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Abstract—In modern distributed cyber-physical systems (CPS), information fusion often plays a key role in automate and self-adaptive

decision making process. However, given the heterogeneous and distributed nature of modern CPSs, it is a great challenge to operate

CPSs with the compromised data integrity and unreliable communication links. In this paper, we study the distributed state estimation

problem under the false data injection attack (FDIA) with probabilistic communication networks. We propose an integrated ”detection +

fusion” solution, which is based on the Kullback-Leibler divergences (KLD) between local posteriors and therefore does not require the

exchange of raw sensor data. For the FDIA detection step, the KLDs are used to cluster nodes in the probability space and to partition

the space into secure and insecure subspaces. By approximating the distribution of the KLDs with a general x2 distribution and

calculating its tail probability, we provide an analysis of the detection error rate. For the information fusion step, we discuss the potential

risk of double counting the shared prior information in the KLD-based consensus formulation method. We show that if the local

posteriors are updated from the shared prior, the increased number of neighbouring nodes will lead to the diminished information gain.

To overcome this problem, we propose a near-optimal distributed information fusion solution with properly weighted prior and data

likelihood. Finally, we present simulation results for the integrated solution. We discuss the impact of network connectivity on the

empirical detection error rate and the accuracy of state estimation.

Index Terms—Distributed cyber-physical system, information fusion, false data injection attack, Kullback-Leibler divergence
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1 INTRODUCTION

INFORMATION fusion is a technique of combining informa-
tion from multiple sources, in order to enhance the sys-

tem’s knowledge about the physical world [1], [2]. In a
typical design of distributed cyber-physical systems (CPSs),
tasks such as control and optimization are solved. Informa-
tion fusion serves as a stepping stone for intelligent and
autonomous decision making, and therefore has a great
impact on the system’s quality of service (QoS). As the sens-
ing and communication technologies become ubiquitous
today, information fusion has been widely applied in dis-
tributed CPSs, such as power grids management [3], vehicu-
lar sensing networks [4], [5], smart buildings or cities [6],
and health-care applications using body area sensors [7].

However, CPSs operated over distributed networks are
under increasing risk of various attacks [8], [9]. From the
perspective of information fusion, the availability and the
integrity of information are of the greatest concern. Unfortu-
nately both properties can be imperilled in an adversarial
environment: the availability of information can be compro-
mised by the denial-of-service (DoS) attacks on the network

layer, such as jamming attacks on the wireless channels,
which reduce the probability of successful information
transmission; the integrity of information can be under-
mined by the false data injection attack (FDIA), which is a
type of deception attacks implemented by hijacking vulner-
able nodes and manipulating their sensors’ data. Consider-
ing the threat of the FDIA and unreliable communication
links, it is especially challenging to perform secure informa-
tion fusion in distributed CPSs operated over distributed
networks. First, as the system offloads computations and
decision making tasks to individual nodes, only the local
and neighbours’ information are available for the FDIA
detector. Second, the distributed and probabilistic commu-
nication poses difficulties to the dissemination of raw sensor
measurements, such as the heavy signalling messages for
data caching and synchronization. Therefore, it is preferable
for the distributed CPS to exchange the latest processed
information which encapsulates historical data, instead of
disseminating raw sensor measurements.

Studies have been dedicated to designing secure and
robust information fusion solutions for CPSs. However,
majority of the existing solutions are based on the assumption
that the local filtering residuals can be accessed in a central-
ized manner via the communication network with a deter-
ministic topology [10], [11], [12], [13]. In many real-world
systems (such as a network of autonomous vehicles), the
information is exchanged in a distributedmanner and the net-
work topology is time-variant [5]. Thus an important task for
distributed CPSs is to detect FDIA and carry out secure infor-
mation fusion, when local information are exchanged with
neighbours via probabilistic communications.

� X. Liu is with the Department of Information Technology, Uppsala
University, 752 36 Uppsala, Sweden. E-mail: xiuming.liu@it.uu.se.

� E. C.-H. Ngai is with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Hong Kong.
E-mail: chngai@eee.hku.hk.

� J. Liu is with the School of Computing Science, Simon Fraser University,
Vancouver, BC V6B 5K3, Canada. E-mail: jcliu@cs.sfu.ca.

Manuscript received 11 Feb. 2019; revised 18 Nov. 2019; accepted 10 Jan.
2020. Date of publication 24 Jan. 2020; date of current version 2 Apr. 2021.
(Corresponding author: Edith C. H. Ngai.)
Digital Object Identifier no. 10.1109/TMC.2020.2969352

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 5, MAY 2021 2041

1536-1233 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:10:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-6783-9351
https://orcid.org/0000-0001-6783-9351
https://orcid.org/0000-0001-6783-9351
https://orcid.org/0000-0001-6783-9351
https://orcid.org/0000-0001-6783-9351
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0002-3454-8731
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
mailto:xiuming.liu@it.uu.se
mailto:chngai@eee.hku.hk
mailto:jcliu@cs.sfu.ca


In this paper, we study the problem of secure informa-
tion fusion in distributed CPSs. Specifically, the problem is
formulated as a distributed state estimation problem with
FDIA and probabilistic communications. The local informa-
tion are exchanged between neighbouring nodes in the
mobile network with a time-variant topology. We propose
an integrated solution to detect the FDIA and perform infor-
mation fusion, based on the Kullback-Leibler divergences
(KLDs) between local posterior distributions [14]. The pro-
posed solution consists of three sequential steps, which are
executed in an iterative manner: 1) Local bayesian filtering
(LBF), which updates the local posterior with the latest sen-
sor measurements; 2) KLD-based FDIA detection, which
performs hierarchical clustering of local posteriors based on
the average symmetrised KLDs matrix; 3) KLD-based con-
sensus formulation, which dynamically weights the shared
priors and local data likelihoods. By carrying out both theo-
retical analysis and numerical simulations, we validate the
KLD-based detection and consensus formulation methods,
and provide interesting insights and interpretations in
terms of information geometry. Finally the proposed solu-
tion is demonstrated with an application of spatial-temporal
signal monitoring, using a mobile sensor network. The per-
formance of the proposed solution is examined under dif-
ferent levels of network connectivity.

The contributions of this paper are summarized as the
following.

� We proposed an integrated ”detection + fusion”
solution for the distributed state estimation problem
with probabilistic communications. The solution
does not require dissemination or synchronization of
raw sensor measurements, and can be implemented
in mobile networks with dynamic typologies;

� We design a novel KLD-based FDIA detector. The
average symmetrised KLDs between local posteriors
can be approximated with general x2 distributions.
We present an theoretical analysis of the detection
error rate based on the tail probabilities of the sym-
metrised KLDs.

� We present a KLD-based consensus formulation,
where the shared priors and local data likelihoods
are dynamically weighted in order to avoid double
counting the shared information. This method signif-
icantly reduces the performance gap between the
near-optimal distributed solution and the optimal
centralized solution.

The paper is organized as the following. In Section 2, we
review the literature related to distributed estimation under
FDIA. In Section 3, we present the system model and an
overview of the proposed solution. The FDIA detetor design
and its performance analysis are presented in Section 4. The
information fusion algorithm is presented in Section 5. In
Section 6, we provide simulation results and discussions to
verify the proposed solution. Finally, we conclude this
paper and discuss future work in Section 7.

2 RELATED WORK

As the risk of cyber-physical attacks increases significantly in
the modern society, significant research effort has been

dedicated to improve the robustness of CPSs under various
types of attacks. In [8], the authors reviewed the general
problem of secure control in CPSs, and concluded that robust
state estimation method is one of the important components
for survivable CPSs. The performance of detectors and esti-
mators, such as the Kalman filter, has been studied under the
packet drop and FDIA [10], [15]. The smart and feasible strat-
egies of both defence and attack have been investigated, rely-
ing on the centralised x2 test of the measurement residual or
the Kalman filter’s prediction residual [11]. Yan et al. pre-
sented a protection mechanism for consensus-based spec-
trum sensing with outlier detection, when the system is
under covert adaptive data injection attacks [16]. More
recently, the distributed detection and secure estimation
problem was studied in [17], [18]. The distributed FDIA
detection under jamming attack was studied very recently in
[18], where the system consisted of decoupled sensing and
processing networks. Machine learning detection methods
gain increasing attentions too. For example, a neural network
based detectionmethod against FDI attacks was presented in
[13]. Nevertheless, the problem of secure information fusion
in distributed CPSs with probabilistic communications is yet
to be investigated.

In parallel, the distributed information fusion in net-
worked systems has been investigated intensively [19]. The
development of distributed Kalman-consensus filters has
enabled information fusion based on local and neighbours’
estimates [20], [21]. As reported by the authors in [20], the
algorithms based on all-to-all communications are infeasible
for large networks. Therefore it is reasonable to focus on the
consensus filtering methods which only require communi-
cation between neighbours. Another advantage of the con-
sensus-based methods is that, they are naturally robust to
the probabilistic communication networks as well as the
false data: the error covariance matrices are utilized to
quantify the uncertainty of local posteriors and hence to
weight their contributions to the final estimation result.

The KLD-based anomaly detection and information fusion
methods have attracted increasing attentions recently. Mathe-
matically, the KLD between two probability density functions
(PDFs) piðxxÞ and pjðxxÞ of the randomvariable xx is given by

DKLðpi jj pjÞ ¼
Z

piðxxÞ ln piðxxÞ
pjðxxÞ dxx;

which has several meaningful interpretations. In bayesian
filtering, the KLD between a prior and a posterior measures
the information gain of observing the sensor data [22]. In
information geometry, the KLD measures the difference
between two PDFs in a space of functions [23]. In the follow-
ing we review related work about KLD-based detection and
information fusion, and discuss the difference between
existing methods and the proposed solution.

KLD-Based False Data Detection

The KLD has been used as ametric of differences between dis-
tributions of normal and false data in many probabilistic
detection problems [24], [25], [26], [27]. In [12], the authors
investigated the FDI detection problem for power grid sys-
tems. A centralized detector is able to access the historical data
collected from the network and compare the distributions of
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current variations and the distributions of historical varia-
tions. In [28], the authors studied the fault detection prob-
lem using KLDs between healthy and test data. In [29], the
author studied the multi-sensor fusion and fault detection
problem. The authors used the KLDs between the data dis-
tributions obtained from the prediction step and the correc-
tion step to detect and isolate the fault. More recently, Guo
et al. studied the FDIA from the attacker’s point of view
[30]. The authors define the KLD between the distributions
of secure and modified measurement innovation as a mea-
sure of the stealthiness of an attack scheme. However, few
of previous KLD-based detectors are designed for fully dis-
tributed and mobile networks with probabilistic communi-
cation links. And most of the previous detectors are based
on the sample KLDs, which is a random variable itself [31]
and therefore not reliable as a metric for the detection. A
more reliable detector shall utilize the different statistical
properties of the sample KLDs between secure data distri-
butions and KLDs between secure and false data distribu-
tions. In this paper, we design a FDIA detector based on
the average symmetrised KLD matrix, which is an empiri-
cal estimation of the first cumulant of the distribution of
the symmetrised KLDs.

KLD-Based Information Fusion. On the other hand, given a
set of posterior distributions of the system’s states, the
KLDs between those posteriors can be used to generate a
consensus distribution. The KLD-based consensus filtering
method was first studied by Battistelli et al. [32]. The authors
defined the consensus as the probability distribution which
minimizes the average KLD to neighbours’ local posteriors,
and provided the proof of guaranteed stability for such fil-
tering method. The KLD-based fusion method has been
applied for the multi-object estimation and multi-target
density problem [33], [34]. More recently, in [35], the KLD-
based consensus filtering is integrated with the hybrid Ber-
noulli random set filtering for secure state estimation for
CPSs, when the clustered sensors and fusion nodes are
under various attacks. Nevertheless, the prior information
can be shared by a subset of the network, and therefore
enlarges the performance gap between the centralized opti-
mal solution and the distributed solution. It is unclear that
how the double-counting prior information problem shall
be avoided in those previous studies. In this work we will
address the problem of double-counting prior information
by dynamically weighting the shared priors and local data
likelihoods.

3 SYSTEM MODEL

In this section, we present the state-space model for the
dynamic process and the distributed network. We also pres-
ent the models for probabilistic communications and false
data injection attacks. In the end, we give a overview of the
proposed solution.

3.1 System Dynamics and Distributed Sensing

Consider a discrete linear time-invariant (LTI) system moni-
tored by a distributed network of N nodes. The state space
model of the dynamic and the distributed sensing network is

xxt ¼ AAxxt�1 þ wwt; (1)

yyi;t ¼ HHixxt þ eei;t; (2)

where in the dynamic Equation (1), xxt 2 RM is the multidi-
mensional system states, AA is the system dynamic matrix,
and wwt � Nð00;SSwwÞ is the stochastic input process at time t;
in the distributed sensing Equation (2), yyi;t is the measure-
ment of node i at time t, HHi is the sensing matrix of node i,
and eei;t � i.i.d Nð0; s2

eeIIÞ is the measurement noise.
As it is pointed out in [20], the sensing matrixHHi are gen-

erally different across the network for different nodes, mean-
ing that each node is monitoring different sub-dimensions
of the states vector xxt. For example, when xxt is a spatial-
temporal signal and the network is a vehicular network,
each node in the network is measuring the signal at different
locations. Nevertheless, themeasurements between different
sensors are correlated. For example, the covariance matrix
SSww describes the spatial covariances of the stochastic process
wwt. In case of a disconnected network and therefore informa-
tion fusion cannot be performed, node i produces a local pos-
terior piðxxtÞ solely based on yyi;t. This is implemented by a
local bayesian filter on node i. The upper block of Fig. 1a
illustrates the model of distributed sensing and the local
bayesian filter.

3.2 Probabilistic Communications

The communication links of the distributed network at time
t is modelled with an undirected random graph Gt ¼ ðV; EtÞ,
where V ¼ f1; . . . ; Ng is the set of nodes and Et is the set of
edges which change according to t. For nodes fi; jg 2 V, the
probability of establishing a communication link between i
and j is Prði; jÞ depends on the locations of the nodes. In

Fig. 1. An illustration of the system model and an overview of the proposed solution: (a) The sensing and filtering models of the secure case and the
corrupted case. (b) The distributed and probabilistic communication. (c) The proposed solution consists of local bayesian filtering, FDI detection, and
consensus formulation.
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wireless communication, Prði; jÞ is a function of the distance
between i and j and the channel conditions. We adopt an
exponentially decaying function, which depends on the dis-
tance between a pair of nodes, to model the probability of
establishing a communication link between i and j:

Prði; jÞ ¼ expð��jjssi � ssjjj2Þ; (3)

where ssi and ssj are the coordinates of nodes i and j respec-
tively, and � is the decay rate. Under poor radio propaga-
tion condition, the decay rate � is large and therefore Prði; jÞ
is degraded for i and j. If the communication link ði; jÞ is
successfully established at time t, node j is node i’s neigh-
bour, j 2 NtðiÞ, and vice versa. At time t, node i has the
access to local posteriors of itself and from its neighbours:

piðxxtÞ and fpjðxxtÞ j j 2 NtðiÞg:

Considering the time-variant network topology and the
probabilistic communications, the information are shared in
an asynchronized manner between neighbouring nodes. In
the network, a node processes the incoming information and
share its latest estimate of the system states via broadcasting
messages to its neighboring nodes. For example, as illustrated
in Fig. 2, node i received local posteriors (fp1; p2; p3g) from its
neighbors at different moments, while node i’s previous itera-
tion of information fusion is still executing. Those newly
received messages are stored in the memory and will be used
in the next iteration of information fusion. Therefore, the exe-
cution time of the information fusion task depends on the
batch size of received local posteriors.

3.3 The Attack Model

Next we present the FDIA model. Assuming that the
attacker is able to hijack node j and manipulate its measure-
ments by exploring the system’s vulnerabilities, the integ-
rity of information from node j is compromised.

Definition 1 (False Data Injection Attack). The distributed
sensing equation under the FDI attack is

yy0j;t ¼ HHjxxt þ eej;t þ vvj;t; (4)

where vvj;t is the injected false data with configurable level of
variance s2

vv.

An illustration of the FDI attack model is shown in the
lower block of Fig. 1a, where vvj;t is injected into the sensor’s
local measurement which then becomes the input of the
local bayesian filter. For centralized systems, especially the
electrical power grids, intensive research effort has been
dedicated to constructing a smart attack sequence fvvj;t j t ¼
0; . . . ; Tg. We refer readers to [36] for a comprehensive
review. The most common idea is to design the attack
sequence such that it can bypass the x2 hypothesis test
based on the measurement residual or the Kalman predic-
tion residual [10], [11]. However, in the distributed CPS, it
is infeasible for attackers to have global access to raw mea-
surement data or local bayesian filters’ gains. Therefore it
remains as a research question of how to smartly construct
false data sequences which can bypass the distributed
detection. Although it is not the focus of this study, we will
briefly discuss this question based on our proposed FDIA
detector in the next section.

3.4 An Overview of the Solution

At time t, node i is in possession of three information ele-
ments: the information fusion result from previous time
step pþi ðxxt�1Þ; the local measurements yyi;t; and, in case of
NtðiÞ 6¼ ;, the local posteriors from its neighbours fpjðxxtÞ
j j 2 NtðiÞg. The goal is to produce a combined estimate of
current system states pþi ðxxtÞ. The proposed solution consists
of three sequential steps which are executed in an on-line
manner: (a) local bayesian filtering, (b) FDI detection, and
(c) consensus formulation. An overview of the proposed
solution is illustrated in Fig. 1c.

Based on the previous information fusion result pþi ðxxt�1Þ
and the dynamic model (1), a local predictive distribution
p�i ðxxtÞ � N ðmm�

i;t;SS
�
i;tÞ is given by the Chapman-Kolmogorov

equation

p�i ðxxtÞ ¼
Z

pðxxt j xxt�1Þpþi ðxxt�1Þdxxt; (5)

and the local posterior is

piðxxtÞ ¼
pðyyi;t j xxtÞp�i ðxxtÞR
pðyyi;t j xxtÞp�i ðxxtÞdxxt

: (6)

For the linear Gaussian dynamic system described in
Equations (1) and (2), the local filtering mean and covari-
ance are given by the closed-form solution (Kalman filter).
For non-linear dynamic system, the filtering mean and
covariance can be estimated using the sequential Monte
Carlo (SMC) methods, such as the particle filter [37]. In case
of the current neighbour set of node i is an empty set, the
local posterior will be used as the estimate of the current
system states xxt. That is, if NtðiÞ ¼ ;, pþi ðxxtÞ ¼ piðxxtÞ �
N ðmmi;t;SSi;tÞ.

Assuming NtðiÞ 6¼ ;. At time t, node i receives the local
posteriors fpjðxxtÞ j j 2 NtðiÞg. Using the proposed FDIA
detector in Section 4, node i then identifies the secure subset
of neighbours N�

t ðiÞ � NtðiÞ. Thereafter, node i combines
the local posteriors from its secure neighbours and pro-
duced an updated estimate pþi ðxxtÞ, using the KLD-based
fusion method in Section 5.

Fig. 2. An illustration of the asynchronous communication. At node i, the
communication and the information fusion layers are running concur-
rently. When an information fusion task Tc0 is executing, newly received
local posteriors (p1; p2; p3) are stored in the memory. When Tc1 starts,
the information fusion task takes the information in the memory as the
input, and broadcast its output to neighboring nodes. The execution time
of a information fusion task depends on the batch size of received local
posteriors.
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4 FDIA DETECTION AND ANALYSIS

In this section, we design the FDIA detector for distributed
CPSs operated over probabilistic communication networks.
We also present a performance analysis for the proposed
FDIA detector.

4.1 KLD-Based FDI Detection

Assuming NtðiÞ 6¼ ;, at time t, node i receives the local pos-
teriors fpjðxxtÞ j j 2 NtðiÞg. The goal is to identify local pos-
teriors which are produced by nodes under FDIA.

In the information geometry theory, the local posteriors
of node i and its neighbours can be viewed as points in a
manifold of probability distributions. In this regard, the
problem of detecting the FDIA can be intuitively interpreted
as the problem of finding a boundary of the sub-manifold
which consists of the secure local posteriors. See Fig. 3a for
an illustration. A node is identified as under the FDIA if it
produces a local posterior which locates outside of the
boundary. Therefore, it is crucial to define a metric which
measures the distance between a pair of local posteriors,
and then find a proper threshold of the distance which
defines the decision boundary. The divergence between a
pair of local posteriors, piðxxtÞ and pjðxxtÞ, can be measured
by the KLD, DKLðpi jj pjÞ, which equals zero if and only if
piðxxtÞ ¼ pjðxxtÞ. By constructing the matrix of symmetrised
KLDs, the FDIA can be detected by applying the clustering-
based detection techniques [38].

Nevertheless, there are two difficulties for identifying the
FDIA by clustering directly based on the symmetrised
KLDs. First, due to probabilistic communications and the
time-variant set of neighbours NtðiÞ, it is likely that node i
only evaluates the symmetrised KLD between a small num-
ber of local posteriors at time t. Second, the local posterior
produced by the local bayesian filter is dependent of the
measurement yyi;t, which is a random variable, hence the
symmetrised KLD matrix evaluated at time t is a random
matrix. The clustering method based on the elements of the
random symmetrised KLD matrix is unreliable.

In light of the above discussion, we design a FDIA detec-
tor based on the average symmetrised KLD. To begin with,
node i initiates a N �N average symmetrised KLD matrix,
denoted as DDi;t¼0. At time t, node i updates the elements
DDi;tði; jÞ ¼ DDi;tðj; iÞ for node j 2 NtðiÞwith the average sym-
metrised KLD. The elements of the average symmetrised

KLDmatrix can be evaluated in an on-line manner

DDi;tði; jÞ ¼ DDi;t�1ði; jÞ þDSKLðpi jj pjÞ �DDi;t�1ði; jÞ
Ni;j

; (7)

whereNi;j is the counter value of node j being the neighbour
of node i since the beginning of time. Similarly, the elements
DDi;tðj; j0Þ ¼ DDi;tðj0; jÞ can be updated for the pair of nodes
ðj; j0Þ 2 NtðiÞ. As the time evolves, each node constructs the
average symmetrised KLD matrix for the network. Finally,
the hierarchical clustering and the decision boundary are
applied to the latest average symmetrised KLD matrix. The
KLD-based FDIA detector is summarized in Algorithm 1.

Algorithm 1. The KLD-Based FDI Detector

1: for all i 2 V at time t ¼ 0 do
2: initiateDDi;t¼0;
3: end for
4: for all i 2 V at time t do
5: input piðxxtÞ and fpjðxxtÞ j j 2 NtðiÞg
6: for all ðj; j0Þ 2 NtðiÞ do
7: Increase the counter cj;j0 by 1;
8: if cj;j0 ¼ 1 then
9: DDi;tðj; j0Þ ¼ DSKLðpj jj pj0 Þ;
10: else
11: UpdateDDi;tðj; j0Þwith Equation (7);
12: end if
13: end for
14: Hierarchical classification based onDDi;t;
15: return The set of secure neighbours N�

t ðiÞ;
16: end for

Fig. 3b shows an example of the average symmetrised
KLD matrix built by node 9 in a N ¼ 9 network at t ¼ 500,
with s2

vv=s
2
ee ¼ 10 dB. Node i detects the FDIA by using the

average symmetrised KLD matrix as the distance matrix for
hierarchical clustering and cutting the distance tree at the
decision boundary a. An example of the distance tree is
shown in Fig. 3c, which is a dendrogram constructed based
on the matrix of Fig. 3b.

4.2 Performance Analysis

In this subsection, we present a performance analysis for the
KLD-based FDIA detector. Since the decision rule is based
on the average symmetrised KLD matrix, we are interested

Fig. 3. An illustrative example of FDIA detection with hierarchical clustering, using the average symmetrised KLD matrix. In this example, nodes
f1; 2; 3g are under FDIA. The matrix is built locally at node 9 at t ¼ 500. The dendrogram shows the detection result at node 9.
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in the statistical properties of the symmetrised KLD betw-
een a pair of local posteriors: for example, the distribution
of symmetrised KLDs and the its tail probability. To pro-
ceed with our analysis, we make the following assumptions
without loss of generality: first, the network of nodes are
stabilized in locations where their local sensor measure-
ments have uniform information gains (Kalman gains); sec-
ond, the network of nodes share the same prior distribution.

In our linear Gaussian system, the KLD between a pair of
local posteriors, piðxxtÞ and pjðxxtÞ, is given by

DKLðpi jj pjÞ ¼ 1

2
½TrðSS�1

j;t SSi;tÞ �M þ lnðjSSj;tj
jSSi;tjÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

deterministic

þ ðmmj;t � mmi;tÞ>SS�1
j;t ðmmj;t � mmi;tÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

a quadratic form of random variables

�;
(8)

where SSj;t ¼ SSi;t due to the assumptions of the uniform Kal-
man gains and the shared prior. Therefore, the constant part
of (8) is equal to zero, and DKLðpi jj pjÞ ¼ DKLðpj jj piÞ in
this special case.

The distribution of DKLðpi jj pjÞ is therefore determined
by the distribution of the quadratic form

ðmmj;t � mmi;tÞ>SS�1
j;t ðmmj;t � mmi;tÞ; (9)

where SS
�1
j;t is a symmetric positive definite matrix by the

definition of covariance matrices, and ðmmj;t � mmi;tÞ is a
M-dimensional multivariate Gaussian variable. It is a
famous problem in mathematical statistics to study the dis-
tribution of the quadratic form of Gaussian variables with
symmetric and non-negative definite coefficient matrices.
Based on [39] and [40], the distribution of such a quadratic
form can be approximated with a general x2 distribution
(see Fig. 4). We derive the fist cumulant (the mean value) of
the symmetrised KLDs between a pair of secure local poste-
riors in the following.

Lemma 1. Assume the equal Kalman gains GGKF of the sensor
measurements, and the shared prior distribution Nðmm0;SS0Þ,
the distribution of symmetrised KLD between a pair of secure
local posteriors, piðxxtÞ and pjðxxtÞ, can be approximated with a
general x2 distribution with the kth cumulant [40],

ck ¼ Tr
�ðSS0SSði;jÞÞk

�þ kmm>
ði;jÞðSS0SSði;jÞÞk�1SS0mmði;jÞ; (10)

where

mmði;jÞ ¼ GGKFðHHj;t �HHi;tÞðE½xxt� � mm0Þ; (11)

and

SSði;jÞ ¼ GGKF½ðHHj;t �HHi;tÞSSwwðHHj;t �HHi;tÞ> þ 2s2
eII�GG>

KF:

(12)

Proof. Consider the quadratic form in (8),

ðmmj;t � mmi;tÞ>SS�1
0 ðmmj;t � mmi;tÞ; (13)

where ðmmj;t � mmi;tÞ � N ðmmði;jÞ;SSði;jÞÞ, and SS
�1
0 is a symmet-

ric positive definite covariance matrix. Given the uniform
Kalman gains GGKF and the shared prior distribution
Nðmm0;SS0Þ, themean of ðmmj;t � mmi;tÞ is

mmði;jÞ ¼ E½mmj;t � mmi;t�
¼ E½GGKFðyyj;t �HHj;tmm0Þ �GGKFðyyi;t �HHi;tmm0Þ�:

(14)

Plug in the linear measurement equation in (2), we have

mmði;jÞ ¼ E½mmj;t � mmi;t�
¼ GGKFðHHj;t �HHi;tÞfE½xxt þ eej;t � eei;t� � mm0g;
¼ GGKFðHHj;t �HHi;tÞfE½xxt� � mm0g: (15)

If the priorNðmm0;SS0Þ is produced by an unbiased estima-
tor of xxt, for instance, a decentralized Kalman filter with-
out interference from false data, the residual fE½xxt� � mm0g
equals to zero and the random variable ðmmj;t � mmi;tÞ has
therefore zero mean.

The covariance of ðmmj;t � mmi;tÞ, SSði;jÞ, is given by

E½ðmmj;t � mmi;t � mmði;jÞÞðmmj;t � mmi;t � mmði;jÞÞ>�
¼GGKFðHHj;t �HHi;tÞfE½ðeej;t � eei;tÞðeej;t � eei;tÞ>�

þ E½ðxxt � E½xxt�Þðxxt � E½xxt�Þ>�gðHHj;t �HHi;tÞ>GG>
KF

¼GGKF½ðHHj;t �HHi;tÞSSwðHHj;t �HHi;tÞ þ 2s2
eII�>GG>

KF;

(16)

where s2
eII is the variance of noise, and SSw is the condi-

tional variance of xxt given xxt�1 is fixed. Given the mean

Fig. 4. The empirical distribution density of symmetrised KLDs. In each sub figure, two distributions are visualized: the distribution of symmetrised
KLD between secure local posteriors; and the distribution of symmetrised KLDs between a secure posterior and a local posterior under FDIA. The
mean values of the distributions of symmetrised KLDs are marked by the vertical lines.
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and the covariance of the Gaussian random variable
ðmmj;t � mmi;tÞ, the kth cumulant of the quadratic form is
given by

ck ¼ Tr
�ðSS0SSði;jÞÞk

�þ kmm>
ði;jÞðSS0SSði;jÞÞk�1SS0mmði;jÞ: (17)

tu
After approximating the distribution of the symmetrised

KLDs with a general x2 distribution, we are able to approxi-
mate the probability

Pr
�ðmmj;t � mmi;tÞ>SS�1

j;t ðmmj;t � mmi;tÞ > a
�

(18)

with the tail probability Pr
�
x2
l ðdÞ > a

�
. The parameters

fl; dg of the general x2 distribution can be determined
according to the cumulants ck derived previously. Follow-
ing the similar technique, we can also approximate the dis-
tribution of symmetrised KLDs between the secure local
posterior and the local posterior under FDIA, and calculate
its tail probabilities.

In light of the above analysis, we remark the following
properties of the KLD-based FDIA detector. First, we give a
statistical explanation of the average symmetrised KLD
matrix.

Remark 1. At time t, sensor i possesses an average sym-
metrised KLD matrix DDi;t. Its element DDi;tðj; j0Þ is an
empirical estimate of the first cumulant of the distribution
of symmetrised KLDs between local posteriors from the
pair of nodes ðj; j0Þ.
The reliability of the average symmetrised KLD matrix,

however, largely depends on the connectivity of the net-
work. For a strongly connected network, each sensor has
more opportunities to exchange information with the rest of
the network and produce a better empirical estimation of
the first cumulant; for a weakly connected network, the
empirical estimation is based on only a small number of
sample KLDs and therefore not reliable. The FDIA detector
based on an unreliable average symmetrised KLD matrix
leads to high detection error rate.

Another key factor of designing the KLD-based FDIA
detector is the configuration of decision boundary a.

Remark 2. Let c1 be the maximum first cumulant of the
symmetrised KLD between posteriors produced by a pair
of secure nodes, and c01 be the minimum first cumulant of
the symmetrised KLD between posteriors from a secure
node and a node under FDIA. The detector is able to iden-
tify the FDIA if c1 < c01 if the decision boundary a satis-
fies the condition

c1 < a < c01: (19)

In the early stage of the iterative FDIA detection proce-
dure (Algorithm 1), the reliability of average symmetrised
KLD matrices fDDi;t j i 2 Vg can be unsatisfying, which will
lead to high detection error rate. We provide an analysis of
the error rate in the next result.

Theorem 1. For secure node i at time t, the expected FDIA detec-
tion error rate Pe is given by

Pe ¼ 1

jNtðiÞj

( X
j2N�

t ðiÞ

Y
j02fN�

t ðiÞnjg
Pr

�
DDi;tðj; j0Þ > a

�

þ
X

j2fNtðiÞnN�
t ðiÞg

Y
j02N�

t ðiÞ

�
1� Pr

�
DDi;tðj; j0Þ > a

��)
:

(20)

Proof. For a secure node i at time t, let NtðiÞ be its neigh-
bour nodes and N�

t ðiÞ � NtðiÞ is the set of secure neigh-
bour nodes. The expected FDI detection error rate is
defined as

expected number of errors

number of neighbours
;

where the number of neighbours, jNtðiÞj, depends on the
size of the network and the channel condition described
in (3); and the expected number of errors consists of two
types of errors, type 1 and type 2 errors. For a node
j 2 NtðiÞ, there are two possible miss-detection scenarios:

� Type 1 error: j is secure, but detected as under
FDIA. In this scenario, the minimum distance
between j and j0 2 fN�

t ðiÞ n jg is larger than the
decision boundary a,

Pe;type 1ðjÞ ¼ Pr

�
min

j02fN�
t ðiÞnjg

DDi;tðj; j0Þ > a

�
¼

Y
j02fN�

t ðiÞnjg
Pr

�
DDi;tðj; j0Þ > a

�
;

(21)

and the expected number of type 1 errors is given byX
j2N�

t ðiÞ
Ptype 1ðjÞ: (22)

� Type 2 error: j is under FDIA, but detected as
secure. In this scenario, the minimum distance
between j and j0 2 fN�

t ðiÞ n jg is smaller than the
decision boundary a,

Pe;type 2ðjÞ ¼ Pr

�
min

j02N�
t ðiÞ

DDi;tðj; j0Þ < a

�

¼ 1� Pr

�
min

j02N�
t ðiÞ

DDi;tðj; j0Þ > a

�
¼ 1�

Y
j02N�

t ðiÞ
Pr

�
DDi;tðj; j0Þ > a

� (23)

and the expected number of type 2 errors is given byX
j2fNtðiÞnN�

t ðiÞg
Ptype 2ðjÞ: (24)

To conclude, the expected detection error rate is given by

Pe ¼
P

j2N�
t ðiÞ Ptype 1ðjÞ þ

P
j2fNtðiÞnN�

t ðiÞg Ptype 2ðjÞ
jNtðiÞj : (25)

tu
As mentioned previously, the reliability of the average

symmetrised KLDmatrix plays a key role in determining the
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performance of the FDIA detector. The performance of the
detector can be improved by enhancing the communication
channel condition, whichwill be demonstrated in Section 6.

5 KLD-BASED INFORMATION FUSION

After identifying the secure neighbours N�
t ðiÞ � NtðiÞ, node

i proceeds to formulate a consensus distribution based on
the secure local posteriors.

Let fpjðxxtÞ j j 2 N�
t ðiÞg be the set of secure local posteri-

ors which can be accessed by node i. The consensus distri-
bution pþi ðxxtÞ is defined as the following.

Definition 2. For node i, given its local posterior piðxxtÞ and its
secure neighbours’ local posteriors fpjðxxtÞ j j 2 N�

t ðiÞg, the
consensus is defined as

pþi , argmin
q

piDKLðqjjpiÞ þ
X

j2N�
t ðiÞ

pjDKLðq jj pjÞ; (26)

where pi and pj, j 2 N�
t ðiÞ, are associated weights with the

summation equals to one.

The Equation (26) defines that the consensus distribution
minimizes the weighted average KLD to piðxxtÞ and fpjðxxtÞ
j j 2 N�

t ðiÞg. In the minimization problem, the loss function
consists of two parts: the first element is the KLD between the
consensus distribution and node i’s local posterior; the second
element is the summation ofKLDs between the consensus dis-
tribution and the local posteriors from node i’s secure neigh-
bours. It is insightful to point out that the KLD minimization
problem can be related to other existing works. In bayesian
inference, the minimization is similar to the general belief
updating framework proposed in [41], where the summation
of KLDs is selected as the loss function. From the multi-agent
system’s perspective, the minimization yields a consensus on
the local filtering distributions [32].

Similar to the result in [32], the solution of the KLD mini-
mization problem (26) is reported here.

Theorem 2 (KLD-based consensus information fusion).
For node i (i 2 V), given the local posteriors piðxxtÞ and
fpjðxxtÞ j j 2 N�

t ðiÞg, the solution of the KLD minimization
problem in (26) is

pþi ðxxtÞ ¼
piðxxtÞpi

Q
j2N�

t ðiÞ pjðxxtÞpjR
piðxxtÞpi

Q
j2N�

t ðiÞ pjðxxtÞpjdxxt
: (27)

Furthermore, forGaussian variables, the result in Theorem2
can be simplified to

pþi ðxxtÞ ¼ piðxxtÞpi
Y

j2N�
t ðiÞ

pjðxxtÞpj � Nðmmþ
i;t;SS

þ
i;tÞ; (28)

where the mean and covariance are obtained by convex
combinations of means and covariances of local posteriors,

ðSSþ
i;tÞ�1 ¼ piSS

�1
i;t þ

X
j2N�

t ðiÞ
pjSS

�1
j;t ; (29)

ðSSþ
i;tÞ�1

mmþ
i;t ¼ piSS

�1
i;t mmi;t þ

X
j2N�

t ðiÞ
pjSS

�1
j;t mmj;t; (30)

which can be computed in a recursive manner. The above
solution has the similar form as the method of Fisher infor-
mation matrix (FIM) weighted averaged of maximum likeli-
hood estimations [42]. Indeed, both methods pursue the
optimal combination of estimates.

5.1 Dynamic Weighting of Local Posteriors

Another challenging question emerges from the dynamic
topology in a mobile network poses: how to assign proper
weights for the local posterior and the secure neighbours’ esti-
mates? That is, for each node i, we need to determine pi and
pj, j 2 N�

t ðiÞ, under the condition ofpi þ
P

j2N�
t ðiÞ pj ¼ 1.

In themobile network, each node has a time-variant degree
(number of connections to other nodes). The high degree a
node has, themore information sources it holds. The local pos-
terior from a highly connected node is built based on more
estimates from its secure neighbours (i.e., secure information
source), and shall be assigned with a higher weights, compar-
ing to the local posterior from a secure neighbour with lower
degree. To address this issue, for each node,we design an aux-
iliary message sent together with its local posterior to the
neighbour nodes. The message contains an integer number
which indicates how many secure information sources con-
tributes to the node’s previous consensus distribution.

Remark 3. For node i, the number of secure information
sources contributes to its previous consensus pþi ðxxt�1Þ is
jN�

t�1ðiÞj (see Theorem 2). Since the local posterior piðxxtÞ is
updated based on pþi ðxxt�1Þ via the local bayesian filter (6),
jN�

t�1ðiÞj is also an indicator of the informativeness of piðxxtÞ.
Therefore, for node i at time t, besides the local posteriors

from itself and its secure neighbours fpiðxxtÞg [ ffpjðxxtÞ
j j 2 N�

t ðiÞgg, it also possesses the indicators jN�
t�1ðiÞj and

jN�
t�1ðjÞj, 8j 2 N�

t ðiÞ. Given those indicators, we design the
weights

pt
i ¼

jN�
t�1ðiÞj

jN�
t�1ðiÞj þ

P
j2N�

t ðiÞ jN
�
t�1ðjÞj

; (31)

pt
j ¼

jN�
t�1ðjÞj

jN�
t�1ðiÞj þ

P
j2N�

t ðiÞ jN
�
t�1ðjÞj

; (32)

for the local posteriors from node i itself and its secure neigh-
bours j 2 N�

t ðiÞ. Note that pt
i and pt

j are time-variant, due to
the dynamic topology of the mobile network and therefore
the set of secure neighbours N�

t ðiÞ. Finally, the dynamic
weights are used in formulating the consensus in Theorem 2.

5.2 The Shared Prior in Formulating Consensus

Although that the consensus-based information fusion is
intuitive and has shown its efficiency in studies such as
[32]. There is a hidden risk of double-counting the informa-
tion from the same prior, which has not been properly
addressed in previous studies. In this section, we present
analytic results which reveal the double-counted prior infor-
mation, and provide a method to mitigate this problem.

Consider a simple example illustrated in Fig. 5. In the
case of Fig. 5a, two nodes started from the same prior p0ðxxtÞ
and then each obtain a local measurement (yy1;t or yy2;t). The
local bayesian update gives
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p1ðxxtÞ / p0ðxxtÞpðyy1;t j xxtÞ; (33)

p2ðxxtÞ / p0ðxxtÞpðyy2;t j xxtÞ: (34)

Given the same degrees of two nodes, the local posteriors
from a node itself and its neighbour are weighted uni-
formly. The consensuses reached by both nodes are

pþ1 ðxxtÞ ¼ pþ2 ðxxtÞ / p0ðxxtÞpðyy1;t j xxtÞ
1
2pðyy2;t j xxtÞ

1
2: (35)

Comparing to the case of centralized bayesian update in
Fig. 5b, where the updated estimate is

pðxxtÞ / p0ðxxtÞpðyy1;t; yy2;t j xxtÞ; (36)

we see that not only the likelihood pðyy1;t; yy2;t j xxtÞ from the
data are approximated by the composition pðyy1;t j xxtÞ
pðyy2;t j xxtÞ, but also down weighted by 1

2. In other words, in
the consensus formulated by Theorem 2, the information
from the prior is relatively over weighted, comparing to the
optimal bayesian update. Formally, in the following propo-
sition, we reveal the problem of double-counting informa-
tion from the prior, when formulating consensus.

Lemma 2. In a strongly connected network with the same shared
prior, when the size of network increases to infinity, the consen-
sus reached by the network converges to the prior.

Proof. Consider a strongly connected network of size N ,
and the same prior p0ðxxtÞ is shared by all nodes. The con-
sensus formulated by node i in the network is given by

pþi ðxxtÞ / p0ðxxtÞ
Y

j2f1;...;Ng
pðyyj;t j xxtÞ

1
N; (37)

where 1=N is the uniform weight for local posteriors.
When N ! 1, the weights on the composite likelihoods
from data goes zero. Therefore,

lim
N!1

pþi ðxxtÞ ¼ p0ðxxtÞ: (38)

tu
From the above analysis, we understand that there will

be a gap of estimation accuracy (for example, mean square

error (MSE)) between the optimal centralized bayesian
update and the distributed consensus formulation, even
when the network is strongly connected. And the gap will
become bigger when the size of network increases. This gap
comes from two factors: 1, double-counting the information
from the same prior; 2, the approximation of full likelihood
with the composite likelihood. While the gap caused by the
second factor is an inevitable and small (given the spatial-
temporal data) price to pay for distributed systems; the gap
due to the first factor is the major concern and shall be elimi-
nated if possible. In the next, we present methods for prop-
erly weighting the prior.

Algorithm 2. Secure Information Fusion

1: for all i 2 V at time t do
2: input pþi ðxxt�1Þ and yyi;t
3: Compute p�i ðxxtÞ using pþi ðxxt�1Þ;
4: Compute piðxxtÞ using p�i ðxxtÞ and yyi;t;

" Local bayesian Filtering
5: if NtðiÞ ¼ ; then
6: pþi ðxxtÞ ¼ piðxxtÞ;
7: else
8: ObtainN�

t ðiÞ by calling Algorithm 1.
" FDIA detection

9: if N�
t ðiÞ ¼ ; then

10: pþi ðxxtÞ ¼ piðxxtÞ;
11: else
12: Compute pþi ðxxtÞ using (43);

" Consensus formulation with dynamic weights
13: end if
14: end if
15: return pþi ðxxtÞ;
16: end for

5.3 Dynamic Weighting of Data Likelihood and Prior

Based on the previous discussion, when the network is shar-
ing the same prior, each node need to down weight the
prior and increase the weight for the likelihood of the latest
local measurement, in order to eliminate the double-
counted information from the same prior in the consensus.

Considering the illustrative example in Fig. 5 again, if
both nodes increase the weights for their local data likeli-
hoods by 2 (the number of secure neighbours plus a node
itself), the local bayesian update gives

p01ðxxtÞ / p0ðxxtÞpðyy1;t j xxtÞ2; (39)

p02ðxxtÞ / p0ðxxtÞpðyy2;t j xxtÞ2: (40)

Remark 4. For the linear Gaussian system in (1) and (2), the
increased weights on local data likelihood is effectively
equivalent to the increased Kalman gain. Although the
local bayesian update and the Kalman gains are optimal
in the case of an isolated node, they are not optimal if the
local posterior will be used in the further consensus for-
mulation. Therefore, in order to eliminate double-count-
ing the same prior, we want to increase the Kalman gain,
such that the local posterior are more responsive to the
local measurement.

Fig. 5. An illustrative example of double-counting the information from the
same prior, using the consensus-based fusion in Theorem 2. In fig. 5a,
the same prior used in local bayesian updates are over-weighted in the
consensus, when compare to the centralized bayesian updated in fig. 5b.
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Thereafter, the consensus formulated at each node is

p0þ1 ðxxtÞ ¼ p0þ2 ðxxtÞ / p0ðxxtÞpðyy1;t j xxtÞpðyy2;t j xxtÞ; (41)

which is an approximation of the centralized bayesian
update with the composite likelihood and the properly
weighted prior. Formally, we present the following method
for distributed consensus formulation without double-
counting the information from the same prior.

Theorem 3 (Consensus with Properly Weighted Data
and Prior). Assume the network of size N is sharing the same
prior p0ðxxtÞ and strongly connected. For node i (i 2 V), the local
bayesian update with the increased weight on data is given by

p0iðxxtÞ / p0ðxxtÞpðyyi;t j xxtÞN; (42)

and the consensus formulated by node i is

pþi ðxxtÞ / p0ðxxtÞ
Y

j2f1;...;Ng
pðyyj;t j xxtÞ; (43)

which is an approximation of the centralized bayesian update
with the properly weighted data and prior.

The proof of the above results naturally follows our pre-
vious analysis and therefore omitted here.

Nevertheless, a problem rises from the mobility of the
network is that, the network is not always strongly con-
nected and therefore does not share the same prior. Even
when the network started with the same initial prior p0ðxx0Þ
at time t ¼ 0, after a few steps, due to their different paths
and neighbour sets, the priors used in local bayesian
updates diverge and become intractable.

To address this issue, we propose the following solution
for dynamically weighting the data and prior. Note that
although the number of secure neighbours differs from
node to node and varies according to the time, but in the
long run, each node has its average number of neighbours
(degree), especially when the mobile network stabilize at
locations with maximum information gains (illustrated by
the examples and simulations in following sections). There-
fore, we use the average degree of a node as the increased
weight for its local data likelihood,

pðyyi;t j xxtÞ1þbE½jN�
t ðiÞj�; (44)

whereE½jN�
t ðiÞj� is the time-averaged number of secure neigh-

bours for node i up to the current time t, and 0 	 b 	 1 is the
linear coefficient which can be tuned based on the topology of
the network. For the linear measurement equation in (2), yyi;t is
an affine transformation of xxt. In this case, increasing the
weight of the data likelihood is equivalent to shrinking yyi;t’s

variance ðHHiSS
�
i;tHH

>
i þ SSeeiÞ by 1

1þbE½jN�
t ðiÞj�

, or increasing the

Kalman gain by 1þ bE½jN�
t ðiÞj�.

In summary, for node i, given the previous information
fusion result pþi ðxxtÞ and the latest measurements yyi;t, the
integrated secure information fusion solution is presented
in Algorithm 2.

6 SIMULATION

In this section, we present an application of the proposed
solution for monitoring the spatial-temporal signals in a

distributed vehicular sensor network. An example of such
scenario is monitoring the dynamic of air and sound pollu-
tion in urban environment with sensors based on
unmanned ground or aerial vehicular systems [43].

Consider a two-dimensional space spanned by a set of
coordinates fssm ¼ ðs1m; s2mÞ j s1m 2 f1 . . . 30g; s2m 2 f1 . . . 30gg,
and xxt 2 RM as the vectorized target spatial-temporal sig-
nal, where M ¼ 302 ¼ 900. The temporal dynamic of xxt is
modelled by the linear equation of (1), where AA ¼ 0:9IIM is a
diagonal matrix. The spatial dynamic of xxt is encoded in the
covariance function of the input wwt: covðwwssm;t; wwss0m;tÞ ¼
a2 expð�jjssm�ss0mjj2

u2
Þ, which indicates that the spatial covari-

ance decreases exponentially according to the euclidean dis-
tance. In this example, the hyper-parameters are set to
a ¼ 0:1 and u ¼ 0:01.

A networked vehicular sensing system of N nodes is
deployed in the field to continuously monitor xxt, with prob-
abilistic communication channels between each pair of
nodes in the network. The communication successful rate
decreases exponentially according to the euclidean spatial
distance between a pair of nodes (rate ¼ expð��jjssm�
ss0mjj2Þ), where � is the decay rate representing the connectiv-
ity of networks. The number of nodes under FDI attacks is
fixed to one third of the total number of nodes in the net-
work. The task for each node is to identify the neighbours
under FDI attacks, and perform secure information fusion.
After obtaining the latest estimation of the signal by fusing
the information from secure neighbours, each vehicular sen-
sor moves to a new location according to the maximum
information gain principle [44].

6.1 An Illustrative Example

We first present an example of a small scale network with 6
nodes. Among them, 2 nodes are under FDI attack with
s2
vv=s

2
ee ¼ 10 dB. The network is deployed in the field to moni-

tor xðtÞ for t ¼ 1; . . . ; 500. In particular, we focus on two per-
formance metrics during the simulation: the number of
detection errors and the root mean square error (RMSE), both
averaged over the secure subset of the network. In the FDI
detection problem, there are two types of detection errors.
Type 1 errors, or false positive errors, are the errors that nodes
are in fact secure butmisclassified as under FDI attack. On the
other hand,Type 2 errors, or false negative errors, are the errors
are in fact under FDI attack butmisclassified as secure.

6.1.1 The Case of FDI + High Probability

of Connections

Fig. 6 illustrates the simulation results under only FDI
attack with strong connectivity. The network is initialized at
random locations within the field. After 500 iterations, the
four secure nodes stabilized at the locations which approxi-
mately formulate a centroidal Voronoi tessellation (CVT) of
the field, by following the paths of maximum information
gain (Fig. 6a). At t ¼ 500, node i successfully establishes
communication links with all of the rest network, which
returns low estimation variances (or high certainty) around
the locations of 4 secure nodes (Fig. 6b). Note that although
the 2 corrupted nodes are also connected to node 3, their
local posteriors are excluded and contribute no reduction of
variances, as node 3 successful detect the FDI attacks. The
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average number of Type 1 & 2 errors, and the average num-
ber of neighbours are plotted in Fig. 6c. With � ¼ 0:01, the
network remains as almost a complete graph over the entire
simulation time. This strong connected network enjoys fast
detection of FDI attacks: the Type 2 error converges to zero
within less than 100 simulation time. Finally, the empirical
cumulative probability function (CDF) of estimation RMSE
is plotted in Fig. 6d. The CDF of RMSE given by the central-
ized and local KFs are also plotted, serving as the optimal
bound and the worst case of estimation performance. It can
be observed that the proposed secure information fusion
solution returns RMSEs which are very close to the optimal
results given by the centralized KF.

6.1.2 The Case of FDI + Low Probability of Connections

Fig. 7 illustrates the simulation results under FDI attack and
low probability of connections. Under the low probability of
connections (� increases from 0.01 to 0.1), the probability of
successfully establishing a communication link between a
pair of nodes is significantly reduced. Consequently, the
secure nodes become less stable in terms of their locations.
They intend to orbit the centre of field (Fig. 7a). The variance
map of node i at t ¼ 500 is illustrated in Fig. 7b. Comparing to
the high probability of connections case, the upper left secure
node is disconnected from node 3, leading to higher estima-
tion variance around the upper left area. Furthermore, the
reduced averaged number of neighbours leads to larger num-
ber of Type 1 & 2 errors and slower convergence rate. As it is
shown in Fig. 7d, the Type 1 & 2 errors converge to zero
around t ¼ 200, which takes double simulation time

comparing to the high probability of connections. Finally, in
Fig. 7d, the RMSE given by the local KF is slightly improved
comparing to its counterpart in Fig. 6d, due to the fact that
nodes orbit in the field and have higher information gain indi-
vidually. However, after performing information fusion, the
estimation performance of the central KF and the consensus
methods degrade comparing to the high probability of con-
nections case. And the gap between CDFs of RMSEs given by
the KF and the consensus methods increases, due to the con-
sensus is formulated based on less number of neighbours.

6.2 Simulation Results

Next we investigate the impact of network connectivity lev-
els (weak, median, and high) and the effectiveness of the
dynamically weighted prior on the secure information
fusion by carrying out Monte Carlo simulations. The config-
uration is similar to the illustrative example, except the ratio
between the variance of injected data and the variance of
the sensor noise is set to 5 dB, which makes it even harder
to detect the FDI attacks. The network size varies from
N ¼ 6 to 18. Again, we are interested in two performance
metrics, the RMSE of estimation and the number of errors in
detection. The simulation results with non-weighted prior
are shown in Fig. 8; and the results with dynamically
weighted prior are shown in Fig. 9.

6.2.1 The Impact of Network Connectivity

In both Figs. 8a and 9a, the performance of local bayesian is
shown as the RMSE upper bound, which is the worst case
scenario when all nodes solely depend on their local

Fig. 7. The case of FDI + low probability of connections (� ¼ 0:1). The secure and corrupted nodes are marked with black dots and red crosses,
respectively.

Fig. 6. The case of FDI + high probability of connections (� ¼ 0:01). The secure and corrupted nodes are marked with black dots and red crosses,
respectively.
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posterior and no information fusion is carried out; and the
performance of a centralized KF is shown as the optimal
RMSE lower bound, which requires the simultaneous access
of all sensor’s data and is therefore unrealistic in the distrib-
uted system. Under the different level of network connectiv-
ity, the performances of the proposed secure information
fusion solution are between the centralized KF and the local
bayesian filter. The better network connectivity is provided,
the lower RMSE is achieved.

The detection errors and their percentage in the average
number of neighbours are shown in Figs. 8b and 9b. Several
observations are remarked here. First, the average number of
neighbours increases as the network size grows (higher den-
sity within the fixed field area) and the network connectivity
improves (from � ¼ 0:1 to 0.01). Second, more important, the
percentages of the detection errors (type 1 & 2 combined) in
the number of neighbours are more or less stable as the net-
work size increases, but notably reduced when the connec-
tivity is improved. This phenomenon shows the importance
of communication in the distributed FDI attack detection
problem. In other words, when a node receives larger num-
ber of local posteriors, it is able to establish the average diver-
gence matrix with faster convergence speed, and therefore
detect the FDI attackwith less number of misclassification.

6.2.2 The Effectiveness of Dynamically Weighted

Likelihoods and Priors

Finally, we validate the effectiveness of dynamicallyweighted
likelihoods and priors by comparing results in Figs. 8 and 9.

In terms of RMSE,when the prior is not properlyweighted,
we notice that there is a large cap (
 0:04) between the central-
ized KF and the consensus formulation, even when the net-
work is highly connected (� ¼ 0:01). However, with the
dynamicallyweighted priors, the gap between the centralized
KF and the consensus formulation is significantly reduced
(
 0:01). In other words, by increasing the Kalman gain of
local measurement and eliminating the double-counted prior,
the performance of consensus formulation is much closer to
the centralized KF. This comparison also highlights the
importance of our theoretical analysis in Section 5.2: without
realizing the risk of double-counting the prior, the perfor-
mance gain of increasing network size from 6 to 18 or improv-
ing the network connectivity from � ¼ 0:1 to 0.01 is limited;
only when the data likelihoods and priors are properly
weighted, the consensus formulation can achieve satisfying
performance inmobile and distributed systems.

7 CONCLUSION AND FUTURE WORK

In this work, we present a secure information fusion solution
for the distributedCPS under FDIAwith probabilistic commu-
nications. The proposed solution relies on the exchange of local
posteriors instead of raw sensor measurements. In the FDIA
detection step, a detector is designed based on the average
symmetrised KLDs between a pair of local posteriors. We
derive the approximated distribution of the symmetrised
KLDs and analyse the expected error rate. In the information
fusion step, we proposed a KLD-based consensus formulation
with dynamically weighted common priors and local data

Fig. 8. Simulation results with non-weighted prior.

Fig. 9. Simulation results with dynamically weighted prior.
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likelihoods. The proposed solution is applied to spatial-tempo-
ral signal monitoring problem with a mobile sensor network,
and the results showpromising FDIAdetection and estimation
accuracy. For the futurework, it is interesting to investigate the
smart attacking schemes toward the proposed detector in a
fully distribution systemwith probabilistic communications.
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