Robust Indoor Wireless Localization Using Sparse Recovery

Wei Gong and Jiangchuan Liu
School of Computing Science, Simon Fraser University, Canada
{gongweig, jcliu} @sfu.ca

Abstract—With the multi-antenna design of WiFi interfaces,
phased array has become a promising mechanism for accurate
WiFi localization. State-of-the-art WiFi-based solutions using
AoA (Angle-of-Arrival), however, face a number of critical
challenges. First, their localization accuracy degrades dra-
matically when the Signal-to-Noise Ratio (SNR) becomes low.
Second, they do not fully utilize coherent processing across all
available domains. In this paper, we present ROArray, a RO-
bust Array based system that accurately localizes a target even
with low SNRs. In the spatial domain, ROArray can produce
sharp AoA spectrums by parameterizing the steering vector
based on a sparse grid. Then, to expand into the frequency
domain, it jointly estimates the ToAs (Time-of-Arrival) and
AoAs of all the paths using multi-subcarrier OFDM measure-
ments. Furthermore, through multi-packet fusion, ROArray
is enabled to perform coherent estimation across the spatial,
frequency, and time domains. Such coherent processing not
only increases the virtual aperture size, which enlarges the
number of maximum resolvable paths, but also improves the
system robustness to noise. Our implementation using off-the-
shelf WiFi cards demonstrates that, with low SNRs, ROArray
significantly outperforms state-of-the-art solutions in terms of
localization accuracy; when medium or high SNRs are present,
it achieves comparable accuracy.
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I. INTRODUCTION

With the advances in wireless communication and the
deep penetration of WiFi networks, WiFi-based localiza-
tion that aims to deliver GPS-like positioning services for
indoor environments has seen rapid growth in the past
decade [1], [2]. Early WiFi localization has mainly focused
on fingerprinting methods that assume each distinct loca-
tion has a unique WiFi signature [3], [4], [5]. Despite of
meter-level accuracy achieved, they suffer from laborious
site survey or demand crowdsourced data that are often
not available or of poor quality. More importantly, they
typically require dozens of access points (APs) to acquire
desirable localization accuracy. Realizing the availability
of rich sensor data on advanced smartphones and tablets,
sensor-enhanced solutions have been developed to boost the
localization accuracy and reduce the demands on APs [6],
[7], [8]. They are unfortunately not universal to all-size
WiFi clients, in particular, to such thin clients as WiFi-
tags [9]. Recently, inspired by the wide deployment of
multi-antenna transceivers, phased array with smart signal
processing on APs has become a promising mechanism for
accurate WiFi localization. In particular, decimeter accuracy

can be achieved using Time-of-Arrival (ToA) [2] or Angle-
of-Arrival (AoA) [1] techniques.

ToA tracks the signals’ time of flight to estimate a client’s
distance and relative position to APs. The resolution of ToA
is fundamentally limited by the narrow bandwidth of WiFi
signals. Though higher resolution can possibly be made by
the virtual wide band [2], [10], [11], these methods either
are not compatible with off-the-shelf devices [11] or rely on
channel hopping that inevitably disrupts regular communi-
cation [2], [10]. AoA, on the other hand, identifies angles
of the multipath signals received at the antenna array of an
AP [1], [12], [13]. The typical solution of AoA is done by
multiple signal classification (MUSIC) [14], which explores
the fact that the signal space is orthogonal to the noise space.
Such state-of-the-art AoA implementations as SpotFi [1] can
achieve a median localization accuracy of 40 cm, and is fully
compatible with the current WiFi interfaces. Their practical
application and further improvement, however, face several
critical challenges.

1) Low SNR barrier. The resolvability of MUSIC inherently
degrades when SNR decreases !. Particularly, when the noise
space is tangled with the signal space, its performance could
significantly deteriorate. Although this is a known problem
for MUSIC [15], we empirically investigate this aspect in
detail as later shown in Section II, which demonstrates that
its median accuracy degrades to 15.2° with SNRs lower than
2 dB.

2) Incoherent processing. Usually, multiple OFDM channel
measurements contain information from the spatial domain
by multiple antennas, from the frequency domain by subcar-
riers, and from the time domain by a series of consecutive
packets. Yet prior systems fail to make the best of them. For
example, Ubicarse [8] and ArrayTrack [12] only focus on the
spatial domain and time domain. SpotFi [1] coherently per-
forms ToA&AoA estimation but applies clustering, a non-
coherent processing, across packets, losing the opportunity
to improve SNRs in the time domain.

3) Inefficiency of direct path identification. Most existing
methods suffer from being unable to work with a limited
number of packets. For instance, SpotFi [1] tends to produce
spurious estimates and thus dozens of packets are needed
to do clustering; Ubicarse [8] and ArrayTrack [12] need
motion on either mobile users or APs to select the stable (or

! Assume the size of array and the number of snapshots are fixed.



unchanged) path as the direct path. This inevitably prolongs
the localization process. Even worse, frame aggregation,
which wraps several Ethernet frames into a single frame, has
been extensively used to improve the throughput in modern
WiFi networks [16]. > With frame aggregation, only one
CSI (channel state information) measurement is available
for multiple frames, and the time cost of localization can
thus be significantly amplified.

To address these challenges, this paper presents ROArray,
a RObust phased Array based WiFi localization system using
off-the-shelf devices. It works with one or a limited number
of packets. More importantly, it can reliably locate targets
with low SNRs. The design of ROArray is based on a
key observation: in an indoor environment, the number of
dominant paths is sparse (e.g., 5) [1], [12]. For example, if
we divide all possible directions [0°,180°] into an equally
spaced sampling grid and the spacing of the grid is 1°, 5 can
be safely considered sparse as 5 < 180. Such sparsity is
even more obvious when the frequency and spatial domains
are considered simultaneously. As such, advanced sparse
recovery techniques can be used in this context for AoA and
ToA estimation, some of which have been proved robust in
noisy cases [17], [18], [19].

Different from MUSIC that focuses on the orthogonality
of noise and signal, our concentration is based on the
sparsity of signals and coherent processing across the spatial,
frequency, and time domains at the same time. First, with
multipath, we transform AoA estimation into a sparse recov-
ery problem by parameterizing the space over a sampling
grid. By enforcing sparsity on this grid, the resulting AoA
spectrum is guaranteed to be sharp and robust. Furthermore,
together with the help of OFDM that transmits over a set
of subcarriers simultaneously, we jointly estimate the ToAs
and AoAs of all the paths and pick up the smallest ToA path
as the direct path. Our scheme has several advantages over
previous ones [1], [12]. It is insensitive to poor model order
(the number of paths) estimates and hence does not suffer
from spurious peaks as MUSIC does. It also works with
a fairly large operation range, as low as a single packet.
Through a coherent combination of information from the
spatial, frequency, and time domains, we further improve
the spatial resolution by increasing the aperture size, and
the robustness to noises by signal decomposition.

We have implemented ROArray on off-the-shelf devices
with Intel Ultimate N WiFi Link 5300 cards, and evaluated
it in real-world indoor settings. With low SNRs (< 2
dB), ROArray achieves a median localization accuracy of
0.91 m, which is remarkably better than that of SpotFi
(2.61 m) and ArrayTrack (3.52 m). With medium or high
SNRs, ROArray’s accuracy is comparable to SpotFi and
ArrayTrack; yet it can work well with both a single and

2802.11n defines two types of frame aggregation: MAC Service Data Unit
(MSDU) aggregation and MAC Protocol Data Unit (MPDU) aggregation.
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Figure 1.  An antenna array consisting of a series of equally spaced
antennas. Suppose the AoA of a farfield incoming signal is 6, then the
relative phase difference between two adjacent antennas is —27d cos 0/,
which is due to the difference between two parallel paths, d cos 6. To avoid
ambiguities for 6 € [0, 180], d needs to be less than or equal to \/2, where
A is the wavelength of the incoming signal.

multiple measurements, whereas the latter two both require
dozens of packets.

Contributions: To the best of our knowledge, ROArray
is the first WiFi localization system that provides robust
performance under challenging low-SNR scenarios using
off-the-shelf devices.

II. BACKGROUND AND MOTIVATION

To understand the limits of MUSIC, we start from the
basics of AoA estimation [12] and then investigate the
performance of SpotFi [1], the best-performing AoA im-
plementation, under different SNR scenarios.

A. AoA Estimation Basics

In an indoor environment, a signal usually travels along
the direct path and several other reflected paths from a
transmitter to a receiver, a.k.a., the multipath effect. Suppose
there are /X propagation paths. For the k-th path, let 6;, and
ay, be the angle and complex attenuation with it respectively.
When the signal travels along this path and arrives at
the antenna array as shown in Figure 1, the amplitude of
attenuation should be almost the same across antennas for
the far incoming signal but the phase difference is noticeable
among antennas, which depends on 6, A, and d, where d is
the distance between two adjacent antennas. Since d and A
are usually static, the k-th path now can be uniquely decided
by aj and 0. Therefore, for an antenna array of size M
with an incoming signal at 6y, those introduced phase shifts
relative to the first antenna are given by a vector,

$(0x) = [1,A(01), ..., A(6) MV, 1)

where A(),) = e274cos%/A Tt shows that an AoA can be
viewed as creating a vector of phase shifts on the antenna
array, which is why the antenna array is also called a phased
array. If we combine those vectors along all the paths, a
matrix can be given by

S = [s(61),5(02), ..., s(0k)]- (2)
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Figure 2. The indoor experimental results of SpotFi under different SNRs. We keep the AoA of direct paths (LoS) fixed at 150° across a range of SNRs.
We can see that the performance of SpotFi is very well when SNRs are 18 dB and 7 dB. Nevertheless, when the SNR drops to 2 dB, the estimate is about
12° obviated from the ground truth. The situation is even worse when the SNR is below 0. With the low SNR, the resolvability (the sharpness of beam) is
being poor. Note that the power in the y-axis is normalized for all scenarios. For the rest of this paper, we follow this convention unless otherwise stated.

S is usually called the steering matrix and s(#) is the steering
vector.

From physics, we know that the received signal vector,
y, at the antenna array due to all the paths follows the
superposition principle,

y = Sa, (3)

where a = [a1, ag, ..., ax]”.

To put the above into a typical WiFi system with 3 anten-
nas, the overall attenuations and phase shifts are measured
at each subcarrier of each antenna, which are reported as
Channel State Information (CSI) values. For example, if the
transmitter uses 1 antenna and the receiver with an Intel 5300
WiFi card uses 3 antennas, for each successfully decoded
packet, the receiver is able to obtain a CSI matrix

CSil,l CSiLQ CSiLgO
C = [csig; csigg csinzo | 4)
CSig,l CSig,g CSigng

where csi; ; denotes the CSI value from the i-th antenna at
the j-th subcarrier and is a complex number. Each column
of the above matrix can be considered as one realization
(snapshot) of y in Equation 3. Now the key question
becomes how to estimate the AoAs of incoming signals,
S, with the overall measured matrix C.

B. Rationale and Caveats

To answer the above question, state-of-the-art AoA based
WiFi localization systems [1], [12], [13] choose MUSIC as
their base. The crux of MUSIC is that the signal space
is orthogonal to the noise space. Hence, after estimating
the noise space via eigen-decomposition, the AoAs can be
derived by finding the peaks of an AoA spectrum 3. Intu-
itively, the resolvability of MUSIC depends on the SNR [15].
To investigate how MUSIC performs with different SNRs
empirically, we have conducted a series of experiments *.
Using the results of SpotFi [1] as a case in Figure 2, we have

3For MUSIC algorithms, please refer to [14], [15], [20].
“Details of the experiment settings can be found in section IV.

two important observations:® (1) as SNRs become lower,
the beams in AoA spectrums are getting less sharper, which
means the resolvability degrades; and (2) the accuracy of
Ao0A estimates becomes much worse when SNRs are low.
Such degradation of AoA estimates brought by low SNRs
inevitably affects the overall localization accuracy.

To overcome the low SNR barrier with MUSIC (and hence
with most today’s AoA implementations), it is necessary to
find better alternatives, which leads to our design of ROArry
that explores the robust performance of sparse recovery [21],
[22], [23].

III. ROARRAY: DESIGN AND OPTIMIZATION

The central question of sparse recovery is how to accu-
rately recover a high-dimensional vector from a small set
of measurements with performance guarantees. Consider a
system

B = Ax, )

where x € C", B € C™, matrix A is of size m x n. If
the following two conditions are satisfied, I) x is sparse,
m < n; and II) A is known, then the above equation can be
considered as a sparse recovery problem [23]. Using convex
optimization, we can have highly robust results under noisy
cases.

As mentioned, in the indoor environment, the number of
dominant paths is sparse. Our ROArray explores this oppor-
tunity to transform AoA estimation into a sparse recovery
problem that satisfies Conditions I and II. Furthermore, we
show that after linearization, both ToAs and AoAs can be
estimated by enforcing the sparsity constraints. Moreover,
ROATrray can work well with a limited number of snapshots,
even a single packet. Also, it is insensitive to inaccurate
initialization, such as K.

A. Sparse Recovery for AoA Estimation

We first revisit Equation 3, y = Sa. At first glance, all the
two conditions are not met. By a proper transformation, we
can cast Equation 3 into a sparse recovery problem. The idea

5 Although it is difficult to obtain the ground truth AoAs for all paths in
practical indoor environments, we use the ground truth of the direct path
in Line-of-Sight (LoS) scenarios.
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Progress with iterations using SoC programming to build the AoA spectrum. It can be seen that the iterative procedure improves with more

iterations and finally yields a sharp spectrum that gives two AoA estimates, one of which goes well with the ground truth angle.

is to linearize it by expanding the matrix S via setting up a
grid. Specifically, let {01,602, ...,6V} be an equally spaced
grid, spanning over [0°,180°]. In order to meet Condition
I, usually N needs to be much greater than M, which is
usually 3 in an AP. For example, we can set N = 181 if
we want the grid spacing to be 1°, or V = 361 to obtain
an even finer grid. Then, we can construct a new steering
matrix consisting of steering vectors that correspond to each
element in the grid,

S = [s(61), 5(62), ..., s(6)]. 6)

This way we find that Condition II is also satisfied in
the above linearization because the vector {61,60%,...,6N}
is known by the gridding, and each row of s(6%) is pre-
determined by the manifold of the antenna array as in
Equation 1. At the same time, a should be replaced by
a = [ay,da,...,an]T, in which a; is nonzero and equal
to ay if some path, e.g., k-th, comes from 6% and is zero
otherwise. Note that the major difference between S and S
is that S is known and does not depend on any ground truth
0;.

Now we can cast Equation 3 into a sparse representation,

y = Sa. 7

To solve the above equation, an important and necessary as-
sumption is the sparsity of a. Fortunately, this assumption is
satisfied in indoor WiFi systems as the number of dominant
paths is around 5, which is empirically observed in [1], [12],
[13]. The ideal measurement of the sparsity of a vector is
the ¢y norm, ||a|lo. However, solving min ||a|[o such that
y = Sa is quite hard and almost intractable even when a
is of moderate size. Hence, we employ one of the well-
known approximations for this problem, using ¢; norm to
approximate ¢y norm. The rationale behind this is that it has
been proved that if a is sparse enough, this approximation
actually can lead to exact solutions [21].

So far we have not discussed noises, which are inevitable
in practice. Considering the additive Gaussian noise, the
model in Equation 7 becomes

y=Sa+n. (8)

In noisy cases, our objective is to solve the following
optimization problem,

min ||a]|1, 9)
s.t.[ly — Sa||3 <, (10)

where v is a parameter to specify the level of noise the
sytem can tolerate. We can reformulate the above equations
using the method of Lagrange multipliers as,

min [[y — S&l[3 + x[a]|1, (11)

where « is a parameter used to enforce the level of sparsity. It
is easy to verify that the above objective function is convex,
which means we can make use of second-order cone (SoC)
programming © to efficiently solve the problem [22]. One
salient feature of using SoC programming is that the number
of iterations in the worst case is bounded [22]. Once a is
found, the AoA estimates are the peaks in a. An illustrative
example is given in Figure 3. Note that ¢; based algorithms
have global convergence regardless of the initialization [21],
i.e., insensitive to initialization.

B. Direct Path Identification

After we obtain AoA estimates from the previous section,
to localize the target, we need to distinguish the direct
path from other reflected paths. State-of-the-art AoA based
systems are all based on dozens of measurements or motion
to pick up the stable (unchanged) path with the smallest
variation as the direct path. In contrast, we intend to jointly
estimate ToAs and AoAs for all the paths and pick up the
direct path that is with the smallest ToA. Note that LTEye
[24] shares the same direct path identification criteria with
ours, but it requires multi-packet measurements through a
motorized array whereas our scheme does not require motion
of targets or APs.

From physics, we know that each independent propagation
path comes with a distinct ToA and AoA. For a narrow
band signal, ToAs are usually omitted as they introduce no
noticeable phase shift. However, the OFDM WiFi consists
of a number of narrow bands (subcarriers), where phase
shifts brought by ToAs are not negligible. Particularly, we

OThis is because our data is complex. For real data, it can readily be
solved using quadratic programming.
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Figure 4. The estimated TOA&AOA spectrums from two time samples are presented in (a), (b). Even with the same ground truth (both the transmit and
receiver are static), both spectrums are associated with different packet detection delays. After delay estimation and multi-packet fusion, the result, (c),

becomes sharper (more accurate).

observe that AoAs introduce no much difference across
subcarriers, but ToAs contribute to measurable phase shifts
across subcarriers. For example, for the k-th path, the phase
shift introduced across two subcarriers (f;, f;) spaced by
20 MHz is —2ndcosO(f; — f;)/c, where c is the speed
of light, so if d = A\/2 and A = 5.2 cm for 5 GHz band,
the maxima of this phase shift (0 = 0) only amounts to
0.0054 radians, which is too small to measure. By contrast,
even if the ToA of the k-th, 74, is only 5 ns, the phase
shift introduced by the same two subcarriers of an antenna
along this path, is —27( f; — f;)7 = 0.628 radians, which is
much greater than 0.0054 radians. Therefore, this motivates
us to jointly estimate ToAs and AoAs for paths in OFDM
WiFi systems as either ToA or AoA alone is not enough
to account for overall phase shifts. Hence, by including all
the subcarriers in WiFi, we can remodel the narrow-band
steering vector s(f) to a new joint ToA and AoA steering
vector s(6, 7). Specifically, we know that for a path with 7%,
the phase shift introduced between two adjacent subcarriers
is

[(7y,) = e 2™fomk, (12)

where f5 is the spacing of two adjacent subcarriers 7. Then
we stack the steering vectors across subcarriers into a new
steering vector that is represented by different phase shifts
caused by ToAs and AoAs,

$(0,7) = [1, Mg, .., Ag' 1, L T AT L AT

subcarrier 1 subcarrier L

(13)
where L is the number of measured subcarriers. Then similar
to the previous section, we can further linearize this new
steering vector by setting up two grids: {71, 72, ..., 7~} for

"In typical WiFi standards like 802.11n/ac, fs = 312.5 KHz. However,
in practice, fs depends on measured CSI values in different systems. For
example, for Intel 5300 cards that report CSI values every 4 subcarriers on
a 40 MHz band, fs = 1.25 MHz.

ToA, and {él, 02, ..., 9?\/9} for AoA. The range of this ToA
grid is [0, Tynax], Where Toar = 1/ f5. For example, if Intel
5300 cards work with a 40 MHz band, then 1/ f5s 1.25
MHz and thus 7,4, = 800 ns.

Specifically, considering CSI values from Intel 5300
cards, to jointly estimate ToAs and AoAs, we stack all
the subcarrier measurements and linearized steering matrices
together as follows

Yor = Seraer + n, (14)
Yor = [csi1,1, csia, 1, csi3 1, ..., Csi1,30, CSi2,30, Csiz,30] 5 (15)
subcarrier 1 subcarrier 30
SQT = [8(91’ Tl)7 ey S(QNG ) T1)7 ey S(Qla TNT)7 EEE) '9(0N9>TNT)L
size of 90X Ny size of 90X Ny
(16)
T

agr = [al,...,aNeNT] 5 (17)

where yy, and s(6,7) are of size 90 x 1, Sy, is of size
90 x NgN,, and ay, is of size Ny N, x 1. Since all the K
paths are sparse both in AoA and ToA domains, solving the
above equation equals to
min [lys, — Sorag-||5 + £llas|:. (18)
This way, the estimated spectrum can result in a desirable
sharpness for both ToAs and AoAs, as shown in Figure 4a.
Once we obtain the AoAs and ToAs of all paths, we just
pick up the smallest ToA path as the direct path. This idea
has been evaluated and deemed as a suboptimal approach
in SpotFi [1]. Actually, we have found it does not suit
SpotFi as MUSIC tends to produce spurious peaks due to
inaccurate K. Nevertheless, it just fits our ROArray, because
our method is not sensitive to inaccurate K. Note that there
is another important benefit brought by stacking all the
subcarriers into a single vector: the increasd aperture size
of the antenna array, which makes the number of resolvable
paths more than M. Before stacking, the aperture size of an
antenna array is always limited by the number of antennas



(usually 3), where the number of resolvable paths is less
than M.

C. Complexity

In terms of time complexity, to solve Equation 18, it
requires O((NgN,)3) while being almost independent of
the number of antennas, M, and the number of subcarriers,
Ngyp. This time complexity is higher than that of SpotFi,
O((M Nyyp)?). But thanks to the interior point method that
has low iteration times [23], a general implementation can
be quite efficient. For instance, our Matlab implementation
with an Intel i7 CPU at 3.4 GHz takes about 10 s to generate
a ToA&AOA spectrum, when Ny = 90, N, = 50. The
optimization of computation time is one of our future work.
Actually, we think of this higher computation cost as the
tradeoff between accuracy and computation time because the
better performance under low SNRs does not come for free.
Despite the higher time cost, some advantages are worth
noting. First, it is suitable for applications that concern ac-
curacy more than computation time/power, especially when
low SNRs are present. Second, ROArray is more general
as it is not affected too much by the array geometry, such
as rigid antenna placement, unevenly distributed bands, and
the number of antennas, making the adaptation to other WiFi
standards easier, like 802.11 ac/ad.

D. Implementation considerations

There are several considerations worth noting here.
Multi-Packet fusion. While ROArray can work with a sin-
gle packet, it can also leverage multi-packet measurements
to further improve the accuracy for slowly moving and static
objects. Different from prior methods that either treat each
packet independently and then use clustering to filter outliers
[1], we adapt the method in [25] and use the Singular Value
Decomposition (SVD) to simultaneously reduce the problem
size efficiently and maintain the high performance.
Multi-AP localization. For localization, ROArray attempts
to localize the target by combing direct-path AoAs from
several APs. Let {®1,@o,...,01} be the estimated AoAs
from [ APs and {Ri,Ra,...,R;} be the corresponding
RSSIs. ROArray intends to localize the target by minimizing
the deviation between RSSI-weighted AoAs,

l
min > Ri(@; — @i)*. (19)
i=1

Hence, we search the candidate area by forming a 10 cm
by 10 cm grid and pick up the location that achieves the
minimal of the above equation.

Phase calibration. Every time when the working channel
changes, a random phase offset will be introduced in mea-
sured CSI values. We adapt autocalibration algorithms used
in [13] to correct phases in ROArray. The major difference is
that we use ROArray’s estimated AoA spectrums instead of
MUSIC in [13]. The involved cost of this calibration would

(b) Experiment testbed

(a) An Intel NUC Unit with an
Intel 5300 WiFi card

Figure 5. Experiment device and deployment. Our experiments involve
several APs and a mobile client that is an Intel NUC. The testbed covers
18 m x 12 m indoor area. Red dots represent test locations.

be negligible as it is only invoked when the AP administrator
sets or changes the channel, and there is no channel hopping
involved in regular WiFi communication.

IV. EXPERIMENTS
A. Implementation

To verify the design of ROArray, we implement it using
off-the-shelf Intel 5300 WiFi cards. Linux CSI Tools [26]
are employed to obtain CSI measurements. Due to firmware
limitations that produce phase ambiguity on 2.4 GHz band
[1], [13], all tests are done in 5 GHz band. We randomly
choose a non-busy 40 MHz channel in our testbed and fix it
during all tests. Note that Intel 5300 cards give CSI values
only for 30 out of 116 subcarriers. We employ 6 desktops
working as APs and one Intel NUC unit as a mobile client.
All the APs and the client are equipped with Intel 5300
cards. Each AP is with 3 antennas that are equally spaced at
half wavelength, 2.6 cm. All the APs work in the monitor
mode while the client uses packet injection to send out data.
We set MCS index at 1 for all packets, which means 1 spatial
stream, QPSK modulation, and 1/2 coding rate.

After the client sends out a packet, APs transmit mea-
sured CSI values to a central server for further processing.
The central server synchronizes measurements by matching
sequence numbers in the payload. Then it runs MATLAB-
implemented algorithms to obtain estimated locations. We
use cvx solvers [27] to deal with the sparse recovery problem
and note that the code speed could be further optimized. We
have tested our prototype in a classroom testbed and part of
the tested locations are marked in Figure 5. In total, we
tested 300 different locations.

We compare ROArray with state-of-the-art AoA based
WiFi systems, SpotFi [1] and ArrayTrack [12]. Phaser [13] is
not included because it requires additional hardware, such as
antenna rerouting, and same as WiDeo [28], which requires
software defined radios to implicitly eliminate packet detec-
tion delay (and the fractional SFO), which is not compatible
with Intel 5300 cards. Ubicarse [8] and CUPID [6] are not
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Figure 6. Comparison of ROArray’s localization accuracy with SpotFi and ArrayTrack under high, medium, and low SNR scenarios.

compared either, as they need inertial sensors and mobility
of clients, whereas ROArray, SpotFi, and ArrayTrack do
not have such assumptions and are readily implementable
to all kinds of devices that have WiFi. Note that although
original Arraytrack implementation requires 6-8 antennas
and software-defined radios, we implement its algorithms
using the aforementioned hardware settings (3-antenna),
ensuring a fair competition.

B. Localization Accuracy Comparison

Dynamic SNRs actually are quite common in indoor
multipath-rich environments, since multipath could result in
constructive or destructive interferences. Also, SNRs are af-
fected by blocking, distance, and the transmit power of APs.
Here we do not distinguish the causes of dynamic SNRs and
just classify SNRs into three categories, high SNRs [15, 00),
medium SNRs (2,15), and low SNRs (—oc,2]. All three
methods share the same data and each uses 15 packets. We
fix the number of APs at 6 for this comparison and report
results in Figure 6.

We observe from Figure 6a that with high SNRs, ROAr-
ray accomplishes comparable results with SpotFi and sig-
nificantly outperforms ArrayTrack. Particularly, ROArray
achieves 0.63 m median localization error while SpotFi
and ArrayTrack’s median accuracy is 0.64 m and 2.3 m,
respectively. And the 90-th percentile errors are 2.66 m,
2.51 m, and 5.66 m for ROArray, SpotFi, and ArrayTrack
respectively. The reason for ArrayTrack’s relatively poor
performance is that its aperture size is very limited, in
contrast, ROArray and SpotFi increase the aperture size by
coherently combining CSI values across subcarriers. Similar
trends can be observed with medium SNRs in Figure 6b. As
expected, when SNRs decrease, the performances of all the
three systems deteriorate accordingly. However, when SNRs
drops to a low level as shown in Figure 6c, the median
accuracies of SpotFi and ArrayTrack degrade to 2.61 m and
3.52 m respectively whereas ROArray achieves 0.91 m. Such

performance gain of ROArray over other systems largely
comes from the robustness of sparse recovery techniques.

C. Direct Path Accuracy Comparison

To further examine the resolvability of three different
systems, we investigate AoA estimate errors. Since we do
not have the ground truth AoAs for all the paths, we measure
the accuracy of AoA estimation algorithms by comparing the
difference between the ground truth direct-path AoA and the
closest peaks in the spectrum.

For this test, we still conduct the evaluation with three
different SNR situations. Figure 7a plots the CDFs of
AoA estimation errors for all APs with high SNRs, where
ROATrray achieves almost the same median AoA accuracy as
SpotFi, which is 2.48 degrees better than ArrayTrack. When
SNRs go into the medium level as shown in Figure 7b, the
degradation of all the three systems is quite limited as the
median AoA accuracies worsen from 6.7 to 7.32 degrees
for ROArray, from 6.62 to 7.40 degrees for SpotFi, and
from 9.10 to 10.0 degrees for ArrayTrack. This phenomenon
again shows good performance of MUSIC with high and
medium SNRs and confirms that sparse recovery algorithms
are robust. Note that in low-SNR situations, the median
accuracy of ROArray only drops to 7.9 degrees whereas
those of SpotFi and ArrayTrack degrade to 12.3 degrees and
15.2 degrees respectively. Even the aperture size of SpotFi
is the same as ROArray’s, the inherent drawback of MUSIC
that relies on the separation of the signal and noise spaces
makes SpotFi less robust compared to ROArray. Another
factor that contributes to the inaccuracy for SpotFi is its
sensitivity to inaccurate K 8.

D. Varying Number of APs
Next, we investigate how AP density impacts the accuracy

for ROArray. By varying the number of APs that can hear

8In fact, SpotFi fixes K = 5 [1], which intuitively cannot adapt to
various ground truth K.
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the client from 3 to 5, we present results in Figure 8a. We
observe that accuracy improves with the increasing density
of APs, similar to other AoA based systems [1], [12].
Because with more APs, our RSSI-weighted localization
scheme tends to give greater weights to high-quality direct
paths, largely reducing the negative impact brought by noisy
estimates. We see that the median accuracies of ROArray are
1.04 m, 1.56 m, and 2.79 m with 5, 4, and 3 APs respectively.
Note that, with only 3 APs, the performance of ROArray
almost catches up with that of ArrayTrack.

E. Impact of Phase Calibration

Moreover, we evaluate the impact of different phase cali-
bration schemes. In this experiment, we perform localization
in three different ways, phase calibration using ROArray’s
Ao0A spectrum, phase calibration using MUSIC based AoA
spectrum [13], and without any phase calibration. The results
are plotted in Figure 8b. Unsurprisingly, the way that is with-
out any phase calibration performs the worst and only has a
median accuracy of 2.0 m. ROArray’s calibration achieves

an improvement of 0.71 m over the scheme in Phaser
[13] in terms of median localization accuracy. This huge
performance gain stems from the sharper AoA spectrum
of ROArray over that of MUSIC. In fact, such sharpness
should be further attributed to that we use sparse recovery
techniques for the AoA estimation problem.

F. Impact of Antenna Polarization

For mobile users, the orientation of antenna keeps chang-
ing. To measure the effects of deviation angles of antenna
polarization, we use horizontally polarized antennas on APs
and randomly deviate the elevation angles of the mobile
client between (0°, 20°] and (20°, 45°]. The results in Figure
8c show that the accuracy of ROArray is heavily affected
by the deviation angle of polarization. The performance
of ROArray worsens with increasing deviation angles. The
median localization errors degrade to 2.21 m and 4.71 m
for 0°~20° and 20°~45° deviation respectively. In fact, this
is not surprising as the elevation-angle deviation inevitably
leads to very poor wireless reception since the manifold of



the antenna array in our implementation is 1-dimension. One
possible solution is to employ the 2-dimension antenna array
with both vertical and horizontal polarizations, which can
adapt to more antenna orientations in 3-D space.

V. RELATED WORK

There has been extensive research in the literature on WiFi
based localization systems, so we only summarize closely
related ones here. For more complete surveys, please refer to
[29], [30]. Basically, there are two types of WiFi localization
solutions, signal processing based and RSSI based.

Signal processing based: With the development of multi-
antenna design, WiFi localization using signal process tech-
niques has received increasing attention [1], [2], [10], [11],
[12], [13]. Technically, signal processing based methods are
able to estimate two important metrics, ToA and AoA. Due
to the intrinsically limited bandwidth of WiFi signals, the
accuracy of ToA based systems is quite limited. Recently,
several channel hopping mechanisms are proposed to com-
bine a number of narrow bands into a virtual wide band
[2], [10], [11], breaking the barrier of meter-level accuracy.
There are two disadvantages associated with those methods:
communication disruption due to channel hopping and slow
adaptation to moving mobile clients due to multi-channel
measurements. On the other hand, AoA based approaches
can maintain communication unaffected and realize high ac-
curacy localization [1], [12], [13]. The most recent advance,
SpotFi can even achieve 40 cm median accuracy [1]. Another
closely related method is WiDeo [28], which also uses sparse
recovery to retrieve ToA and AoA information. There are
several key differences between ROArray and WiDeo. First,
WiDeo achieves better accuracy than ROArray does but it
requires software defined radios (SDR) and 4 antennas for
each AP. One of the main reasons for the SDR requirement
is that it can make use of pilot subcarriers to calibrate
uncertain time delays, which means its ToA estimates can be
included directly into the location estimation. In contrast, our
ToA estimates using off-the-shelf APs contain the residual
dynamic delay in each packet [1], for which no solutions
and calibration methods are known yet. Second, unlike the
very brief statement of actual sparse recovery algorithms in
WiDeo, we provide the core and analysis of joint TOA/AoA
estimation in detail. Third, the computation time of WiDeo
is more than ROArray due to the continuous basis for WiDeo
whereas ROArray is based on the discrete basis. Last but not
least, we include multi-packet fusion to coherently improve
the localization accuracy while the main goal of WiDeo
is to trace the motion by identifying static reflections. In
summary, prior systems that work with off-the-shelf devices
would suffer from poor and unstable performance under low-
SNR scenarios, such as far way from APs, serious NLoS,
and interference. ROArray falls into the AoA category.
While it maintains comparable performance that state-of-the-
art systems achieve at high SNRs, it shows robustness with

low SNRs. It can also localize a target with one and more
packets, making it more applicable in mobile scenarios.
RSSI based: Due to the high availability of RSSI values,
RSSI based systems have been studied for many years.
Those methods either measure the range via a propagation
model [3] or collect fingerprints from a series of APs to
locate a client [5]. Nevertheless, the biggest problem for
them is not-so-impressed accuracy. The most common way
to boost accuracy is to increase the number of APs, usually
several dozens. Another drawback is the cost of site survey
[30]. When environments or APs change, the system usually
needs another overhaul calibration, which is always time-
consuming. Even a variety of crowdsourcing schemes can
help [4], [5], the quality of crowdsourced data needs extra
care.

Sparse recovery based AoA estimation is extensively
studied in signal processing and information theory ar-
eas [25], [31], [32], which also inspires this work. Those
works mainly focus on the theory or numerical validation
aspects, not for practical systems, including WiFi. They
usually do not take into account practical challenges, such
as time/frequency synchronization and phase calibration.
Moreover, they do not consider the multi-carrier feature
of signals, which is the core of today’s WiFi. In contrast,
ROATrray builds on those well-studied theory results and
further develops a working WiFi localization system using
off-the-shelf devices.

VI. CONCLUSION

We have presented a robust WiFi localization system,
ROArray, that addressed the poor performance with low
SNRs, which was difficult for state-of-the-art approaches.
The insight of ROArray was to cast AoA estimation into
a sparse recovery problem, which has been able to yield
sharp and sparse AoA spectrum. Through jointly estimating
the ToAs and AoAs of all the paths across the time domain,
we have achieved direct path identification and the increase
of resolvability at the same time. We believe ROArray
can benefit a range of indoor applications that require
high robustness in challenging low-SNR scenarios, such as
localization solutions for enterprise and military.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
valuable and insightful comments. This work was supported
in part by NSFC under Grant No. 61472268, in part by the
Canada Technology Demonstration Program, in part by a
Canada NSERC Discovery Grant, and in part by the NSERC
E.WR. Steacie Memorial Fellowship.

REFERENCES

[1] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi:
Decimeter Level Localization Using WiFi,” in Proc. of ACM
SIGCOMM, 2015.



(2]

(3]

[4]

(3]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-Level Local-
ization with a Single WiFi Access Point,” in Proc. of USENIX
NSDI, 2016.

K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanab-
han, “Indoor Localization Without the Pain,” in Proc. of ACM
MobiSys, 2010.

R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan,
“Centaur: Locating Devices in an Office Environment,” in
Proc. of ACM MobiCom, 2012.

Z. Yang, C. Wu, and Y. Liu, “Locating in Fingerprint Space:
Wireless Indoor Localization with Little Human Interven-
tion,” in Proc. of ACM MobiCom, 2012.

S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding
Multipath to Revive Inbuilding WiFi Localization,” in Proc.
of ACM MobiSys, 2013.

A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “SAIL:
Single Access Point-Based Indoor Localization,” in Proc. of
ACM MobiSys, 2014.

S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate Indoor
Localization With Zero Start-up Cost,” in Proc. of ACM
MobiCom, 2014.

“Wi-Fi  Tags,” http://www.ekahau.com/real-time-location-
system/technology/wi-fi-tags.

Y. Xie, Z. Li, and M. Li, “Precise Power Delay Profiling with
Commodity WiFi,” in Proc. of ACM MobiCom, 2015.

J. Xiong, K. Sundaresan, and K. Jamieson, “ToneTrack:
Leveraging Frequency-Agile Radios for Time-Based Indoor
Wireless Localization,” in Proc. of ACM MobiCom, 2015.

J. Xiong and K. Jamieson, “ArrayTrack: A Fine-Grained
Indoor Location System,” in Proc. of USENIX NSDI, 2013.

J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson,
“Phaser: Enabling Phased Array Signal Processing on Com-
modity WiFi Access Points,” in Proc. of ACM MobiCom,
2014.

R. O. Schmidt, “Multiple emitter location and signal pa-
rameter estimation,” IEEE Transactions on Antennas and
Propagation, vol. 34, no. 3, pp. 276-280, 1986.

P. Stoica and N. Arye, “MUSIC, Maximum Likelihood, and
Cramer-Rao Bound,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. 37, no. 5, pp. 720-741, 1989.

S. Byeon, K. Yoon, O. Lee, S. Choi, W. Cho, and S. Oh,
“MoFA: Mobility-aware Frame Aggregation in Wi-Fi,” in
Proc. of ACM CoNext, 2014.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The
application of compressed sensing for rapid MR imaging,”
Magnetic resonance in medicine, vol. 58, no. 6, pp. 1182—
1195, 2007.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends® in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank,
“Sensitivity to basis mismatch in compressed sensing,” IEEE
Transactions on Signal Processing, vol. 59, no. 5, pp. 2182—
2195, 2011.

P. Stoica and R. L. Moses, Introduction to spectral analysis.
Prentice hall Upper Saddle River, 1997, vol. 1.

D. L. Donoho and M. Elad, “Optimally sparse representation
in general (nonorthogonal) dictionaries via L1 minimization,”
Proceedings of the National Academy of Sciences, vol. 100,
no. 5, pp. 2197-2202, 2003.

M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret,
“Applications of second-order cone programming,” Linear
algebra and its applications, vol. 284, no. 1, pp. 193-228,
1998.

E. J. Candes and M. B. Wakin, “An introduction to compres-
sive sampling,” IEEE signal processing magazine, vol. 25,
no. 2, pp. 21-30, 2008.

S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE
Radio Analytics Made Easy and Accessible,” in Proc. of ACM
SIGCOMM, 2014.

D. Malioutov, M. Cetin, and A. S. Willsky, “A Sparse Signal
Reconstruction Perspective for Source Localization With Sen-
sor Arrays,” IEEE Transactions on Signal Processing, vol. 53,
no. 8, pp. 3010-3022, 2005.

D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Tool
release: gathering 802.11 n traces with channel state infor-
mation,” ACM SIGCOMM Computer Communication Review,
vol. 41, no. 1, pp. 53-53, 2011.

“CVX solvers,” http://cvxr.com/cvx/doc/solver.html.

K. Joshi, D. Bharadia, M. Kotaru, and S. Katti, “Wideo: Fine-
grained device-free motion tracing using rf backscatter,” in
Proc. of USENIX NSDI, 2015.

I. Guvenc and C.-C. Chong, “A Survey on TOA Based
Wireless Localization and NLOS Mitigation Techniques,”
IEEE Communications Surveys & Tutorials, vol. 11, no. 3,
pp- 107-124, 2009.

Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor
localization via channel response,” ACM Computing Surveys
(CSUR), vol. 46, no. 2, p. 25, 2013.

Z. Yang, L. Xie, and C. Zhang, “Off-Grid Direction of
Arrival Estimation Using Sparse Bayesian Inference,” IEEE
Transactions on Signal Processing, vol. 61, no. 1, pp. 38-43,
2013.

M. M. Hyder and K. Mabhata, “Direction-of-Arrival Esti-
mation using a Mixed 12,0 Norm Approximation,” [EEE
Transactions on Signal Processing, vol. 58, no. 9, pp. 4646—
4655, 2010.



