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Abstract—The in-network data storage and retrieval are funda-
mental functions of sensor networks. Among many proposals, geo-
graphical hash table (GHT) is perhaps most appealing as it is very
simple yet powerful with low communication cost, where the key
is to correctly define the bounding box. It is envisioned that the
skeleton has the power to facilitate computing a precise bounding
box. In existing works, the focus has been on skeleton extraction
algorithms targeting for 2D sensor networks, which usually de-
liver a 1-manifold skeleton consisting of 1D curves. It faces a set
of non-trivial challenges when 3D sensor networks are considered,
in order to properly extract the surface skeleton composed of a set
of 2-manifolds and possibly 1D curves. In this paper, we study the
problem of surface skeleton extraction in 3D sensor networks. We
propose a scalable and distributed connectivity-based algorithm
to extract the surface skeleton of 3D sensor networks. First, we
propose a novel approach to identifying surface skeleton nodes by
computing the extended feature nodes such that it is robust against
boundary noise, etc. We then find the maximal independent set of
the identified skeleton nodes and triangulate them to form a coarse-
grained surface skeleton, followed by a refining process to generate
the fine-grained surface skeleton. Furthermore, we design an effi-
cient updating scheme to react to the network dynamics caused
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by node failure, insertion, etc. We also investigate the impact of
boundary incompleteness and present a scheme to extract the sur-
face skeleton under incomplete boundary. Finally, we apply the
extracted surface skeleton to facilitate the design of data storage
protocol and curve skeleton extraction algorithm. Extensive sim-
ulations show the robustness of the proposed algorithm to shape
variation, node density, node distribution, communication radio
model and boundary incompleteness, and its effectiveness for data
storage and retrieval application with respect to load balancing.

Index Terms—3D sensor networks, curve skeleton, data storage
and retrieval, surface skeleton.

I. INTRODUCTION

HE IN-NETWORK data storage and retrieval are funda-

mental functions of sensor networks. While centralized-
based schemes suffer from bottleneck at nodes near the sink,
distributed in-network data storage is desirable for its scalability
and robustness, etc. Among many proposals, geographical hash
table (GHT) [24], [29] is appealing because 1) it can greatly re-
duce the communication and energy cost by avoiding frequent
in-network flooding for information retrieval [28], and 2) it is
very simple yet powerful [10]. GHT names events with keys and
hashes the keys into geographic locations; and the sensor node,
referred to as home node, geographically closest to the hash of
its key stores the (key, value) pair. GHT then uses GPSR [13] as
the low-level routing scheme to greedily forward the data and
query packets to the corresponding home node. Upon reaching
a local minimum, GPSR adopts the perimeter mode forwarding
strategy. Considering the dynamics of sensor networks (e.g.,
caused by node mobility, insertion or failure due to energy de-
pletion, etc.), GHT proposes to replicate each key-value pair at
nodes (referred to as replica nodes) on the home perimeter, in
order to guarantee data persistency.

Despite its desirable properties, GHT has some disad-
vantages. For example, inherited from GPSR, in complex
networks such as the Y-shaped network shown in Fig. 1(a),
the boundary nodes will be overloaded due to the extensive
usage of the perimeter forwarding [10] especially in 3D sensor
networks where there are arbitrarily large number of perimeters
to be explored [36]. If the bounding box defining the range
of coordinates for hash functions is not properly computed,
the imbalance of storage load, together with traffic load, will
become more severe [27]. This is because by hashing the keys
to geographic coordinates, the underlying 3D space is actually
divided into a set of Voronoi cells, within each of which there is
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Fig. 1. (a) The Y-shaped 3D network has 12,545 sensors with average node de-
gree 15.36; (b) The bounding box with voids used in [24], [40]; (c) A cross-sec-
tion of the Voronoi diagram with bounding box in (b); (d) The extracted Surface
Skeleton; (e) The bounding box computed based on the Surface Skeleton in (d);
(f) Comparison of storage performance with the two bounding boxes.

one and only one sensor node, and thus each sensor node stores
the data mapped to its Voronoi cell (see Fig. 1(c)). Obviously,
the storage load of a node is proportional to the volume of its
cell [27], i.e., the larger the volume is, the larger the storage
and communication cost of the node. And if there exist voids
unoccupied by sensors, as shown in Fig. 1(b) which is utilized
by Regular GHT solutions such as GHT in [24], [29] and typ-
ical segmentation algorithms such as BOTTLENECK in [40],
all data hashed into the voids will be finally stored at boundary
nodes surrounding the voids, and consequently, these boundary
nodes (especially when replica nodes on the boundary are
used for data persistency) tend to have a higher storage and
traffic load [40]. Please see Fig. 1(f). Similarly, DIM [18] also
maps multi-attribute events to the sensing field; the nodes near
an empty zone unoccupied by sensors store data mapped to
this zone. Accordingly, to evenly distribute the storage load
of sensor nodes, the key for data storage application is to
precisely define the bounding box of sensor networks with an
arbitrary shape; Fig. 1 shows that the bounding box results
could vary greatly with different methods.

The difficulties of computing the precise bounding box for
a complex network mainly stem from the presence of concave
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Fig. 2. Bounding box computed based on C-Skeleton and S-Skeleton, respec-
tively. (a) C-Skeleton (blue line in left) and the bounding box (green cubic in
right); (b) The S-Skeleton (shaded surface in left) and the bounding box (green
polyhedron in right).

valleys (and thus bridges between adjacent peaks) and/or, holes
or tunnels, which often lead to the failure of finding a tight bound
of the network based on convex hull, as shown in Fig. 1(b).
At first glance, it seems quite intuitive to locate concave nodes
by computing the concavity. Unfortunately, without coordinate
information, it is rather difficult to calculate the depth of the
concave valley, a traditional way to compute concavity in com-
puter graphics, while the neighborhood size based algorithm
and CATL [32] do not work well in long-and-narrow networks,
making it a challenge to compute concave nodes in 3D sensor
networks. On the other hand, the surface skeleton (referred to as
S-Skeleton) of a 3D object is a generic and compact represen-
tation of the underlying object which can preserve the object's
genus and the topological features very well [4]. In continuous
3D space, S-Skeleton, also called medial surface or medial axis,
of a 3D object is defined as the interior points with at least two
nearest boundary points, as shown in Fig. 2(b). Also we notice
that another kind of skeletons of 3D objects is line-like skeleton,
or curve skeleton (referred to as C-Skeleton), composed of 1D
curves locally symmetric to the object [26]. While C-Skeleton
has been used in 3D sensor networks to improve routing per-
formance [21], inherently it is not a proper way to compute a
tight bounding box; Fig. 2(a) shows an example. Between above
two definitions of skeleton in 3D sensor networks, we empha-
size that typically, the presence of a concave valley (or hole, or
tunnel) will incur a bent S-Skeleton. Thus, if the location where
the S-Skeleton deforms is identified, then the concave valley
can be easily located, and accordingly, the computed bounding
box is supposed to be tight and precise, as shown in Fig. 2(b).
That is, we envision that S-Skeleton of a 3D sensor network, as
shown in Fig. 1(d), can efficiently facilitate defining a tight and
precise bounding box, as shown in Fig. 1(e), and balancing the
storage loads, as shown in Fig. 1(f).

A. Challenges

Note that skeleton has also been widely used as an efficient
way to facilitate routing [5], segmentation [5], [43] localiza-
tion [15] and navigation [33], [35], etc., in sensor networks. The
usefulness of skeleton has inspired many algorithms for its com-
putation in sensor networks, e.g., [11], [19], [20], [42]. More
recently, there are many practical deployments of sensors on
3D environments [34], triggering growing demands for studies
on 3D sensor networks. Compared with 2D cases, it is much
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more difficult to compute the S-Skeleton of 3D objects [31], be-
cause the S-Skeleton of a 3D object consists of 2-manifolds (or
skeletal sheets), and possibly 1D curves. However, the existed
algorithms which primarily target at 2D sensor networks and de-
liver a 1-manifold skeleton composed of 1D curves, cannot be
readily applied for 3D cases. For instance, as pointed out in [35],
the extension of MAP [5] to 3D sensor networks will poten-
tially eliminate true skeleton nodes, e.g., in a 3D sensor network
with bottlenecks; the boundary of a 3D sensor network is typ-
ically composed of 2D manifolds, instead of 1D curves, there-
fore it cannot be decomposed into branches by CASE in [11],
nor the boundary node ID can be sequentially grouped to form
an interval as in [43]. The distance transform based skeleton
computation algorithm as in [19] might work at the first glance,
however, it will deliver a surface skeleton with fake holes even
in a genus-0 network with bottlenecks where the true skeleton
nodes actually have a small distance transform. Further, since
the surface skeleton is also a 2-manifold, the connection of the
identified skeleton nodes, which are often self-disconnected, to
form a meaningful representation which should be homotopic
to the original network, is very different from the 2D counter-
part. Thus, it faces non-trivial challenges to extend the existing
protocols for skeleton extraction in 2D sensor networks to 3D
settings.

We are aware that one close work to ours is done by
Xia et al. [35], aiming at constructing the medial axis for
navigation and data storage in 3D sensor networks. They first
establish the unit tetrahedron cell (UTC) mesh structure and
then iteratively “peel” off a layer of the UTC mesh structure
to yield the medial axis. Principally, such a morphological
thinning based method, attempting to realize Blum's grassfire
model [3], is very sensitive to the distance metric and typically
fails to accurately localize medial surface points [4], and it
is also sensitive to boundary noise. That is, a small change
in boundary surface may result in a considerable change in
the surface skeleton. As such, a post-processing operation for
pruning spurious branches is needed. Further, the unit tetrahe-
dron cell (UTC) structure requires high node density and nice
tetrahedron mesh [39], which is difficult to obtain when only
connectivity information is available and thus small interior
holes are not identified [36]. Last but not least, it cannot adapt
to network dynamics since the UTC mesh must be constructed
in advance. When the network topology changes due to node
failure or insertion, etc., the reconstruction of UTC mesh is
costly owing to its high time and message complexity.

B. Our Contributions

In this paper, we study the problem of S-Skeleton extraction
in 3D sensor networks, and propose a connectivity-based, scal-
able and distributed S-Skeleton extraction algorithm which is
robust again boundary noise and node density, etc., and can
quickly react to the network dynamics. Whereafter, based on
the extracted S-Skeleton, we propose the method to find the tight
and precise bounding box followed by the solution for load-bal-
anced data storage. Besides, we use the S-Skeleton as a basis
to extract the C-Skeleton of the underlying 3D sensor network.
Different from [35], we do not require any special structure like
unit tetrahedron cell, which is difficult to obtain in a 3D network,
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especially with low node density. In our work, each node identi-
fies itself as an S-Skeleton node by computing the extended fea-
ture nodes instead of the exact feature nodes, due to the discrete-
ness of sensor networks and the presence of boundary noise.
Then, the maximal independent set of the identified S-Skeleton
nodes is constructed, followed by a triangulation and refining
procedure to deliver a compact representation of the underlying
3D sensor network. The merits of our S-Skeleton extraction al-
gorithm are that it is robust against boundary noise and does
not suffer from low node density, and thus can be applied in
more generic cases than [35]. Further, to react to the network
dynamics caused by node failure or insertion, etc., for the first
time we propose an efficient updating scheme to reconstruct the
S-Skeleton. As in reality, complete boundary information might
not always be easy to obtain, e.g., in sparse networks, we pro-
pose a scheme to extract S-Skeleton under incomplete boundary
information which is much easier to be identified. Finally, we
apply the extracted S-Skeleton for the design of load-balanced
data storage protocol and C-Skeleton extraction algorithm in
3D sensor networks. We conduct extensive simulations to show
the robustness of the algorithm to shape variation, node density,
node distribution, communication radio model, and boundary
incompleteness, and its effectiveness for data storage and re-
trieval with respect to load balance in 3D sensor networks.

The reminder of the paper is structured as follows. In
Section II we briefly introduce the motivations and prelim-
inary knowledge of this work, and detail our algorithm in
Section III. Section IV is devoted to the applications of the
derived S-Skeleton for the design of load-balanced data storage
and retrieval protocol, and C-Skeleton extraction algorithm as
well. To show the efficiency of the proposed algorithm, we
conduct extensive simulations in Section V. In Section VI we
present some previous work related to ours, and finally,
Section VII concludes the paper.

II. MOTIVATIONS AND PRELIMINARIES

In continuous domain, as mentioned earlier, the S-Skeleton
of a 3D object D C R?, denoted by SK(D) (A list of nota-
tions is given in Table I), is a collection of the interior points
having more than one nearest boundary point (referred to as fea-
ture point). More formally, we first define the distance transform
T:D—RasT(x) = mingcop d(z,y) if z € D\OD and 0
otherwise, where @D is the boundary surface of D and d(z,y)
is the (Euclidean) distance of point x to y. Further, we define
the feature transform ' : D — P(3D) where P is the power
set, assigning to each point x € D the set of z' s feature points
on dD. That is, F(2) = {y € dD|d(z,y) = T(z)}. Since
an S-Skeleton point has more than one feature point, its fea-
ture size should be larger than one, and if a point has only one
feature point, it must be a non-skeleton point. Thus, there is an
easy way to identify an S-Skeleton point based on the feature
size. Formally, we have

Definition 1: A point z is an S-Skeleton point if its feature
size |F(x)| > 2.

Based on Definition 1, we can deliver the S-Skeleton com-
posed of 2-manifolds, or sheets, and possibly 1D curves.
Fig. 3(a) shows an example of the S-Skeleton of a cubic. In
degenerated cases like a cylinder, the S-Skeleton may contain
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TABLE I
LIST OF NOTATIONS AND DESCRIPTIONS

Notation Description
SK(D) The surface skeleton of an object D C R?
T(z) The distance transform of x € D
d(z,y) The distance between point x and y
F(x) The feature transform of x € D
Ni(p) The k-hop neighbors of node p
F(p) The extended feature nodes of node p
~e The geodesic e-equivalence relationship
F.(p) The e-component set of node p
s The surface skeleton node set
Es The link set between pairwise nodes
List(p) The set of nearest boundary nodes of p
Df(p1,p2) | The set of nodes on the shortest perimeter
path between p1 € Ni(p) and p2 € Ni(p)
ck(p) The k-hop curvature of node p

=) S e
(a) (b) (c)

Fig. 3. An illustration of the S-Skeleton of a cubic. There are thirteen sheets
formed by the Y-curves and the boundary of the cubic while only the middle
sheet is shaded. The solid red lines represent the Y-curves where two sheets
meet. (a) Continuous space where the Euclidean distance between points are
given. The feature points of &, z, s are shown by solid rectangles. Points x is
an ordinary S-Skeleton point, z is a Y-curve point (and is also a junction point),
and s is not an S-Skeleton point; (b) The distance between nodes are measured
by integers (e.g., in hops). Node z in the shaded sheet should be an S-Skeleton
node while s shouldn't. However, the non-skeleton node s has two extended fea-
ture nodes. The void bounded by the polygon in the shaded sheet is generated
because of the even width of the cubic; (¢) Node z has two connected compo-
nents Z1, 2 while s has only one.

only curves, which is not considered in this paper. Two sheets
may meet along a Y-intersection curve [8] (referred to as
Y-curve), on which any point has at least three feature points
and is thus called a Y-curve point. Hence, a sheet is bounded
by some Y-curves and possibly the boundary of the object. In
particular, we also call as junction points the Y-curve points
where more than two sheets intersect.

Definition 1, however, cannot be directly applied for discrete
sensor networks where the coordinate information of each
sensor is often costly to acquire and in most scenarios, we can
only use connectivity information. Many factors, such as the
rounding error of distance between nodes, low node density,
boundary noise, etc., pose great challenges to identify skeleton
nodes in sensor networks. We first take a look at the challenges
and present the solutions in 2D sensor networks, and then we
extend these solutions to the 3D counterparts.

First, due to the rounding error of distance between nodes,
low node density or even “width”, etc., many interior nodes
may only have one nearest boundary node (referred to as fea-
ture node), potentially degrading the performance of skeleton
extraction. In order to tackle this problem, we can compute the
extended feature nodes defined below.
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Fig. 4. The principle of skeleton node identification in [43] and its drawback.
Boundary nodes are shown by circles, ordinary interior nodes and skeleton
nodes are shown by empty rectangles and solid pink rectangles, respectively.
(a) The nodes in solid pink rectangles, e.g., g, are skeleton nodes such that their
feature nodes form more than one interval, and p is not a skeleton node since
there is only one interval of feature nodes; (b) The small bump in the boundary
(shown by the solid blue circle) generates a new skeleton node s indicated by
the solid blue rectangle.

Definition 2: For an interior node p having a minimum hop
count distance k to the boundary, its extended feature nodes of p,
denoted by F(p), are the boundary nodes which are k or k + 1
hops to p.

Second, due to the discrete nature of sensor networks, there
are many unstable nodes (e.g., p in Fig. 4(a)) having two or more
close feature nodes. As a result, the delivered skeleton will con-
tain too many spurious branches, especially when the extended
feature nodes are introduced. An approach to tackle this problem
is proposed by Zhu et al. [43] where a node identifies itself as
a skeleton node (e.g., ¢ in Fig. 4(a)) if it has two or more in-
tervals, i.e., ordered and consecutive sequences of the IDs, of
its feature nodes; the nodes with only one interval, e.g., p in
Fig. 4(a), are ordinary nodes. However, this method still suf-
fers from boundary noise in 2D sensor networks, as mentioned
in [19].

Finally, there can be boundary noise, and as well-known,
by traditional approach of skeleton extraction, an unwanted
skeleton branch needed to be pruned will occur if there is
a small bump in the boundary, which cannot be avoided
by [43] neither. For instance, when the boundary node s; in
Fig. 4(a) moves to sz in Fig. 4(b), the only one consecutive
sequence of feature node IDs of node s in Fig. 4(a) will be split
into two intervals in Fig. 4(b), and thus s will identify itself as a
skeleton node by the approach in [43]. We propose to solve this
problem by introducing an equivalence relation ~. as in [25]:

Definition 3: 1f the geodesic distance between two boundary
nodes a,b is no greater than ¢(> 0), we say that o and b are
geodesic e-equivalent, denoted by a ~ b.

Similarly, for each node p, if the minimum of the geodesic
distances between nodes belonging to two intervals Iy, I is less
than e, we say that the two intervals are geodesic e-equivalent,
and can be treated as one virtual interval which we call as e-
interval. Thus, a node identifies itself as a skeleton node if and
only if it has two or more e-intervals.

With the e-equivalent relationship, we have

Theorem 1: A small bump in the boundary, separating an
interval I of p into two intervals Iy, I, with geodesic distance
less than €, does not change the identity of p.

Proof: Since I} and I, have a geodesic distance less than
¢, they are regarded as one e-interval. Thus, if p has only one
interval before bumping, after the bump p still has only one
e-interval and remains a non-skeleton node; otherwise, p keeps
its identity as a skeleton node, which proves the claim. [ |
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(@) (b) (c) (d)

Fig.5. Anillustration. (a) An S-Skeleton node (shown by the big red rectangle)
with three feature node components (in blue); (b) A non-skeleton node (shown
by the big red rectangle) with one feature node component; (c¢) The identified
S-Skeleton nodes; (d) The maximal independent set of the S-Skeleton nodes.

Theorem 1 shows that such a process of skeleton node iden-
tification is robust to boundary noise. One can easily prove that
it is also robust to many other factors, such as low node density
or node failure, etc.

Note that these challenges will become more severe in 3D en-
vironments. That is, some true S-Skeleton nodes may not iden-
tify themselves as S-Skeleton nodes due to even “width”, etc.
Consequently, there might be holes in the skeletal sheets, as
shown in Fig. 3(b), resulting in that the S-Skeleton does not
preserve the network's genus. At the same time, there might be
more unstable S-Skeleton nodes and thus many unwanted faces.
Further, it is noted that the solutions to these problems in 2D
sensor networks cannot be directly applied in 3D cases, as here
the boundary surfaces are 2-manifolds and the boundary nodes
cannot be ordered in sequence to form intervals.

Now we extend the solutions in 2D sensor networks to
3D cases. Observe that in 2D sensor networks, the boundary
nodes in a consecutive sequence must be connected, thus an
interval of boundary nodes implies a connected component
of boundary nodes. Hence, in 3D sensor networks, we can
identify an S-Skeleton node based on the number of connected
components. More specifically, for each node p, we compute its
extended feature nodes F(p). However, even for an ordinary
interior node, it may have more than two extended feature
nodes and any two of them are not necessarily neighboring,
as shown in Fig. 5(c). To address this, we first group these ex-
tended feature nodes into connected components, mimic of the
interval of feature node IDs in the 2D counterpart, as shown in
Fig. 3(c), and then use equivalence relation ~, to merge these
connected components into bigger component(s); two compo-
nents are e-equivalent if their distance (defined as the minimal
geodesic shortest path distance between pairwise feature nodes
belonging to different components) is less than e, and form a
virtual component called e-component. Denote by F(p) the set
of e-components of node p. Obviously, each e-component here
serves as a feature point in continuous domain, and thus we can
identify an S-Skeleton node in 3D sensor networks as follows.

Proposition 1: For an interior node p, if |[F.(p)| > 2, then p
identifies itself as an S-Skeleton node.

By Proposition 1, we can identify the S-Skeleton nodes
based on only one parameter ¢, which is used to avoid suffering
from rounding error, boundary noise, and node density, etc.
Obviously, for Definition 1, ¢ = 0, and only the exact fea-
ture points are used. That is, the S-Skeleton nodes identified
based on Proposition 1 is a subset of those identified based
on Definition 1, while Proposition 1 can yield a more stable
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result in 3D sensor networks, which is validated by extensive
simulations in Section V. With the identified S-Skeleton nodes,
we perform a triangulation and then refining procedure to form
a compact representation, i.e., the S-Skeleton, of a 3D sensor
network, which will be detailed in next section.

III. ALGORITHMS

In this section, we present the details of our algorithm for
S-Skeleton extraction in 3D sensor networks. Since boundary
recognition is out of the scope of the paper, we thus assume
that boundary nodes have already been recognized, e.g., by [12],
[16], [17]. Further, we do not assume that the location informa-
tion of nodes are known, and our work is based on mere con-
nectivity information.

A. S-Skeleton Node Identification

As mentioned in Section II, an interior node is an S-Skeleton
node if it has at least two e-components formed by extended
feature nodes. Thus, the first step of our algorithm is to identify
the extended feature nodes of each interior node. This can be
done in a distributed fashion as follows. Each boundary node
issues a flooding within the network at roughly the same time.
The flooded message includes the ID of the boundary node, and
a counter, which is set to be zero by default, to indicate the
distance of a node to the origin of the flooded message. When
receiving a flooded message from a boundary node, say ¢, each
node p executes the following rules (If p has already received
the message from g, it will discard the message):

o If p has not received the flooded message from any
boundary node, it appends ¢ to its list of feature nodes
(denoted by List(p)), increases the counter by one and
forwards the updated message to its neighbors;

* else if the distance of p to ¢ is equal to, or larger by one
than, the minimal distance of p to the nodes in List(p), p
keeps record of node ¢, increases the counter by one and
forwards the updated message to its neighbors;

*+ else p simply discards the arrived message.
Consequently, each interior node keeps record of its extended
feature nodes and the distance (in hops) to the feature nodes.

Subsequently, these extended feature nodes issue a limited
flooding to construct connected component(s), followed by a
hop-by-hop expansion process as described in [21] to merge
these components into e-component(s). More specifically,
each component is firstly assigned an identifier, and then each
extended feature node initiates a flooding message including its
identifier and a counter (initialized to be zero), which indicates
how far (in hops) the message has travelled. When a boundary
node p receives a flooded message from a boundary node g
which has been assigned an identifier and has a counter no
greater than ¢, it executes the following rules:

» if p has no identifier, then p will be assigned the same
identifier as ¢'s, increase the counter by one, and forward
the updated message to its neighbors;

e else if p and ¢ have different identifiers, and the sum of
the counters of p and ¢ is less than ¢, then p increases the
counter by one, and forwards the updated message to its
neighbors;

* else p simply discards the arrived message from 4.



LIU et al.: TOWARDS ROBUST SURFACE SKELETON EXTRACTION AND ITS APPLICATIONS IN 3D WIRELESS SENSOR NETWORKS

This way, the communication cost of ¢-component con-
struction can be very low. An interior node with more than
one ¢-component identifies itself as an S-Skeleton node, as
shown in Fig. 5(a); and the interior node with only one com-
ponent is a non-skeleton node, as shown in Fig. 5(b). Finally,
Fig. 5(c) draws the identified S-Skeleton nodes of the Y-shaped
network in Fig. 1(a).

B. Coarse-Grained S-Skeleton Establishment

With the identified S-Skeleton nodes, we now connect them
to form a set of 2-manifolds, i.e., the S-Skeleton. Note that the
identification of an S-Skeleton node is based on the extended
feature nodes, in order to guarantee that the true S-Skeleton
nodes will not be ignored. Unfortunately, this may incur that
some S-Skeleton nodes are redundant in a given scenario, e.g.,
with parallel boundaries, which brings a non-trivial challenge to
construct the S-Skeleton. To address this issue, we propose to
construct the maximal independent set of the S-Skeleton nodes,
followed by triangulating them to form the S-Skeleton.

Given the undirected S-Skeleton graph G5 = (V;, E,) where
V5, denotes the set of the identified S-Skeleton nodes, and F,
is the set of links between S-Skeleton nodes, an independent
set is a subset V! € Vj such that no nodes in V are adja-
cent; and a maximum independent set is a maximum-cardinality
independent set [1]. We will not compute the maximum in-
dependent set of V,, which is an NP-hard problem [14]. In-
stead, we find the maximal independent set, which is an inde-
pendent set where no node can be inserted without violating
the independence. Since the S-Skeleton consists of 2-manifolds,
the maximal independent set of the S-Skeleton nodes can be
similarly constructed in a distributed fashion as given in [41].
As a result, any pair of independent nodes have a separation
greater than one but no greater than three hops, as shown in
Fig. 5(d). One advantage of this procedure, as pointed out in
[41], is to maintain the independent nodes uniformly distributed.
Clearly, the independent nodes serves as sites which decompose
the S-Skeleton nodes into Voronoi cells. With the Voronoi di-
agram, we can easily obtain its dual, the Delaunay triangula-
tion, e.g., by the method in [41], and the S-Skeleton (referred to
as coarse-grained S-Skeleton), which consists of triangles with
edge length of 2 or 3 hops rather than 1 hop, is thus generated.

C. Fine-Grained S-Skeleton Establishment

Note that the coarse-grained S-Skeleton only provides a
coarse approximation to the genuine S-Skeleton. Now, we
propose a refining scheme to partition each triangle into mul-
tiple ones with 1-hop long edges, and deliver a fine-grained
S-Skeleton approximating more accurately to the genuine
S-Skeleton; as the sampling nodes of genuine S-Skeleton
become denser, one can imagine that it can provide a more
accurate concave/convex nodes information and thus the com-
puted bounding box could be more tight.

It is noted that there are four kinds of triangles in the coarse-
grained S-Skeleton, including equilateral triangles with edge
length of either 2 or 3 hops, and isosceles triangles with three
edge lengths being either 2, 2 and 3 hops, or 3, 3 and 2 hops. Our
objective is to partition each of them into the smallest number of
triangles with 1-hop edge length, as more nodes might result in
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Fig. 6. Illustrative examples. Each value represents an edge length. (a) Four
equilateral triangles with 1-unit-long edges. (b) An isosceles triangle with edge
lengths being 2, 2, and 3 into 7 isosceles triangles. (¢) An isosceles triangle with
edge lengths being 3, 3, and 2 into 9 isosceles triangles. (d) Nine equilateral
triangles with 1-unit-long edges.

crossing edges when only connectivity information is available,
and thus yield a non-planar graph. Below are some key results.

Lemma 1: An equilateral triangle with edge length of 2 units
can be decomposed into 4 equilateral triangles with 1-unit long
edges, as shown in Fig. 6(a).

Lemma 2: An equilateral triangle with edge length of 3 units
can be decomposed into 9 equilateral triangles with 1-unit long
edges, as shown in Fig. 6(d).

However, for an isosceles triangle with edge lengths being
2 or 3, we can't partition it into a set of triangles with 1-unit
long edge in above way. Fortunately, in this paper we are not
pursuing strict equilateral triangles in continuous domain but
relax ones in discrete sensor networks. That is, if the edge length
is smaller than the communication radio range (no matter how
short the edge is), it is regarded as 1 hop, and we also call such
a triangle equilateral, with a little abuse of notation. To this end,
we can partition an isosceles triangle with edge lengths being 2,
2 and 3 into 7 isosceles triangles, as indicated by Fig. 6(b), and
partition an isosceles triangle with edge lengths being 3, 3 and
2 into 9 isosceles triangles, as indicated by Fig. 6(c). Note that
the partition method in Fig. 6(c) is the same as that in Fig. 6(d),
in order to ensure that each edge is no greater than 1-unit long.

In summary, we have the following:

Theorem 2: The coarse-grained S-Skeleton can be refined to
be a fine-grained S-Skeleton with 1-hop long edges for each
triangle in above way.

As such, the refinement of the coarse-grained S-Skeleton
can be done in a distributed way as follows. First, each tri-
angle is aware of its type by measuring the edge lengths;
then the vertices of each triangle initiates a local flooding
within the S-Skeleton nodes identified in Section III-A, and
accordingly the division points can easily identify themselves.
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As a boundary edge only belongs to one triangle, its division
points is uniquely determined. For a non-boundary edge, it is
relatively complicated as this edge might belong to triangles
with two different types. If one is an equilateral triangle with
edge length of 2 hops and the other is isosceles with edge
lengths being 3, 3, and 2 hops, there should be three division
points: two for the isosceles triangle and one for the equilateral
triangle. In particular, for the case in Fig. 6(b), an additional
node o should identify itself if it's equidistant to two division
points of two edges with length of 3, and for the case in
Fig. 6(c) (d), the midpoints between division points a; and b
will also identify themselves. Finally, these identified division
points, together with the vertices of triangles, naturally form
a set of triangles with edge lengths all being 1 hop, and the
fine-grained S-Skeleton is thus generated.

D. Complexity Analysis

Theorem 3: The proposed S-Skeleton extraction algorithm
has a linear time and message complexity.

Proof: The algorithm has three steps: S-Skeleton node
identification, coarse-grained S-Skeleton establishment and
fine-grained S-Skeleton establishment. During the first step,
each interior node only forwards a small number of packets,
and thus in total the flooding from boundary nodes incurs an
O(N)(N is the number of sensors) time and message com-
plexity. To compute the number of the connected components
of the extended feature nodes, for each node, the algorithm only
incurs at most O(N;) time and message complexity, and thus
O(N;N) for all nodes, where Ny(< N) denotes the largest
number of extended feature nodes among all interior nodes. For
the second step, the construction of the maximal independent
set and the triangulation both incur a linear time and message
complexity [41], [27]. Finally, the refinement of coarse-grained
S-Skeleton is only conducted within the identified S-Skeleton
nodes, and thus the complexity is at most linear to the network
size.

In total, the algorithm has a linear complexity. ]

E. Network Dynamics

As well known, wireless sensors networks are resource-con-
strained, and many factors can cause their failures. For instance,
sensor nodes are fragile and may fail due to energy deple-
tion or destruction by external events (e.g., natural disasters,
adversarial attacks, etc. [2]), and congestion may also cause
packet loss. Besides, occasionally some sensors may be added
to the network for a better performance [27]. In other words,
nodes/links may come and go [9], which consequently incurs
the dynamics in the network topology. To show the perfor-
mance of our algorithm under such harsh environments, we
consider the S-Skeleton reconstruction problem for dynamic
networks. When the network topology changes, the algorithm
does not necessarily compute the S-Skeleton from scratch,
which is otherwise time/message costly. Instead, as will be
proven, the dynamic of the network topology will cause a local
impact on the S-Skeleton, and thus only a local operation on the
reconstruction of the S-Skeleton is conducted to speed up the
reconstruction process. More technical details and experimental
results can be found in [23].
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F. Extension to Incomplete Boundary Case

Note that we have proved in Section II that a small bump
in boundary usually does not change the identity of a node
being an S-Skeleton node or not, implying that the proposed
skeleton node identification scheme is robust to boundary noise.
In reality, complete boundary information might be difficult
or costly to obtain, e.g., in sparse networks where existing
boundary recognition algorithms often do not work very well.
To make our algorithm more practical, we now propose an
extended version to cover this situation. The key insight is as
follows:

Theorem 4: For any node p, let A TS (p) be the maximal in-
dependent set of p’s feature nodes where the distance between
two neighboring feature nodes is no greater than k < e. Then
if other genuine feature nodes of p, which do not belong to
M1IS(p), are not identified as boundary nodes, the S-Skeleton
extracted by our algorithm will not change.

Proof: 1t is noted that our algorithm identifies an
S-Skeleton node based on the number of e-components. For
an S-Skeleton node p, it has at least two e-components, and
the missing of boundary nodes in either component will not
result in the decrease of e-component number, and accordingly,
the identity of p will not change. On the other hand, for a
non-skeleton node ¢ which has only one e-component, if a part
of the true boundary nodes not in A 7S(q) are not identified,
but the rest of the boundary nodes, i.e., MI5(g), still form an
e-component because each pairwise neighboring feature nodes
in M15(g) are no more than € hops, and thus ¢ will not change
its identity neither. [ |

Theorem 4 implies that merely based on a small subset of
the boundary information, our algorithm can still extract the
genuine S-Skeleton. This property is very useful for sparse
networks where complete boundary information is difficult,
or costly, to obtain while a part of boundary node can be
easily identified based on the neighborhood size. Namely, for
any node p, if its r-neighborhood size (i.e., the number of
nodes at most r hops away) is locally minimal, say, among
its k-hop neighbors (referred to as Ni(p)), then p identifies
itself as a boundary node. Note that with these identified
boundary nodes, we cannot directly use the proposed algorithm
to extract the S-Skeleton, since the geodesic distance between
feature nodes is not readily computed. One might argue we
can simply compute the shortest path between pairwise feature
nodes. However, this is problematic since the shortest path
will possibly go across the interior of the network, resulting
in some S-Skeleton nodes in narrow part of the network not
being identified. Further, in complex networks, the concave
nodes usually cannot be identified as boundary nodes based on
neighborhood size [19]. Even we suppose that the algorithm
works in this case, the delivered S-Skeleton will move toward
the boundary at concave nodes.

To tackle these difficulties, our approach is to construct a
maximal independent set of the boundary nodes as follows.
First, the nodes with locally minimal r-neighborhood sizes
identify themselves as boundary nodes. Then, with these identi-
fied boundary nodes, we first construct a maximal independent
set M ISy such that pairwise boundary nodes are at least k hops
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away. Theoretically, in such a 2-manifold boundary surface,
there are at most % / 0 points satisfying that each pair of
them have a separation no less than &. Thus, in our algorithm,
for each boundary node p in M 1S}, its k-hop neighbors are
sorted in an ascending order of r-hop neighborhood size; the
first node in the sorted list naturally joins to the M ISy, and
the second node also joins if it is & hops away from both p
and the first selected node. This process is repeated until there
are 6 k-hop neighbors of p in MIS;. Note that if there are
already (> 1) nodes identified as boundary nodes and joining
M5y, only 6 — [ other k-hop neighbors in the list are needed
otherwise the independence will be violated. Eventually, by
this way a maximal independent set of the boundary nodes can
be obtained while interior nodes are unlikely to join the M 1.55.

With these incomplete boundary nodes, we can identify the
S-Skeleton nodes in the following distributed manner. The
boundary nodes in M 1.5 initiate a flooding message including
a hop counter and its neighbors in MISy; each node then
computes its distance to the boundary nodes, and keeps record
of the extended feature nodes, together with their neighboring
boundary nodes in M 1S5y. Then, it constructs a set of chains
based on the neighboring relationship. That is, if p; is the
neighbor of ps, and p2 is that of p3, and so on, then these nodes
form a chain. Afterwards, each node determines its identity
based on the number of chains: a node is an S-Skeleton node
if it has at least two chains, otherwise it's not. Finally, we
triangulate these S-Skeleton nodes in the way described in
Section III-B to form a coarse-grained S-Skeleton, followed by
a refining process as described in Section III-C to obtain the
fine-grained S-Skeleton.

IV. THE APPLICATIONS OF THE S-SKELETON

A. S-Skeleton Based Data Storage and Retrieval

As mentioned in Section I, the S-Skeleton can be used to de-
fine a tight and simple bounding box, which can balance the
storage node in GHT [24], [29] and DIM [18].

Note that the bounding box should better be regular as the
logical data space is often regular [27]. As such, our objective
is to identify a small number of critical boundary nodes used
to define a tight and simple bounding box. To that end, we first
identify the boundary edge of the S-Skeleton which is defined
as the following.

Definition 4: A boundary edge of the S-Skeleton is an edge
which belongs to one triangle only.

After the triangulation process during the S-Skeleton
establishment, the boundary edge identification is rather
straightforward. Further, we call the nodes on the boundary
edges as boundary nodes (referred to as S-boundary nodes) of
the S-Skeleton. Then we compute for each S-boundary node p
its k-hop curvature, denoted by ¢ (p), which is defined below.

Definition 5: For an S-boundary node p, denote by Ny (p) the
nodes at most k hops away from p; let p1, p2 € Ni(p) be two
S-boundary nodes such that the shortest paths between any two
nodes of py, pa, p will not pass through the S-Skeleton. Denote
by D’Ij {(p1, p2) the set of nodes on the shortest path between p;
and ps using the nodes in Ny (p) (When Ny (p) is disconnected,
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(a)

(b)

Fig. 7. Applications of S-Skeleton. (a) The segmentation result and the
bounding box; (b) The C-Skeleton.

some auxiliary nodes can be used as in [22]). Then the k-hop
curvature of node p, i.e., ¢ (p), is defined as

_ ‘D'];(phpZ)‘ -1
N T Xk '

ck(p)

With the k-hop curvature, we define the concave/convex node
of the S-Skeleton (referred to as S-concave/S-convex node), as
follows.

Definition 6: For the given §1,52 € (0,1) and k, an
S-boundary node p is an S-convex node if ¢x(p) < 1 — &1, or
an S-concave node if ¢x(p) > 1+ d2.

Based on the identified S-concave nodes, the S-Skeleton can
be decomposed into regular pieces by connecting nearby S-con-
cave nodes. Then, S-Skeleton nodes flood within the network,
and the nodes nearest to the same regular piece of the S-Skeleton
naturally form a connected component. At the same time, each
boundary node computes its distance (referred to as local fea-
ture size) to the S-Skeleton. The boundary nodes, whose nearest
S-Skeleton nodes are S-convex/S-concave nodes and their local
feature sizes are locally maximal, identify themselves as critical
convex/concave nodes. As such, the bounding box is obtained
where the vertices of the bounding box are critical convex nodes
and critical concave nodes, and interestingly, the network is de-
composed into regular components, as shown in Fig. 7(a).

With the computed bounding box, we first map each data item
x produced by a node to a geographic location g in the sensing
space bounded by the bounding box via a random hash func-
tion h, i.e., h(2) = g. Then the node nearest to the location
g, referred to as home node, stores the data. Finally, similar to
[5], [21], we adopt the S-Skeleton based routing protocol as a
low-level routing scheme for the producer to forward the data to
the home node such that the traffic load is evenly distributed and
the delivery can be guaranteed. For the robustness to node fail-
ures, we let the nodes surrounding the location g, referred to as
replica nodes, also store the data. As the bounding box is tight,
the sensing space can be divided into Voronoi cells with approx-
imately equal volumes. Thus, the storage load of the nodes can
be well balanced. We validate the proposed scheme by exten-
sive simulations in Section V.

)

B. C-Skeleton Extraction

Compared with S-Skeleton, C-Skeleton is a more concise
representation of a 3D object, which consists of 1D curves.
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(© (d

Fig. 8. The performance of our algorithm under various 3D scenarios. The S-Skeletons are shaded. (a) 5,537 nodes, avg. deg. 15.37; (b) 16,156 nodes, avg. deg.
15.69; (c) 19,313 nodes, avg. deg. 15.78; (d) 15,288 nodes, avg. deg. 15.31. (a) Seabed. (b) H. (c) Snake. (d) Man.

Unfortunately, there lacks of a well-accepted definition for
C-Skeleton, and a possible definition is that C-Skeleton is
a subset of the S-Skeleton. C-Skeleton has many desirable
properties, such as homotopic, invariant under isometric trans-
formations, thin, centered, and robust, etc. [7], and it has been
successfully used for routing in 3D sensor networks [21]. Since
the S-Skeleton consists of 2-manifolds, one might argue that we
can use the skeleton extraction algorithms in 2D networks, e.g.,
[11], [19], to derive the C-Skeleton of the underlying 3D sensor
networks. The undesirability is that these algorithms deliver a
self-disconnected skeleton and thus a connecting process is a
must to form a meaningful representation. In this subsection,
we will propose an efficient way to derive the C-Skeleton based
on the established S-Skeleton.

Our approach is distance transform based, but it is different
from [19] in that it relies on the distance transform of each edge,
instead of one single node.

Definition 7: Let T(p1),T(p2) be the distance transform of
node p; and p,, respectively. The distance transform of an edge
{p1,p2), denoted by T'(p1,p2), is defined as the sum of 7'(p;)
and T(p3).

In [19], it has been proven that a node is a skeleton node if
it has a locally maximal distance transform. Similarly, we can
identify a skeleton edge based on its distance transform.

Definition 8: An edge is a skeleton edge if its end nodes are
both skeleton nodes.

Theorem 5: For edge (p1, p2), if the distance transform is
locally maximal, then it is a skeleton edge.

Proof: Since the distance transform of edge {p1, p2) is lo-
cally maximal, then there must be at least one node, say pi,
having the locally maximal distance transform, and there is no
other neighboring node of p; such that its distance transform is
larger than p,, otherwise the edge {p1, p2) has no locally max-
imal distance transform. Hence, the line connecting p; and ps
has the steepest slope of the distance field, and thus p, is a
skeleton node either [30], implying that {p;,p2) is a skeleton
edge. [ |

Corollary I: Anedge {py, p2) is askeleton edge if its distance
transform is the largest among that of the edges in the triangles
edge (p1, p2) belonging to.

With these results, the extraction of C-Skeleton becomes
much easier. Each edge first computes its distance transform,
and then determines its identity by judging whether it has the

largest distance transform among the edges associated with the
same triangle(s). Eventually, the collection of skeleton edges
naturally form the C-Skeleton, as shown in Fig. 7(b).

V. SIMULATIONS

We conduct extensive simulation tests on various 3D sce-
narios to show the performance of the algorithm. In our sim-
ulations, sensor nodes are randomly deployed inside the under-
lying 3D space, and the boundary nodes are recognized by [12].
The parameter ¢ is set to be one by default. We do not compare
with [35] since it requires high node density and nice tetrahe-
dron mesh, as mentioned before, which are not available in our
settings where the average node degree are all in between 15
and 16, pretty low for 3D sensor networks. We first examine
the robustness of the algorithm to shape variation, node distri-
bution, communication radio model and boundary incomplete-
ness, and then we show the applicability of the S-Skeleton for
data storage.

A. Robustness to Shape Variation

We conduct the proposed algorithm under difference sce-
narios, namely, Seabed, H, Man, and Snake, as shown in Fig. §,
with network size ranging from 5,537 to 19,313 and average
node degree in between 15 and 16. We can obviously see that
the derived S-Skeletons in Fig. 8(a) to (d) correctly capture
the main topological features, e.g., the irregularity, of the
underlying networks, showing that our algorithm is robust to
shape variation. Since the node degree are relatively low for
3D sensor networks, one can imagine that our algorithm can
work for small-scale networks.

B. Robustness to Node Distribution

To show that our algorithm works for the network with
non-uniform distribution, we sample the right part of the net-
work in Fig. 1(a) with probability 0.6 while all nodes in the left
part are kept to generate a non-uniformly distributed network,
as shown in Fig. 9(a). As the right part is sparser, we enlarge the
radio range to keep the network connected. Fig. 9(b) shows the
final skeleton. At first glance it might seem anti-intuitive that
the skeleton /eans toward right. This is reasonable, however,
since the feature nodes of an interior node are more likely
to form more than one component due to the sparsity, and
thus more interior nodes in the right part identify themselves
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@ (b)

Fig. 9. The performance of our algorithm under non-uniform network where
the right part is a sample from the network in Fig. 5(a) with probability 0.6.
(a) The original network; (b) The S-Skeleton.

@ (b

Fig. 10. The performance of our algorithm under QUDG. (a) &« = 0.2, p =
0.8;(b)a = 0.4,p = 0.6.

as skeleton nodes. One can address this by combining two
components with distance (defined as the minimum distance
between pairwise nodes, one in each component) less than a
threshold, e.g., 2 hops, as one single component, at the cost of
communication overhead.

C. Robustness to Communication Radio Model

We show that our algorithm is insensitive to communication
radio model by using Quasi-Unit Disk Graph (QUDG) model.
In QUDG, the link between nodes exists if their separation is
smaller than (1 — &) R, and the link exists with probability p €
(0, 1) if the separation is in between (1 —a) R and R, and no link
exists if the separation is larger than R, where o € (0,1) and
p are two system parameters. Fig. 10(a) depicts the S-Skeleton
under QUDG where o = 0.2, p = 0.8. Compared with the UDG
case in Fig. 5(h), it is more shaggy. This is because in QUDG,
two nodes with a separation smaller than R is not necessary to
be neighbors, posing the network topology more irregular. Sim-
ilarly, the skeleton in Fig. 10(b) is more irregular than that in
Fig. 10(a) because the nodes with a separation between 0.6 1
and R have a smaller probability (which is only 0.6) to be neigh-
bors. But overall these two skeletons in Fig. 10 both capture the
main topological features of the underlying networks, showing
that our algorithm is insensitive to communication radio model.

D. Robustness to Boundary Incompleteness

To investigate the performance of our algorithm under incom-
plete boundary, we identify a part of boundary nodes based on
its neighborhood size and construct a maximal independent set.
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(a) (b)

Fig. 11. The performance of our algorithm under incomplete boundary recog-
nized based on the r-hop neighborhood size where » = 3. (a) k = 2, ¢ = 3;
b))k =3,¢=4

The parameter € is set to be larger than k& by one. Please see
Fig. 11. We observe that even under such harsh environments
with incomplete boundary, our algorithm still achieves a rea-
sonable S-Skeleton, without bending toward the boundary.

E. Application for Data Storage

We apply the S-Skeleton to compute a tight and precise
bounding box. As the storage of each node is proportional to the
volume of the Voronoi cell generated by the node, we expect
that our bounding box can guarantee a balanced storage load.
To show its advantage, we compare our algorithm with Regular
GHT [24], and the method in [40] (referred to as Bottleneck)
which segments a 3D network by identifying bottlenecks, and
then computes the bounding box of the network. No replica
nodes are considered in the comparison study.

We propose three metrics, namely, maximum storage load,
standard deviation coefficient and loading ratio of a node, to
quantitatively measure how the storage load spreads across the
network. The maximum storage load is closely related to the
maximum Voronoi cell volume, and the total storage load is
normalized to be 1. The standard deviation coefficient (referred
to as sdc) of storage load, is defined as the ratio of the standard
deviation of the storage load of nodes to their average. A smaller
sdc means the loads are more evenly distributed while a larger
sdc indicates that the distribution is more uneven, namely, the
storage load is more imbalanced. The loading ratio of a node is
the ratio of the storage load of a node to the average storage load
of the network.

Table II depicts the comparison study on the maximum
storage load for the five networks in Figs. 5 and 8. We observe
that our algorithm outperforms the other two algorithms in the
five networks. Especially, for Y, H and Snake-shaped networks,
Bottleneck produces near the same maximum storage load as
GHT since no bottlenecks are correctly identified and thus
the bounding box is not accurately computed. In Man and
Seabed-shaped networks, Bottleneck performs better than GHT
because it identifies some bottlenecks and thus the bounding
box is tighter than GHT, but Bottleneck performs worse than
our algorithm since it ignores some concave points, e.g., at two
knees of the Man-shaped network, resulting in an imprecise
bounding box.

Fig. 12(a) presents the sdc distribution for the five networks
by these algorithms. Clearly, we can see that our algorithm
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TABLE 11
COMPARISON STUDY ON MAXIMUM STORAGE LOAD
Algorithm Y H Man Snake | Seabed
Our algorithm | 0.0055 | 0.0049 | 0.0056 | 0.0052 | 0.0053
Bottleneck 0.0111 | 0.0107 | 0.0079 | 0.0122 | 0.0067
Regular GHT | 0.0124 | 0.0117 | 0.0109 | 0.0122 | 0.0107
15 100
[l Our Algorithm
H [ Bottleneck
e 2 -Re:ular GHT 8 80
g B [l Our Algorithm
20-9 % 60 [ Bottleneck
2 o Il Regular GHT
é 0.6 %
% 0.3
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Scenarios

Loading ratio

(@) (b)

Fig. 12. The comparison study on storage load where the rectangles from left to
right with the same x-axis are obtained by our algorithm, bottleneck and regular
GHT, respectively. (a) Standard deviation coefficient distribution; (b) Load ratio
distribution.

yields the smallest sdc for all networks, because the bounding
box computed based on S-Skeleton tightly bound the network
and no large voids exist; Regular GHT produces the worst result
since the computed bounding box based on convex hull incurs
large voids, resulting in that the boundary nodes are inevitably
overloaded. As for Bottleneck, it identifies a few bottlenecks
in the Man and Seabed-shaped networks, and thus the quality
of the bounding boxes is fair. That is the reason why the sdc is
relatively small. In the other three networks, however, there is
no bottleneck identified and thus the results are undesirable.

Fig. 12(b) describes the load ratio distribution of the nodes
in the investigated five networks by the three algorithms. As
expected, our algorithm produces a near-ideal result, observing
that over ninety percent of nodes have a loading ratio smaller
than 2. Since the bounding box computed by our algorithm is
tight and precise, the Vonoroi cell of each node has almost equal
volume, and hence storage load can be evenly distributed. The
result by Bottleneck is again fair where about seventy percent of
nodes have a small load. But there do exist nodes having a large
loading ratio (greater than 6), because some concave points are
not identified. Thus, the computed bounding box possibly incurs
bridges and voids. As a result, the nodes on the pockets, i.c.,
the boundary nodes surrounding the voids, are heavily loaded.
Regular GHT produces a long-tailed loading ratio distribution
where only near sixty percent of nodes have a small load ratio.
Besides, five percent of nodes, mainly on the boundary of voids
caused by the poorly computed bounding box, are overloaded.
Overall, the load ratio distribution is skewed, implying that the
storage load by Regular GHT is highly unbalanced. In summary,
our algorithm outperforms the other two algorithms in terms of
load balance.

VI. RELATED WORK

Based on the usage of geometric features, existing data-cen-
tric storage (DCS for short) protocols can be roughly classified
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into two categories: non-geometric storage schemes and geo-
metric storage schemes. We first present the previous work on
in-network storage, and then we introduce some previous work
of skeleton extraction in sensor networks.

A. In-network Data Storage

1) Non-Geometric Schemes: Ratnasamy et al. [24], [29]
first proposed GHT, a geographic hash table based protocol,
where each data item is hashed to a geographic location by
using a random hash function; the node (referred to as home
nodes) nearest to this location thus stores the data. To this
end, GPSR [13] is adopted as a low-level routing scheme to
forward the data from the producer to the home node. As sensor
nodes are battery-powered and prone to fail, and occasion-
ally some new nodes might be inserted into the network for
better coverage performance, or some nodes may be mobile,
resulting in a dynamic network topology, in GHT, the home
perimeter nodes surrounding the hashed location also maintain
a copy of the sensed data to ensure data persistence. A similar
work is done by Li ef al. [18], which is designed to support
multi-dimensional range queries in sensor networks where the
low-level routing policy is GPSR, yet the distributed index for
multi-dimensional data (referred to as DIM) is mapped via a
new manner such that the data with similar index are mapped
to nearby geographic locations.

Different from GHT, a simple double-ruling based scheme
replicates the data item by the producer along the replication
curve, instead of the home node in GHT, and the consumer
retrieves the sensed data of interest by following the retrieval
curve. If the replication curve intersects the retrieval curve, the
success of data retrieval can be guaranteed. This method, how-
ever, has strict constraint on the network topology: it requires
the network be regular, e.g., grid-like structure. Sarkar et al. [28]
proposed to map the sensor nodes to a sphere, and the sensed
data is replicated on the curve passing the consumer and the
home node. As there are multiple retrieval curves going through
the consumer and intersecting the replication curve, it offers the
consumer great flexibility to select one meeting the desired cri-
terion, e.g., balanced load or energy consumption. Clearly, GHT
is a sub-case of [28].

The above-mentioned schemes do not incorporate the geo-
metric information of the underlying network and thus have
some obvious disadvantages. For instance, in GHT, when the
network is irregular-shaped or has holes, boundary nodes will
be overloaded, and the approach in [28] will fail if there are
multiple holes inside the network. In addition, these schemes
are primarily designed for 2D sensor networks, and cannot be
directly applied for 3D cases.

2) Geometric Schemes: There are some efforts to use the
geometric features for designing a more efficient DCS pro-
tocol. Fang et al. [10] proposed to partition the network into
Voronoi tiles generated by some landmarks, and then used a
two-level routing scheme as in [9] to forward data and queries
inside and across tiles. It is actually a combination of GHT
(across tiles) and double ruling (within each tile). Thus, if the
tiles are nicely shaped, the performance can be significantly
improved. However, it is rather challenging to select the right
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landmarks for achieving that goal in an arbitrarily shaped net-
work. Ye et al. [38] studied the problem of data dissemination
for wireless sensor networks with mobile sinks, and proposed
TTDD, a two-tier data dissemination approach to efficiently
forward sensed data to the multiple mobile sinks. With location
information of each sensor node except the mobile sinks, in
TTDD, a grid structure is generated proactively by the data
producer, and the delivery information will be set up at the
dissemination nodes nearest to grid points. A query from a
mobile sink reaches the producer via two tiers: the lower tier
at the local grid square, or cell, of the sink, and the higher tier
among the dissemination nodes at grid points. That is, the sink
first issues a cell-wided query, and the dissemination nodes of
the cell then forward the query to the neighboring dissemination
nodes toward the data producer; this process will go on until
the query meets either the data producer or the dissemination
nodes which have already received the data sensed by the
producer, say, upon a request from other mobile sinks. Re-
specting the fact that in irregular-shaped networks, traditional
schemes usually lead to boundary nodes being overloaded,
Sarkar et al. [27] proposed to map the sensed data to a so-called
covering space by using Ricci flow and conformal Mobius
transforms to “uniformize” the network, which is achieved by
first turing an irregular-shaped network into circular, and then
copying the sensor network to fill up the circular holes. Again,
these algorithms are all designed only for 2D sensor networks.

Yang et al. [37] conducted the first work on data storage and
retrieval in 3D sensor networks. It is motivated by the fact that
any closed surface can be cut open to a topological disk by the
cut graph of the surface. By using the Ricci flow technique,
the topological disk can be mapped to a planar rectangle virtual
coordinate, which is a 2D-manifold and has a regular shape such
that the traditional double-ruling based scheme applies. For a
data producer on the boundary surface, it leaves a copy along the
horizontal curve on the planar rectangle; the consumer retrieves
the data of interest by following the vertical curve on the planar
rectangle. An interior producer needs to follow the sequence of
node ID to the nearest boundary node and then replicates its data
on the horizontal curve, while an interior consumer retrieves
the desired data by first following the sequence of node ID to
the nearest boundary node and then moving vertically until it
hits the replication curve. As a result, boundary nodes will be
overloaded in this scheme.

B. Skeleton Extraction in Sensor Networks

1) Skeleton Extraction: Bruck et al. [5] proposed a Medial
Axis-based routing Protocol, named MAP. In MAP, the nodes
having at least two nearest boundary nodes identify as medial
axis nodes. To control boundary noise, unstable medial axis
nodes whose nearest boundary nodes are too close are elimi-
nated. Jiang et al. [11] proposed to identify convex nodes which
can segment the boundaries into branches. A skeleton node is
such that it has at least two nearest boundary nodes belonging
to different boundary branches. DIST [19] first builds the
hop count distance map based on incomplete boundary nodes
identified based on the neighborhood size. A node with locally
maximal distance transform identifies itself as a skeleton node.
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Liu et al. [20] proposed to construct an index for quantitatively
measuring the centredness of a node, and a skeleton node is
such that it has a locally maximal index.

While these algorithms target at 2D sensor networks,
Xia et al. [35] proposed to extract the surface skeleton, which
consists of 2D-manifolds and possibly 1D curves, of 3D sensor
networks. They first establish the unit tetrahedron cell (UTC)
mesh structure of 3D sensor networks. Starting from the
boundary surface, a distributed algorithm is proposed to itera-
tively “peel” off a layer of the UTC mesh structure where the
growing pace of the inner boundary surfaces and the shrinking
pace of the outer boundary surfaces are the same. The iteration
stops when those surfaces meet such that there is no space for
further growing and shrinking, and eventually, the medial axis
with a set of fully connected faces is obtained. Liu ef al. [21]
proposed a unified framework for line-like skeleton, which
consists of 1D curves, extraction in 2D/3D sensor networks.
They first present a unified definition for line-like skeleton node
in 2D/3D sensor networks, and then proposed a distributed
algorithm to identify the line-like skeleton nodes. Since these
skeleton nodes are generally disconnected, a metric, named the
importance measure of a skeleton node which is monotonic, is
proposed such that the skeleton nodes can be connected easily
to generate a coarse line-like skeleton. The final skeleton is
obtained by conducting a pruning process to delete redundant
skeleton branches.

2) The Applications of Skeleton Extraction: Bruck et al. [5]
used the medial axis as an infrastructure to facilitate routing
such that the routing is delivery-guaranteed and traffic load is
evenly distributed. Buragohain et al. [6] proposed to find a safe
route for internal users when emergency happens. Zhu et al. [43]
proposed to segment an irregular 2D network into nice pieces
based on the skeleton, and with the segmentation result the per-
formance of distributed indices and random sampling can be
significantly improved. In [15], the skeleton is used for selecting
landmarks, based on which a localization scheme is proposed.
Li et al. [33] exploited the skeleton for road-map construction
which guides the movement of users in the sensing field to a
safe exit with guaranteed safety. Xia et al. [35] proposed a me-
dial-axis based navigation protocol in 3D sensor networks.

VII. CONCLUSION

We present a connectivity-based, scalable and distributed
surface skeleton extraction algorithm in 3D sensor networks.
The identification of skeleton node is based on the compu-
tation of the extended feature nodes such that it is robust
against boundary noise, node density, and so on. To react to
the dynamics of the sensor network caused by node failure
or insertion, etc., we propose an efficient updating scheme to
reconstruct the surface skeleton. We then apply the surface
skeleton to find a tight bounding box, which is then used for
load-balanced data storage protocol. Besides, we also propose
to extract the C-Skeleton based on the derived S-Skeleton.
Extensive simulations show that the proposed algorithm is
robust to factors such as shape variation, node density, node
distribution, and communication radio model, etc., and effec-
tive for data storage application with respect to load balancing.
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