so�ware methods, e.g., thermal noise, quantization error.
3It is also called sampling clock error sometimes.
4Here, we do not discuss phase distortions that have li�le impact on the ToA estimation. For example, the carrier frequency o�set manifests
in a constant added phase for all subcarries [11, 31].
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(d) SFO symbol distortion

Fig. 2. (a) The channel distorted by STO&SFO, H ′, has an added phase across subcarriers to the true channel H . (b) The
phase di�erences between H and H ′ are linear with subcarriers. (c) The STO manifests in a constant o�set to all symbols. (d)
The SFO manifests in accumulated o�sets across symbols.

ADC at the receiver, fr , are not in sync. So, the fractional SFO of sampling frequency correction in the receiver is
de�ned as ζ = ft

fr
− 1.

�e common e�ect of those two errors in frequency domain is the phase rotation of CSI 4 across subcarriers as
shown in Figure 2a. �e magnitude of this added phase varies linearly across subcarriers as shown in Figure 2b.
In time domain, these two errors result in delay distortions to all paths for a single packet, i.e.,

τ ′k = τk + τf + τt ,k ∈ [1,K], (2)

where τk is the true time delay of k-th path in theory, τ ′k is the tangled time delay of k-th path in practice, τf and
τt are the delay distortions by the SFO and STO, respectively.

Nevertheless, the e�ects of STO and SFO on time-domain symbols are quite di�erent. �e STO leads to a
constant symbol o�set for all symbols as shown in Figure 2c, whereas the SFO results in accumulated symbol
o�sets across symbols as shown in Figure 2d. So an initial small fractional STO, ζ , (e.g., the �rst few symbols of
a packet) can lead to a signi�cantly larger o�set in Long Training Fields that are directly used to estimate the
channel. More importantly, the STO and SFO vary di�erently in time scales. While the STO varies from packet to
packet, the SFO may keep stable on the order of minutes [20, 35].

2.2 Localization framework
We present the framework of SiFi and how it tackles challenges of the ToA estimation as follows.

�e �rst step is to acquire the CSI from three antennas of an AP when the target is sending out packets, as
shown in Figure 3a. Currently, WiFi cards of almost all the major WiFi manufacturers, e.g., Atheros, Intel, support
exporting the CSI for each packet. �en in the second step, we apply a super-resolution algorithm to resolve time
delays of all the paths as shown in Figure 3b. Our super-resolution algorithm is built upon several key techniques
that are embedded in existing spectral analysis [32]. We will detail it in section 3. �e third step is to identify the
direct path of each antenna as shown in Figure 3c. By leveraging the observation that STOs follow a Gaussian
distribution [30, 35], we design a clustering algorithm to identify the direct path and remove the STO at the
same time, which are detailed in section 4. �e �nal step is to estimate the location by untangling the true ToA
4Here, we do not discuss phase distortions that have li�le impact on the ToA estimation. For example, the carrier frequency o�set manifests
in a constant added phase for all subcarries [14, 35].
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(a) CSI acquisition (b)multipath super-resolution (c) direct path identification (d) location estimation

Fig. 3. The architecture of SiFi. (a) It first collects CSI from the three antennas of the AP; (b) It uses a super-resolution
algorithm to estimate the ToA spread; (c) It applies a clustering algorithm to identify the direct path and remove the STO at
the same time; (d) It estimates the location by using a weighted iterative least square model to combat SFO.

from the delay distortion due to the SFO, as shown in Figure 3d. We model the unknown delay estimation into a
weighted iterative least square problem, which is detailed in section 5.

3 ESTIMATING TOA SPREAD
Based on Equation 1, ideally the CSI ofm equally spaced subcarriers (fi1 , fi2 , ..., fim ) in a WiFi channel with K
paths can be wri�en in vector form as

H = Sα , (3)
S ≡ [s (τ1), s (τ2), ..., s (τK )],

s (τ ) ≡ [e−j2π fi1τ , e−j2π fi2τ , ..., e−j2π fim τ ]T ,
α ≡ [a1,a2, ...,aK ]T ,
H ≡ [H [fi1],H [fi2], ...,H [fim]]T ≡ [H1,H2, ...,Hm]T ,

where the channel matrix H is of sizem × 1, the steering matrix S is of sizem × K , the amplitude matrix α is of
size K × 1, and s (τ ) is the steering vector of sizem × 1. We use Hk to denote H [fik ] for brevity.

As each subcarrier is considered to be a narrowband �at-fading channel, the measured channel is usually
modeled as Hn = H + n, where n is the circular symmetric complex normal noise 5, of which the mean value is
zero and the noise covariance matrix is known, and Hn is the measured CSI.

If multiple measurements can be collected from the same distribution, the traditional MUSIC algorithm is
able to estimate the covariance matrix of H and then separates the signal subspace from the noise subspace,
which is the key of super-resolution. However, the delay distortion brought by STO changes the parameter of the
distribution, τi , across packets. So it calls for a single packet based super-resolution method. Fortunately, we
observe that the number of available subcarriers is much larger than the number of paths. For example, with
Intel 5300 WiFi cards, the CSI is of length 30 for an antenna in a packet, whereas the number of dominant paths

5Note the delay distortions due to the STO and SFO are coupled with the delay of each path, e.g., τi , which are di�erent from the channel
noise modeled here.

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: 2017.



SiFi: Pushing the Limit of Time-Based WiFi Localization Using A Single Commodity Access Point • 0:7

for indoor environments is around 5 [36]. �erefore, we can form a Hankel matrix as follows

H = Hankel(H) =
*.....
,

H1 H2 · · · Hm−l
H2 H3 · · · Hm−l+1
...

...
...

...
Hl Hl+1 · · · Hm

+/////
-

, (4)

where l is an integer parameter that satis�es l ≥ K andm − l ≥ K 6. Actually, the Hankel data matrix is widely
used in many super-resolution algorithms [24] and can even be dated back to 1795 [10]. �en, we apply Singular
Value Decomposition on theH , i.e.,

H = UΣV∗, (5)
where U is an l × l unitary matrix, Σ is an l × (m − l ) diagonal matrix, and V∗ is an (m − l ) × (m − l ) unitary
matrix. ∗ denotes conjugate transpose. Here we are interested in U and Σ. In particular, Σ is in form of
diag(β1, β2, ..., βK , 0, ..., 0) with singular values β1 ≥ β2 ≥ · · · ≥ βK > 0. Based on these singular values, U can be
separated into Us of size l × K and Un of size l × (l − K ) that are corresponding to non-zero singular values and
diagonal elements of zeros in Σ, respectively, i.e., Us denotes the signal space and Un denotes the noise space.

Note that the singular-value decomposition of Hankel(H) is not possible in practice as the measured result is
always Hn. �is is where MUSIC comes in. �e core of MUSIC is the observation that the signal space should be
orthogonal to the noise space. �erefore, by the singular-value decomposition ofHn = Hankel(Hn), the noise
space is obtained asUn by Equation 5 that should be orthogonal to the steering matrix, Sl , that coincides with
the signal space Us, where Sl ≡ [sl (τ1), sl (τ2), ..., sl (τK )], sl (τ ) ≡ [e−j2π fi1τ , e−j2π fi2τ , ..., e−j2π fil τ ]T . Hence, the
ToA spread (τ1,τ2, ...,τK ) can be identi�ed as the peaks of the following orthogonal projection function

D (τ ) =
1

‖U∗nsl (τ )‖2
, (6)

where ‖ · ‖2 denotes L2 norm.
However, �nding peaks of the above equation always requires either human interaction or a discretized search

algorithm. To address this issue, we turn this peaks search into a model-based parameter estimation similar to
[6], which directly results in numeric values to avoid discretization errors. �e detail is included in Appendix A.

So far we have assumed that K is known. In practice, however, we need to estimate it, so we introduce a
singular value-based threshold method. Remember, in noiseless case, Σ should include K positive singular values.
But with the presence of noises, the zero entries in the diagonal of Σ might become positive, leading to more
singular values than expected. �erefore, we set a threshold γ to estimate K . In particular, a singular value that is
no less than γ βmin is considered to be corresponding to the signal, where βmin is the minimal singular value. In
our tests, we empirically set γ = 8 for moderate SNR scenarios and γ = 25 for high SNR scenarios. A sample of
ToA spread estimation in practice is depicted in Figure 4.

4 FINDING THE DIRECT PATH
Now we need to pick up the direct path from the estimated ToA spread, (τ̂1, τ̂2, ..., τ̂K ). We design a two-step
procedure for this, identifying the paths from spurious peaks using a clustering algorithm and picking up the
direct path by likelihood evaluation.
Identifying paths: We observe that although STOs change fast across packets, they follow a Gaussian distribu-
tion [30, 35]. So we can plot the ToF spread and corresponding amplitudes across packets and apply a �t clustering
algorithm. �e intuition is that as STOs add the same delay to all the paths, the delay of the same path across
6In [19], the suggested l is m/2 or m/3. We test both of them and �nd they provide quantitatively similar results in terms of accuracy at
se�ings that are m = 30, K = 5.
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Fig. 4. (a) A sample of singular values in practice when l =m/3,m = 30,γ = 25. It clearly shows that all singular values are
non-zero due to noises. By using a threshold γ βmin , only two singular values that are above the threshold are selected, i.e.,
the estimated K̂ = 2; (b) The peaks of orthogonal projection function D (τ ) are correctly identified by the polynomial roots
of Equation 19.

packets should also follow a Gaussian distribution. In particular, we apply the well-known Gaussian Mixture
Model [7] clustering. For the most important input parameter, the number of clusters, η, we adopt a dynamic
selection process. We vary η from 2 that is for simple LoS scenarios to 5 7 that is for complex NLoS scenarios. �e
best η is chosen based on the intuition that real paths should be more tightly clustered than spurious peaks, i.e.,

η′ = argmin
η∈[2,5]

η∑
i=1

Var[clusteri ]. (7)

Note that during the iteration of clustering, the ��ed covariance matrix may become ill-conditioned when η is
much more than the ground truth or the data is highly correlated. �e solution is to add a small positive number
to the diagonal elements of the covariance matrix, resulting in a guaranteed positive-de�nite covariance matrix.

Based on clustered results, we further apply two �lters to identify real paths. �e �rst �lter is the cardinality
of a real-path cluster should be more than a percentage of the number of clustered packets. �e justi�cation of
this �lter is that the dominant path should exist in most of the packets. For instance, we can set this percentage
as ϵ = 50%, which is very conservative. �e second �lter is that the variance of a real-path cluster should be less
than ς . In practice, we set ς = 1.5 · (one sample duration), as the standard [1] speci�es the resolution of STO is
one sample. While we recommend the threshold values for the above two �lters in common indoor environments,
they can be easily adjusted according to the needs of di�erent scenarios.
Evaluating paths: A�er �ltering the clustered results, we use the mean of each cluster as the ToA of each path
(τ̂k ) and identify the direct path using likelihood evaluation. Our likelihood evaluation is inspired by the work
[21]. In particular, we incorporate all the positive and negative factors of being a direct path into a likelihood
function, i.e.,

ρ (k ) = e(wκκk−wσ σk−wτ τ̄k ), (8)
where ρ (k ) is the likelihood score of the k-th path, κk , σk , and τ̄k are the cardinality, variance, and mean
delay of the cluster that is corresponding to the k-th path, respectively. �e weights wκ ,wσ ,wτ are constants
7Note that the maximum value for η is set at 5 because there are usually 5 dominant paths in indoor environments [21, 36].
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Fig. 5. A sample of clustered paths based on 30 packets in an NLoS scenario.

across clusters but di�erent in scales. wκ is on the order of 10 points in the cluster. wσ ,wτ are on the order of
nanoseconds. �e intuition of the above likelihood function is the more points (larger κk ) in the cluster, the
higher possibility of being a direct path, while more dispersive (larger σk ) and larger delay values (larger τ̄k ), the
lower possibility of being a direct path as the direct path tends to be stable and always travels in the shortest time.

Now we can pick up the direct path that is with the highest likelihood score. A sample of clustering process in
given in Figure 5. Five candidate paths (clusters) are clear to spot. First, the �rst and ��h clusters are removed
by �ltering due to their low cardinalities. �en for likelihood evaluation, as the variance and time delay of the
second path are smaller than the third path, so ρ (2) > ρ (3). For the fourth path, its likelihood score is also less
than the second path due to the less number of points in the cluster and longer time delay. �erefore, the second
path is identi�ed as the direct path. Note that the salient feature of our direct path identi�cation is to remove
dynamic time distortions brought by STOs and identify the direct path at the same time. Also the associated
likelihood score ρ is quite useful in localizations as we shall see in next section. We denote the output of this
section as τD and ρD for a transmi�er-receiver pair.

Although our clustering and likelihood evaluation are inspired by SpotFi [21], our solution is quite di�erent
from it. Speci�cally, our method di�erentiates itself in objectives and techniques. For example, our clustering is
to remove the fast-changing STOs based on the observation that STOs follow a Gaussian distribution, whereas
SpotFi uses a linear regression to remove STOs and then apply a clustering algorithm to help identify the correct
AoA. Moreover, SpotFi uses a �xed number of clusters for clustering, which is 5 in [21]; in contrast, our clustering
is more �exible and adaptable since we use a range of di�erent number of clusters, η ∈ [2, 5], to account for
dynamic indoor scenarios, e.g., LoS and NLoS environments.

5 COMBATING SFO
Even the e�ect of STO could be alleviated by the above clustering process, the delay distortion incurred by
SFO still exists in all direct paths of transmi�er-receiver pairs according to Equation 2. �ere are some existing
methods to correct this error. For example, in the WiFi standard [1], pilot subcarriers in data symbols are
employed to correct this residual phase o�set. Splicer [35] and ToneTrack [37] make use of CSI from other
channels. Unfortunately, they are not applicable in our case since our goal is to do localization with the CSI
of only one channel. Nevertheless, we observe that an opportunity arises in the MIMO design of commodity
APs that all antennas on board are frequency-locked, which means the STO should be the same across all the
transmi�er-receiver pairs, i.e., τ 1

f = τ
2
f = τ

3
f , where τ if is the delay distortion on the i-th receiving antenna due to

STO. Since these delay distortions are the same, we use τF to denote this. At the same time, according to the
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Algorithm 1 �e localization algorithm of SiFi
1: Input: collected CSI for each receiving antenna on the AP, the locations of three antennas.
2: Output: location of the target.
3: for each receiving antenna do
4: for each packet do
5: Construct the data matrix as in Equation 4;
6: Use singular-value decomposition to obtain eigenvectors,Un;
7: Estimate K as in Figure 4a;
8: Obtain K roots from Equation 19;
9: end for

10: Filter and cluster ToA spreads across packets;
11: Identify the direct path using equation 8;
12: end for
13: Iteratively minimize Equation 13 until results converge.

observation that SFOs keep stable on the order of minutes [20, 35], we can treat τF as a constant across packets in
a short-time interval. Based on the above observations, we can model the measured distance at the i-th antenna
as follows,

Rin = Ri (x ,y,τF ) + niR , (9)

Ri (x ,y,τF ) =
√
(x i − x )2 + (yi − y)2 + cτF , (10)

where c is the speed of light, Rin and Ri are the measured distances with and without measurement noises, niR ,
(x i ,yi ) is the position of i-th receiving antenna, and (x ,y) is the unknown position of target. Note that Rin is
computed using the estimated delay of the direct path from the last section, i.e., Rin = cτ iD .

As Equation 10 is non-linear, we apply Taylor series to linearize it. Speci�cally, we can expand it at the point
(x0,y0,τF 0) and omit the second and higher order terms, i.e.,

Ri (x ,y,τF ) = Ri (x0,y0,τF 0) +
∂Ri

∂x
∆x +

∂Ri

∂y
∆y +

∂Ri

∂τF
∆τF , (11)

, where ∆x ≡ x − x0, ∆y ≡ y − y0, ∆τF ≡ τF − τF 0.
�erefore, by pu�ing Equation 11 into Equation 9, we rewrite data from three antennas into a vector form as

*.
,

∆R1

∆R2

∆R3

+/
-
=
*...
,

∆ ∂R1

∂x
∂R1

∂y
∂R1

∂τF
∆ ∂R2

∂x
∂R2

∂y
∂R2

∂τF
∆ ∂R3

∂x
∂R3

∂y
∂R3

∂τF

+///
-

*.
,

∆x
∆y
∆τF

+/
-
+
*.
,

n1
R

n2
R

n3
R

+/
-
. (12)

Now it is clear that the above equation is in the standard form of least square problem. However, since the
variances of n1

R ,n
2
R ,n

3
R are not equal, we need to give proper weights to each direct path and this is where

likelihood scores come in. In other words, we need to estimate the location in a way that well explains the quality
of each direct path. Mathematically, we need to �nd the location that minimizes the following objective function,

3∑
i=1

ρi (∆Ri − ∂R
i

∂x
∆x +

∂Ri

∂y
∆y +

∂Ri

∂τF
∆τF )

2, (13)
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Fig. 6. Our testbed deployment includes target locations in blue squares and antenna positions in red circles. The red
dashed box stands for a typical indoor o�ice environment, while the other three green solid boxes denote corridor scenarios.
In each test, only a single AP with three antennas is available.

where ρi is the likelihood score of a direct path from i-th antenna. Actually, minimizing the above object function
is exactly the weighted version of Equation 12.

By solving the above equation, we can obtain a one-time estimate, [∆x ,∆y,∆τF ]T . Based on this, we replace
the initial guess (x0,y0,τF 0) with a new point (x0 +∆x ,y0 +∆y,τF 0 +∆τF ) in equation 11 to start another around
of weighted least square estimation until the solution converges below a threshold, e.g., the (∆x ,∆y) is at 1-meter
level. For cases that it may not be able to reach the convergence threshold, we also set a maximum iteration times
to prevent in�nite loops. For the initial guess point, both a random point or a �xed point would work. We wrap
up all the above localization algorithms brie�y in Algorithm 1.

6 IMPLEMENTATION
We implement SiFi using o�-the-shelf Intel 5300 WiFi cards, which can export CSI using Linux CSI Tool [17]. For
each transmi�er-receiver pair, the CSI tool outputs truncated CSI of length 30 (for both 20/40 MHz channels) for
each packet. Each element of CSI is a complex number, of which the real and imaginary parts are quantized using
8 bits. We use a dell desktop that is with an Intel 5300 WiFi card installed using a Mini PCI-E to PCI-E adapter as
the AP. Each of three antennas on the AP is connected to a 5-meter long antenna extension cable with a magnetic
base 8. For the target device, we use an Intel Mini PC, NUC D34010WYB, that is equipped with another Intel 5300
WiFi card. To support the mobility of this Intel NUC, we connect it to a portable charger, RAVPower Xtreme
series power bank. All the experiments are done using the 802.11n protocol [1]. Our evaluations are mainly
concerned with the localization error, which is the Euclidean distance between the estimated position and the
real position.
Deployments: We deploy SiFi in di�erent scenarios, including common o�ces, corridors, and high NLoS
scenarios. We tested over 200 di�erent locations, a part of which is shown in Figure 6. Note that although there
are several deployment positions for the AP, only a single AP is available for each test. �e only requirement for
positions of antennas is to keep them non-collinear, which is basic for all ToA based solutions. We obtain the
ground truth of locations by combing the architectural �oor plan and a Bosch GLM35 laser distance �nder that
can achieve mm accuracy.

8 For typical extension cords, the cable loss is 0.1 dB/� (about 0.3 dB/meter). �e common sizes of those cords are 3-meter, 5-meter, and
7-meter. As the maximal di�erence of such a signal loss is about 1.2 dB between 3-meter and 7-meter cords, we observe no signi�cant
di�erence in localization performances with cords of those sizes. In this paper, we report the results based on 5-meter extension cords.
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CSI acquisition: First, the AP works in the monitor mode on a pre-selected channel. At each location, the target
sends out 200 packets with 10 ms interval. �en, the AP shall collect CSI for each packet on all transmi�er-receiver
pairs. Later, it uses Algorithm 1 to estimate the target’s location. Our algorithms are implemented using MATLAB.
All competitions are fed by the same raw CSI data.

Note that we do not need the synchronization of CSI, which is usually implicitly or explicitly required in
many other systems, e.g., timestamps in [21], and the wireless synchronization protocol in [37]. Because the
synchronization across antennas on an AP is done by a frequency-locked loop on-chip. Due to the instability
of �rmware [14] on 2.4 GHz, both the AP and target operate on a 40 MHz channel of 5 GHz spectrum, unless
otherwise stated. For example, one of the channels we tested is channel 100+, of which the frequency range is
5490-5530 MHz. Actually, the operation on 5 GHz frequencies cannot perform be�er than that on 2.4 GHz due to
the worse penetration for indoor applications.
Competitions: We compare SiFi with two state-of-the-art single AP based methods, Splicer [35] and CUPID
[29]. We choose these two methods because, among recently proposed ToA based designs, they can directly
operate on a single commodity AP on a single channel without any hardware or driver modi�cation. We did not
compare SiFi with Chronus [33], as it requires a modi�ed drive that can support fast channel hopping, which is
not compatible with WiFi standards. While SAIL [25] is an improved version of CUPID, it relies on the timing
reading from an internal clock on the chip, which is not universal for all commodity WiFi cards. Hence, we did
not include it for comparison.

We try our best to faithfully implement CUPID as stated in the paper [29] and achieve comparable results. For
a fair comparison, instead of the estimated distance of human movement using inertial sensor data, which is
required in CUPID, we feed it the ground truth distance of such movement. For all the rest of se�ings that are
used in our implementation of CUPID [29] and Splicer [35], we follow the original setup speci�ed in [29, 35],
such as 2.6 cm for the antenna spacing, which is the half of the wavelength of carrier frequency at 5G Hz. Such
a setup is mainly for maximizing the AoA range to [0°, 180°]. For the rationale of those se�ings, please refer
to [29, 35] for more details. While Splicer in the original paper [35] does have the ability to collect CSI from
multiple channels, we only adopt its basic version that only has the access to CSI on a single channel. For other
se�ings, Splicer is the same as CUPID stated above.

7 EXPERIMENTAL EVALUATION

7.1 Comparisons
7.1.1 Indoor o�ice. We �rst examine the performance of SiFi and its competitions in indoor o�ces. �e indoor

o�ce is one of the most representative scenarios for indoor localizations as it is quite multipath rich due to walls,
tables, metallic objects, etc. For indoor o�ces, we test locations that are both in LoS and NLoS, such as, table
corners, drawers, and places obstructed by humans. One of the tested o�ces is highlighted by the red dashed box
in Figure 6.

We plot results in Figure 7a, which shows that SiFi achieves a median localization accuracy of 0.93 m compared
to 2.96 m for Splicer and 5.11 m for CUPID. �e 90th percentile tail errors are 2.59 m, 5.06 m, and 8.69 m for SiFi,
Splicer, and CUPID, respectively. To put these numbers in context, the best AoA-based algorithm, SpotFi, achieves
0.4 m median accuracy using 6 APs with a 40 MHz channel, and the most advanced ToA-based scheme, Chronus,
delivers 0.58 m median accuracy using a single AP but with 35 channels, which means 700 MHz bandwidth has
been used. So we believe SiFi indeed has pushed the current limit for WiFi-based localization systems in the
way that only a single AP with a single channel is involved. Another thing worth noting is that SiFi can locate
stationary targets, which are quite useful for indoor applications, e.g., search for missing objects, whereas Splicer
and CUPID cannot.
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Fig. 7. (a) CDFs of the localization error of SiFi and other two competitions for indoor o�ices; (b) CDFs of the localization
error of SiFi and other two competitions for corridors; (c) CDF of the localization error of SiFi in challenging NLoS scenarios,
where the stable direct path is available for at most 2 antennas.

7.1.2 Corridor. Next, we conduct tests in corridors that are quite common for almost all indoor buildings.
�ere are two major di�culties in locating objects in corridors. First, the number of APs that can be seen by
the client is usually not too much, so robust single AP based solutions are always desired for this situation.
Second, the interval of ToA spread becomes much smaller (e.g, 3-5 ns), worsening multipath channel distortions,
especially for narrow corridors. For example, the width of the narrowest corridor in our test is only 1.2 m, which
is way smaller than that of an o�ce room.

�e results for corridors are plo�ed in Figure 7b. We observe that in corridors, the median accuracy of SiFi is
1.29 m, whereas Splicer’s accuracy degrades to 3.88 m and CUPID’s accuracy worsens to 6.28 m. Note that these
results of Splicer and CUPID are assisted by the ground truth distance of human movement we feed, because
usually the deck-reckoning becomes more challenging for distance estimation in corridors [25]. �e be�er
performance of SiFi is due to two aspects. First, the super-resolution algorithm of SiFi is able to resolve multipath
more accurately, compared to inverse Fourier transform used by CPUID and Splicer. Second, the direct path
identi�cation scheme of SiFi can e�ciently di�erentiate the direct path from refection paths. In contrast, Splicer
and CUPID rely on the human movement which is not that stable.

7.1.3 Challenging NLoS scenario. Furthermore, we evaluate SiFi under more stressful NLoS scenarios. Specif-
ically, this test is conducted in locations where the stable direct path is only available for at most 2 antennas.
�ese locations usually are severely interfered, e.g., 2-3 thick walls, metal poles, quite narrow corners, due to
undesirable di�ractions, refractions, and even absorptions. We denote such scenario as NLoS+. Much prior
time-based work does not study such challenging scenarios [33, 35, 37].

We test SiFi and two competitions in NLoS+ locations and report results in Figure 7c. However, since antennas
of Splicer and CUPID are quite close in space (2.6 cm separated), three antennas always experience the same
serious interference, making them unable to provide meaningful results. So their results are not included. Seen
from Figure 7c, SiFi experiences a degradation in accuracy as expected, but it still achieves a median accuracy of
1.81 m. �e main reason for this is that SiFi uses a likelihood score to assess the quality of direct path, which
rewards the stable path and gives less weight to the low quality path accordingly.

7.2 Investigating SiFi in detail
7.2.1 Traditional MUSIC vs. single packet MUSIC. To further investigate the e�ects of essential parts of SiFi,

we �rst examine the importance of single packet based MUSIC. �e result of traditional MUSIC [28] is shown

PACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 0, No. 0, Article 0. Publication date: 2017.



0:14 • W. Gong et al.

Fig. 8. We investigate the essential modules of SiFi by replacing them with counterparts. First, our super resolution module
is substituted by the traditional MUSIC algorithm using measurements across packets. Second, our direct path identification
(DPI) module is replaced by a simple strategy, which is to pick up the path that is with the smallest ToA.

in Figure 8. Unsurprisingly, the performance of traditional MUSIC is quite poor. Speci�cally, it only achieves
a median accuracy of 5.95 m and the 90-th percentile error is 16.2 m. �e main reason for this is that the fast
changing STOs make one of the prerequisites for MUSIC invalid, which assumes multiple measurements are
sampled from the same distribution. In contrast, our customized MUSIC in SiFi is not a�ected due to its single
packet based design.

7.2.2 Impact of direct path identification. Next, we examine the impact of direct path identi�cation by replacing
it with a simple strategy, which is to pick up the path that is with the smallest ToA as the direct path. Actually,
this intuitive strategy is used in several other systems, such as LTEye [23].

Its result is shown in Figure 8. We observe that the SiFi without direct path identi�cation su�ers from poor
accuracy. In particular, the median accuracy worsens from 0.93 m to 3.84 m. �is is because the smallest ToA
may contain spurious peaks produced by inaccuracy estimates of number of paths and highly dynamic STOs.
Fortunately, SiFi takes good care of this by using �ltering and dynamic clustering techniques together to remove
spurious ToAs.

7.2.3 Delay distortions. Moreover, we examine delay distortions brought by STOs and SFOs, which are
computed as the delay of the estimated direct path by our single packet MUSIC subtracts the accurate direct path
ToA that is derived from the ground truth distance. To remove the e�ect of NLoS, we conduct this experiment in
LoS locations. Hence, we use a very stable solution for direct path identi�cation in LoS, which is to pick up the
path that is with the smallest ToA and the highest power at the same time. Figure 9a plots the histogram of delay
distortions we measure at 50 locations for 20 times with 5-minute interval. We have two observations from this
�gure. First, the delay distortion is much larger than the actual ToA. In particular, the mean of delay distortions
is 186 ns, whereas common direct paths of 5-20 m take ToA from 16.7 to 66.7 ns. Second, the delay distortion is
highly dynamic, of which the standard deviation is 40.2 ns. �ese two factors make the correction for inaccurate
channel measurement necessary.

7.2.4 Impact of channel bandwidth. We also investigate how SiFi performs under a 20 MHz channel, which is
also commonly used in nowadays’ WiFi. Figure 9b plots the localization error of SiFi using a 20 MHz channel.
Like all ToA based methods, the performance of SiFi degrades on a narrower channel. Yet, it still delivers a
median localization accuracy of 2 m. Actually, we �nd that when the resolution of time becomes worse on a
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Fig. 9. (a) The distribution of delay distortions due to STOs and SFOs in 1000 measurements. (b) CDFs of the localization
error of SiFi under di�erent channel bandwidths. (c) CDFs of the localization error of SiFi under di�erent number of packets.

narrower band, the iterative least square contributes the most to making the �nal estimate stable. Note that due
to the simple single channel design of SiFi, it can be seamlessly adapted to an AP that is compatible with 802.11ac
standard, which promises to deliver higher accuracy as the channel bandwidth increases to 80/160 MHz. We
leave SiFi with the 802.11ac standard as one of future work.

7.2.5 Impact of number of packets. As stated in Section 4, multiple packets are quite helpful in clustering, as
they can help di�erentiate the direct path and remove the instability incurred by STO. In the mean time, we
also want to minimize the localization delay by using a small number of packets. So we investigate the impact
of number of packets on SiFi by varying it from 50 to 100. Figure 9c plots the results, which demonstrate SiFi
achieves a median localization accuracy of 1.56 m using 50 packets compared to 1.28 m using 100 packets. Even
more, SiFi achieves 0.94 m median accuracy when 200 packets are available. �ere are two observations from
these results. First, SiFi can adapt its accuracy to di�erent number of packets. Second, the more accurate results
by SiFi are achieved at the cost of delay compared to other schemes, e.g., Splicer, CUPID, that only involve a
limited number of packets (e.g., 10-30).

7.2.6 Investigation in a larger area. To further study the performance of SiFi in a larger area, we conduct
experiments in the West Mall Center of Simon Fraser University as shown in Figure 10. �e size of this testbed is
4620 m2. In this testbed, there are about 4 shops, 10 classrooms, and 23 tables in the lobby. During the day, all the
areas are packed with students coming and going. During the night, shops are closed and fewer students are in
classrooms and with tables, 2 persons/table and 7 persons/classroom on average. Same as the experiments done
in Figure 6, multiple APs are deployed as a single AP cannot cover the whole area. But we ensure that each test
client is covered only by a single AP. We have done two groups of experiments. In the �rst group, we intend
to investigate the impact of a larger area. So we conduct tests both in a small area, which is 176 m2 shown as
a red box in Figure 6, and in a large area, which is 4620 m2 shown in Figure 10. All experiments done in this
group are controlled, which means no moving participants passing by. Results are shown in Figure 11a. It is as
expected that the accuracies of both scenarios are quite similar. �is is because a much bigger area does not bring
much di�culty to the problem and each client is still covered a single AP. For the second group, we examine the
performance of SiFi in the large area for uncontrolled (real) scenarios, where there are a number of irrelevant
people moving around. We group the results into di�erent time periods: morning, a�ernoon, and evening, which
are shown in Figure 11b. We observe that those irrelevant participants indeed impact the localization accuracy
because they may occlude objects, bring more dynamic re�ections, and even create interference by using their
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Fig. 10. Larger test area of 4620 m2 in the West Mall Centre of Simon Fraser University. There are 20 positions for APs and
500 positions for client devices in the whole area. For brevity, part of locations are shown in the map where client positions
are denoted as blue squares and antenna positions are denoted as red circles.
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Fig. 11. Investigation of performance of SiFi in a large area of 4620 m2 for controlled experiments (a) and uncontrolled
experiments (b).

WiFi devices. Speci�cally, during morning and a�ernoon time, the median accuracies deteriorate to 1.24 m and
1.21 m, respectively. �e result at evenings is be�er those at daytime, which is 1.01 m and is quite close to 0.99 m,
the performance of controlled scenarios. �is is because there are usually just a handful of people self studying
out there during the night. �erefore, irrelevant people, whose locations are not of our interest, can still pose
challenges for localization accuracy. Mechanisms that can remove the unwanted re�ections from moving objects,
like frequency modulated carrier wave [3], are worth future investigation.

7.2.7 Impact of antenna positions. Next, we investigate the impact of antenna positions. Apart from the
general rule that three antennas cannot be collinear, we empirically �nd that if two antennas are too close, or
clustered, the localization performance drops. Based on this, we perform experiments in three di�erent groups.
�e �rst group, StyleA, includes equilateral triangles where the length of the leg is more than 3 m. Intuitively,
such triangles cover the area evenly and are used as benchmarks. �e second group, StyleB, is with random
triangles but each leg is more than 2 m while random triangles in the third group (StyleC) have a leg less than 2 m.
�ree examples of antenna positions for each group are shown in Figure 12a, 12b, and 12c, respectively. For each
group, we have 10 di�erent schemes for positioning. Averaged results are depicted in Figure 12d. No surprisingly,
the median localization accuracy of group StyleA is the best, which is 0.93 m and thus used as a benchmark. �e
performance of group StyleB, 0.95 m, almost catches up with that of StyleA. Group StyleC, however, su�ers a lot
from too close antennas and achieves only 4.21 m median accuracy. Our observations con�rm that too close
anchors can degrade the network localization performance because the intersection point of two close anchors is
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Fig. 12. Impact of antenna positions. Experiments are done in three di�erent styles of antenna positions. Three examples
are shown in (a), (b), and (c). The corresponding localization performances are compared in (d).

Table 1. Comparison of state-of-the-art systems (sub-meter accuracy) with ours.

Comm.
compati-

bility

Median
accuracy

(m)

Commercial
device

support

# of
APs

# of an-
tennas
per AP

# of
chan-
nels

Testbed
area
(m2)

Approach

ArrayTrack [36] X 0.23 × ≥3 16 1 N/A AoA

Phaser [14] X 0.8 X ≥3 5 1 190 AoA

SpotFi [21] X 0.4 X ≥3 3 1 160 AoA

Ubicarse [22] X 0.39 X ≥3 2 1 150 AoA

ToneTrack [37] X 0.9 × ≥3 1 3 500 ToA

Splicer [35] × 0.95 X ≥1 3 10 N/A ToA&AoA

Chronus [33] X 0.65 × ≥1 3 35 400 ToA

SiFi X 0.93 X ≥1 3 1 4620 ToA

easily in�uenced by the distance error, thus making the �nal 3-intersection highly unstable [18]. �erefore, in
practice we should adopt StyleA or StyleB for be�er performance. Our current se�ings of 3 m for StyleA and 2 m
for StyleB are empirically learned. Finding the optimal positions for antennas is a very important problem and
we intend to investigate it using rigid graph [12] and network localizability theories [38] together in the future.

8 DISCUSSION & CONCLUSION
To be�er understand our system, we �rst compare it with other state-of-the-art systems in Table 1. Note that we
only include systems that achieve sub-meter median accuracy here. For more comprehensive comparisons, please
refer to surveys [34, 40]. �e comparisons are done from eight aspects, namely, communication compatibility,
median accuracy, commercial o�-the-shelf device support, No. of APs, No. of antennas for each AP, No. of
channels, testbed area size, and approach. Obviously, our system is not the most accurate one among those. Yet,
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it achieves a good trade-o� between accuracy and resources for scenarios where a single AP or a very limited
number of APs are available. Speci�cally, Arraytrack [36] achieves the best median accuracy, which is 0.23 m. It,
however, does so at the cost of hardware resources. It requires a so�ware-de�ned radio platform and 16 antennas
for each AP. To put this in context, a typical commercial AP usually comes with 3 antennas, which is the standard
setup for most other systems, like SpotFi, Chronus, Splicer, and ours. Phaser [14] tries to implement Arraytrack’s
idea with commercial devices by synchronizing two wireless cards as an AP. It achieves around 0.8 m median
accuracy but requires hardware modi�cation, like extra signal spli�ers, and additional alignment algorithms.
Furthermore, it requires at least 3 APs to do localization because it adopts the AoA approach. Such a requirement
also applies to the other two excellent AoA systems, SpotFi [21] and Ubicarse [22]. �erefore, those AoA systems
would face di�culties when there are not enough APs. For example, it is common that there is only a single
AP for small businesses, o�ces, and homes. Also, sometimes only a limited number of AP are seeable even
in a larger space due to interferences, occlusions, and far distances. ToA based solutions promise to use less
APs for localization. In particular, Splicer [35], a most recent improved version of CUPID, combines AoA and
ToA approaches and achieves sub-meter median accuracy using 10 channels. Chronus [33] goes even further
and achieves 0.65 m median accuracy using all the 35 WiFi channels and a single AP. �ey, however, require
customized drivers to do channel hopping, which inevitably disrupts the ongoing communication. In contrast,
our scheme, SiFi, leverages novel clustering based direct-path �nding and builds a weighted least square method
to estimate SFO, achieving sub-meter median accuracy. �e primary reason of our system’s be�er performance
over previous single-AP solutions, like Splicer and CUPID, is that our new direct-path �nding method and the
corresponding weighted iterative algorithm, which helps us estimate SFO. Such a solution is novel and vastly
di�erent from previous solutions. For example, Chronus and Splicer use multiple channels to correct SFO, which
introduces unavoidable communication disruption. Other bene�ts of our system include the adaptive clustering
for direct-path identi�cation and model-based parameter estimation that avoids discretization errors. By contrast,
SpotFi’s clustering is �xed and cannot handle dynamic paths. On the other hand, our system does have some
limitations, which are as follows.

(1) Prolonged Processing Delay: Compared with other single-AP schemes [29, 35], SiFi introduces more
delays. It comes from two main factors. First, SiFi uses more packets and an adaptive clustering algorithm
to achieve more accurate results. Speci�cally, the computation complexity of SiFi is O (Ns ∗N 3

p ∗Nc ) while
those of CUPID and Splicer are O (Ns ) and O (Ns ∗ Np ∗ Nch ), where Ns , Np , Nc , Nch are the numbers of
subcarriers, packets, clusters, and channels, respectively. We can see that SiFi has the highest computation
complexity and thus best accuracy. To some extent, the be�er localization accuracy comes at the expense
of time-e�ciency. �erefore, SiFi is not suitable for real-time applications, e.g., tracking moving devices.
Promising improvements for this include coherent MUSIC that can process multi-packet with di�erent
time delays, and advanced clock calibration techniques that eliminate the need of clustering. Second,
the scheduling time in the medium access layer is another contributing factor. Currently, SiFi localizes a
single user once at a time and thus cannot handle multiple users at the same time. �is problem applies
to most single-AP solutions and needs more investigation. �e potential solutions involve broadcasting
mechanisms for multi-user localization on the client side and novel distributed localization architectures
that can do load-balancing of localization requests on the AP side.

(2) Limited Coverage Area: Both Chronus and our system require cable extensions for antennas, which
incurs some signal losses. A decent o�-the-shelf antenna extension cable can achieve about 0.1 dB/�
loss at 5 GHz, which translates to about 3.2 dB loss if a 10-meter cable is required. Hence, SiFi’s current
design works the best with a small o�ce, like 10 m × 10 m. For a larger area, we can deploy multiple
single-AP systems like we have done in our evaluation or explore multi-AP localization solutions using
both ToA and AoA where AoA ensures fair coverage and ToA provides accurate distance measurements.
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(3) Completion Latency. As our system currently uses the Linux CSI Tool [17], CSIs can only be obtained a�er
the packet is successfully and fully decoded, incurring unnecessary latency. In fact, the CSI acquisition
can be done at the �rst few byte of the packet and it should not be related to successful decoding, i.e.,
CSIs may be acquired even when the packet’s payload is corrupted. To do so, we intend to migrate our
system into so�ware-de�ned radio platforms where more controls and �exibility are provided.

Besides, there are some directions worth future investigations.
(1) Existence of the Direct Path: Almost most of the existing direct path solutions, including ours, assume

there do exist the direct path. However, the signal along the direct path might be too weak to detect due
to serious occlusion. �is can result in large localization errors as one of the re�ection paths is deemed
as the direct path. We may leverage the geometry of the target and AP to eliminate such outliers when
more antennas and APs are available.

(2) More Antennas/Bandwidth: SiFi could be improved by extending the current design to 3D localizations
by leveraging more antennas of advanced o�-the-shelf APs, e.g., NETGEAR R8500, ASUS RT-AC88U, and
Netis WF2471, which are equipped with 4 antennas. Also, we plan to explore potentials of the 802.11ac
design, which promises to boost accuracy as the bandwidth of data channel increases to 80/160 MHz.

(3) Data Fusion: Although SiFi is a pure WiFi-based system for now, it has lots of opportunities to deliver
higher accuracy when inertial sensors become available to clients, such as accelerometer and gyroscope.

�e main result of SiFi is that it can achieve sub-meter localization accuracy using a single AP with 3 antennas.
Another bene�t of SiFi is compatibility with ongoing communication. �ese pros make it suitable for a range of
applications. For example, SiFi can be used to extend drones’ localization capability when GPS is not available.
SiFi can protect drones from crashing or maintain a safe distance from the target for indoor environments.
Another realworld application is that small businesses that usually only has a single AP can use SiFi to provide
WiFi connectivity to customers within the store, restricting connections outside the facility.

Overall, we believe SiFi pushes the limits of single-AP indoor localization using a single channel. It o�ers
decent localization accuracy while keeping data communication una�ected. Its main insight is that only one
value for the delay distortion that should cause all the direct-path ToAs of antennas to intersect at a single point
due to the frequency-locked-antenna design of MIMO. We believe that SiFi can bene�t current indoor localization
and navigation services greatly in many ways due to its simple requirement.

A MODEL-BASED PARAMETER ESTIMATION
To �nd peaks of Equation 6, we translate it into polynomial root �nding problems. Speci�cally, as subcarriers are
equally spaced, if we use ∆f to denote the frequency spacing of two consecutive subcarriers 9, we can rewrite
the steering vector as

sl (τ ) = e−j2π fi1τ [1, z, ..., zl−1]T , (14)

z ≡ e−j2π∆f τ (15)

At the same time, the denominator of projection function can be rewri�en as

D−1 (τ ) = s∗l (τ )Csl (τ ), (16)
C ≡ UnU∗n . (17)

9For example, on a 40 MHz channel, Intel 5300 WiFi cards output the CSI of size 30 out of 114 subcarriers. �e indexes are [-58,-54,-50,…,-
2,2,…,50,54,58], which means those measured subcarriers are equally spaced by ∆f = 312.5 KHz · 4 = 1.25 MHz.
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Hence, we can put Equation 14 and 16 together to obtain polynomials, i.e.,

D−1 (τ ) = e−j4π fi1τ D̃−1 (τ ), (18)

D̃−1 (τ ) =
l−1∑

p=−l+1
cpz
−p , (19)

cp ≡
∑
i−j=p

C(i, j ), (20)

where i and j are the row and column index of matrix C, respectively, cp is the sum of entries of C along the q-th
diagonal.

It is easy to see that the polynomial of Equation 19 is with (2l − 2) roots. �ose roots come in pair as (z, 1/z∗),
that have the same phase but reciprocal amplitudes. Note that only the phase of root carries our interested
parameter τ . So �rst we need to �nd the roots of Equation 19 in (l − 1) pairs and only keep (l − 1) roots that
are within the unit circle. �en we pick up the K roots that are closest to the unit circle. Finally, we put the
K roots into Equation 15, resulting in the estimated ToA spread (τ̂1, τ̂2, ..., τ̂K ). �en corresponding amplitudes
(â1, â2, ..., âK ) are derived by a simple linear regression.
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