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Abstract— Nowadays, as smartphones are becoming more and1

more powerful, applications providing location based services2

have been increasingly popular. Many, if not all, smartphones are3

equipped with a powerful sensor set (GPS, WiFi, the acceleration4

sensor, the orientation sensor, etc.), which makes them capable5

of accomplishing complicated tasks. Unfortunately, as the core6

enabler of most location tracking applications on smartphones,7

GPS incurs an unacceptable energy cost that can cause the8

complete battery drain within a few hours. Although GPS is9

often preferred over its alternatives, the coverage areas of GPS10

are still limited (GPS typically cannot function indoors). To this11

end, our goal in this paper is to improve the energy-efficiency12

of traditional location tracking service as well as to expand its13

coverage areas. In this paper, we introduce SensTrack, a location14

tracking service that leverages the sensor hints on the smartphone15

to reduce the usage of GPS. SensTrack selectively executes a16

GPS sampling using the information from the acceleration and17

orientation sensors and switches to the alternate location sensing18

method based on WiFi when users move indoors. A machine19

learning technique, Gaussian process regression, is then employed20

to reconstruct the trajectory from the recorded location samples.21

We implemented a prototype on an Android smartphone that22

can sample the related sensors during the user’s movement and23

collect the sensor data for further processing on PCs. Evaluation24

on traces from real users demonstrates that SensTrack can25

significantly reduce the usage of GPS and still achieve a high26

tracking accuracy.27

Index Terms— Location tracking, smartphone, sensor.28

I. INTRODUCTION29

UNDERSTANDING human mobility in daily life is a fun-30

damental resource for broad-domain applications, espe-31

cially for the applications that provide location based services.32

With the increasing pervasiveness of smartphones over the33

past few years, many emerging location based applications are34

adopted by mobile users. Consumer and advertiser expenditure35

on location based services is expected to approach $ 10 billion36
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by 2016 [1]. The reason that location based applications 37

become so popular is two-fold. First, location based services 38

rely on the knowledge about the user’s geographical location 39

to obtain relevant information on the spot, and thus offer the 40

user a plethora of options to satisfy his/her needs under that 41

particular context. Second, a typical modern mobile device 42

usually has the ability to locate or estimate its current position. 43

The localization technologies used today mainly based on 44

Global Positioning System (GPS), other technologies also 45

obtain assistance from WiFi and GSM, each of which can 46

vary widely in energy consumption and localization accuracy. 47

As it is known to be more accurate, GPS is often preferred 48

on mobile platforms over its alternatives such as GSM/WiFi 49

based positioning systems. 50

Although smartphones today are capable to accomplish 51

complicated tasks such as localization, we still face prob- 52

lems. The demand of computing and storage capability on 53

mobile devices is rapidly increasing in recent years, whereas 54

the battery manufacturing industry moves forward slowly 55

(battery capacity grows by only 5% annually [2]). In spite 56

of the increase in processing power, feature-set, and sensing 57

capabilities, the smartphones continue to suffer from lim- 58

ited battery life. Unfortunately, it is also well-known that 59

GPS, the core enabler of many location-based applications, 60

is power-hungry. The aggressive usage of GPS can cause 61

the battery to completely drain within a few hours [3], [4]. 62

Location based applications still cannot assume continuous 63

and ubiquitous location access in their design because of 64

the high energy expense for localization. Even within the 65

limited hours of being activated, GPS may not function well 66

all the time, especially when the mobile user is under the 67

shelter of buildings due to the signal loss under indoor 68

environment [5]. When GPS is unavailable, alternate location 69

sensing techniques must be used to obtain the approximated 70

location. The variability in accuracy provided by various 71

location sensing technologies and the limits on their cover- 72

age areas pose additional challenges for application devel- 73

opers [6]. Using multiple location sensors simultaneously to 74

make up for this variability in accuracy would further increase 75

energy cost. 76

In this paper, we present the design of SensTrack, a location 77

tracking service that provides user’s moving trajectory while 78

reducing its impact on the devices’s battery life. By applying 79

different localization technologies, we expand the coverage 80

area compared to the traditional approach that only uses GPS. 81

In addition, the sensor hints from the smartphone itself can 82

help us make decisions about adaptive sampling. SensTrack 83
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smartly selects the location sensing methods between WiFi84

and GPS, and reduces the sampling rate by utilizing the85

information from acceleration sensor and orientation sensor,86

two of the most common sensors found on smartphones today.87

We have implemented a prototype on the Google Nexus S88

phone, which continuously collects data from the acceleration89

sensor and the orientation sensor, and records the location90

samples from GPS and WiFi. Experiments have been con-91

ducted on a real world path while the phone was carried by a92

mobile user in a region of our university campus. The collected93

data is further analyzed and filtered on computers. To predict94

the user’s original trajectory, a track reconstruction algorithm95

based on a machine learning technique is also implemented96

on the server side. Performance evaluation on the real data97

sets shows that SensTrack only needs 7% GPS samples of98

the naive approach and saves nearly 90% GPS activated time.99

Meanwhile, SensTrack reconstructs the user’s trajectory with100

high accuracy and better coverage.101

The main contributions of this paper are listed as follows:102

• We identify the problems of traditional location track-103

ing service including limited availability of GPS and104

unnecessary GPS samplings. The opportunities of energy-105

efficiency improvements by utilizing the assistance from106

sensors on smartphones are discussed.107

• We present the detailed design of an energy-efficient108

location tracking service, SensTrack. As the main compo-109

nent, a track reconstruction algorithm based on Gaussian110

Process Regression is proposed. Other mechanisms for111

making smart adaptive sampling decisions are also dis-112

cussed.113

• We implement a prototype of SensTrack, and evaluate the114

proposed system through real-world experiments.115

This paper is organized as follows. In Section II we116

review the related work on energy-efficient location sensing.117

Section III presents our observations on the defects of tradition118

location based applications based on GPS, and discusses119

the opportunities of improvements. The detailed design of120

SensTrack is proposed in Section IV. We evaluate our proposal121

in Section V and analyze the performance improvement.122

Further considerations are discussed in Section VI. Section VII123

concludes the paper and outlines the future work.124

II. RELATED WORK125

To track the users’ locations, many energy-efficient sensing126

approaches with adaptive sensing policies have been proposed127

to minimize the energy consumption [3], [7]–[9]. With the128

objective of minimizing the location error for a given energy129

budget, EnLoc [3], an energy-efficient localization framework,130

includes a heuristic with a local mobility tree to predict131

the next sensing time by utilizing the dynamic programming132

technique. Jigsaw [8] uses the information obtained from the133

acceleration sensor and the microphone to continuously mon-134

itor human activities and environmental context. According to135

the user’s mobility patterns, a discrete-time Markov Decision136

Process is employed to learn the optimal GPS duty cycle137

schedule with a given energy budget.138

There are also works based on the observation that the139

required localization accuracy varies with locations. An adap- 140

tive location service for mobile devices, a-Loc [7] uses a 141

Bayesian estimation framework to determine the dynamic 142

accuracy requirement, and tunes the energy expenditure 143

accordingly. It argued in [9] that given the less accuracy of 144

GPS in urban areas, it suffices to turn on GPS adaptively to 145

achieve this accuracy. The rate-adaptive positioning system 146

for smartphone applications (RAPS) was then proposed to 147

minimize energy consumption with given accuracy threshold 148

by using the information of moving distance, space-time 149

history, and cell tower-based blacklisting. 150

Smartphones’ energy consumption has been a major concern 151

in research for a long time, and a number of studies have 152

been done to improve the energy efficiency of mobile devices. 153

In order to understand where and how the energy is used, 154

A. Carroll et al. [10] measured the power consumption of a 155

modern mobile device (the Openmoko Neo Freerunner mobile 156

phone), broken down to the devices major subsystems (CPU, 157

memory, touchscreen, graphics hardware, audio, storage, and 158

various networking interfaces), under a wide range of realistic 159

usage scenarios. M. Ra et al. [11] proposed the Stable and 160

adaptive link selection algorithm (SALSA), an optimal online 161

algorithm for energy-delay tradeoff based on the Lyapunov 162

optimization framework. SALSA defers the transmissions of 163

delay-tolerant applications until a less energy-consuming WiFi 164

connection becomes available. 165

Utilizing the sensing power of smartphones is not a new 166

topic in literature. M. Keally et al. [12] presented the design of 167

Practical Body Networking (PBN) system to provide practical 168

activity recognition with mobile devices, which combines 169

the sensing power of on-body wireless sensors with the 170

additional sensing power, computational resources, and user- 171

friendly interface of an Android smartphone through the uni- 172

fication of TinyOS motes and Android smartphones. Another 173

interesting ongoing work discusses how to fuse information 174

from Microsoft Kinect’s tracking with the smartphone’s sensor 175

readings to improve Kinect gaming experience [13]. 176

Inspired by many existing studies, in this paper we take 177

efforts to achieve a high energy efficiency by reducing the 178

sampling rate of sensing users’ locations. However, our work 179

uses a novel approach by utilizing the acceleration sensors 180

and the orientation sensors on smartphones to capture the 181

geometric features of users’ moving trajectories. We will 182

further explain the difference between SensTrack and existing 183

works in the following sections. 184

III. CHALLENGES AND OPPORTUNITIES 185

In this section, we start by describing the defects of typical 186

location-based applications that utilize GPS, including limited 187

availability and unnecessary samples. We then discuss the 188

opportunities for making improvements. 189

A. Limited Availability of GPS Versus Multiple 190

Location Sensing Methods 191

It should be noted that traditional GPS cannot work 192

properly under the indoor environment. The standard GPS 193
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(a)

(b)

Fig. 1. Tracking results when T = 5 s, θ = 45◦, D = 100 m, v = 8 m/s.
(a) Track recorded by the naive approach. (b) Track reconstructed by
SensTrack.

receiver requires signals from at least 4 satellites simul-194

taneously to calculate and output 3-dimensional locations195

and velocity information [5]. Therefore, the mobile devices196

need to be in line-of-sight contact with the GPS satellites,197

which significantly limits the usage of typical location based198

applications.199

Figure 1(a) shows one track that we took using GPS on a200

mobile device. Although we did not stop recording, the track201

ends once it entered the building (the Academic Quadrangle202

in our campus), which indicates the performance of GPS203

largely depends on the working condition. The signals from204

GPS satellites can be blocked not only by buildings but also205

by canyon walls, trees, and even thick clouds. When the206

user walks through buildings, GPS equipped by a normal207

smartphone cannot function since the lack of satellite signals.208

Even worse, GPS units may consume more energy than the209

normal situation when there is no satellite signals [14].210

Besides GPS, there also exist alternate location sensing211

technologies. For example, Android OS provides a network-212

based localization mechanism, which exploits GSM footprints213

from cell towers and WiFi signals to obtain an approximate214

location. Although the network-based location sensing is not215

as accurate as GPS, it provides the possibility to keep tracking216

inside a building since it mainly relies on the WiFi connection,217

in which case GPS units can be deactivated to save battery.218
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Fig. 2. WiFi signal strength along the track.

For the scenarios like university campus, hotels or hospi- 219

tals, we can always assume persistent wireless local network 220

access, which implies that other location sensing methods may 221

provide us valid options when GPS is out of use. 222

Figure 2 shows the received WiFi signal strength along the 223

track presented in Figure 1(a). The dash line indicates the time 224

stamp (588 s) at which the user entered the Academic Quad- 225

rangle. There are some spikes before 588 s (201 s ∼ 216 s, 226

335 s ∼ 368 s, 387 s ∼ 398 s, 537 s ∼ 558 s), which means that 227

the user can receive some WiFi signal for a short time when 228

passing by buildings. After entering the building at 588 s, the 229

received WiFi signal stayed at a relatively high level since the 230

WiFi connection is assured in teaching areas of the university 231

campus. This figure can support our argument that, when the 232

user is inside a building, WiFi signal is usually relatively 233

strong. Therefore, the network-based localization can be a 234

valid choice under the indoor environment where GPS is no 235

longer available. The idea is to use the GPS satellite signal and 236

the wireless network connection as indicators for switching 237

between GPS and the network-based location sensing method. 238

B. Unnecessary GPS Samplings Versus Adaptive Sampling 239

The GPS sensor can sample the user’s location at a relatively 240

high rate. However, it is not ideal to record every location 241

update since the error for each location sample varies. To make 242

the path more smooth and fit the real trajectory, a typical 243

location based application usually updates the user’s location 244

only if the distance to the last valid location sample is larger 245

than a certain threshold [15]. Therefore, with a fixed and 246

frequent GPS location sampling policy, it probably introduces 247

a significant amount of unnecessary GPS samples. 248

To demonstrate this, we collect the system log of an Android 249

application, My Tracks [16], which uses the GPS sensor in 250

mobile devices to record the paths that users take while 251

hiking, cycling, running, or participating in other activities. 252

Figure 3 shows part of the system log, demonstrating its 253

executing history in one run. As shown in the figure, the 254

application usually takes several GPS samples to get one 255

valid location update, in which case the threshold is 5 meters. 256

Our experimental result in this case shows that up to 79% 257
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Fig. 3. A part of system log when running a location-based application.

location samples of My Tracks are unnecessary. Since many of258

the samples are discarded, these invalid location measurements259

cause unnecessary energy consumption.260

C. Assistance From Other Sensors261

Nowadays smartphones become more and more powerful262

in terms of hardware, which usually contains various sen-263

sors. As an example, iPhone 4 is equipped with several264

environmental sensors, including an ambient light sensor, a265

magnetic compass, a proximity sensor, an accelerometer, and266

a three-axis gyroscope [17]. Android 4.0 (API Level 14)267

also supports up to 13 kinds of sensors [18], even though268

the sensors’ availability varies from device to device. The269

supported list of sensors in a Google Nexus S phone consists270

of: one KR3DM 3-axis Accelerometer, one AK8973 3-axis271

Magnetic field sensor, one AK8973 Orientation sensor, one272

GP2A Proximity sensor, one GP2A Light sensor, one Linear273

Acceleration Sensor, one Rotation Vector Sensor, one K3G274

Gyroscope sensor, and one Gravity Sensor [19].275

To reduce unnecessary GPS samples, adaptive sampling is276

proposed in many existing works [3], [7]–[9]. Usually we need277

additional information to make adaptive sampling decisions,278

which may include the location history, the speed history,279

the distance information, remaining battery power, the accu-280

racy requirement, etc. In this paper, we utilize the powerful281

sensors equipped by smartphones to obtain the information282

about changes of the orientation, moving speed, and traveled283

distance. Based on these useful information, we are able to284

make smart adaptive sampling decisions. The detailed design285

is described in the following section.286

IV. SENSTRACK: DESIGN DETAILS287

A. Overview288

To reduce the frequency of location sensing, SensTrack peri-289

odically collects data from the corresponding sensor to detect290

a turning point or estimate current speed and the distance291

from the last recorded location. The high energy efficiency292

of this approach is supported by the fact that the GPS sensor293

consumes much more energy than the acceleration sensor and294

the orientation sensor [9], [20]. When the GPS satellite signal295

is not available and the WiFi connection is active, SensTrack296

switches to the network-based location sensing method to297

obtain the raw coordinates. The last step of SensTrack is to298

upload the coordinates of sampled locations to an online server299

that uses a machine learning algorithm to reconstruct a smooth300

and accurate trajectory.301
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Fig. 4. The system architecture.

Figure 4 demonstrates the SensTrack’s system architecture. 302

The service consists of two stages: the first is to collect 303

the location samples; and the second is to reconstruct the 304

original trajectory. Given the working conditions, SensTrack 305

switches between the GPS-based and the network-based local- 306

ization methods using the GPS or WiFi sensors, respectively. 307

By utilizing the sensor hints from the acceleration sensor 308

and the orientation sensor, SensTrack is able to make smart 309

adaptive sampling decisions in the GPS mode. For example, 310

when the smartphone detects a turning point or if it estimates 311

a unreasonable speed or a unexpected large traveling distance, 312

it uses GPS to record the current location. After the server 313

side receives all the collected location samples, a Gaussian 314

Process Regression algorithm is then employed to predict the 315

trajectory that the user has taken. 316

B. Track Reconstruction: Gaussian Process Regression 317

Once the collection of location samples is finished, it is 318

not ideal to simply connect all the recorded locations, since 319

the distances between any two successive locations may not 320

be the same. For some parts of a trajectory, the recorded 321

locations can be very sparse, while for other parts, the location 322

samples may be relatively intensive. If we simply connect the 323

location samples, the resultant trajectory can be very abstract. 324

Therefore, uploading the collected data to the online server 325

either by a wireless or wired connection to reconstruct the 326

trajectory is our last stage. We adopt the Gaussian Process 327

Regression (GPR), a machine learning technique to perform 328

the interpolation. The training set of the algorithm is the 329

recorded critical locations decided by the sensor hints which 330

capture most of key features of a trajectory. And the testing set 331

is the predicted locations between the successive but far-away 332

location samples. Combing both input and output gives us the 333

final trajectory. We next detailed describe GPR and how the 334

user’s trajectory can be reconstructed by using GPR. 335

A Gaussian process is a collection of random variables, 336

any finite number of which have a joint Gaussian distri- 337

bution, and is fully specified by a mean function and a 338

covariance function [21]. The inference of continuous values 339

with a Gaussian process prior is known as Gaussian Process 340
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Regression. Consider x as a general random variable.341

We define the mean function m(x) and the covariance function342

k(x, x ′) of a real process f (x) as343

m(x) = E[ f (x)],344

k(x, x ′) = E[( f (x) − m(x))( f (x ′) − m(x ′))],345

and can write the Gaussian process as346

f (x) ∼ gp(m(x), k(x, x ′)).347

For notational simplicity the mean function is usually set to be348

zero. In our method the covariance function will be the squared349

exponential covariance function, although other covariance350

functions may also be useful. Assuming that observations are351

noise-free, the covariance function specifies the covariance352

between pairs of random variables353

cov( f (x p), f (xq)) = k(x p, xq) = ex p(−1

2
|x p − xq |2). (1)354

For a estimate data set X∗, we can generate a random355

Gaussian vector f∗ for target values with the covariance matrix356

calculated from Equation 1357

f∗ ∼ N(0, K (X∗, X∗)).358

Therefore, the joint distribution of the training outputs f and359

the test outputs f∗ according to the prior is360 [
f
f∗

]
∼ N

(
0,

[
K (X, X) K (X, X∗)
K (K∗, X) K (X∗, X∗)

])
. (2)361

If X contains n training points and X∗ contains n∗ test362

points, then K (X, X∗) is the n × n∗ matrix of the covariances363

evaluated at all pairs of training and test points. And the other364

entries K (X, X),K (X∗, X),and K (X∗, X∗) are similar.365

If observations are noisy, we can write y = f (x)+ε. Assum-366

ing additive independent identically distributed Gaussian367

noise ε with variance σ 2, we have the prior as368

cov(yp, yq) = k(x p, xq) + σ 2
n δpq369

or370

cov(y) = K (X, X) + σ 2
n I,371

where δpq is a Kronecker delta which is one when p = q372

and zero otherwise. Introducing the noise in Equation 2, the373

joint distribution of the observed target values and the function374

values at test points according to the prior will be375 [
y
f∗

]
∼ N

(
0,

[
K (X, X) + σ 2

n I K (X, X∗)
K (K∗, X) K (X∗, X∗)

])
. (3)376

The posterior distribution over functions can be obtained by377

restricting the joint prior distribution on the observations. Then378

we arrive at the key predictive equations for GPR379

f∗|X, y, X∗ ∼ N( f∗, cov( f∗)), where (4)380

f∗ = E[ f∗|X, y, X∗] = K (X∗, X)381

×[K (X, X) + σ 2
n I ]−1y, (5)382

cov( f∗) = K (X∗, X∗) − K (X∗, X)383

×[K (X, X) + σ 2
n I ]−1K (X, X∗). (6)384

Algorithm 1 Predictions(X ,y,k,σ 2
n ,x∗)

1: L = cholesky(K + σ 2
n I )

2: α = L�\(L\y)
3: f∗ = k�∗ α
4: v = L\k∗
5: V [ f∗] = k(x∗, x∗) − v�v
6: logp(y|X) = − 1

2 y�α − ∑
i logLii − n

2 log2π

7: return ( f∗, V [ f∗], logp(y|X))

We then focus on explaining how to use GPR with given 385

location samples to reconstructed the estimated trajectory. 386

A trajectory can be considered as the path that the user 387

follows through space as a function of time. Specifically, we 388

have n location samples from x1 to xn , each of which can 389

be represented by a two-dimensional points xi = (xi , yi ). 390

Then X is the sampled date set for all (xi , yi ) s. According to 391

what we have explained, the user’s track can be represented by 392

generated GPR functions which is determined by a covariance 393

function and a mean function. In the case that there is only 394

one test point x∗, we let k(x∗) = k∗ denote the vector of 395

covariances between the test point and the n training points. 396

Then for a single test pointx∗, Equation 5 and 6 can be 397

reduced to 398

f∗ = k�∗ (K + σ 2
n I )−1y, (7) 399

V ( f∗) = k(X∗, X∗) − k�∗ (K + σ 2
n I )−1k∗. (8) 400

On obtaining Equation 7 and 8, we further propose the 401

following Algorithm 1 for a single test case, in which 402

cholesky (K + σ 2
n I ) is the Cholesky decomposition on 403

the matrix of K + σ 2
n I . The implementation addresses the 404

matrix inversion required by Equation 7 and 8 using Cholesky 405

factorization. For multiple test cases lines 3 ∼ 6 are repeated. 406

In our case, X is time space of the training set, y is the 407

set of observed target values (location samples), k is the 408

covariance function, σ 2
n I is the noise, and x∗ is the testing 409

data. The outputs are as follows. f∗ is the mean predicted value 410

(predicted location of x∗), V [ f∗] is its variance, and log p(y|X) 411

is the marginal likelihood. A more detailed explanation can be 412

referred to our previous work [22]. 413

C. Switching Location Sensing Methods 414

As mentioned, it is well-known that GPS cannot function 415

properly indoors. To expand the coverage areas, SensTrack 416

switches between GPS and the network-based localization 417

through the wireless connection. Basically, we want to use 418

GPS outdoors and the network-based localization indoors, 419

and thus it is important to decide when to switch. Initially, 420

SensTrack starts in the GPS mode and periodically executes a 421

WiFi scan. When it detects the GPS signal loss as well as an 422

active wireless network connection, SensTrack turns into the 423

WiFi mode. If GPS becomes available again, and the phone 424

loses the WiFi connection or the accuracy of location samples 425

provided by the network decreases significantly, SensTrack 426

switches back into the GPS mode. 427

We note that there are two conditions satisfied to switch the 428

location sensing method: the current method fails to obtain 429
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location samples, and the other method is guaranteed to work,430

which prevents from switching between the two modes too431

often. Frequently changing location sensing mechanism can be432

very energy consuming, because the high-power components433

associated with both location providers need to be active.434

In some cases, both of the two methods are available when the435

user passing by some buildings. According to our rules, we436

should not change SensTrack’s working mode, since in these437

situations the wireless connection tends to be unstable and438

short. In other cases, none of the two methods are available if439

we simply lose the GPS satellite signal outdoors. Our rules can440

also avoid the unnecessary switching in these cases. It is also441

worth mentioning that SensTrack stops collecting the sensor442

hints when it switches into the WiFi mode. In another word,443

we passively receive location updates in this mode. The reason444

is that, unlike GPS, when we request the location information,445

the WiFi localization technology cannot respond within a446

tolerable delay. It means that even if we apply the sensor hints447

to sense the location adaptively, we cannot obtain a location448

sample timely in the WiFi mode. Therefore, considering the449

WiFi localization updates the location less frequently than450

GPS, we decided not to waste energy on the acceleration451

sensor and the orientation sensor.452

D. Utilizing Sensor Hints453

1) Orientation: SensTrack employs the orientation sensor454

as a detector of turning points when the user is moving.455

The idea is that there is no need to record the user’s location456

if he/she is in a steady movement without changing direction.457

For a sliding window of size T , SensTrack collects the458

readings of the orientation sensor, and computes the changes459

in direction. If user’s moving direction changes dramatically460

(greater than the threshold θ ), a location sensing of the user’s461

current location is executed. Considering the readings from the462

orientation sensor is approximately continuous, the window463

size T should be larger enough to observe the potential direc-464

tion changes. Table I shows the effect of the window size T .465

In our experiments, T was set to be 5 s because it would lose466

some turns of the trajectory for smaller window size. On the467

other hand, a larger window size is not necessary as it requires468

more memory and computation, which in turn requires more469

powerful hardware. The user can also decide the threshold θ ,470

the other key parameter, according to their expectations on471

accuracy. Table II presents the number of missing turning472

points for different values of θ . Roughly speaking, SensTrack473

is more sensitive with a smaller θ . However, a too small θ474

may cause redundant detections of the trajectory’s turns (false475

positives) if we consider the noises in the readings from the476

sensor, which potentially wastes energy in sensing locations477

at those false turning points.478

2) Acceleration: The acceleration sensor in a mobile device479

has been widely used in many existing location sensing480

systems, in which it acts as a binary sensor to detect user481

movement or non-movement. We notice that distance is theo-482

retically a simple integral of speed, which in turn is an integral483

of acceleration. Unlike most prior works, we do not limit the484

acceleration sensor just to be the user’s movement detector,485

TABLE I

EFFECT OF WINDOW SIZE T

TABLE II

EFFECT OF THRESHOLD θ

rather explore the possibility of calculating the distance that 486

the user has traveled and the speed that the user is moving at. 487

It should be noted that the readings of the acceleration 488

sensor on a moving device are usually noisy, especially when 489

the user is walking. Activities with higher speed, like biking 490

and driving, actually are more stable, whereas the movement 491

of a pedestrian is always fluctuating. It often overestimates 492

distance when the user is holding the phone in his/her hands, 493

and underestimates distance when sitting quietly on a cush- 494

ioned car seat [9]. When calculating the integrals, errors 495

caused by the noise in the sensing data are accumulated. 496

However, we argue that the estimated distance and speed 497

obtained as integrals of acceleration are still useful even if they 498

are inaccurate, because the location and velocity information 499

provided by GPS can help us to calibrate the calculation. 500

Once the estimated distance or the estimated speed exceeds 501

the thresholds, specifically D and v, SensTrack activates GPS 502

to sense the current location and speed. The thresholds can be 503

set based on the accuracy requirement or the user’s moving 504

patterns. For example, for a pedestrian, usually the moving 505

speed can be no more than 10 m/s and should not be negative, 506

and the accuracy requirement is usually higher. Moreover, the 507

calibration of calculating the integrals can also be done when 508

GPS is activated at the turning points. 509

V. EVALUATION 510

A. Data Collection and Methodology 511

We evaluated SensTrack using a real data set collected from 512

a Google Nexus S phone carried by a mobile user walking 513

in our university campus. The phone is equipped with an 514

integrated GPS, an WiFi sensor, an accelerometer, and an 515

orientation sensor. We implemented a SensTrack prototype on 516

Android 4.0 (API level 14). During its runtime, the prototype 517

continuously collects data from the acceleration sensor and 518

the orientation sensor at default rate of the system service 519

(SENSOR_DELAY_NORMAL) in Android OS. When the 520

GPS signal is available, a location listener is registered to 521

request location updates from GPS periodically. Meanwhile, 522

the prototype always tries to initiate and maintain a WiFi 523

connection, which can be used to record the location updates 524

from the network-based location provider. In our experiments, 525

a PC server was used to further analyze the data collected by 526

the smartphone and filter the GPS and WiFi location samples 527

with the given parameters. The trajectory reconstruction algo- 528

rithm based on GRP was also implemented on the server side, 529

which uses the filtered and valid location samples to predicted 530
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TABLE III

AVERAGE ERROR OF PREDICTED LOCATIONS

the original trajectory. For most of the presented results, our531

settings were T = 5 s, θ = 45◦, D = 100 m, v = 8 m/s, and532

a prediction was made if the time gap between two successive533

GPS samples is greater than 15 s.534

We also compared SensTrack with the naive approach, in535

which GPS is the only way to obtain location information536

and the GPS sensor is kept to be activated during the whole537

tracking period. Unlike SensTrack, which samples the GPS538

location actively, the naive approach is a passive method that539

records all the valid location updates from GPS. We conducted540

the experiments on the same real path for several times, which541

started from outdoor environment, came into a building, and542

then ended indoors. The total length of the path is around543

1.1 km. The results show that, without significantly losing the544

accuracy of tracking, SensTrack effectively reduce the number545

of GPS samples and the time that the GPS sensor needs to be546

turned on.547

B. Accuracy548

We first present the tracking results by SensTrack and the549

naive approach. Despite the tracking service maintained, the550

trajectory shown in Figure 1(a) ended once the user entered the551

building since the signals from GPS satellites were blocked by552

the building, which indicates the performance of GPS largely553

depends on the working condition. Compared to the naive554

approach, SensTrack demonstrates a reasonably better perfor-555

mance. Figure 1(b) shows that the trajectory reconstructed by556

SensTrack has a similar outdoor part, meanwhile it has the557

indoor part that the original one does not have. Although the558

indoor part of the second trajectory may be not that accurate559

given the limitation of WiFi localization technology, it is still560

good to have a approximate trajectory.561

As previously stated, the resulting trajactory generated by562

SensTrack consists of two kinds of points: the sampled loca-563

tions and the predicted locations. To evaluate the accuracy564

of SensTrack, we took the GPS trace as the ground truth565

and calculated the average error of the predicted locations.566

For every prediction, we computed the difference between567

the predicted location and the real location in the GPS trace568

at the same time. The result shown in Table III proves that569

SensTrack can achieve a high accuracy. The average error570

of the predictions is 3.128 meters, which is quite acceptable571

(GPS can achieve an accuracy of 5 meters in good signal572

conditions). It should be noted that even the GPS trace may573

not be the real path that the user has taken, because the574

performance of GPS depends on a number of factors such575

as the user’s position, time, surroundings, weather, etc, which576

means that the GPS trace itself can be inaccurate. Another577

result from Table III is that the naive approach recorded578

568 samples over the testing path, although some of them may579

be unnecessary as discussed earlier. It is worth mentioning580

Fig. 5. Comparison of the energy efficiency.

that, whether a sample is necessary should be decided case 581

by case. For different scenarios, the ideal minimal distance 582

(threshold) between two valid samples can vary significantly. 583

We can adjust the number of necessary samples by setting 584

the granularity between successive samples and filtering the 585

recorded samples accordingly. In our experiments, the number 586

of necessary samples does not affect the total number of 587

GPS samples as the naive approach passively received every 588

sample, and the granularity between successive samples cannot 589

reflect the error of reconstructed trajectory. 590

C. Energy Efficiency 591

In modern mobile devices, the GPS receiver usually con- 592

sume much more power than the accelerometer and the digital 593

compass. For example, our testing device, a Google Nexus S 594

phone, is equipped with a BCM4751 integrated GPS receiver 595

(produced by Broadcom), a KR3DM 3-axis accelerometer 596

(produced by STMicroelectronics), and an AK8973 3-axis 597

electronic compass (produced by Asahi Kasei Microdevices). 598

With the battery supply (3.7 volt), the power consumption (in 599

terms of current) of the accelerometer is 0.23 mA; and the 600

current consumption of the compass is 6.8 mA; however, the 601

current consumption of the GPS receiver can be as much as 602

80 mA. To demonstrate the energy efficiency of SensTrack, we 603

present that SensTrack can significantly reduce the number 604

of needed GPS samples and the time that the GPS sensor 605

needs to be activated. We did not measure the actual energy 606

consumption of SensTrack, since we thought it is unnecessary. 607

For different hardware, the power consumption varies, and thus 608

the energy consumption of SensTrack on a specific hardware 609

model only provides limited information. Therefore, it is 610

convincing and sufficient for us to show the relative energy 611

efficiency of SensTrack to the naive approach by comparing 612

the number of required sampling and the activated time of the 613

GPS receiver. 614

Figure 5 shows that compared to the naive approach, 615

SensTrack only needs 7% GPS samples for the described path, 616

and the time of the GPS sensor being active is decreased by 617

nearly 90%. The naive approach almost updated the user’s 618

location every second, and the GPS sensor was kept to be 619

activated even when the user entered the building and lost the 620
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Fig. 6. Tradeoff between sampling rate and accuracy.

GPS satellite signals. SensTrack on the contrary only selec-621

tively activated the GPS sensor at some separate locations,622

and turned the GPS sensor off once the device lost the satellite623

signals and had an active WiFi connection. It should be pointed624

out that the energy efficiency of SensTrack depends on the625

user’s movements and the path that the user takes. If the626

user’s movement is very unstable and the direction changes627

frequently, SensTrack inevitably activates the GPS sensor more628

frequently, and thus consumes more energy.629

D. Energy-Accuracy Tradeoff630

By intelligently managing the energy and localization accu-631

racy trade-off, the battery life of a mobile device can be632

significantly extended, which is of great importance for the633

smartphone users. Since the required localization accuracy634

varies with locations, there is significant potential to trade-635

off the accuracy and the energy consumption based on the636

application’s needs and different working scenarios.637

As mentioned before, we take the GPS sampling rate as638

a representative of SensTrack’s power consumption. Figure 6639

demonstrates the trade-off between sampling rate and accu-640

racy, which SensTrack presents under different configurations.641

Even though there exists some bias, we can observe a clear642

trend that a higher accuracy requires a higher GPS sampling643

rate, which means more power consumption. On the other644

hand, Figure 6 does not present a strict monotonicity. A higher645

energy consumption does not necessarily indicate a higher646

accuracy. For example, it only requires 6% samples to achieve647

a higher accuracy (average error is 2.66 m), whereas 11%648

samples are needed to produce a relatively lower accuracy649

(average error is 3.02 m). This is because the error of one650

prediction not only depends on the GPS sampling rate but also651

depends on the performance of the reconstruction algorithm.652

For GPR in our case, if the location samples have higher653

covariances between each other and are uniformly distributed654

on the path in time space, the algorithm can produce better655

results and achieve a higher accuracy. Therefore, besides the656

sampling rate, the actual samples themselves collected by657

TABLE IV
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Fig. 7. WiFi traffic of SensTrack.

the system have a huge impact on the results. The samples 658

that have similar covariances between every two successive 659

samples are more likely to produce highly accurate predictions. 660

E. Transmission Overhead 661

There is no doubt that exploiting network-based localization 662

technology to obtain approximate locations would incur some 663

extra network transmissions. To measure the extra traffic, 664

we recorded the traffic loads of SensTrack and the baseline. 665

As the baseline, there only maintains a valid wireless network 666

connection. To be clear, we did not include the uploading 667

of location samples into the transmission overhead, because 668

unlike the indoor location sensing, the uploading process does 669

not need to be done in real time. 670

Table IV presents the average numbers of the received 671

and transmitted packets during the tracking process. For both 672

SensTrack and the baseline, the average numbers of the 673

transmitted packets were close. Although SensTrack theoret- 674

ically should transmit more packets as it requests location 675

information through the wireless link, the result is within a 676

normal error range. On the other hand, SensTrack received 677

more than twice as many packets as the baseline did. We argue 678

that even if the number of received packets increases, the total 679

transmission overhead may not be intolerable, because the size 680

of received packets that contains only the location information 681

should be small. Moreover, since the WiFi connection is 682

usually free, there is no need to worry about the wireless 683

network traffic. Another point is that communicating with 684

the access points consumes less energy than communicating 685

with the GPS satellites. Figure 7 further shows SensTrack’s 686

traffic pattern, which matches the result in Figure 2. SensTrack 687

had WiFi traffic in the time intervals of strong WiFi signals 688
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(201 s ∼ 216 s, 335 s ∼ 368 s, 387 s ∼ 398 s, 537 s ∼ 558 s).689

After entering the building at 588 s, SensTrack continuously690

transmitted and received packets.691

VI. FURTHER DISCUSSION692

A. Multiple Mobility Patterns693

Although our work focuses on the pedestrians, it can be694

easily extended on multiple mobility patterns, such as running,695

biking, driving, etc, which are often with higher speeds.696

Intuitively these movements are more stable, and thus the697

trajectories are likely less complex, and thus the sensors698

on smartphones can easily capture the features of the path.699

Therefore, our approach at least paves the road of designing700

the efficient tracking service for multiple mobility patterns.701

However, given the characteristics of different movements,702

modifications should be carefully considered.703

B. Energy Consumption of Accelerometer and Orientation704

Sensor705

In this paper, to make our point clear, we assume a contin-706

uous sampling of the acceleration sensor and the orientation707

sensor, which may cause unnecessary energy cost. It is not708

necessarily the case. Given that the energy-efficiency is a709

major goal of our design, users can further employ a low710

duty cycle on the usage of the acceleration sensor and the711

orientation sensor. Since the high speed movements are more712

stable, a low duty cycle can still allow the sensors to capture713

the features of the users’ movements.714

C. Other Indoor Localization Technologies715

Our work chose the network-based method, which is mainly716

based on the WiFi positioning system, as our indoor localiza-717

tion approach. The primary reason is that the implementa-718

tion of this method is already provided as APIs in Android719

platforms (since API level 1). Other methods for the indoor720

localization can also be employed such as the specialized real-721

time locating systems (RTLS) [23] or the inertial measurement722

unit (IMU)-based navigation systems [24]. However, many of723

these methods also require a costly infrastructure or additional724

hardware, which hardly satisfy the need for a cost-effective725

solution. On the other hand, indoor localization is not our726

main concern in this paper, rather it is a supplementary of727

GPS to extended the coverage of SensTrack.728

VII. CONCLUSION729

In this paper, we have proposed a novel location tracking730

service, SensTrack. We first discussed the limitations of the731

traditional GPS-based approach and opportunities of improve-732

ments. Next, the detailed design of SensTrack was presented733

including: the trajectory reconstruction algorithm based on the734

Gaussian Process Regression, the rules of switching between735

two location sensing methods, and the principles for exploiting736

the sensor hints. We then used the real traces to evaluate the737

performance of SensTrack, which shows that SensTrack can738

significantly reduce the usage of GPS and generate accurate739

tracking results. The design of SensTrack and evaluation740

presented above reveal several interesting challenges which 741

remain for future work including resilient accelerometer data 742

processing, tracking for multiple mobility patterns, and joint 743

optimization of energy and accuracy. 744
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SensTrack: Energy-Efficient Location Tracking
With Smartphone Sensors
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Abstract— Nowadays, as smartphones are becoming more and1

more powerful, applications providing location based services2

have been increasingly popular. Many, if not all, smartphones are3

equipped with a powerful sensor set (GPS, WiFi, the acceleration4

sensor, the orientation sensor, etc.), which makes them capable5

of accomplishing complicated tasks. Unfortunately, as the core6

enabler of most location tracking applications on smartphones,7

GPS incurs an unacceptable energy cost that can cause the8

complete battery drain within a few hours. Although GPS is9

often preferred over its alternatives, the coverage areas of GPS10

are still limited (GPS typically cannot function indoors). To this11

end, our goal in this paper is to improve the energy-efficiency12

of traditional location tracking service as well as to expand its13

coverage areas. In this paper, we introduce SensTrack, a location14

tracking service that leverages the sensor hints on the smartphone15

to reduce the usage of GPS. SensTrack selectively executes a16

GPS sampling using the information from the acceleration and17

orientation sensors and switches to the alternate location sensing18

method based on WiFi when users move indoors. A machine19

learning technique, Gaussian process regression, is then employed20

to reconstruct the trajectory from the recorded location samples.21

We implemented a prototype on an Android smartphone that22

can sample the related sensors during the user’s movement and23

collect the sensor data for further processing on PCs. Evaluation24

on traces from real users demonstrates that SensTrack can25

significantly reduce the usage of GPS and still achieve a high26

tracking accuracy.27

Index Terms— Location tracking, smartphone, sensor.28

I. INTRODUCTION29

UNDERSTANDING human mobility in daily life is a fun-30

damental resource for broad-domain applications, espe-31

cially for the applications that provide location based services.32

With the increasing pervasiveness of smartphones over the33

past few years, many emerging location based applications are34

adopted by mobile users. Consumer and advertiser expenditure35

on location based services is expected to approach $ 10 billion36
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by 2016 [1]. The reason that location based applications 37

become so popular is two-fold. First, location based services 38

rely on the knowledge about the user’s geographical location 39

to obtain relevant information on the spot, and thus offer the 40

user a plethora of options to satisfy his/her needs under that 41

particular context. Second, a typical modern mobile device 42

usually has the ability to locate or estimate its current position. 43

The localization technologies used today mainly based on 44

Global Positioning System (GPS), other technologies also 45

obtain assistance from WiFi and GSM, each of which can 46

vary widely in energy consumption and localization accuracy. 47

As it is known to be more accurate, GPS is often preferred 48

on mobile platforms over its alternatives such as GSM/WiFi 49

based positioning systems. 50

Although smartphones today are capable to accomplish 51

complicated tasks such as localization, we still face prob- 52

lems. The demand of computing and storage capability on 53

mobile devices is rapidly increasing in recent years, whereas 54

the battery manufacturing industry moves forward slowly 55

(battery capacity grows by only 5% annually [2]). In spite 56

of the increase in processing power, feature-set, and sensing 57

capabilities, the smartphones continue to suffer from lim- 58

ited battery life. Unfortunately, it is also well-known that 59

GPS, the core enabler of many location-based applications, 60

is power-hungry. The aggressive usage of GPS can cause 61

the battery to completely drain within a few hours [3], [4]. 62

Location based applications still cannot assume continuous 63

and ubiquitous location access in their design because of 64

the high energy expense for localization. Even within the 65

limited hours of being activated, GPS may not function well 66

all the time, especially when the mobile user is under the 67

shelter of buildings due to the signal loss under indoor 68

environment [5]. When GPS is unavailable, alternate location 69

sensing techniques must be used to obtain the approximated 70

location. The variability in accuracy provided by various 71

location sensing technologies and the limits on their cover- 72

age areas pose additional challenges for application devel- 73

opers [6]. Using multiple location sensors simultaneously to 74

make up for this variability in accuracy would further increase 75

energy cost. 76

In this paper, we present the design of SensTrack, a location 77

tracking service that provides user’s moving trajectory while 78

reducing its impact on the devices’s battery life. By applying 79

different localization technologies, we expand the coverage 80

area compared to the traditional approach that only uses GPS. 81

In addition, the sensor hints from the smartphone itself can 82

help us make decisions about adaptive sampling. SensTrack 83

1530-437X © 2013 IEEE
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smartly selects the location sensing methods between WiFi84

and GPS, and reduces the sampling rate by utilizing the85

information from acceleration sensor and orientation sensor,86

two of the most common sensors found on smartphones today.87

We have implemented a prototype on the Google Nexus S88

phone, which continuously collects data from the acceleration89

sensor and the orientation sensor, and records the location90

samples from GPS and WiFi. Experiments have been con-91

ducted on a real world path while the phone was carried by a92

mobile user in a region of our university campus. The collected93

data is further analyzed and filtered on computers. To predict94

the user’s original trajectory, a track reconstruction algorithm95

based on a machine learning technique is also implemented96

on the server side. Performance evaluation on the real data97

sets shows that SensTrack only needs 7% GPS samples of98

the naive approach and saves nearly 90% GPS activated time.99

Meanwhile, SensTrack reconstructs the user’s trajectory with100

high accuracy and better coverage.101

The main contributions of this paper are listed as follows:102

• We identify the problems of traditional location track-103

ing service including limited availability of GPS and104

unnecessary GPS samplings. The opportunities of energy-105

efficiency improvements by utilizing the assistance from106

sensors on smartphones are discussed.107

• We present the detailed design of an energy-efficient108

location tracking service, SensTrack. As the main compo-109

nent, a track reconstruction algorithm based on Gaussian110

Process Regression is proposed. Other mechanisms for111

making smart adaptive sampling decisions are also dis-112

cussed.113

• We implement a prototype of SensTrack, and evaluate the114

proposed system through real-world experiments.115

This paper is organized as follows. In Section II we116

review the related work on energy-efficient location sensing.117

Section III presents our observations on the defects of tradition118

location based applications based on GPS, and discusses119

the opportunities of improvements. The detailed design of120

SensTrack is proposed in Section IV. We evaluate our proposal121

in Section V and analyze the performance improvement.122

Further considerations are discussed in Section VI. Section VII123

concludes the paper and outlines the future work.124

II. RELATED WORK125

To track the users’ locations, many energy-efficient sensing126

approaches with adaptive sensing policies have been proposed127

to minimize the energy consumption [3], [7]–[9]. With the128

objective of minimizing the location error for a given energy129

budget, EnLoc [3], an energy-efficient localization framework,130

includes a heuristic with a local mobility tree to predict131

the next sensing time by utilizing the dynamic programming132

technique. Jigsaw [8] uses the information obtained from the133

acceleration sensor and the microphone to continuously mon-134

itor human activities and environmental context. According to135

the user’s mobility patterns, a discrete-time Markov Decision136

Process is employed to learn the optimal GPS duty cycle137

schedule with a given energy budget.138

There are also works based on the observation that the139

required localization accuracy varies with locations. An adap- 140

tive location service for mobile devices, a-Loc [7] uses a 141

Bayesian estimation framework to determine the dynamic 142

accuracy requirement, and tunes the energy expenditure 143

accordingly. It argued in [9] that given the less accuracy of 144

GPS in urban areas, it suffices to turn on GPS adaptively to 145

achieve this accuracy. The rate-adaptive positioning system 146

for smartphone applications (RAPS) was then proposed to 147

minimize energy consumption with given accuracy threshold 148

by using the information of moving distance, space-time 149

history, and cell tower-based blacklisting. 150

Smartphones’ energy consumption has been a major concern 151

in research for a long time, and a number of studies have 152

been done to improve the energy efficiency of mobile devices. 153

In order to understand where and how the energy is used, 154

A. Carroll et al. [10] measured the power consumption of a 155

modern mobile device (the Openmoko Neo Freerunner mobile 156

phone), broken down to the devices major subsystems (CPU, 157

memory, touchscreen, graphics hardware, audio, storage, and 158

various networking interfaces), under a wide range of realistic 159

usage scenarios. M. Ra et al. [11] proposed the Stable and 160

adaptive link selection algorithm (SALSA), an optimal online 161

algorithm for energy-delay tradeoff based on the Lyapunov 162

optimization framework. SALSA defers the transmissions of 163

delay-tolerant applications until a less energy-consuming WiFi 164

connection becomes available. 165

Utilizing the sensing power of smartphones is not a new 166

topic in literature. M. Keally et al. [12] presented the design of 167

Practical Body Networking (PBN) system to provide practical 168

activity recognition with mobile devices, which combines 169

the sensing power of on-body wireless sensors with the 170

additional sensing power, computational resources, and user- 171

friendly interface of an Android smartphone through the uni- 172

fication of TinyOS motes and Android smartphones. Another 173

interesting ongoing work discusses how to fuse information 174

from Microsoft Kinect’s tracking with the smartphone’s sensor 175

readings to improve Kinect gaming experience [13]. 176

Inspired by many existing studies, in this paper we take 177

efforts to achieve a high energy efficiency by reducing the 178

sampling rate of sensing users’ locations. However, our work 179

uses a novel approach by utilizing the acceleration sensors 180

and the orientation sensors on smartphones to capture the 181

geometric features of users’ moving trajectories. We will 182

further explain the difference between SensTrack and existing 183

works in the following sections. 184

III. CHALLENGES AND OPPORTUNITIES 185

In this section, we start by describing the defects of typical 186

location-based applications that utilize GPS, including limited 187

availability and unnecessary samples. We then discuss the 188

opportunities for making improvements. 189

A. Limited Availability of GPS Versus Multiple 190

Location Sensing Methods 191

It should be noted that traditional GPS cannot work 192

properly under the indoor environment. The standard GPS 193
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(a)

(b)

Fig. 1. Tracking results when T = 5 s, θ = 45◦, D = 100 m, v = 8 m/s.
(a) Track recorded by the naive approach. (b) Track reconstructed by
SensTrack.

receiver requires signals from at least 4 satellites simul-194

taneously to calculate and output 3-dimensional locations195

and velocity information [5]. Therefore, the mobile devices196

need to be in line-of-sight contact with the GPS satellites,197

which significantly limits the usage of typical location based198

applications.199

Figure 1(a) shows one track that we took using GPS on a200

mobile device. Although we did not stop recording, the track201

ends once it entered the building (the Academic Quadrangle202

in our campus), which indicates the performance of GPS203

largely depends on the working condition. The signals from204

GPS satellites can be blocked not only by buildings but also205

by canyon walls, trees, and even thick clouds. When the206

user walks through buildings, GPS equipped by a normal207

smartphone cannot function since the lack of satellite signals.208

Even worse, GPS units may consume more energy than the209

normal situation when there is no satellite signals [14].210

Besides GPS, there also exist alternate location sensing211

technologies. For example, Android OS provides a network-212

based localization mechanism, which exploits GSM footprints213

from cell towers and WiFi signals to obtain an approximate214

location. Although the network-based location sensing is not215

as accurate as GPS, it provides the possibility to keep tracking216

inside a building since it mainly relies on the WiFi connection,217

in which case GPS units can be deactivated to save battery.218
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Fig. 2. WiFi signal strength along the track.

For the scenarios like university campus, hotels or hospi- 219

tals, we can always assume persistent wireless local network 220

access, which implies that other location sensing methods may 221

provide us valid options when GPS is out of use. 222

Figure 2 shows the received WiFi signal strength along the 223

track presented in Figure 1(a). The dash line indicates the time 224

stamp (588 s) at which the user entered the Academic Quad- 225

rangle. There are some spikes before 588 s (201 s ∼ 216 s, 226

335 s ∼ 368 s, 387 s ∼ 398 s, 537 s ∼ 558 s), which means that 227

the user can receive some WiFi signal for a short time when 228

passing by buildings. After entering the building at 588 s, the 229

received WiFi signal stayed at a relatively high level since the 230

WiFi connection is assured in teaching areas of the university 231

campus. This figure can support our argument that, when the 232

user is inside a building, WiFi signal is usually relatively 233

strong. Therefore, the network-based localization can be a 234

valid choice under the indoor environment where GPS is no 235

longer available. The idea is to use the GPS satellite signal and 236

the wireless network connection as indicators for switching 237

between GPS and the network-based location sensing method. 238

B. Unnecessary GPS Samplings Versus Adaptive Sampling 239

The GPS sensor can sample the user’s location at a relatively 240

high rate. However, it is not ideal to record every location 241

update since the error for each location sample varies. To make 242

the path more smooth and fit the real trajectory, a typical 243

location based application usually updates the user’s location 244

only if the distance to the last valid location sample is larger 245

than a certain threshold [15]. Therefore, with a fixed and 246

frequent GPS location sampling policy, it probably introduces 247

a significant amount of unnecessary GPS samples. 248

To demonstrate this, we collect the system log of an Android 249

application, My Tracks [16], which uses the GPS sensor in 250

mobile devices to record the paths that users take while 251

hiking, cycling, running, or participating in other activities. 252

Figure 3 shows part of the system log, demonstrating its 253

executing history in one run. As shown in the figure, the 254

application usually takes several GPS samples to get one 255

valid location update, in which case the threshold is 5 meters. 256

Our experimental result in this case shows that up to 79% 257
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Fig. 3. A part of system log when running a location-based application.

location samples of My Tracks are unnecessary. Since many of258

the samples are discarded, these invalid location measurements259

cause unnecessary energy consumption.260

C. Assistance From Other Sensors261

Nowadays smartphones become more and more powerful262

in terms of hardware, which usually contains various sen-263

sors. As an example, iPhone 4 is equipped with several264

environmental sensors, including an ambient light sensor, a265

magnetic compass, a proximity sensor, an accelerometer, and266

a three-axis gyroscope [17]. Android 4.0 (API Level 14)267

also supports up to 13 kinds of sensors [18], even though268

the sensors’ availability varies from device to device. The269

supported list of sensors in a Google Nexus S phone consists270

of: one KR3DM 3-axis Accelerometer, one AK8973 3-axis271

Magnetic field sensor, one AK8973 Orientation sensor, one272

GP2A Proximity sensor, one GP2A Light sensor, one Linear273

Acceleration Sensor, one Rotation Vector Sensor, one K3G274

Gyroscope sensor, and one Gravity Sensor [19].275

To reduce unnecessary GPS samples, adaptive sampling is276

proposed in many existing works [3], [7]–[9]. Usually we need277

additional information to make adaptive sampling decisions,278

which may include the location history, the speed history,279

the distance information, remaining battery power, the accu-280

racy requirement, etc. In this paper, we utilize the powerful281

sensors equipped by smartphones to obtain the information282

about changes of the orientation, moving speed, and traveled283

distance. Based on these useful information, we are able to284

make smart adaptive sampling decisions. The detailed design285

is described in the following section.286

IV. SENSTRACK: DESIGN DETAILS287

A. Overview288

To reduce the frequency of location sensing, SensTrack peri-289

odically collects data from the corresponding sensor to detect290

a turning point or estimate current speed and the distance291

from the last recorded location. The high energy efficiency292

of this approach is supported by the fact that the GPS sensor293

consumes much more energy than the acceleration sensor and294

the orientation sensor [9], [20]. When the GPS satellite signal295

is not available and the WiFi connection is active, SensTrack296

switches to the network-based location sensing method to297

obtain the raw coordinates. The last step of SensTrack is to298

upload the coordinates of sampled locations to an online server299

that uses a machine learning algorithm to reconstruct a smooth300

and accurate trajectory.301
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Sensor

Loca�on Samples

A
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G
PS is unavailable

&
 W

iFi is available

Gaussian Process 
Regression

Reconstructed
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Fig. 4. The system architecture.

Figure 4 demonstrates the SensTrack’s system architecture. 302

The service consists of two stages: the first is to collect 303

the location samples; and the second is to reconstruct the 304

original trajectory. Given the working conditions, SensTrack 305

switches between the GPS-based and the network-based local- 306

ization methods using the GPS or WiFi sensors, respectively. 307

By utilizing the sensor hints from the acceleration sensor 308

and the orientation sensor, SensTrack is able to make smart 309

adaptive sampling decisions in the GPS mode. For example, 310

when the smartphone detects a turning point or if it estimates 311

a unreasonable speed or a unexpected large traveling distance, 312

it uses GPS to record the current location. After the server 313

side receives all the collected location samples, a Gaussian 314

Process Regression algorithm is then employed to predict the 315

trajectory that the user has taken. 316

B. Track Reconstruction: Gaussian Process Regression 317

Once the collection of location samples is finished, it is 318

not ideal to simply connect all the recorded locations, since 319

the distances between any two successive locations may not 320

be the same. For some parts of a trajectory, the recorded 321

locations can be very sparse, while for other parts, the location 322

samples may be relatively intensive. If we simply connect the 323

location samples, the resultant trajectory can be very abstract. 324

Therefore, uploading the collected data to the online server 325

either by a wireless or wired connection to reconstruct the 326

trajectory is our last stage. We adopt the Gaussian Process 327

Regression (GPR), a machine learning technique to perform 328

the interpolation. The training set of the algorithm is the 329

recorded critical locations decided by the sensor hints which 330

capture most of key features of a trajectory. And the testing set 331

is the predicted locations between the successive but far-away 332

location samples. Combing both input and output gives us the 333

final trajectory. We next detailed describe GPR and how the 334

user’s trajectory can be reconstructed by using GPR. 335

A Gaussian process is a collection of random variables, 336

any finite number of which have a joint Gaussian distri- 337

bution, and is fully specified by a mean function and a 338

covariance function [21]. The inference of continuous values 339

with a Gaussian process prior is known as Gaussian Process 340
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Regression. Consider x as a general random variable.341

We define the mean function m(x) and the covariance function342

k(x, x ′) of a real process f (x) as343

m(x) = E[ f (x)],344

k(x, x ′) = E[( f (x) − m(x))( f (x ′) − m(x ′))],345

and can write the Gaussian process as346

f (x) ∼ gp(m(x), k(x, x ′)).347

For notational simplicity the mean function is usually set to be348

zero. In our method the covariance function will be the squared349

exponential covariance function, although other covariance350

functions may also be useful. Assuming that observations are351

noise-free, the covariance function specifies the covariance352

between pairs of random variables353

cov( f (x p), f (xq)) = k(x p, xq) = ex p(−1

2
|x p − xq |2). (1)354

For a estimate data set X∗, we can generate a random355

Gaussian vector f∗ for target values with the covariance matrix356

calculated from Equation 1357

f∗ ∼ N(0, K (X∗, X∗)).358

Therefore, the joint distribution of the training outputs f and359

the test outputs f∗ according to the prior is360 [
f
f∗

]
∼ N

(
0,

[
K (X, X) K (X, X∗)
K (K∗, X) K (X∗, X∗)

])
. (2)361

If X contains n training points and X∗ contains n∗ test362

points, then K (X, X∗) is the n × n∗ matrix of the covariances363

evaluated at all pairs of training and test points. And the other364

entries K (X, X),K (X∗, X),and K (X∗, X∗) are similar.365

If observations are noisy, we can write y = f (x)+ε. Assum-366

ing additive independent identically distributed Gaussian367

noise ε with variance σ 2, we have the prior as368

cov(yp, yq) = k(x p, xq) + σ 2
n δpq369

or370

cov(y) = K (X, X) + σ 2
n I,371

where δpq is a Kronecker delta which is one when p = q372

and zero otherwise. Introducing the noise in Equation 2, the373

joint distribution of the observed target values and the function374

values at test points according to the prior will be375 [
y
f∗

]
∼ N

(
0,

[
K (X, X) + σ 2

n I K (X, X∗)
K (K∗, X) K (X∗, X∗)

])
. (3)376

The posterior distribution over functions can be obtained by377

restricting the joint prior distribution on the observations. Then378

we arrive at the key predictive equations for GPR379

f∗|X, y, X∗ ∼ N( f∗, cov( f∗)), where (4)380

f∗ = E[ f∗|X, y, X∗] = K (X∗, X)381

×[K (X, X) + σ 2
n I ]−1y, (5)382

cov( f∗) = K (X∗, X∗) − K (X∗, X)383

×[K (X, X) + σ 2
n I ]−1K (X, X∗). (6)384

Algorithm 1 Predictions(X ,y,k,σ 2
n ,x∗)

1: L = cholesky(K + σ 2
n I )

2: α = L�\(L\y)
3: f∗ = k�∗ α
4: v = L\k∗
5: V [ f∗] = k(x∗, x∗) − v�v
6: logp(y|X) = − 1

2 y�α − ∑
i logLii − n

2 log2π

7: return ( f∗, V [ f∗], logp(y|X))

We then focus on explaining how to use GPR with given 385

location samples to reconstructed the estimated trajectory. 386

A trajectory can be considered as the path that the user 387

follows through space as a function of time. Specifically, we 388

have n location samples from x1 to xn , each of which can 389

be represented by a two-dimensional points xi = (xi , yi ). 390

Then X is the sampled date set for all (xi , yi ) s. According to 391

what we have explained, the user’s track can be represented by 392

generated GPR functions which is determined by a covariance 393

function and a mean function. In the case that there is only 394

one test point x∗, we let k(x∗) = k∗ denote the vector of 395

covariances between the test point and the n training points. 396

Then for a single test pointx∗, Equation 5 and 6 can be 397

reduced to 398

f∗ = k�∗ (K + σ 2
n I )−1y, (7) 399

V ( f∗) = k(X∗, X∗) − k�∗ (K + σ 2
n I )−1k∗. (8) 400

On obtaining Equation 7 and 8, we further propose the 401

following Algorithm 1 for a single test case, in which 402

cholesky (K + σ 2
n I ) is the Cholesky decomposition on 403

the matrix of K + σ 2
n I . The implementation addresses the 404

matrix inversion required by Equation 7 and 8 using Cholesky 405

factorization. For multiple test cases lines 3 ∼ 6 are repeated. 406

In our case, X is time space of the training set, y is the 407

set of observed target values (location samples), k is the 408

covariance function, σ 2
n I is the noise, and x∗ is the testing 409

data. The outputs are as follows. f∗ is the mean predicted value 410

(predicted location of x∗), V [ f∗] is its variance, and log p(y|X) 411

is the marginal likelihood. A more detailed explanation can be 412

referred to our previous work [22]. 413

C. Switching Location Sensing Methods 414

As mentioned, it is well-known that GPS cannot function 415

properly indoors. To expand the coverage areas, SensTrack 416

switches between GPS and the network-based localization 417

through the wireless connection. Basically, we want to use 418

GPS outdoors and the network-based localization indoors, 419

and thus it is important to decide when to switch. Initially, 420

SensTrack starts in the GPS mode and periodically executes a 421

WiFi scan. When it detects the GPS signal loss as well as an 422

active wireless network connection, SensTrack turns into the 423

WiFi mode. If GPS becomes available again, and the phone 424

loses the WiFi connection or the accuracy of location samples 425

provided by the network decreases significantly, SensTrack 426

switches back into the GPS mode. 427

We note that there are two conditions satisfied to switch the 428

location sensing method: the current method fails to obtain 429
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location samples, and the other method is guaranteed to work,430

which prevents from switching between the two modes too431

often. Frequently changing location sensing mechanism can be432

very energy consuming, because the high-power components433

associated with both location providers need to be active.434

In some cases, both of the two methods are available when the435

user passing by some buildings. According to our rules, we436

should not change SensTrack’s working mode, since in these437

situations the wireless connection tends to be unstable and438

short. In other cases, none of the two methods are available if439

we simply lose the GPS satellite signal outdoors. Our rules can440

also avoid the unnecessary switching in these cases. It is also441

worth mentioning that SensTrack stops collecting the sensor442

hints when it switches into the WiFi mode. In another word,443

we passively receive location updates in this mode. The reason444

is that, unlike GPS, when we request the location information,445

the WiFi localization technology cannot respond within a446

tolerable delay. It means that even if we apply the sensor hints447

to sense the location adaptively, we cannot obtain a location448

sample timely in the WiFi mode. Therefore, considering the449

WiFi localization updates the location less frequently than450

GPS, we decided not to waste energy on the acceleration451

sensor and the orientation sensor.452

D. Utilizing Sensor Hints453

1) Orientation: SensTrack employs the orientation sensor454

as a detector of turning points when the user is moving.455

The idea is that there is no need to record the user’s location456

if he/she is in a steady movement without changing direction.457

For a sliding window of size T , SensTrack collects the458

readings of the orientation sensor, and computes the changes459

in direction. If user’s moving direction changes dramatically460

(greater than the threshold θ ), a location sensing of the user’s461

current location is executed. Considering the readings from the462

orientation sensor is approximately continuous, the window463

size T should be larger enough to observe the potential direc-464

tion changes. Table I shows the effect of the window size T .465

In our experiments, T was set to be 5 s because it would lose466

some turns of the trajectory for smaller window size. On the467

other hand, a larger window size is not necessary as it requires468

more memory and computation, which in turn requires more469

powerful hardware. The user can also decide the threshold θ ,470

the other key parameter, according to their expectations on471

accuracy. Table II presents the number of missing turning472

points for different values of θ . Roughly speaking, SensTrack473

is more sensitive with a smaller θ . However, a too small θ474

may cause redundant detections of the trajectory’s turns (false475

positives) if we consider the noises in the readings from the476

sensor, which potentially wastes energy in sensing locations477

at those false turning points.478

2) Acceleration: The acceleration sensor in a mobile device479

has been widely used in many existing location sensing480

systems, in which it acts as a binary sensor to detect user481

movement or non-movement. We notice that distance is theo-482

retically a simple integral of speed, which in turn is an integral483

of acceleration. Unlike most prior works, we do not limit the484

acceleration sensor just to be the user’s movement detector,485

TABLE I

EFFECT OF WINDOW SIZE T

TABLE II

EFFECT OF THRESHOLD θ

rather explore the possibility of calculating the distance that 486

the user has traveled and the speed that the user is moving at. 487

It should be noted that the readings of the acceleration 488

sensor on a moving device are usually noisy, especially when 489

the user is walking. Activities with higher speed, like biking 490

and driving, actually are more stable, whereas the movement 491

of a pedestrian is always fluctuating. It often overestimates 492

distance when the user is holding the phone in his/her hands, 493

and underestimates distance when sitting quietly on a cush- 494

ioned car seat [9]. When calculating the integrals, errors 495

caused by the noise in the sensing data are accumulated. 496

However, we argue that the estimated distance and speed 497

obtained as integrals of acceleration are still useful even if they 498

are inaccurate, because the location and velocity information 499

provided by GPS can help us to calibrate the calculation. 500

Once the estimated distance or the estimated speed exceeds 501

the thresholds, specifically D and v, SensTrack activates GPS 502

to sense the current location and speed. The thresholds can be 503

set based on the accuracy requirement or the user’s moving 504

patterns. For example, for a pedestrian, usually the moving 505

speed can be no more than 10 m/s and should not be negative, 506

and the accuracy requirement is usually higher. Moreover, the 507

calibration of calculating the integrals can also be done when 508

GPS is activated at the turning points. 509

V. EVALUATION 510

A. Data Collection and Methodology 511

We evaluated SensTrack using a real data set collected from 512

a Google Nexus S phone carried by a mobile user walking 513

in our university campus. The phone is equipped with an 514

integrated GPS, an WiFi sensor, an accelerometer, and an 515

orientation sensor. We implemented a SensTrack prototype on 516

Android 4.0 (API level 14). During its runtime, the prototype 517

continuously collects data from the acceleration sensor and 518

the orientation sensor at default rate of the system service 519

(SENSOR_DELAY_NORMAL) in Android OS. When the 520

GPS signal is available, a location listener is registered to 521

request location updates from GPS periodically. Meanwhile, 522

the prototype always tries to initiate and maintain a WiFi 523

connection, which can be used to record the location updates 524

from the network-based location provider. In our experiments, 525

a PC server was used to further analyze the data collected by 526

the smartphone and filter the GPS and WiFi location samples 527

with the given parameters. The trajectory reconstruction algo- 528

rithm based on GRP was also implemented on the server side, 529

which uses the filtered and valid location samples to predicted 530
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TABLE III

AVERAGE ERROR OF PREDICTED LOCATIONS

the original trajectory. For most of the presented results, our531

settings were T = 5 s, θ = 45◦, D = 100 m, v = 8 m/s, and532

a prediction was made if the time gap between two successive533

GPS samples is greater than 15 s.534

We also compared SensTrack with the naive approach, in535

which GPS is the only way to obtain location information536

and the GPS sensor is kept to be activated during the whole537

tracking period. Unlike SensTrack, which samples the GPS538

location actively, the naive approach is a passive method that539

records all the valid location updates from GPS. We conducted540

the experiments on the same real path for several times, which541

started from outdoor environment, came into a building, and542

then ended indoors. The total length of the path is around543

1.1 km. The results show that, without significantly losing the544

accuracy of tracking, SensTrack effectively reduce the number545

of GPS samples and the time that the GPS sensor needs to be546

turned on.547

B. Accuracy548

We first present the tracking results by SensTrack and the549

naive approach. Despite the tracking service maintained, the550

trajectory shown in Figure 1(a) ended once the user entered the551

building since the signals from GPS satellites were blocked by552

the building, which indicates the performance of GPS largely553

depends on the working condition. Compared to the naive554

approach, SensTrack demonstrates a reasonably better perfor-555

mance. Figure 1(b) shows that the trajectory reconstructed by556

SensTrack has a similar outdoor part, meanwhile it has the557

indoor part that the original one does not have. Although the558

indoor part of the second trajectory may be not that accurate559

given the limitation of WiFi localization technology, it is still560

good to have a approximate trajectory.561

As previously stated, the resulting trajactory generated by562

SensTrack consists of two kinds of points: the sampled loca-563

tions and the predicted locations. To evaluate the accuracy564

of SensTrack, we took the GPS trace as the ground truth565

and calculated the average error of the predicted locations.566

For every prediction, we computed the difference between567

the predicted location and the real location in the GPS trace568

at the same time. The result shown in Table III proves that569

SensTrack can achieve a high accuracy. The average error570

of the predictions is 3.128 meters, which is quite acceptable571

(GPS can achieve an accuracy of 5 meters in good signal572

conditions). It should be noted that even the GPS trace may573

not be the real path that the user has taken, because the574

performance of GPS depends on a number of factors such575

as the user’s position, time, surroundings, weather, etc, which576

means that the GPS trace itself can be inaccurate. Another577

result from Table III is that the naive approach recorded578

568 samples over the testing path, although some of them may579

be unnecessary as discussed earlier. It is worth mentioning580

Fig. 5. Comparison of the energy efficiency.

that, whether a sample is necessary should be decided case 581

by case. For different scenarios, the ideal minimal distance 582

(threshold) between two valid samples can vary significantly. 583

We can adjust the number of necessary samples by setting 584

the granularity between successive samples and filtering the 585

recorded samples accordingly. In our experiments, the number 586

of necessary samples does not affect the total number of 587

GPS samples as the naive approach passively received every 588

sample, and the granularity between successive samples cannot 589

reflect the error of reconstructed trajectory. 590

C. Energy Efficiency 591

In modern mobile devices, the GPS receiver usually con- 592

sume much more power than the accelerometer and the digital 593

compass. For example, our testing device, a Google Nexus S 594

phone, is equipped with a BCM4751 integrated GPS receiver 595

(produced by Broadcom), a KR3DM 3-axis accelerometer 596

(produced by STMicroelectronics), and an AK8973 3-axis 597

electronic compass (produced by Asahi Kasei Microdevices). 598

With the battery supply (3.7 volt), the power consumption (in 599

terms of current) of the accelerometer is 0.23 mA; and the 600

current consumption of the compass is 6.8 mA; however, the 601

current consumption of the GPS receiver can be as much as 602

80 mA. To demonstrate the energy efficiency of SensTrack, we 603

present that SensTrack can significantly reduce the number 604

of needed GPS samples and the time that the GPS sensor 605

needs to be activated. We did not measure the actual energy 606

consumption of SensTrack, since we thought it is unnecessary. 607

For different hardware, the power consumption varies, and thus 608

the energy consumption of SensTrack on a specific hardware 609

model only provides limited information. Therefore, it is 610

convincing and sufficient for us to show the relative energy 611

efficiency of SensTrack to the naive approach by comparing 612

the number of required sampling and the activated time of the 613

GPS receiver. 614

Figure 5 shows that compared to the naive approach, 615

SensTrack only needs 7% GPS samples for the described path, 616

and the time of the GPS sensor being active is decreased by 617

nearly 90%. The naive approach almost updated the user’s 618

location every second, and the GPS sensor was kept to be 619

activated even when the user entered the building and lost the 620
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Fig. 6. Tradeoff between sampling rate and accuracy.

GPS satellite signals. SensTrack on the contrary only selec-621

tively activated the GPS sensor at some separate locations,622

and turned the GPS sensor off once the device lost the satellite623

signals and had an active WiFi connection. It should be pointed624

out that the energy efficiency of SensTrack depends on the625

user’s movements and the path that the user takes. If the626

user’s movement is very unstable and the direction changes627

frequently, SensTrack inevitably activates the GPS sensor more628

frequently, and thus consumes more energy.629

D. Energy-Accuracy Tradeoff630

By intelligently managing the energy and localization accu-631

racy trade-off, the battery life of a mobile device can be632

significantly extended, which is of great importance for the633

smartphone users. Since the required localization accuracy634

varies with locations, there is significant potential to trade-635

off the accuracy and the energy consumption based on the636

application’s needs and different working scenarios.637

As mentioned before, we take the GPS sampling rate as638

a representative of SensTrack’s power consumption. Figure 6639

demonstrates the trade-off between sampling rate and accu-640

racy, which SensTrack presents under different configurations.641

Even though there exists some bias, we can observe a clear642

trend that a higher accuracy requires a higher GPS sampling643

rate, which means more power consumption. On the other644

hand, Figure 6 does not present a strict monotonicity. A higher645

energy consumption does not necessarily indicate a higher646

accuracy. For example, it only requires 6% samples to achieve647

a higher accuracy (average error is 2.66 m), whereas 11%648

samples are needed to produce a relatively lower accuracy649

(average error is 3.02 m). This is because the error of one650

prediction not only depends on the GPS sampling rate but also651

depends on the performance of the reconstruction algorithm.652

For GPR in our case, if the location samples have higher653

covariances between each other and are uniformly distributed654

on the path in time space, the algorithm can produce better655

results and achieve a higher accuracy. Therefore, besides the656

sampling rate, the actual samples themselves collected by657
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Fig. 7. WiFi traffic of SensTrack.

the system have a huge impact on the results. The samples 658

that have similar covariances between every two successive 659

samples are more likely to produce highly accurate predictions. 660

E. Transmission Overhead 661

There is no doubt that exploiting network-based localization 662

technology to obtain approximate locations would incur some 663

extra network transmissions. To measure the extra traffic, 664

we recorded the traffic loads of SensTrack and the baseline. 665

As the baseline, there only maintains a valid wireless network 666

connection. To be clear, we did not include the uploading 667

of location samples into the transmission overhead, because 668

unlike the indoor location sensing, the uploading process does 669

not need to be done in real time. 670

Table IV presents the average numbers of the received 671

and transmitted packets during the tracking process. For both 672

SensTrack and the baseline, the average numbers of the 673

transmitted packets were close. Although SensTrack theoret- 674

ically should transmit more packets as it requests location 675

information through the wireless link, the result is within a 676

normal error range. On the other hand, SensTrack received 677

more than twice as many packets as the baseline did. We argue 678

that even if the number of received packets increases, the total 679

transmission overhead may not be intolerable, because the size 680

of received packets that contains only the location information 681

should be small. Moreover, since the WiFi connection is 682

usually free, there is no need to worry about the wireless 683

network traffic. Another point is that communicating with 684

the access points consumes less energy than communicating 685

with the GPS satellites. Figure 7 further shows SensTrack’s 686

traffic pattern, which matches the result in Figure 2. SensTrack 687

had WiFi traffic in the time intervals of strong WiFi signals 688
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(201 s ∼ 216 s, 335 s ∼ 368 s, 387 s ∼ 398 s, 537 s ∼ 558 s).689

After entering the building at 588 s, SensTrack continuously690

transmitted and received packets.691

VI. FURTHER DISCUSSION692

A. Multiple Mobility Patterns693

Although our work focuses on the pedestrians, it can be694

easily extended on multiple mobility patterns, such as running,695

biking, driving, etc, which are often with higher speeds.696

Intuitively these movements are more stable, and thus the697

trajectories are likely less complex, and thus the sensors698

on smartphones can easily capture the features of the path.699

Therefore, our approach at least paves the road of designing700

the efficient tracking service for multiple mobility patterns.701

However, given the characteristics of different movements,702

modifications should be carefully considered.703

B. Energy Consumption of Accelerometer and Orientation704

Sensor705

In this paper, to make our point clear, we assume a contin-706

uous sampling of the acceleration sensor and the orientation707

sensor, which may cause unnecessary energy cost. It is not708

necessarily the case. Given that the energy-efficiency is a709

major goal of our design, users can further employ a low710

duty cycle on the usage of the acceleration sensor and the711

orientation sensor. Since the high speed movements are more712

stable, a low duty cycle can still allow the sensors to capture713

the features of the users’ movements.714

C. Other Indoor Localization Technologies715

Our work chose the network-based method, which is mainly716

based on the WiFi positioning system, as our indoor localiza-717

tion approach. The primary reason is that the implementa-718

tion of this method is already provided as APIs in Android719

platforms (since API level 1). Other methods for the indoor720

localization can also be employed such as the specialized real-721

time locating systems (RTLS) [23] or the inertial measurement722

unit (IMU)-based navigation systems [24]. However, many of723

these methods also require a costly infrastructure or additional724

hardware, which hardly satisfy the need for a cost-effective725

solution. On the other hand, indoor localization is not our726

main concern in this paper, rather it is a supplementary of727

GPS to extended the coverage of SensTrack.728

VII. CONCLUSION729

In this paper, we have proposed a novel location tracking730

service, SensTrack. We first discussed the limitations of the731

traditional GPS-based approach and opportunities of improve-732

ments. Next, the detailed design of SensTrack was presented733

including: the trajectory reconstruction algorithm based on the734

Gaussian Process Regression, the rules of switching between735

two location sensing methods, and the principles for exploiting736

the sensor hints. We then used the real traces to evaluate the737

performance of SensTrack, which shows that SensTrack can738

significantly reduce the usage of GPS and generate accurate739

tracking results. The design of SensTrack and evaluation740

presented above reveal several interesting challenges which 741

remain for future work including resilient accelerometer data 742

processing, tracking for multiple mobility patterns, and joint 743

optimization of energy and accuracy. 744
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