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Abstract
Ubiquitous deployment of networked cameras 

has boosted the prevalence of video analytics. 
Leveraging machines to automatically analyze 
captured videos has become the driving force 
behind a variety of contemporary applications. 
However, it is known to be resource-hungry with 
highly dynamic demands, which mismatches the 
existing monolithic cloud service deployment 
with coarse-grained resource allocation. Recent 
advances in serverless computing, which offers 
ultra-fast and fine-grained autoscaling, would 
become a game-changer. This article closely 
examines the potential and challenges of server-
less computing in building modern video analytics 
applications. We accordingly present an integrat-
ed framework with geo-distributed resources, and 
identify the critical design issues toward its imple-
mentation. We further discuss a series of promis-
ing research directions in this field.

Introduction
Networked cameras have been deployed at 
a staggering rate. For instance, the number 
of surveillance cameras installed in the world 
was expected to increase from 770 million in 
2019 to 1 billion in 2021 (https://www.cnbc.
com/2019/12/06/one-billion-surveillance-camer-
as-will-be-watching-globally-in-2021.html). Lever-
aging machines to automatically analyze videos 
captured by these cameras has fuelled the devel-
opment of video analytics [1, 2], which has been 
the driving force behind a wide variety of contem-
porary applications, such as intelligent transporta-
tion, smart retail, and mobile vision systems.

Figure 1 shows a typical video analytics appli-
cation that answers queries about the number of 
a specific object (e.g., vehicles) passing through a 
camera’s field of view. It involves multiple visual 
computing primitives [3], such as object detection 
and object tracking. All of them are notorious for 
high resource demand and long processing time, 
especially when deep neural networks (DNNs) 
are introduced for high accuracy [2, 3]. Although 
cloud and edge resources have been explored 
for video analytics [1–3], existing efforts typically 
allocate and manage coarse-grained resources 
manually at a virtual machine (VM) level, which 
can hardly match the fine-grained video content 
dynamics and unpredictable usage patterns. There 
have been recent efforts toward camera-to-cam-
era [4] or camera-to-cloud [1, 5] collaboration so 
as to reduce latency and improve resource uti-

lization. Yet their monolithic deployment archi-
tectures hamper the flexibility and scalability, for 
the partial execution results can hardly be shared 
among multiple video queries, which is particular-
ly severe for resource-constrained edges.

Since AWS introduced AWS Lambda (https://
aws.amazon.com/lambda/) in 2014, serverless 
computing [6], represented by Function as a Ser-
vice (FaaS) offerings, has been revolutionizing the 
way to build modern cloud-native applications. 
Recent years have witnessed its successful appli-
cations, from building backends for the Web, 
Internet of Things (IoT), and mobile applications, 
to providing automated infrastructures for on-de-
mand and real-time data processing [7]. Near-
ly half of AWS users had adopted AWS Lambda 
in 2020 (https://www.datadoghq.com/state-of-
serverless-2020/), and similar trends have been 
observed in other serverless platforms (https://
www.datadoghq.com/state-of-serverless/), such 
as Google Cloud Functions (GCF) (https://cloud.
google.com/functions), and Microsoft Azure 
Functions (https://azure.microsoft.com/en-us/
services/functions/). We believe that server-
less computing has great potential for building 
new-generation video analytics platforms, given its 
fine-grained autoscaling, its built-in microservice 
architecture with highly parallelizable compute 
units, and its truly pay-as-you-go pricing strate-
gy. Unfortunately, unlike lightweight Web or IoT 
applications, the computing primitives of video 
analytics are generally much heavier, particularly 
with advanced learning, and the video queries are 
highly heterogeneous, which can hardly be uni-
fied. These present a series of distinct challenges 
when meeting with serverless computing.

In this article, we first review the state-of-the-art 
video analytics solutions and discuss their trade-
offs. We then closely investigate the potential 
when serverless computing becomes the foun-
dation for video analytics. We accordingly pres-
ent an integrated framework with geo-distributed 
resources and elaborate on the key design issues 
of its implementation. We finally identify several 
future directions that are worthy of investigation.

Video Analytics:  
State-of-the-Art Solutions and Challenges

Table 1 summarizes the representative solutions 
to date, which seek to accommodate the huge 
and highly dynamic resource demands of video 
analytics from different aspects.
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From Retrospective to Live
Retrospective video analytics queries the record-
ed videos for post-event intelligence. It works 
when query events are only known after the vid-
eos are captured, and/or only a small fraction 
of the historical videos are to be queried. DNN 
model compression and approximation have been 
widely used in this context. For instance, Focus [2] 
accelerates large-scale retrospective video ana-
lytics by training specialized, faster DNN models 
to approximate the accuracy of full, expensive 
models. Most retrospective video analytics sys-
tems are built on VM clusters, with coarse-grained 
and often manual-scaling resources. Though not 
to be in real-time, analyzing a large-scale historical 
video dataset with low latency and cost remains 
challenging in response to unpredictable queries.

To enable real-time interactions (e.g., in aug-
mented reality applications) or decision making 
(e.g., in intelligent traffic systems), live video ana-
lytics arises to process camera feeds in real-time 
[1]. Streaming camera feeds over dedicated net-
work links to a remote resource-rich cloud data 
center is the initial attempt. Achieving effective 
resource management is a significant challenge in 
this context. Video analytics applications typically 
expose several general configuration knobs, such 
as video resolution, frame rate, and models. Dif-
ferent configurations require different resources 
to achieve real-time responses while leading to 
different accuracies. Configuration tuning is thus a 
core technique to balance resources and accura-
cy. For example, VideoStorm [3] manages cluster 
resources for massive live video queries by tuning 
multi-dimensional configuration knobs.

From Cloud to Cloud-Edge
Users’ increasing appetite for Ultra-High-Definition 
(UHD) videos has exacerbated the scarce network 
bandwidth issue of live video analytics. Edge com-
puting provides a natural solution by bringing com-
puting resources to video sources’ proximity. Edge 
video analytics further extends from edge servers 
to cameras as the cameras are becoming “smart” 
with onboard computing resources (https://aws.
amazon.com/deeplens/). DNN model compres-
sion and approximation are also widely used in this 
context to enable in-situ video analytics on these 
resource-constrained devices.

Recent years have witnessed the development 
of cross-camera video analytics [4] that facilitates 
the building of efficient space-time object track-
ing systems over an array of collaborative cam-
eras. An integrated deployment across cameras, 
edges, and the cloud has been conceived as an 
ideal solution [1]. Reducing data transfer over-
head across these heterogeneous components is 
critical for efficient collaboration. One prevalent 
technique is frame filtering. For example, Fil-
terForward [5] executes lightweight classifi-
cation algorithms on cameras or edge devices to 
filter out irrelevant frames; since only query-relat-
ed frames are backhauled to the powerful back-
ends for processing, it preserves accuracy with 
considerably reduced bandwidth use. As DNN 
architectures become increasingly deeper, DNN 
model splitting has also been introduced, which 
executes a portion of a model on the camera and  
transfers the intermediate results (e.g., high-level 
features) to the cloud for further inference [8]. 

Frame compression further allows cameras or 
edge devices to transfer low-resolution frames to 
the cloud, which then recovers the resolution via 
super-resolution [9].

Despite these efforts, building resource-efficient 
live video analytics systems remains an elusive 
goal. The unpredictability of video queries and 
video content dynamics can cause fine-grained 
resource demand variations. These variations can 
hardly be addressed by systems built on coarse-
grained computing infrastructures. Moreover, the 
monolithic deployment architectures of existing 
systems couple different components tightly. It 
impairs flexibility and scalability, especially in an 
edge context where one needs to handle multiple 
tenants with constrained resources.

When Video Analytics  
Meets Serverless Computing

Serverless Computing: Emergence and Attractiveness
The last decade has witnessed the success of cloud 
computing represented by low-level VMs (e.g., 
Amazon EC2; https://aws.amazon.com/ec2/). As 
shown in Fig. 2, the VM-based architecture relieves 
users of physical infrastructure investment but also 
stresses them with complex virtual resource man-
agement and monitoring. To set up a VM cluster in 
the cloud, developers have to address such issues 
as predetermining the number and types of VMs 
in the cluster, routing requests to balance the load, 
and scaling up or down in response to workload 
variations. These are known to be barriers to the 
general cloud users [10].

As the microservices architecture and con-
tainerized deployment become popular, cloud 
providers further abstract infrastructures and pro-
pose serverless computing. It enables cloud users 
to run their applications without thinking about 
servers (runtimes). As a general implementation 
of serverless computing, FaaS is popularizing the 
serverless paradigm [6] and has been offered by 
major cloud providers, under the name of AWS 
Lambda, Google Cloud Functions, and Microsoft 
Azure Functions. As the public cloud extends to 
the edge, serverless functions can be executed 
in the content delivery network (e.g., AWS Lamb-
da@Edge (https://aws.amazon.com/lambda/
edge/)) and IoT devices (e.g., AWS IoT Green-

FIGURE 1. An object counting pipeline. The decoding primitive decodes frames 
from the input camera stream and passes them to the object detection 
primitive, which detects a specific object (e.g., vehicle in the figure) from 
the decoded frames. The object tracking primitive is subsequently applied 
to obtain the moving trajectories of the detected objects, and these trajec-
tories are then fed to the counting primitive for directional counting.
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grass (https://aws.amazon.com/greengrass/)). 
Open-source projects (e.g., Apache OpenWhisk 
(https://openwhisk.apache.org), and Kubeless 
(https://kubeless.io)) further create possibilities 
for the private deployments of serverless func-
tions. Specifically, the popularity of serverless 
computing can be attributed to its following 
attractiveness.

Fully Managed Infrastructures: In FaaS plat-
forms, users decompose monolithic applications 
into small, short-lived, and stateless functions, 
each implementing a microservice. As the unit of 
computation, functions are code snippets typical-
ly written with popular high-level programming 
languages, such as Python, Node.js, and Go [6]. 
For deployment, users register functions to the 
FaaS platform with minimal configuration efforts 
(e.g., specify memory only) and declare events 
to trigger their executions. The FaaS platform is 
responsible for handling every triggering request, 
scaling resources precisely with the size of work-
loads, ensuring fault tolerance and service avail-
ability. With offloaded operational responsibilities, 
users can focus on application development, thus 
improving agility, innovation, and time-to-market, 
as shown in Fig. 2.

Fine-grained Autoscaling: Benefiting from the 
event-driven programming model of serverless 
computing, the resource allocation and release in 
FaaS platforms are automatically driven by input 
workloads. Specifically, each triggering event 
for a function is served by a dedicated function 
instance, which executes the function code with 
the input message in a specialized container or 
sandbox [7, 6]. Function instances can spin up 
or down in tens of milliseconds, significantly fast-
er than VMs that typically require many seconds 
to startup [6, 11]. Such fine-grained autoscaling 
responds quickly to input workload dynamics, 
making FaaS a perfect match for unpredictable 
and sporadic workloads.

Truly Pay-as-you-go Pricing Strategy: A func-
tion instance of FaaS is only invoked for handling 
a triggering request and put into sleep immedi-
ately after completion. Developers are charged 
for their function codes’ execution duration, and 
there is no charge for idle function instance time. 
The fine-grained billing timescale of FaaS, typically 

1 millisecond, makes it a truly pay-as-you-go ser-
vice [6].

Given the aforementioned advantages, server-
less computing has attracted considerable atten-
tion from both industry and academia [6, 7]. It 
is employed to address an increasing variety of 
workloads. Typical industrial use cases include 
building backends for Web and IoT applications, 
processing streaming data in real-time, developing 
request-response microservices, and infrastructure 
automation [7]. Recently published research proj-
ects also attempt to unlock serverless computing’s 
potential in handling more challenging workloads, 
such as data analytics [12] and machine learning 
training [13].

Serverless Video Analytics: Opportunities
Traditional video analytics systems have suffered 
from the lack of fine-grained computing infra-
structures, which can be fortunately provided by 
serverless computing. For example, recent years 
have witnessed several attempts to introduce 
the serverless paradigm in data center video pro-
cessing [14]. We next illustrate the opportunities 
brought by empowering video analytics with 
serverless computing in detail.

Accelerating Video Analytics through Thou-
sands of Function Instances: Serverless comput-
ing is well-suited for embarrassingly parallel jobs 
[10] since it provides fine-grained, readily avail-
able infrastructures. This creates new possibilities 
for video analytics since there are inherently par-
allelizable structures in videos, such as groups of 
pictures (GOPs) and frames. After decoding a 
video into frames, we can invoke massively con-
current function instances. Each function instance 
runs the same image-based computer vision algo-
rithm to process a frame, thus reducing the pro-
cessing latency and monetary cost. Since a variety 
of vision algorithms are developed to target a 
single image (e.g., object detection, face recog-
nition, and image classification), this kind of paral-
lelism can be harnessed broadly in video analytics.

Handling Unpredictable Usages by Work-
load-Driven Resource Reshaping: Large-scale 
deployed low-cost cameras operate in 24 x 7, 
producing a staggering volume of video data. 
Up to 100 MB uncompressed data can be gen-

TABLE 1. Representative networked video analytics solutions.

System Type Architecture Core Techniques Description

Focus [2] retrospective data center model approximation
Training specialized, faster DNN models to 
approximate the accuracy of full, expensive 
models.

VideoStorm [3] live data center configuration tuning
Tuning configuration knobs (e.g., frame rate, 
resolution, and models) to achieve resource-
accuracy trade-off.

FilterForward [5] live edge-to-cloud frame filtering
Training micro-classifiers to filter out 
irrelevant frames on edge nodes, 
backhauling relevant frames to the cloud.

split-brain [8] live edge-to-cloud model splitting
Splitting DNNs into two parts with the first 
part evaluated at the edge and the other part 
evaluated in the cloud.

CloudSeg [9] live edge-to-cloud frame compression
Sending low-resolution videos to the cloud, 
and then recovering the resolution via super-
resolution.
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erated every second from a real-world HD 
camera (https://www.youtube.com/watch?v=1E-
iC9bvVGnk) (1080p, 30 FPS). Only a small frac-
tion of them may have events of interest. Hence, 
maintaining a dedicated VM cluster can be of 
prohibitively high costs. Yet accidental video que-
ries can occur at any time (e.g., in response to an 
AMBER alert to find an abducted child) with no 
particular patterns, rendering resource reservation 
based solutions slow (due to insufficient resources) 
or inefficient (due to overprovisioning). Serverless 
computing is a natural fit in this case since func-
tions are invoked in an event-driven way. Varia-
tions in the input workload (e.g., a sudden surge 
of video query requests) automatically trigger 
allocation or deallocation of resources. Figure  3a 
compares the monetary cost of VMs and serverless 
functions when serving unpredictable object detec-
tion queries on four video clips collected from 
the aforementioned camera. To enable real-time 
responses, the VM instance is provisioned based 
on peak workloads, and functions instances are 
configured with sufficient memory. As suggested 
by the figure, with improved resource utilization, 
serverless functions greatly reduce the monetary 
cost by 65.17 percent of its VM counterpart.

Adapting Fine-Grained Video Content 
Dynamics: Primitives in a video analytics applica-
tion are often tightly coupled. The input workload 
of each primitive and further resource demands 
are affected by video content dynamics. Take the 
object counting pipeline (Fig. 1) as an example. If 
the object detection primitive detects no object 
of interest on decoded frames, there is no need 
to execute the downstream primitives. To under-
stand the impact of coupling, we run this pipeline 
to query the number of vehicles or pedestrians 
on the aforementioned real-world camera stream. 
We use two metrics to quantify the video content 
dynamics: 
•	 Average objects per frame (AOPF), which 

indicates how many queried objects appear 
in a frame on average.

•	 Average unique object per frame (AUOPF), 
because the same object can appear in mul-
tiple successive video frames.
As can be seen from Figs. 3b and 3c, coarse-

grained VM-based allocation can hardly keep 
pace with the video content, which typically 
changes in minutes or even shorter timescales. 
In contrast, serverless function instances can be 
invoked to process tiny workloads, for example, a 

video chunk, a frame, or even an image cropped 
from a frame. Consequently, the downstream 
functions in a pipeline can flexibly and agilely 
respond to upstream functions’ results.

SVAG: Geo-Distributed  
Serverless Video Analytics 

SVAG Overview
To fully unleash the potential of serverless com-
puting in video analytics, we envision a Serverless 
Video Analytics framework with Geo-distributed 
resources (SVAG) (Fig. 4), through which analytics 
pipelines can be executed across IoT devices, edge 
nodes, and the cloud. In SVAG , developers can 
decouple the monolithic code into a pipeline of 
serverless functions, each implementing a micros-
ervice. For instance, the application shown in Fig. 
1 can be decoupled into a pipeline of four server-
less functions corresponding to its four primitives. 
The same serverless pipeline can be deployed in 
multiple IoT devices, edge nodes, and the cloud 
to enable possible collaborations in the same hier-
archy (e.g., device-to-device) and between distinct 
hierarchies (e.g., edge-to-cloud). After debugging in 
local and live environments, the serverless pipelines 
will be ready to serve video queries.

SVAG allows users to issue queries on pre-col-
lected or live videos. Users can specify their 
performance (e.g., latency, monetary cost, and 
accuracy) goals for a specific video query. They 
can issue distinct video queries on the same or 
different camera streams concurrently. SVAG then 
orchestrates the corresponding analytics pipe-
lines across geo-distributed infrastructures. Unlike 
other geo-distributed video analytics frame-
works [1] that manage coarse-grained resourc-
es with pre-reservation, SVAG offers fine-grained 
resources in an on-demand manner. To enable 
the resource-accuracy trade-off, it exposes mul-
tiple configurable parameters (e.g., frame rate, 
resolution, and models), which can be dynami-
cally specified at runtime by function invocation 
events. According to available resources and per-
formance goals, the original video or intermedi-
ate execution results may be redirected multiple 
times to appropriate places (i.e., IoT devices, edge 
nodes, and the cloud) for further processing. For 
video queries with stringent latency constraints, 
corresponding serverless function instances may 
be pre-warmed to mitigate the influences of func-
tion instance cold-start (https://docs.aws.amazon.

FIGURE 2. The evolution of application deployment architecture. Users take diminishing responsibilities and can focus on the develop-
ment of application codes with serverless computing. The increasingly lightweight virtualization technologies significantly improve 
the development and deployment speeds, agility, portability, and time-to-market.
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com/lambda/latest/dg/configuration-concurren-
cy.html).

Preliminary Evaluation
Based on our existing work on fine-grained and 
adaptive partitioning of cloud-edge workloads [15], 
we have implemented a slim version of SVAG over 
AWS Lambda and AWS IoT Greengrass. Our cur-
rent prototype consists of five surveillance cam-
eras with very limited computing capability, one 
edge node, and a cloud. Assume the network 
bandwidth between the cameras, the edge node, 
and the cloud is sufficient for real-time streaming. 

We use two video clips collected from a real-
world traffic camera (https://www.youtube.com/
watch?v=1EiC9bvVGnk) (traffic streams) and three 
video clips collected from a roadside restaurant 
camera (https://www.youtube.com/watch?v=s-
bZNL98Z0GE) (restaurant streams) to drive the 
experiments. Users can issue vehicle counting que-
ries on the traffic streams and customer age and 
gender queries on the restaurant streams.

The performance goal of all queries is to ana-
lyze streams in real-time while minimizing the 
cloud-edge data transfer overhead and cloud 
expenditure. We implement a lightweight control-
ler to orchestrate geo-distributed pipeline functions. 
It integrates a content-aware predictor to handle 
fine-grained video content dynamics. The predictor 
can forecast the content-variant resource demands 
of each query and help determine which version 
(edge or cloud) of the function to be invoked. To 
evaluate the pipeline analysis speed, we calculate 
the percentage of the pipeline output frame rate 
over the pipeline input frame rate, which can be 
viewed as a normalized throughput of the pipeline, 
that is, 100 percent throughput implies real-time 
analytics. We also examine the amount of data 
transferred between the edge node and the cloud 
and the monetary costs for executing functions in 
the cloud (cloud expenditure).

To fairly evaluate the performance with differ-
ent system configurations, we compare SVAG with 
an Edge-only scheme only relying on functions 
deployed on the edge node to analyze streams, 
and a Cloud-only scheme only invoking functions 
deployed in the cloud. In this experiment, all cam-
era streams are persistently queried for a one-
hour duration. The comparison results are shown 
in Fig. 5a. It can be seen that although there are 
no data transfer overhead and cloud expenditure 
for the Edge-only scheme, it cannot support real-
time analytics due to insufficient resources. On 
the other hand, the Cloud-only scheme achieves 
real-time processing at relatively high costs. By 
contrast, the geo-distributed design has the best 
of both worlds. Specifically, SVAG reaches real-
time analytics with only 25.6 percent data transfer 
overhead and 13.1 percent cloud expenditure of 
the Cloud-only scheme.

We further examine the scalability and adapt-
ability of SVAG by randomly querying the camera 
streams. The queries arrive as a Poisson Process 
of a 12-minute mean interarrival time, with the 
duration being randomly set from 1, 5, or 10 
minutes. Fig. 5b shows a query pattern, where 
each row indicates if there is a query on a specific 
camera stream or not (e.g., QS1 corresponds to 
queries on the first camera stream) in a given time 
window. As can be seen from Fig. 5c, SVAG can 
flexibly and agilely schedule resources in response 
to the fine-grained input workload variations. For 
example, when the edge node is overloaded (e.g., 
from minute 3 to minute 8), SVAG smartly pushes 
partial workloads to the cloud for real-time ana-
lytics. Otherwise, only functions deployed on the 
edge node are invoked (e.g., from minute 13 to 
minute 18), leading to zero cost.

Key Design Issues Toward Full Implementation
Considering the design spirit of serverless comput-
ing and video analytics characteristics, before fully 
realizing SVAG, one has to address the following 

FIGURE 3. Video analytics statistics on real-world camera streams: a) the respective 
costs of using VMs and serverless functions to answer randomly generated 
object detection queries on four video streams (Q1-Q4) in 30 minutes;  
b) and c) depict the corresponding average objects per frame (AOPF) and 
average unique object per frame (AUOPF) for querying the number of vehi-
cles (top) and pedestrians (bottom) on a crossroad camera stream.
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key design issues within current FaaS platforms 
and beyond.

Orchestration of Video Analytics Pipelines: 
Video queries can have different performance goals, 
for example, low latency, low cost, high accuracy, 
or any combination of them. A function in a video 
query pipeline has runtime configurable parame-
ters that typically need different resources to meet 
specific goals. Multiple replicas of a function can be 
deployed in various IoT devices, edge nodes, and 
the cloud, but only one of them will be invoked to 
process a particular input workload. These geo-dis-
tributed computing infrastructures that host the rep-
licas provide heterogeneous compute, storage, and 
network resources while requiring distinct data-ship-
ping distances. Thus, it is already challenging to 
choose a suitable replica for a single function, not 
to mention the execution orchestration of massively 
concurrent pipeline functions.

FaaS platforms do not guarantee the completion 
order of concurrent function instances. However, the 
temporal context information can be paramount for 
visual primitives executing across-frame analysis, for 
example, object tracking and action recognition. As 
a result, the orchestration service should be able to 
handle the synchronization issue. For instance, mul-
tiple function instances for the same object detec-
tion function can be invoked concurrently, with each 
processing a frame, to accelerate the processing. 
Since these function instances’ completion order is 
unpredictable, synchronization mechanisms should 
be provided to ensure that the downstream object 
tracking function can process frames in the correct 
order. Although cloud providers already offer server-
less function orchestration services like AWS Step 
Functions (https://aws.amazon.com/step-functions/), 
they tend to be slow, expensive, and only applicable 
to pure cloud-based applications.

Complex Model Inference: To comply with 
the abstraction of serverless computing, that is, 

minimizing management efforts from developers, 
most FaaS offerings expose only memory size as 
the configurable knob for developers to speci-
fy the computing power of function instances. 
Unlike VM instances, the computing power of 
serverless function instances is relatively low. For 
example, the maximum configurable memory 
size for a GCF function is 8 GB, corresponding 
to a 4.8 GHz CPU quota (https://cloud.google.
com/functions/pricing), and there are typically no 
hardware accelerators (e.g., GPU) for serverless 
functions. These limits preclude today’s serverless 
functions from running computer vision primitives 
employing complex DNN models.

The solution suggested by cloud providers is 
calling cloud vision APIs (e.g., Amazon Rekog-
nition (https://aws.amazon.com/rekognition/)) 
from serverless functions, that is, outsourcing 
heavy liftings to other cloud services. This solution 
inevitably harms flexibility and locks developers 
into proprietary APIs. Furthermore, when calling 
external services, the function instance’s resources 
are locked down to wait for the services to com-
plete. Unfortunately, the invocation of external 
vision APIs typically requires several seconds to 
return. It is a long time for the lifecycle of function 
instances, thus leading to low resource efficiency.

Massive Intermediate Data Sharing: Different 
functions in the same video analytics pipeline can 
exchange highly varied amounts of ephemeral 
intermediate data. Unfortunately, function instanc-
es are short-lived, stateless, and unaddressable, 
impeding direct communications between them. 
De facto solutions address this issue by exploit-
ing a general-purpose cloud storage service (e.g., 
Amazon S3 (https://aws.amazon.com/s3/)).

The ideal ephemeral storage services for server-
less video analytics should be serverless (i.e., 
requiring zero administrative effort and scaling 
automatically as fine as serverless functions.), low-

FIGURE 4. An overview of SVAG. There are three hierarchies in this framework, from IoT devices with cam-
eras and onboard computing resources, to heterogeneous resource-constrained edge nodes, to the 
resource-rich public cloud. Serverless functions are the smallest unit of configuration and placement. 
Interactions and collaborations within and between hierarchies are enabled for the geo-distributed exe-
cution of a serverless video analytics pipeline.
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cost, and high-throughput. Unfortunately, existing 
serverless storage services, such as Amazon S3 and 
Amazon DynamoDB (https://aws.amazon.com/
dynamodb/), are designed to provide high durabil-
ity and fault-tolerance for long-term storage. Their 
costs for high-throughput intermediate data sharing 
can be quite high. For example, uploading one-day-
long decoded video frames (30 FPS) to Amazon 
S3 will result in 2,592,000 PUT requests of writ-
ing frames, at a monetary cost of US$12.96. Thus, 

designing high-throughput and low-cost ephemer-
al storage optimized for serverless video analytics 
remains a significant challenge.

Future Directions
Serverless computing is still under rapid develop-
ment, as is serverless-empowered video analyt-
ics. We now highlight some future directions that 
we believe to be important toward its pervasive 
deployment.

Geo-Distributed Function Orchestration
Decoupling the functions in a monolithic imple-
mentation is the first step toward a serverless 
deployment. Having more decoupled functions 
improves scalability and flexibility but complicates 
the function orchestration. Conversely, fewer 
decoupled functions can simplify the function 
orchestration but lead to poor scalability and high 
processing latency. The choice involves multiple 
factors and becomes even more challenging with 
distributed services and resources.

SVAG expects to meet the heterogeneous per-
formance goals of video queries. Note that unpre-
dictable video queries can be submitted, leading 
to continuous variations in available resources of 
IoT devices and edge nodes. Resorting to remote 
resources is not always viable, as unreliable com-
munication channels may lead to unacceptable 
latencies. On the other hand, fine-grained video 
content dynamics bring considerable instability to 
the resource demands and intermediate data size 
of a pipeline. Tuning the configuration and replica 
choice of pipeline functions to accommodate the 
dynamics requires non-trivial efforts. To make rea-
sonable decisions for concurrent video queries, 
it requires up-to-date knowledge about available 
resources, network conditions, video content, 
query types, and importantly, their interactions.

Function-VM Hybridization
For retrospective video analytics, FaaS is a perfect 
match for video queries with highly data-paralleliz-
able operations; for live video analytics, the splen-
did use case of FaaS is bursty queries on cold 
video streams. Because of resource limits, today’s 
FaaS offerings are not ideal for video analytics 
tasks that require tremendous resources to ensure 
low latency or high accuracy. Furthermore, com-
pared with VM instances, function instances have 
a higher price per unit resource, making them 
less attractive for persistent queries. It would be 
interesting to combine both functions and VMs 
toward a hybrid video analytics framework.

Intermediate Data Optimization
As we have seen earlier, intermediate data shar-
ing between serverless functions in video query 
pipelines can incur significant latency and cost. It 
is necessary to optimize video queries to reduce 
the intermediate data size. For example, distinct 
video queries on the same stream may share par-
tial execution results, reducing unnecessary data 
exchanges caused by independent computations. 
Ephemeral storage services also play an import-
ant role in intermediate data sharing. There have 
been significant studies for storage in generic data 
analytics applications [12], but not for videos. The 
intermediate data in video analytics often contain 
massive redundant information and are not easy 

FIGURE 5. Performance under different query patterns. The transferred data and 
cloud expenditure values in a) are normalized by that of the Cloud-only 
scheme, and the throughput values are calculated by averaging across all 
queries. The colorized time windows in each row of b) indicate the existence 
of queries on a specific camera stream. c) assumes it costs US$0.1 to transfer 
1 GB data between the edge node and the cloud and sums up the money 
paid for data transfer and cloud expenditure to obtain the cost values.
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to regenerate. Their processing functions are also 
much more computation-intensive. Insights into 
video content, vision models, and query patterns 
are expected to design efficient ephemeral storage.

Security and Privacy Preservation
Video content is known to be sensitive and may 
contain much more private information than other 
types of data, for example, the interior of one’s 
house. Unfortunately, following the microservice 
and event-driven paradigms, serverless video ana-
lytics systems expose an larger attack surface than 
their monolithic counterparts since functions can 
consume data from a wide variety of event sourc-
es (e.g., cloud storage and message queue). The 
geo-distributed architecture further exacerbates the 
risks of confidential data leakage. For privacy-pre-
serving purposes, efficient encryption algorithms are 
necessary to secure the data in transit over the net-
work and at rest on devices. Effective device authen-
tication and appropriate access control policies 
are critical to ensure that confidential data is only 
revealed to intended entities in the geo-distributed 
architecture. As the underlying resources (e.g., CPU 
and memory) are shared by multiple tenants, pro-
tecting data from attacks while it is being processed 
is also a concern. Trusted execution environments 
(TEEs) (https://azure.microsoft.com/en-us/solutions/
confidential-compute/) have been introduced in 
VMs to protect data in use. We expect it to be 
embedded in serverless computing, further preserv-
ing the privacy of video content being analyzed.

Conclusion
Video analytics plays an essential role in our daily 
life. Due to the lack of fine-grained autoscaling 
computing infrastructures, achieving resource-effi-
cient video analytics is exceptionally challenging. 
Serverless computing is revolutionizing the way we 
build applications and opens up new possibilities 
for video analytics. In this article, we have explored 
these possibilities and envisioned a unified frame-
work, SVAG, which empowers video analytics with 
geo-distributed serverless computing. We have dis-
cussed its key design issues within the current FaaS 
platforms and beyond, which inspire further explo-
rations on serverless video analytics.
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