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Abstract—Wireless sensor networks have been widely used
for ambient data collection in diverse environments. While in
many such networks the sensor nodes are randomly deployed
in massive quantity, there is a broad range of applications
advocating manual deployment. A typical example is structure
health monitoring, where the sensors have to be placed at critical
locations to fulfill civil engineering requirements. The raw data
collected by the sensors can then be forwarded to a remote base
station (the sink) through a series ofrelay nodes.

In the wireless communication context, the operation time of
a battery-limited relay node depends on its traffic volume and
communication range. Hence, although not bounded by the civil-
engineering-like requirements, the locations of the relaynodes
have to be carefully planned to achieve the maximum network
lifetime. The deployment has to not only ensure connectivity
between the data sources and the sink, but also accommodate
the heterogeneous traffic flows from different sources and the
dominating many-to-one traffic pattern.

Inspired by the uniqueness of such application scenarios,
in this paper, we present an in-depth study on the traffic-
aware relay node deployment problem. We develop optimal
solutions for the simple case of one source node, both with single
and multiple traffic flows. We show however that the general
form of the deployment problem is difficult, and the existing
connectivity-guaranteed solutions cannot be directly applied here.
We then transform our problem into a generalized version of the
Euclidean Steiner Minimum Tree problem (ESMT). Nevertheless,
we face further challenges as its solution is in continuous space
and may yield fractional numbers of relay nodes, where simple
rounding of the solution can lead to poor performance. We thus
develop algorithms for discrete relay node assignment, together
with local adjustments that yield high-quality practical solutions.
Our solution has been evaluated through both numerical anal-
ysis and ns-2 simulations and compared with state-of-the-art
approaches. The results show that it achieves up to6 to 14 times
improvement on the network lifetime over the existing traffic-
oblivious strategies.

I. I NTRODUCTION

Wireless sensor networks have been widely used for ambient
data collection in diverse environments. Examples include
target-tracking [5] on battlefield and forest fire detection[15]
in a wild environment, to name but a few. In many such
networks, the sensor nodes are randomly deployed in massive
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quantities, and each node may act both as a data collector and
a traffic relay. This is also a common assumption made in
many existing works on modeling and protocol optimization,
and the focus thus has been put on optimizing topology
control [18][22][11][12] and routing design [20][4][13][3]
with the given network topologies.

In contrast to this, we notice that there is another broad
range of application scenarios that require manual node de-
ployment. One example is the TsingMa Bridge [10] in Hong
Kong, which is equipped with a large number of accelerom-
eters, thermometers and strain sensors to monitor its working
conditions. Another recent project, in which we are partici-
pating, is the Guangzhou New TV Tower [1] in Guangzhou,
China, which is to be attached with similar sensors for real-
time monitoring and analyzing. In these systems, the sensors
are deployed at critical locations to fulfill civil engineering
requirements. Raw data are needed and the traffic volume or
data rate from each sensor is in general predetermined, e.g.,
the typical sampling rate of an accelerometer is100Hz. Given
the extensive dimensions of the structures, relay nodes have to
be placed to bridge the sensors and the data collection sink.

In the wireless communication scenario, the lifetime of a re-
lay node is severely limited by its battery power, and the power
consumption in turn closely depends on the communication
distance and traffic volume. As such, although not bounded
by the civil-engineering-like requirements, the locations of the
relay nodes have to be carefully planned to achieve the best
network performance.

Inspired by the uniqueness of these applications, in this
paper, we present an in-depth study on the traffic-aware relay
node deployment problem. There have been previous studies
on relay node deployment for wireless networks [27][16], most
of which however focused on maintaining network connec-
tivity. Given the heterogenous traffic flows and the many-to-
one traffic pattern, directly applying these algorithms will only
give suboptimal results. For an illustration, consider a set of
sensor nodes and a data sink with given locations and traffic
volumes, as shown in Fig. 1. If only connectivity is considered,
the deployment scheme in Fig. 1(a) maximizes the network
lifetime, i.e., each of the1

3
of the relay nodes are deployed

on the sections of(s1, v), (s2, v) and (v, s0). We can see,
however, given the traffic pattern, moving some relay nodes
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Fig. 1: An example of relay node deployment: (a) connectivity-
only deployment; (b) traffic-aware deployment.s1, s2 are
sources with data rate of0.6 and0.3. s0 is the sink.

from less traffic intensive section(s2, v) to (v, s0) will achieve
better performance, as shown in Fig. 1(b).

Facing the distinct traffic-aware demand, we first develop
optimal solutions for the simple case of one source node,
both with single and multiple traffic flows. We show that
the general form of the deployment problem however is quite
difficult. Indeed, even without traffic considerations, therelay
node deployment problem is already NP-hard with heuristics
being developed [27]. Unfortunately, our analysis shows that
their approaches are far from optimized in our scenario. To
this end, we show that the general problem can be transformed
into a generalized Euclidian Steiner Minimum Tree problem
(ESMT) and develop a hybrid algorithm that successfully
returns optimal results with all test cases that can be verified
within acceptable timeframes. Nevertheless, we face further
challenges as the solution of ESMT is in the continuous
domain and may yield fractional numbers of relay nodes. We
show that a simple rounding of the solution may result in
significant degradation of the performance. We then develop
algorithms for discrete relay node assignment, together with
local adjustments that yield high-quality practical solutions.

Our solutions have been evaluated using both numerical
analysis andns-2 simulations. We show that the performance
of our scheme is14 times better than a straightforward relay
node deployment that places the relay nodes in straight line
to connect each source and the sink separately. Our scheme
also outperforms by6 times than the state-of-the-art algorithm
considering connectivity only.

The remaining part of the paper proceeds as follows.
Section II presents the related work. We outline the system
models and the problem description in Section III. Section IV
proposes solutions to several case studies which can be usedas
building blocks for the general problem. In Section V, we study
the general problem in-depth by first developing solutions in
continuous space and then focusing on discrete deployment.
We evaluate our solution by both numerical results andns-2
simulations in Section VI. Finally Section VII concludes our
paper and gives directions of future work.

II. BACKGROUND AND RELATED WORK

It is known that the energy of a sensor node is mainly
consumed by the wireless communication, which is propor-

tional to the data rate and the communication distance [6].
Since the latter is adjustable, many studies have explored
this property to achieve topology control with given node
deployment. In [18], an optimization problem is formulated
to minimize the maximum power used for each individual
node while maintaining the network connectivity. There are
many follow-up efforts in this direction [22][11][12]. Another
common goal is power-aware routing [20]. Given the traffic
load, an integer programming can be formulated to minimize
the maximum node energy consumption [4], where the data
routes and the corresponding power levels are identified.
Followup studies with different objectives or constraintscan
be found in [13][3]. They generally have assumed that the
deployment of the network nodes is given, which often follows
a random distribution.

Relay node deployment for WSNs has been studied in
various contexts [27][16][24][7]. The connectivity problem for
relay node deployment was first formulated in [14], and shown
to be NP-hard. An approximation algorithm was then proposed
based onsteinerization, which assigns all relay nodes with
roughly the same distance on each edge. This problem was
generalized tok-connectivity in [2], which is also named as the
survivability problem fork ≥ 2. Later [16] further extended
the problem by considering the constraint that relay nodes
can only be placed at some given locations. On the other
hand, there are several works [24][7] explicitly considering
relay node placement to prolong network lifetime, e.g., [24]
focuses on massive random relay node deployment and [7]
stresses on using energy provisioning and giving each relay
node different energy budget to achieve better performance.
Our work, different from aforementioned, explicitly considers
the unique traffic pattern in WSNs for data collection.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

We consider a wireless sensor network that consists of
source nodes(or S-nodesin short) andrelay nodes(or R-
nodesin short). S-nodes sense the ambient environment and
forward the data, through R-nodes, to a remote base station
for further processing. The locations of S-nodes and the base
station are given according to application requirements. The
data rates of S-nodes are also known, but may be different for
different S-node depending on the specific type of data sensed.

Given these application-specific conditions, the network
lifetime thus closely depends on the geographical deploy-
ment of the R-nodes, as illustrated in Fig. 1. LetS =
{s1, s2, ..., sM} denote the set of locations ofM S-nodes and
s0 be the location of the base station. Let the data rate from
si be γi. Define traffic pathpi = x0x1 . . . xli as a sequence
of R-nodes which participate in relaying the traffic flow from
si. Similar to [24][7], we consider the problem how to deploy
a given number of R-nodes so as to maximize the network
lifetime, which can be formulated as follows:

Traffic-Aware Deployment Problem: Given N , the to-
tal number of R-nodes to be deployed, whereN ≥
M , find the geographical locations for R-nodesF =



{f1, f2, . . . , fN}, together with their respective communica-
tion rangesR = {r1, r2, . . . , rN} and traffic paths for S-
nodesP = {p1, p2, . . . , pM}, so as to minimize the energy
consumption of the R-nodes. Specifically, since the network
lifetime is critically bounded by the nodes with the highest
energy costs, we are interested in minimizing the maximum
energy consumption among the R-nodes, i.e.,

min max
1≤i≤N

∑

i∈pj ,j=1..M

γj [Erecv + Esend(ri)] .

Notice that the summation here indicates that an R-node
can undertake combined traffic flows of multiple sources if
it is chosen in these paths. DenoteRmax is the maximum
communication range of an R-node. The deployment should
satisfy the following constraints:
(1) Communication range,

∀r ∈ R, r ≤ Rmax;

(2) Forwarding path connectivity,

∀p = x0x1 . . . xl ∈ P, fxi−1
fxi
≤ rxi−1

, i = 1 . . . l;

(3) S-nodes and sink connectivity,

∀s ∈ S, ∃p = x0x1 . . . xl ∈ P, fx0
= s, fxl

s0 ≤ rxl
.

To simplify exposition, we associate each S-node with an R-
node at the same location (as shown in Constraint 3), which
guarantees S-nodes are only involved in local communications
and the network lifetime thus depends on R-nodes.

Our formulation is not restricted by specific energy models
for wireless communications. For illustration purpose, the
following popular energy consumption model for packet
transmission [17] will be used in this paper:

Esend(r) = arα + b ,

which can also be normalized as

Esend(r) = rα + c ,

wherec is a small constant comparing withrα. The energy
consumption for packet receiving is given by

Erecv = c .

Finally, it is worth noting that our network model can be eas-
ily extended to a hierarchial structure where each S-node rep-
resents a cluster of geographically-close sources [7][19][23].
Our analysis and optimization below will still apply as long
as the many-to-one pattern holds and the inter-cluster commu-
nications dominate the energy consumption, which is the case
for most applications.

IV. OPTIMAL TRAFFIC-AWARE RELAY NODE

DEPLOYMENT: THE SINGLE SOURCE CASE

In this section, we study the relay deployment problem
of two basic cases with single source, and derive optimal
solutions. These results will serve as building blocks for
solving the general problem in the next section.
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Fig. 2: An illustration of deployment for single source single
flow and its generalization.
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Fig. 3: An illustration of two deployment schemes for single
source two traffic flows.

A. The Single Source Single Traffic Flow Case

We begin with the basic case of single source single traffic
flow. An illustration is shown in Fig. 2, whereL is the distance
between the S-nodes1 (with traffic rateγ1) and the sinks0.
We need to deployN R-nodes between them. Obviously,N
should satisfy L

N
≤ Rmax for a feasible solution. Let the

distance between thei-th R-node and its next R-node/sink be
ri, i = 1, . . . , N , the energy cost for thei-th R-node is

γ1[Erecv + Esend(ri)] = 2γ1c + γ1r
α
i .

Since
∑N

i=1
ri = L, it is easy to see that the solution to

min max1≤i≤N (2γ1c + γ1r
α
i ) is ri = L

N
, for i = 1, 2, . . . , N ,

and the minimum of the maximum energy consumption among
the R-nodes is2γ1c+ γ1(

L
N

)α. This result can be generalized
as follows, which can be easily proved by contradiction.

Theorem 1:The optimal solution for single source single
traffic flow is to start from the source and evenly deploy the
R-nodes with an in-between distance ofL

N
. The energy con-

sumption for each R-node isEsingle(L, N, γ) = γ[2c+( L
N

)α].

B. The Single Source Multi Traffic Flow Case

Next, we consider the case where multiple traffic flows
arrive at one location and need to be relayed to another. Given
N R-nodes andK traffic flows, we need to decide whether to
merge these flows or to relay them separately by assigningni

R-nodes to thei-th flow, as long as
∑K

i=1
ni = N . We first

consider the case of two flows, which is illustrated in Fig. 3.
If the traffic flows are relayed separately, according to

Theorem 1, the energy consumption of one R-node for the
i-th traffic flow is Esingle(L, ni, γi), for i = 1, 2. Similar to



the idea used in the previous subsection, it is easy to see that
the R-nodes should be assigned such that

Esingle(L, n1, γ1) = Esingle(L, n2, γ2) .

Consequently,

γ1[2c + (
L

n1

)α] = γ2[2c + (
L

n2

)α] .

Typically, we have( L
ni

)α ≫ c [8] for i = 1, 2 and thus

γ1(
L

n1

)α ≈ γ2(
L

n2

)α ,

which follows
α
√

γ1L

n1

=
α
√

γ2L

n2

=
L( α
√

γ1 + α
√

γ2)

n1 + n2

=
L

N
( α
√

γ1 + α
√

γ2) .

We then have the energy consumption of an R-node as

Esepararte ≈ (
L

N
)α( α
√

γ1 + α
√

γ2)
α .

On the other hand, if the traffic flows are merged, the energy
consumption of one R-node becomes

Emerge = Esingle(L, N, (γ1 + γ2)) ≈ (γ1 + γ2)(
L

N
)α .

Clearly, we have

Eseparate = (
L

N
)α( α
√

γ1 + α
√

γ2)
α

≥ (
L

N
)α[( α
√

γ1)
α + ( α

√
γ2)

α] = Emerge ,

which shows that merging these two flows leads to the
minimum energy cost on an R-node. This result can be easily
generalized to the case ofK traffic flows [21] as follows:

Theorem 2:The optimal solution to single source multi
traffic flow is to merge all flows into one and apply the optimal
scheme of single source with single traffic flow.

V. TRAFFIC-AWARE RELAY NODE DEPLOYMENT: THE

GENERAL CASE

We now address the general form of the deployment prob-
lem, i.e., the multi source multi traffic flow case.

A. Theoretical Solution in Continuous Space

We first translate it into a graph equivalence. Define directed
graphG = (V, E), whereV = {v0, v1, . . . , vM , vM+1, . . .},
E = {e1, e2, . . .}. Let vi = si for i = 0, 1, . . . , M . Here,
vertices vj , j ≥ M + 1, are calledmerge verticeswhose
function will be explained later. Lete1, e2, . . . denote the edges
that connect the vertices inV , where traffic flows can only pass
an edge along its direction. The choice ofvj , j ≥M + 1 and
ei are to be determined later. Letλei

be the sum of average
data rates of the traffic flows passing through edgeei. Let
Lei

be the length of the edgeei, nei
be the number of the

R-nodes assigned on edgeei andEei
be the maximum energy

consumption of an R-node on edgeei.
As an example, Fig. 4 shows a simple case of two sources

s1 ands2 with the base stations0. By definition, we havev0 =

s0 (v0)

s1 (v1)

s2 (v2)

e1 e2

e1'

e2'

e3'

v3

Fig. 4: An example on deployment for multi-source with multi-
traffic flows.

s0, v1 = s1 andv2 = s2. Apparently, one deployment strategy
is to place the R-nodes alonge1 ande2, and the traffic flows
can then be relayed tos0 along these two edges separately.
Alternatively, we can also find amerge vertexv3 and deploy
R-nodes alonge′1, e′2 and e′3; the traffic flows then can be
relayed froms1 ands2 via e′1 ande′2, merged atv3, and arrive
at s0 via e′3. Surely there can be other relay node deployment
schemes with different graph topology, but they all share one
common feature that the network lifetime is bounded by the
edge containing the R-node with the maximum energy cost.
Note that each edge is directed from a start point to an end
point, which is exactly the cases we have discussed in last
section. Thus depending on whether one or multiple flows are
relayed by an edge, we can apply Theorems 1 or 2 and have

Eei
= Esingle(Lei

, nei
, λei

) = λei
[2c+(

Lei

nei

)α] ≈ λei
(
Lei

nei

)α .

Given that
∑

ei∈E ni = N , to achievemin maxei∈E Eei
,

we needEe1
= Ee2

= . . ., which follows

α
√

λe1
Le1

ne1

=
α
√

λe2
Le2

ne2

= . . . =

∑

ei∈E ( α
√

λei
Lei

)
∑

ei∈E ni

(1)

The remaining task thus becomes finding the appropriate graph
topology that achievesmin

∑

ei∈E ( α
√

λei
Lei

). Once found,
the number of R-nodes on each edge can be determined by
Eq. (1) and the deployment then follows Theorem 1. We thus
have the following observation:

Observation 1:The optimal solution to the general problem
of multi source multi traffic flow is equivalent to minimizing
the total weighted length of the edges that connect all the
sources and the sink (allowing a set of merge vertices), where
the weight on an edgeei is α

√

λei
.

The above problem is a generalized version of the Euclidian
Steiner Minimum Tree problem, which is known NP-hard [26].
A heuristic is proposed in [25], which first constructs a graph



Algorithm RnodeAssignment()
1: for ei ∈ E, do nei

← 1;
2: N ← N − |E|;
3: while N > 0, do
4: find ei ∈ E such thatei has the largest energy

costEei
= Esingle(Lei

, nei
, λei

);
5: nei

← nei
+ 1;

6: N ← N − 1;
7: end while;
8: return nei

for all ei ∈ E;

Fig. 5: The algorithm for discrete R-node assignment on edges.

topology by adding non-merge vertices one by one and then
use a backtrack algorithm to optimize each size-5 component
(a steiner-tree-like structure containing5 outer vertices and3
inner vertices) on the constructed graph topology.

In the construction, non-merge vertices can be added by
two ordering schemes: 1) Min-Min ordering, where each
added vertex minimizes the increased total weighted edge
length (similar to the minimum spanning tree construction,
but complicated due to creating a merge vertex at each step),
and 2) Max-Min ordering, where each added vertex maximizes
the minimum of the increased total weighted edge length. For
each of the orderings an algorithm has been designed [25].
Unfortunately, no bounds were found for these two algorithms,
and whenM increases over10, either one may return sub-
optimal results.

Interestingly enough, our analysis shows that the sub-
optimal results by different orderings are often stuck at differ-
ent local optimums, even though they are designed to avoid
being stuck too early before the size-5 component optimization
stage. This motivates us to implement a hybrid algorithm
that uses both orderings complementarily to bypass local
optimums. Specifically, we start by adding non-merge vertices
in one ordering, then switch to the other afterk vertices have
been added, wherek is enumerated from0 to M . During
our performance evaluation, we find that this hybrid algorithm
successfully returns optimal results on all those test cases
(M ≤ 15) that can be verified within acceptable timeframes.

B. Practical Solution on Discrete R-node Deployment

So far we have solved the problem of finding the graph
topology, i.e., the location of the merge vertices, which min-
imize the maximum energy cost on an R-node. However,
directly solving Eq. (1) may yield a fractional number of R-
nodes being assigned to an edge. Our experience shows that
a naive rounding to the closest integers can suffer from up to
40% performance degradation. To build a practical solution,
in this section, we develop algorithms for optimal discreteR-
node assignment and merge vertices adjustments.

1) Optimal Discrete R-node Assignment:We develop a
greedy algorithm (see Fig. 5) for the discrete R-node assign-
ment problem, which assign each edge an integer number of
R-nodes. It starts from the assignment with one R-node on
each edge (line 1-2), which by Theorem 1, should be placed at

Algorithm EnergyBalance()
1: Vmin ← V ;
2: Emin ← maxei∈E Eei

;
3: while true, do
4: for each merge vertexv ∈ V , do
5: adjustv so as to balanceEei

among allei

connecting tov;
6: end for
7: if maxei∈E Eei

< Emin,
8: Vmin ← V ;
9: Emin ← maxei∈E Eei

;
10: else break;
11: end while;
12: return Vmin;

Fig. 6: The algorithm for balancing energy consumption on
edges.

the start point of each edge. Then we add other R-nodes one by
one to the edge with the maximum energy consumption (line
4-7). This algorithm is optimal, as shown by the following:

Theorem 3:Given the graph topology and any feasible R-
node number, the RnodeAssignment() algorithm is optimal.

Proof: The proof is done by induction on the number
of given R-nodesN . The key idea is: When an additional
R-node is assigned to the current induction hypothesis, if
an assignment better than the assignment achieved by our
algorithm exists, then to improve our assignment, at least
one R-node can be found to move from some other edge to
the edge with the maximum energy cost in our assignment.
Then without the additionally assigned R-node, the induction
hypothesis can be further improved by moving the newly
founded R-node and thus cause contradiction. The full proof
can be found in [21].

2) Merge Vertex Adjustment:Next we adjust the merge
vertices to further balance the energy consumption among
different edges. For example, if there is an edge that is short
enough; then even deploying one R-node can lead to waste,
i.e., when the network gets depleted, the residual energy ofthis
R-node is still high. To this end, we develop two algorithms to
balance the energy consumption on different edge and avoid
such situations. Fig. 6 and Fig. 7 show the details.

EnergyBalance() (Fig. 6) proceeds iteratively (thewhile
loop) to balance energy consumption among edges connecting
to each merge vertex. In each iteration (thefor loop), it tries
to adjust the location of a merge vertexv by solving equations

λe1
(
v1v

ne1

)α = λe2
(
v2v

ne2

)α = λe3
(
v3v

ne3

)α ,

where e1 = (v, v1), e2 = (v, v2) and e3 = (v, v3). It is
possible thatv has more than three edges connecting to it.
In this case, we explore all 3-combinations that contain the
edge with the maximum energy consumption, and use the
solution that minimizes the maximum energy consumption
among these edges. Note that|E| is bounded by(2×M − 1)
[25], thus the computation complexity is polynomial and our



Algorithm AdjustMergeVertex()
1: nei

, ei ∈ E ← RnodeAssignment();
2: Vmin ← EnergyBalance();
3: Emin ← E;
4: Emin ← maxei∈E Eei

;
5: while true, do
6: Vtemp ← Vmin; Etemp ← Emin;
7: Etemp ← Emin;
8: for each merge vertexv ∈ Vmin, do
9 : V ← Vmin; E ← Emin;
10: combinev with closest vertex forV andE;
11: nei

, ei ∈ E ← RnodeAssignment();
12: V ← EnergyBalance();
13: if maxei∈E Eei

< Etemp,
14: Vtemp ← V ; Etemp ← E;
15: Etemp ← maxei∈E Eei

;
16: end if
17: end for
18: if Etemp < Emin,
19: Vmin ← Vtemp; Emin ← Etemp;
20: Emin ← Etemp;
21: else break;
22: end while;
23: return Vmin andEmin;

Fig. 7: The algorithm for merge vertex adjustment.

experience shows that the algorithm is fast in practice.
AdjustMergeVertex() (Fig. 7) takes the graph topology

generated by the theoretical solution as an input. It first assigns
R-nodes and does energy balancing (line1-4). Then in each
iteration (thewhile loop), it tries to combine each merge vertex
with its closest vertex and keeps the combination that yields
the largest reduction on the maximum energy cost among
edges. Also during each try, it reassigns R-nodes and re-
balance the energy consumption globally (line11-12), so as
to bypass local optimums. In next section, we will show that
our solution, which considers both theoretical optimalityand
practical issues, has achieved excellent performance withgood
efficiency and balanced energy consumption.

VI. PERFORMANCEEVALUATION

We evaluate our solution by both numerical analysis
and ns-2 simulations. We adopt similar configurations from
[9][27][16] in our evaluation. Specifically, we deploy5 to 25
S-nodes by uniform distribution in a field of5000m× 5000m
with the sink positioned at the center. The normalized data
rate of each S-node is randomly picked from(0, 1]. For each
number of S-nodes,10 topologies are generated. Each point
in the figures thus represents the average with an error bar
showing the standard deviation.

For comparison, we implemented three deployment ap-
proaches, namelyDirect-Connection, Connectivity-Onlyand
Half-Traffic-Aware. Direct-Connection connects each S-node
with the sink by a dedicated data path (an edge) where R-
nodes are deployed by our algorithm in Section V-B. It is

the most straightforward approach and serves as a base-line.
Connectivity-Only is chosen from a state-of-the-art scheme
proposed in [27], which optimizes the system performance by
considering connectivity only. There are multiple versions of
the scheme. For better performance, we use the1-connectivity
version (i.e., there is at least one data path from each S-node
to the sink) and further enhance it with a better approxi-
mation for Euclidean steiner minimum tree [25] (instead of
minimum spanning tree) to construct the graph topology. The
Half-Traffic-Aware approach uses the same graph topology
as Connectivity-Only but assigns R-nodes by our algorithm
proposed in Section V-B. It is used as a reference to help
understand the impacts of the graph topology (by comparing
with our solution) as well as the discrete R-node assignment
algorithm (by comparing with Connectivity-Only). Fig. 8
illustrates how the three approaches and our solution deploy
R-nodes by a test case of15 S-nodes used in our evaluation.
Our solution is labeled byFull-Traffic-Aware.

Three metrics are used for evaluation. The first one is the
network lifetime, defined as the lifetime of the first depleted R-
node. In practice, this usually requests to dispatch a technician
to replace the battery of this R-node. As sending a technician is
costly, it is usually preferred that all the batteries are replaced.
Thus, the first depleted node can serve as a good indicator
for the end of the network lifetime. The second metric is
the residual energy, defined as the residual energy of all R-
nodes at the end of the network lifetime. Since all batteriesare
expected to be replaced at the same time, lower residual energy
indicates less energy wastes on the removed batteries. The
third metric is theenergy efficiency, defined as the amount of
traffic relayed to the sink by per unit energy cost. We consider
this metric on purpose as we want to evaluate whether our
solution extends the network lifetime at the expense of energy
inefficiencies, as the phenomenon discussed in [17].

We setα = 4 [17] andRmax = 500m. The initial energy
for each node is set toE = Tmin · 108, whereTmin is the
minimum network lifetime requested by the application and
is set to1000. With these application parameters (E, Tmin,
Rmax), for each test case (the number of S-nodesM and their
locationssi and data ratesγi), the number of R-nodesN is set
to the minimum value computed by the following constraint
(which is the number of R-nodes required by the base-line
scheme Direct-Connection for a feasible deployment):
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For ease of comparison, all results are normalized by the base-
line scheme Direct-Connection.
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(d) Full-Traffic-Aware

Fig. 8: An illustration of different deployment approachesand their residual energy distributions at the end of the network
lifetime of each approach. The sink is denoted by the small square at the center. S-nodes are denoted by small circles. R-nodes
are denoted by small diamond dots. Each approach uses the same number of R-nodes (230). Residual energy is demonstrated
in grey scale, where darker color denotes higher residual energy. A grey scale reference is shown at the bottom right corner
of each deployment.

A. Numerical Results

Given a practical solution with the graph topology and the
number of R-nodes on each edge, the network lifetime can be
estimated as1

T = min
ei∈E

E

λei
· (Lei

nei

)α
.

The total residual energy is

Eresidual =
∑

ei∈E

(

E− λei
· (Lei

nei

)α · T
)

· nei
.

1Following our analysis, we omit the small constantc here. In our ns-2
simulation, all the practical factors (e.g.,c) are included.

And the energy efficiency is

T ·∑M

i=1
γi

N · E− Eresidual

=

∑M

i=1
γi

∑

ei∈E λei
· (Lei

nei

)α · nei

.

Fig. 9 shows the results of the network lifetime with differ-
ent number of S-nodes. As the number of S-nodes increases,
the lifetime of both Half- and Full-Traffic-Aware increase
faster and is much higher than that of Direct-Connection
and Connectivity-Only. With25 S-nodes, Half-Traffic-Aware
performs over11 times of Direct-Connection and5 times
of Connectivity-Only, while Full-Traffic-Aware further rises
to 15 times and7 times, respectively, which is40% higher
than Half-Traffic-Aware. This demonstrates the importanceof



5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

Number of S−nodes

N
or

m
al

iz
ed

 N
et

w
or

k 
Li

fe
tim

e

 

 
Full−Traffic−Aware
Direct−Connection
Half−Traffic−Aware
Connectivity−Only

Fig. 9: Normalized network lifetime by
numerical analysis.
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Fig. 10: Normalized residual energy by
numerical analysis.
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Fig. 11: Normalized energy efficiency
by numerical analysis.
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Fig. 12: Normalized network lifetime by
ns-2 simulations.
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Fig. 13: Normalized residual energy by
ns-2 simulations.
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Fig. 14: Normalized energy efficiency
by ns-2 simulations.

considering the traffic patterns during both graph topology
selection (finding merge vertices) and node deployment stages
(discrete R-node assignment and merge vertex adjustments).

Another interesting observation is that the lifetime of
Connectivity-Only first rises and then drops slightly. A close
investigation reveals the reason behind is that the energy
hole phenomenon [17] becomes more significant when the
number of S-nodes increases. Fig. 8 shows the residual energy
distributions of four deployment strategies on a test case of 15
S-nodes used in our evaluation. The energy hole problem can
be clearly seen in Fig. 8b, where R-nodes close to the sink
are depleted while most of other R-nodes still have more than
75% of the energy. As the number of S-nodes increases, more
traffic will accumulate close to the sink. This dramatically
reduces the lifetime if the deployment is not aware of such
traffic accumulations, e.g., the Connectivity-Only scheme. On
the other hand, the other two schemes and our solution
successfully avoid this problem by using algorithms that result
in deploying more R-nodes close to the sink, as illustrated in
Fig. 8a, Fig. 8c and Fig. 8d. In addition, there are still several
edges with the residual energy more than50% of the initial
energy in Fig. 8c. This is because Half-Traffic-Aware uses the
same graph topology as Connectivity-Only, which is computed
without traffic-awareness.

Fig. 10 shows the results of the total residual energy under
different number of S-nodes (note the value is the lower the

better). It is not surprising that the Direct-Connection, Half-
Traffic-Aware and our Full-Traffic-Aware solution have much
less total residual energy than Connectivity-Only, since the
energy consumption of the former three schemes is more
balanced by assigning more R-nodes to the edges with higher
traffic volumes. However, as Half-Traffic-Aware uses traffic-
blind graph topologies as Connectivity-Only, it runs the second
higher. This also matches the residual energy distributions
shown in Fig. 8, where Direct-Connection and our solution
have more balanced distributions than Half-Traffic-Aware.

Fig. 11 shows the energy efficiencies of different deploy-
ment strategies under different number of S-nodes. It follows
a similar trend to the network lifetime with one exception
that Connectivity-Only has much better energy efficiency than
Direct-Connection. This is because for the Connectivity-Only,
most of R-nodes have not yet spent much energy when the first
R-node dies. Nevertheless, our Full-Traffic-Aware solution still
achieves the best energy efficiency and delivers about15 times
of the traffic than Direct-Connection with the same mount
of energy consumed, which shows that the extension of the
network lifetime by our solution is not at the expense of energy
inefficiencies.

B. ns-2 Simulations

To further evaluate our solution, we conducted extensive
simulations byns-2, which consider both sending and receiv-



ing energy consumption, as well as wireless communication
loss, collisions and other practical issues. A simple protocol
is designed for data collection. The sink broadcasts a control
message to start data collection. Each S-node then senses
the environment at a predefined average rate and transmits
the sensed data. Data losses are handled by both end-to-end
and per-hop retransmissions. We modified the standard MAC
layer to support dynamically adjusting transmission rangeby
using different power. For consistency, we use the parameters
adopted from [17] as in previous sections, i.e.,α = 4 and
c = 4500 for both sending and receiving.

Fig. 12, Fig. 13 and Fig. 14 show the results of network
lifetime, residual energy and energy efficiency under different
number of S-nodes, respectively. It is easy to see that their
trends match our numerical analysis well, which validates the
correctness and effectiveness of our approach and analysis.
By a careful comparison, we find that the simulation results
in general are slightly better than those of the theoretical
analysis, where the results of the total residual energy is the
most obvious. A closer look reveals that by the communica-
tion range control, the wireless losses and collisions happen
infrequently in all test cases. The only hot-spot identifiedis the
area closer to the sink in the Direct-Connection scheme. Recall
the example shown in Fig. 8a, where the R-nodes in this area
are very close to each other and easy to cause collisions even
under the communication range control. This slightly degrades
the performance of Direct-Connection and also makes other
schemes better after the normalization.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we presented an in-depth study on the traffic-
aware relay node deployment problem. We developed optimal
solutions for the case of one source node, both with single
and multiple traffic flows. We showed however that the gen-
eral problem is difficult, and existing connectivity-guaranteed
solutions cannot be directly applied. We thus transformed our
problem into a generalized version of the Euclidean Steiner
Minimum Tree problem (ESMT) and proposed a hybrid algo-
rithm. To further improve the performance, we also developed
algorithms for discrete relay node assignment and further
adjustments. We evaluated our solution by both numerical
results andns-2 simulations and observed an up to14 and6
times of improvement of the network lifetime than the Direct-
Connection scheme and a state-of-the-art Connectivity-Only
algorithm, respectively.

In the future, we would like to conduct some real experi-
ments to evaluate our traffic-aware strategy. We also plan to
consider more practical issues, especially deployment in3-
D space like a building, and deployment where R-nodes can
only be placed within some feasible areas. Another direction
is to consider survivability within our design to support fault-
tolerance.
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