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Abstract—With the multi-antenna design of WiFi interfaces,
phased array has become a promising mechanism for accurate
WiFi localization. State-of-the-art WiFi-based solutions using
AoA (Angle-of-Arrival), however, face a number of critical
challenges. First, their localization accuracy degrades dra-
matically when the Signal-to-Noise Ratio (SNR) becomes low.
Second, they do not fully utilize coherent processing across all
available domains. In this paper, we present ROArray, a RO-
bust Array based system that accurately localizes a target even
with low SNRs. In the spatial domain, ROArray can produce
sharp AoA spectrums by parameterizing the steering vector
based on a sparse grid. Then, to expand into the frequency
domain, it jointly estimates the ToAs (Time-of-Arrival) and
AoAs of all the paths using multi-subcarrier OFDM measure-
ments. Furthermore, through multi-packet fusion, ROArray
is enabled to perform coherent estimation across the spatial,
frequency, and time domains. Such coherent processing not
only increases the virtual aperture size, which enlarges the
number of maximum resolvable paths, but also improves the
system robustness to noise. Our implementation using off-the-
shelf WiFi cards demonstrates that, with low SNRs, ROArray
significantly outperforms state-of-the-art solutions in terms of
localization accuracy; when medium or high SNRs are present,
it achieves comparable accuracy.
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I. INTRODUCTION

With the advances in wireless communication and the

deep penetration of WiFi networks, WiFi-based localiza-

tion that aims to deliver GPS-like positioning services for

indoor environments has seen rapid growth in the past

decade [1], [2]. Early WiFi localization has mainly focused

on fingerprinting methods that assume each distinct loca-

tion has a unique WiFi signature [3], [4], [5]. Despite of

meter-level accuracy achieved, they suffer from laborious

site survey or demand crowdsourced data that are often

not available or of poor quality. More importantly, they

typically require dozens of access points (APs) to acquire

desirable localization accuracy. Realizing the availability

of rich sensor data on advanced smartphones and tablets,

sensor-enhanced solutions have been developed to boost the

localization accuracy and reduce the demands on APs [6],

[7], [8]. They are unfortunately not universal to all-size

WiFi clients, in particular, to such thin clients as WiFi-

tags [9]. Recently, inspired by the wide deployment of

multi-antenna transceivers, phased array with smart signal

processing on APs has become a promising mechanism for

accurate WiFi localization. In particular, decimeter accuracy

can be achieved using Time-of-Arrival (ToA) [2] or Angle-

of-Arrival (AoA) [1] techniques.

ToA tracks the signals’ time of flight to estimate a client’s

distance and relative position to APs. The resolution of ToA

is fundamentally limited by the narrow bandwidth of WiFi

signals. Though higher resolution can possibly be made by

the virtual wide band [2], [10], [11], these methods either

are not compatible with off-the-shelf devices [11] or rely on

channel hopping that inevitably disrupts regular communi-

cation [2], [10]. AoA, on the other hand, identifies angles

of the multipath signals received at the antenna array of an

AP [1], [12], [13]. The typical solution of AoA is done by

multiple signal classification (MUSIC) [14], which explores

the fact that the signal space is orthogonal to the noise space.

Such state-of-the-art AoA implementations as SpotFi [1] can

achieve a median localization accuracy of 40 cm, and is fully

compatible with the current WiFi interfaces. Their practical

application and further improvement, however, face several

critical challenges.

1) Low SNR barrier. The resolvability of MUSIC inherently

degrades when SNR decreases 1. Particularly, when the noise

space is tangled with the signal space, its performance could

significantly deteriorate. Although this is a known problem

for MUSIC [15], we empirically investigate this aspect in

detail as later shown in Section II, which demonstrates that

its median accuracy degrades to 15.2° with SNRs lower than

2 dB.

2) Incoherent processing. Usually, multiple OFDM channel

measurements contain information from the spatial domain

by multiple antennas, from the frequency domain by subcar-

riers, and from the time domain by a series of consecutive

packets. Yet prior systems fail to make the best of them. For

example, Ubicarse [8] and ArrayTrack [12] only focus on the

spatial domain and time domain. SpotFi [1] coherently per-

forms ToA&AoA estimation but applies clustering, a non-

coherent processing, across packets, losing the opportunity

to improve SNRs in the time domain.

3) Inefficiency of direct path identification. Most existing

methods suffer from being unable to work with a limited

number of packets. For instance, SpotFi [1] tends to produce

spurious estimates and thus dozens of packets are needed

to do clustering; Ubicarse [8] and ArrayTrack [12] need

motion on either mobile users or APs to select the stable (or

1Assume the size of array and the number of snapshots are fixed.



unchanged) path as the direct path. This inevitably prolongs

the localization process. Even worse, frame aggregation,

which wraps several Ethernet frames into a single frame, has

been extensively used to improve the throughput in modern

WiFi networks [16]. 2 With frame aggregation, only one

CSI (channel state information) measurement is available

for multiple frames, and the time cost of localization can

thus be significantly amplified.

To address these challenges, this paper presents ROArray,

a RObust phased Array based WiFi localization system using

off-the-shelf devices. It works with one or a limited number

of packets. More importantly, it can reliably locate targets

with low SNRs. The design of ROArray is based on a

key observation: in an indoor environment, the number of

dominant paths is sparse (e.g., 5) [1], [12]. For example, if

we divide all possible directions [0°,180°] into an equally

spaced sampling grid and the spacing of the grid is 1°, 5 can

be safely considered sparse as 5 ≪ 180. Such sparsity is

even more obvious when the frequency and spatial domains

are considered simultaneously. As such, advanced sparse

recovery techniques can be used in this context for AoA and

ToA estimation, some of which have been proved robust in

noisy cases [17], [18], [19].

Different from MUSIC that focuses on the orthogonality

of noise and signal, our concentration is based on the

sparsity of signals and coherent processing across the spatial,

frequency, and time domains at the same time. First, with

multipath, we transform AoA estimation into a sparse recov-

ery problem by parameterizing the space over a sampling

grid. By enforcing sparsity on this grid, the resulting AoA

spectrum is guaranteed to be sharp and robust. Furthermore,

together with the help of OFDM that transmits over a set

of subcarriers simultaneously, we jointly estimate the ToAs

and AoAs of all the paths and pick up the smallest ToA path

as the direct path. Our scheme has several advantages over

previous ones [1], [12]. It is insensitive to poor model order

(the number of paths) estimates and hence does not suffer

from spurious peaks as MUSIC does. It also works with

a fairly large operation range, as low as a single packet.

Through a coherent combination of information from the

spatial, frequency, and time domains, we further improve

the spatial resolution by increasing the aperture size, and

the robustness to noises by signal decomposition.

We have implemented ROArray on off-the-shelf devices

with Intel Ultimate N WiFi Link 5300 cards, and evaluated

it in real-world indoor settings. With low SNRs (≤ 2
dB), ROArray achieves a median localization accuracy of

0.91 m, which is remarkably better than that of SpotFi

(2.61 m) and ArrayTrack (3.52 m). With medium or high

SNRs, ROArray’s accuracy is comparable to SpotFi and

ArrayTrack; yet it can work well with both a single and

2802.11n defines two types of frame aggregation: MAC Service Data Unit

(MSDU) aggregation and MAC Protocol Data Unit (MPDU) aggregation.

Figure 1. An antenna array consisting of a series of equally spaced
antennas. Suppose the AoA of a farfield incoming signal is θ, then the
relative phase difference between two adjacent antennas is −2πd cos θ/λ,
which is due to the difference between two parallel paths, d cos θ. To avoid
ambiguities for θ ∈ [0, 180], d needs to be less than or equal to λ/2, where
λ is the wavelength of the incoming signal.

multiple measurements, whereas the latter two both require

dozens of packets.

Contributions: To the best of our knowledge, ROArray

is the first WiFi localization system that provides robust

performance under challenging low-SNR scenarios using

off-the-shelf devices.

II. BACKGROUND AND MOTIVATION

To understand the limits of MUSIC, we start from the

basics of AoA estimation [12] and then investigate the

performance of SpotFi [1], the best-performing AoA im-

plementation, under different SNR scenarios.

A. AoA Estimation Basics

In an indoor environment, a signal usually travels along

the direct path and several other reflected paths from a

transmitter to a receiver, a.k.a., the multipath effect. Suppose

there are K propagation paths. For the k-th path, let θk and

ak be the angle and complex attenuation with it respectively.

When the signal travels along this path and arrives at

the antenna array as shown in Figure 1, the amplitude of

attenuation should be almost the same across antennas for

the far incoming signal but the phase difference is noticeable

among antennas, which depends on θ, λ, and d, where d is

the distance between two adjacent antennas. Since d and λ
are usually static, the k-th path now can be uniquely decided

by ak and θk. Therefore, for an antenna array of size M
with an incoming signal at θk, those introduced phase shifts

relative to the first antenna are given by a vector,

s(θk) = [1,Λ(θk), ...,Λ(θk)
(M−1)]T , (1)

where Λ(θk) = e−2πd cos θk/λ. It shows that an AoA can be

viewed as creating a vector of phase shifts on the antenna

array, which is why the antenna array is also called a phased

array. If we combine those vectors along all the paths, a

matrix can be given by

S = [s(θ1), s(θ2), ..., s(θK)]. (2)
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Figure 2. The indoor experimental results of SpotFi under different SNRs. We keep the AoA of direct paths (LoS) fixed at 150° across a range of SNRs.
We can see that the performance of SpotFi is very well when SNRs are 18 dB and 7 dB. Nevertheless, when the SNR drops to 2 dB, the estimate is about
12° obviated from the ground truth. The situation is even worse when the SNR is below 0. With the low SNR, the resolvability (the sharpness of beam) is
being poor. Note that the power in the y-axis is normalized for all scenarios. For the rest of this paper, we follow this convention unless otherwise stated.

S is usually called the steering matrix and s(θ) is the steering

vector.

From physics, we know that the received signal vector,

y, at the antenna array due to all the paths follows the

superposition principle,

y = Sa, (3)

where a = [a1, a2, ..., aK ]T .

To put the above into a typical WiFi system with 3 anten-

nas, the overall attenuations and phase shifts are measured

at each subcarrier of each antenna, which are reported as

Channel State Information (CSI) values. For example, if the

transmitter uses 1 antenna and the receiver with an Intel 5300

WiFi card uses 3 antennas, for each successfully decoded

packet, the receiver is able to obtain a CSI matrix

C =





csi1,1 csi1,2 · · · csi1,30
csi2,1 csi2,2 · · · csi2,30
csi3,1 csi3,2 · · · csi3,30



 , (4)

where csii,j denotes the CSI value from the i-th antenna at

the j-th subcarrier and is a complex number. Each column

of the above matrix can be considered as one realization

(snapshot) of y in Equation 3. Now the key question

becomes how to estimate the AoAs of incoming signals,

S, with the overall measured matrix C.

B. Rationale and Caveats

To answer the above question, state-of-the-art AoA based

WiFi localization systems [1], [12], [13] choose MUSIC as

their base. The crux of MUSIC is that the signal space

is orthogonal to the noise space. Hence, after estimating

the noise space via eigen-decomposition, the AoAs can be

derived by finding the peaks of an AoA spectrum 3. Intu-

itively, the resolvability of MUSIC depends on the SNR [15].

To investigate how MUSIC performs with different SNRs

empirically, we have conducted a series of experiments 4.

Using the results of SpotFi [1] as a case in Figure 2, we have

3For MUSIC algorithms, please refer to [14], [15], [20].
4Details of the experiment settings can be found in section IV.

two important observations:5 (1) as SNRs become lower,

the beams in AoA spectrums are getting less sharper, which

means the resolvability degrades; and (2) the accuracy of

AoA estimates becomes much worse when SNRs are low.

Such degradation of AoA estimates brought by low SNRs

inevitably affects the overall localization accuracy.

To overcome the low SNR barrier with MUSIC (and hence

with most today’s AoA implementations), it is necessary to

find better alternatives, which leads to our design of ROArry

that explores the robust performance of sparse recovery [21],

[22], [23].

III. ROARRAY: DESIGN AND OPTIMIZATION

The central question of sparse recovery is how to accu-

rately recover a high-dimensional vector from a small set

of measurements with performance guarantees. Consider a

system

B = Ax, (5)

where x ∈ C
n, B ∈ C

m, matrix A is of size m × n. If

the following two conditions are satisfied, I) x is sparse,

m ≪ n; and II) A is known, then the above equation can be

considered as a sparse recovery problem [23]. Using convex

optimization, we can have highly robust results under noisy

cases.

As mentioned, in the indoor environment, the number of

dominant paths is sparse. Our ROArray explores this oppor-

tunity to transform AoA estimation into a sparse recovery

problem that satisfies Conditions I and II. Furthermore, we

show that after linearization, both ToAs and AoAs can be

estimated by enforcing the sparsity constraints. Moreover,

ROArray can work well with a limited number of snapshots,

even a single packet. Also, it is insensitive to inaccurate

initialization, such as K̂.

A. Sparse Recovery for AoA Estimation

We first revisit Equation 3, y = Sa. At first glance, all the

two conditions are not met. By a proper transformation, we

can cast Equation 3 into a sparse recovery problem. The idea

5Although it is difficult to obtain the ground truth AoAs for all paths in
practical indoor environments, we use the ground truth of the direct path
in Line-of-Sight (LoS) scenarios.
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Figure 3. Progress with iterations using SoC programming to build the AoA spectrum. It can be seen that the iterative procedure improves with more
iterations and finally yields a sharp spectrum that gives two AoA estimates, one of which goes well with the ground truth angle.

is to linearize it by expanding the matrix S via setting up a

grid. Specifically, let {θ̃1, θ̃2, ..., θ̃N} be an equally spaced

grid, spanning over [0°,180°]. In order to meet Condition

I, usually N needs to be much greater than M , which is

usually 3 in an AP. For example, we can set N = 181 if

we want the grid spacing to be 1°, or N = 361 to obtain

an even finer grid. Then, we can construct a new steering

matrix consisting of steering vectors that correspond to each

element in the grid,

S̃ = [s(θ̃1), s(θ̃2), ..., s(θ̃N )]. (6)

This way we find that Condition II is also satisfied in

the above linearization because the vector {θ̃1, θ̃2, ..., θ̃N}
is known by the gridding, and each row of s(θ̃i) is pre-

determined by the manifold of the antenna array as in

Equation 1. At the same time, a should be replaced by

ã = [ã1, ã2, ..., ãN ]T , in which ãi is nonzero and equal

to ak if some path, e.g., k-th, comes from θ̃i and is zero

otherwise. Note that the major difference between S and S̃

is that S̃ is known and does not depend on any ground truth

θi.

Now we can cast Equation 3 into a sparse representation,

y = S̃ã. (7)

To solve the above equation, an important and necessary as-

sumption is the sparsity of ã. Fortunately, this assumption is

satisfied in indoor WiFi systems as the number of dominant

paths is around 5, which is empirically observed in [1], [12],

[13]. The ideal measurement of the sparsity of a vector is

the ℓ0 norm, ‖ã‖0. However, solving min ‖ã‖0 such that

y = S̃ã is quite hard and almost intractable even when ã

is of moderate size. Hence, we employ one of the well-

known approximations for this problem, using ℓ1 norm to

approximate ℓ0 norm. The rationale behind this is that it has

been proved that if ã is sparse enough, this approximation

actually can lead to exact solutions [21].

So far we have not discussed noises, which are inevitable

in practice. Considering the additive Gaussian noise, the

model in Equation 7 becomes

y = S̃ã+ n. (8)

In noisy cases, our objective is to solve the following

optimization problem,

min ‖ã‖1, (9)

s.t.‖y − S̃ã‖22 ≤ γ, (10)

where γ is a parameter to specify the level of noise the

sytem can tolerate. We can reformulate the above equations

using the method of Lagrange multipliers as,

min ‖y − S̃ã‖22 + κ‖ã‖1, (11)

where κ is a parameter used to enforce the level of sparsity. It

is easy to verify that the above objective function is convex,

which means we can make use of second-order cone (SoC)

programming 6 to efficiently solve the problem [22]. One

salient feature of using SoC programming is that the number

of iterations in the worst case is bounded [22]. Once ã is

found, the AoA estimates are the peaks in ã. An illustrative

example is given in Figure 3. Note that ℓ1 based algorithms

have global convergence regardless of the initialization [21],

i.e., insensitive to initialization.

B. Direct Path Identification

After we obtain AoA estimates from the previous section,

to localize the target, we need to distinguish the direct

path from other reflected paths. State-of-the-art AoA based

systems are all based on dozens of measurements or motion

to pick up the stable (unchanged) path with the smallest

variation as the direct path. In contrast, we intend to jointly

estimate ToAs and AoAs for all the paths and pick up the

direct path that is with the smallest ToA. Note that LTEye

[24] shares the same direct path identification criteria with

ours, but it requires multi-packet measurements through a

motorized array whereas our scheme does not require motion

of targets or APs.

From physics, we know that each independent propagation

path comes with a distinct ToA and AoA. For a narrow

band signal, ToAs are usually omitted as they introduce no

noticeable phase shift. However, the OFDM WiFi consists

of a number of narrow bands (subcarriers), where phase

shifts brought by ToAs are not negligible. Particularly, we

6This is because our data is complex. For real data, it can readily be
solved using quadratic programming.
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(c) ToA&AoA spectrum from 30 packets

Figure 4. The estimated ToA&AoA spectrums from two time samples are presented in (a), (b). Even with the same ground truth (both the transmit and
receiver are static), both spectrums are associated with different packet detection delays. After delay estimation and multi-packet fusion, the result, (c),
becomes sharper (more accurate).

observe that AoAs introduce no much difference across

subcarriers, but ToAs contribute to measurable phase shifts

across subcarriers. For example, for the k-th path, the phase

shift introduced across two subcarriers (fi, fj) spaced by

20 MHz is −2πd cos θk(fi − fj)/c, where c is the speed

of light, so if d = λ/2 and λ = 5.2 cm for 5 GHz band,

the maxima of this phase shift (θk = 0) only amounts to

0.0054 radians, which is too small to measure. By contrast,

even if the ToA of the k-th, τk, is only 5 ns, the phase

shift introduced by the same two subcarriers of an antenna

along this path, is −2π(fi−fj)τk = 0.628 radians, which is

much greater than 0.0054 radians. Therefore, this motivates

us to jointly estimate ToAs and AoAs for paths in OFDM

WiFi systems as either ToA or AoA alone is not enough

to account for overall phase shifts. Hence, by including all

the subcarriers in WiFi, we can remodel the narrow-band

steering vector s(θ) to a new joint ToA and AoA steering

vector s(θ, τ). Specifically, we know that for a path with τk,

the phase shift introduced between two adjacent subcarriers

is

Γ(τk) = e−2πfδτk , (12)

where fδ is the spacing of two adjacent subcarriers 7. Then

we stack the steering vectors across subcarriers into a new

steering vector that is represented by different phase shifts

caused by ToAs and AoAs,

s(θ, τ) = [1,Λθ, ...,Λ
M−1

θ
︸ ︷︷ ︸

subcarrier 1

, ...,ΓL−1

τ ,ΛθΓ
L−1

τ , ...,ΛM−1

θ ΓL−1

τ
︸ ︷︷ ︸

subcarrier L

]T ,

(13)

where L is the number of measured subcarriers. Then similar

to the previous section, we can further linearize this new

steering vector by setting up two grids: {τ̃1, τ̃2, ..., ˜τNτ } for

7In typical WiFi standards like 802.11n/ac, fδ = 312.5 KHz. However,
in practice, fδ depends on measured CSI values in different systems. For
example, for Intel 5300 cards that report CSI values every 4 subcarriers on
a 40 MHz band, fδ = 1.25 MHz.

ToA, and {θ̃1, θ̃2, ..., ˜θNθ} for AoA. The range of this ToA

grid is [0, τmax], where τmax = 1/fδ . For example, if Intel

5300 cards work with a 40 MHz band, then 1/fδ = 1.25
MHz and thus τmax = 800 ns.

Specifically, considering CSI values from Intel 5300
cards, to jointly estimate ToAs and AoAs, we stack all
the subcarrier measurements and linearized steering matrices
together as follows

yθτ = Sθτaθτ + n, (14)

yθτ = [csi1,1, csi2,1, csi3,1
︸ ︷︷ ︸

subcarrier 1

, ..., csi1,30, csi2,30, csi3,30
︸ ︷︷ ︸

subcarrier 30

]T , (15)

Sθτ = [s(θ̃1, τ̃1), ..., s( ˜θNθ , τ̃1)
︸ ︷︷ ︸

size of 90×Nθ

, ..., s(θ̃1, ˜τNτ ), ..., s( ˜θNθ , ˜τNτ )
︸ ︷︷ ︸

size of 90×Nθ

],

(16)

aθτ = [a1, ..., aNθNτ
]T , (17)

where yθτ and s(θ, τ) are of size 90 × 1, Sθτ is of size

90×NθNτ , and aθτ is of size NθNτ × 1. Since all the K
paths are sparse both in AoA and ToA domains, solving the

above equation equals to

min ‖yθτ − Sθτaθτ‖
2
2 + κ‖aθτ‖1. (18)

This way, the estimated spectrum can result in a desirable

sharpness for both ToAs and AoAs, as shown in Figure 4a.

Once we obtain the AoAs and ToAs of all paths, we just

pick up the smallest ToA path as the direct path. This idea

has been evaluated and deemed as a suboptimal approach

in SpotFi [1]. Actually, we have found it does not suit

SpotFi as MUSIC tends to produce spurious peaks due to

inaccurate K̂. Nevertheless, it just fits our ROArray, because

our method is not sensitive to inaccurate K̂. Note that there

is another important benefit brought by stacking all the

subcarriers into a single vector: the increasd aperture size

of the antenna array, which makes the number of resolvable

paths more than M . Before stacking, the aperture size of an

antenna array is always limited by the number of antennas



(usually 3), where the number of resolvable paths is less

than M .

C. Complexity

In terms of time complexity, to solve Equation 18, it

requires O((NθNτ )
3) while being almost independent of

the number of antennas, M , and the number of subcarriers,

Nsub. This time complexity is higher than that of SpotFi,

O((MNsub)
3). But thanks to the interior point method that

has low iteration times [23], a general implementation can

be quite efficient. For instance, our Matlab implementation

with an Intel i7 CPU at 3.4 GHz takes about 10 s to generate

a ToA&AoA spectrum, when Nθ = 90, Nτ = 50. The

optimization of computation time is one of our future work.

Actually, we think of this higher computation cost as the

tradeoff between accuracy and computation time because the

better performance under low SNRs does not come for free.

Despite the higher time cost, some advantages are worth

noting. First, it is suitable for applications that concern ac-

curacy more than computation time/power, especially when

low SNRs are present. Second, ROArray is more general

as it is not affected too much by the array geometry, such

as rigid antenna placement, unevenly distributed bands, and

the number of antennas, making the adaptation to other WiFi

standards easier, like 802.11 ac/ad.

D. Implementation considerations

There are several considerations worth noting here.

Multi-Packet fusion. While ROArray can work with a sin-

gle packet, it can also leverage multi-packet measurements

to further improve the accuracy for slowly moving and static

objects. Different from prior methods that either treat each

packet independently and then use clustering to filter outliers

[1], we adapt the method in [25] and use the Singular Value

Decomposition (SVD) to simultaneously reduce the problem

size efficiently and maintain the high performance.

Multi-AP localization. For localization, ROArray attempts

to localize the target by combing direct-path AoAs from

several APs. Let {ϕ1, ϕ2, ..., ϕl} be the estimated AoAs

from l APs and {R1, R2, ..., Rl} be the corresponding

RSSIs. ROArray intends to localize the target by minimizing

the deviation between RSSI-weighted AoAs,

min
l

∑

i=1

Ri(ϕ̂i − ϕi)
2. (19)

Hence, we search the candidate area by forming a 10 cm

by 10 cm grid and pick up the location that achieves the

minimal of the above equation.

Phase calibration. Every time when the working channel

changes, a random phase offset will be introduced in mea-

sured CSI values. We adapt autocalibration algorithms used

in [13] to correct phases in ROArray. The major difference is

that we use ROArray’s estimated AoA spectrums instead of

MUSIC in [13]. The involved cost of this calibration would

(a) An Intel NUC Unit with an
Intel 5300 WiFi card

(b) Experiment testbed

Figure 5. Experiment device and deployment. Our experiments involve
several APs and a mobile client that is an Intel NUC. The testbed covers
18 m × 12 m indoor area. Red dots represent test locations.

be negligible as it is only invoked when the AP administrator

sets or changes the channel, and there is no channel hopping

involved in regular WiFi communication.

IV. EXPERIMENTS

A. Implementation

To verify the design of ROArray, we implement it using

off-the-shelf Intel 5300 WiFi cards. Linux CSI Tools [26]

are employed to obtain CSI measurements. Due to firmware

limitations that produce phase ambiguity on 2.4 GHz band

[1], [13], all tests are done in 5 GHz band. We randomly

choose a non-busy 40 MHz channel in our testbed and fix it

during all tests. Note that Intel 5300 cards give CSI values

only for 30 out of 116 subcarriers. We employ 6 desktops

working as APs and one Intel NUC unit as a mobile client.

All the APs and the client are equipped with Intel 5300

cards. Each AP is with 3 antennas that are equally spaced at

half wavelength, 2.6 cm. All the APs work in the monitor

mode while the client uses packet injection to send out data.

We set MCS index at 1 for all packets, which means 1 spatial

stream, QPSK modulation, and 1/2 coding rate.

After the client sends out a packet, APs transmit mea-

sured CSI values to a central server for further processing.

The central server synchronizes measurements by matching

sequence numbers in the payload. Then it runs MATLAB-

implemented algorithms to obtain estimated locations. We

use cvx solvers [27] to deal with the sparse recovery problem

and note that the code speed could be further optimized. We

have tested our prototype in a classroom testbed and part of

the tested locations are marked in Figure 5. In total, we

tested 300 different locations.

We compare ROArray with state-of-the-art AoA based

WiFi systems, SpotFi [1] and ArrayTrack [12]. Phaser [13] is

not included because it requires additional hardware, such as

antenna rerouting, and same as WiDeo [28], which requires

software defined radios to implicitly eliminate packet detec-

tion delay (and the fractional SFO), which is not compatible

with Intel 5300 cards. Ubicarse [8] and CUPID [6] are not
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Figure 6. Comparison of ROArray’s localization accuracy with SpotFi and ArrayTrack under high, medium, and low SNR scenarios.

compared either, as they need inertial sensors and mobility

of clients, whereas ROArray, SpotFi, and ArrayTrack do

not have such assumptions and are readily implementable

to all kinds of devices that have WiFi. Note that although

original Arraytrack implementation requires 6-8 antennas

and software-defined radios, we implement its algorithms

using the aforementioned hardware settings (3-antenna),

ensuring a fair competition.

B. Localization Accuracy Comparison

Dynamic SNRs actually are quite common in indoor

multipath-rich environments, since multipath could result in

constructive or destructive interferences. Also, SNRs are af-

fected by blocking, distance, and the transmit power of APs.

Here we do not distinguish the causes of dynamic SNRs and

just classify SNRs into three categories, high SNRs [15,∞),
medium SNRs (2, 15), and low SNRs (−∞, 2]. All three

methods share the same data and each uses 15 packets. We

fix the number of APs at 6 for this comparison and report

results in Figure 6.

We observe from Figure 6a that with high SNRs, ROAr-

ray accomplishes comparable results with SpotFi and sig-

nificantly outperforms ArrayTrack. Particularly, ROArray

achieves 0.63 m median localization error while SpotFi

and ArrayTrack’s median accuracy is 0.64 m and 2.3 m,

respectively. And the 90-th percentile errors are 2.66 m,

2.51 m, and 5.66 m for ROArray, SpotFi, and ArrayTrack

respectively. The reason for ArrayTrack’s relatively poor

performance is that its aperture size is very limited, in

contrast, ROArray and SpotFi increase the aperture size by

coherently combining CSI values across subcarriers. Similar

trends can be observed with medium SNRs in Figure 6b. As

expected, when SNRs decrease, the performances of all the

three systems deteriorate accordingly. However, when SNRs

drops to a low level as shown in Figure 6c, the median

accuracies of SpotFi and ArrayTrack degrade to 2.61 m and

3.52 m respectively whereas ROArray achieves 0.91 m. Such

performance gain of ROArray over other systems largely

comes from the robustness of sparse recovery techniques.

C. Direct Path Accuracy Comparison

To further examine the resolvability of three different

systems, we investigate AoA estimate errors. Since we do

not have the ground truth AoAs for all the paths, we measure

the accuracy of AoA estimation algorithms by comparing the

difference between the ground truth direct-path AoA and the

closest peaks in the spectrum.

For this test, we still conduct the evaluation with three

different SNR situations. Figure 7a plots the CDFs of

AoA estimation errors for all APs with high SNRs, where

ROArray achieves almost the same median AoA accuracy as

SpotFi, which is 2.48 degrees better than ArrayTrack. When

SNRs go into the medium level as shown in Figure 7b, the

degradation of all the three systems is quite limited as the

median AoA accuracies worsen from 6.7 to 7.32 degrees

for ROArray, from 6.62 to 7.40 degrees for SpotFi, and

from 9.10 to 10.0 degrees for ArrayTrack. This phenomenon

again shows good performance of MUSIC with high and

medium SNRs and confirms that sparse recovery algorithms

are robust. Note that in low-SNR situations, the median

accuracy of ROArray only drops to 7.9 degrees whereas

those of SpotFi and ArrayTrack degrade to 12.3 degrees and

15.2 degrees respectively. Even the aperture size of SpotFi

is the same as ROArray’s, the inherent drawback of MUSIC

that relies on the separation of the signal and noise spaces

makes SpotFi less robust compared to ROArray. Another

factor that contributes to the inaccuracy for SpotFi is its

sensitivity to inaccurate K̂ 8.

D. Varying Number of APs

Next, we investigate how AP density impacts the accuracy

for ROArray. By varying the number of APs that can hear

8In fact, SpotFi fixes K = 5 [1], which intuitively cannot adapt to
various ground truth K.
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Figure 7. Comparison of ROArray’s AoA estimation errors with SpotFi and ArrayTrack under high, medium, and low SNR scenarios.
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Figure 8. (a) CDFs of localization errors for ROArray with varying number of APs, showing how AP density affects ROArray’s performance; (b) CDFs
of localization errors for ROArray with different calibration schemes, demonstrating the advantage of the calibration scheme using the AoA spectrum of
ROArray; (c) CDFs of localization errors for ROArray with different deviation angles of antenna polarization, indicating the importance of polarization.

the client from 3 to 5, we present results in Figure 8a. We

observe that accuracy improves with the increasing density

of APs, similar to other AoA based systems [1], [12].

Because with more APs, our RSSI-weighted localization

scheme tends to give greater weights to high-quality direct

paths, largely reducing the negative impact brought by noisy

estimates. We see that the median accuracies of ROArray are

1.04 m, 1.56 m, and 2.79 m with 5, 4, and 3 APs respectively.

Note that, with only 3 APs, the performance of ROArray

almost catches up with that of ArrayTrack.

E. Impact of Phase Calibration

Moreover, we evaluate the impact of different phase cali-

bration schemes. In this experiment, we perform localization

in three different ways, phase calibration using ROArray’s

AoA spectrum, phase calibration using MUSIC based AoA

spectrum [13], and without any phase calibration. The results

are plotted in Figure 8b. Unsurprisingly, the way that is with-

out any phase calibration performs the worst and only has a

median accuracy of 2.0 m. ROArray’s calibration achieves

an improvement of 0.71 m over the scheme in Phaser

[13] in terms of median localization accuracy. This huge

performance gain stems from the sharper AoA spectrum

of ROArray over that of MUSIC. In fact, such sharpness

should be further attributed to that we use sparse recovery

techniques for the AoA estimation problem.

F. Impact of Antenna Polarization

For mobile users, the orientation of antenna keeps chang-

ing. To measure the effects of deviation angles of antenna

polarization, we use horizontally polarized antennas on APs

and randomly deviate the elevation angles of the mobile

client between (0°, 20°] and (20°, 45°]. The results in Figure

8c show that the accuracy of ROArray is heavily affected

by the deviation angle of polarization. The performance

of ROArray worsens with increasing deviation angles. The

median localization errors degrade to 2.21 m and 4.71 m

for 0°∼20° and 20°∼45° deviation respectively. In fact, this

is not surprising as the elevation-angle deviation inevitably

leads to very poor wireless reception since the manifold of



the antenna array in our implementation is 1-dimension. One

possible solution is to employ the 2-dimension antenna array

with both vertical and horizontal polarizations, which can

adapt to more antenna orientations in 3-D space.

V. RELATED WORK

There has been extensive research in the literature on WiFi

based localization systems, so we only summarize closely

related ones here. For more complete surveys, please refer to

[29], [30]. Basically, there are two types of WiFi localization

solutions, signal processing based and RSSI based.

Signal processing based: With the development of multi-

antenna design, WiFi localization using signal process tech-

niques has received increasing attention [1], [2], [10], [11],

[12], [13]. Technically, signal processing based methods are

able to estimate two important metrics, ToA and AoA. Due

to the intrinsically limited bandwidth of WiFi signals, the

accuracy of ToA based systems is quite limited. Recently,

several channel hopping mechanisms are proposed to com-

bine a number of narrow bands into a virtual wide band

[2], [10], [11], breaking the barrier of meter-level accuracy.

There are two disadvantages associated with those methods:

communication disruption due to channel hopping and slow

adaptation to moving mobile clients due to multi-channel

measurements. On the other hand, AoA based approaches

can maintain communication unaffected and realize high ac-

curacy localization [1], [12], [13]. The most recent advance,

SpotFi can even achieve 40 cm median accuracy [1]. Another

closely related method is WiDeo [28], which also uses sparse

recovery to retrieve ToA and AoA information. There are

several key differences between ROArray and WiDeo. First,

WiDeo achieves better accuracy than ROArray does but it

requires software defined radios (SDR) and 4 antennas for

each AP. One of the main reasons for the SDR requirement

is that it can make use of pilot subcarriers to calibrate

uncertain time delays, which means its ToA estimates can be

included directly into the location estimation. In contrast, our

ToA estimates using off-the-shelf APs contain the residual

dynamic delay in each packet [1], for which no solutions

and calibration methods are known yet. Second, unlike the

very brief statement of actual sparse recovery algorithms in

WiDeo, we provide the core and analysis of joint ToA/AoA

estimation in detail. Third, the computation time of WiDeo

is more than ROArray due to the continuous basis for WiDeo

whereas ROArray is based on the discrete basis. Last but not

least, we include multi-packet fusion to coherently improve

the localization accuracy while the main goal of WiDeo

is to trace the motion by identifying static reflections. In

summary, prior systems that work with off-the-shelf devices

would suffer from poor and unstable performance under low-

SNR scenarios, such as far way from APs, serious NLoS,

and interference. ROArray falls into the AoA category.

While it maintains comparable performance that state-of-the-

art systems achieve at high SNRs, it shows robustness with

low SNRs. It can also localize a target with one and more

packets, making it more applicable in mobile scenarios.

RSSI based: Due to the high availability of RSSI values,

RSSI based systems have been studied for many years.

Those methods either measure the range via a propagation

model [3] or collect fingerprints from a series of APs to

locate a client [5]. Nevertheless, the biggest problem for

them is not-so-impressed accuracy. The most common way

to boost accuracy is to increase the number of APs, usually

several dozens. Another drawback is the cost of site survey

[30]. When environments or APs change, the system usually

needs another overhaul calibration, which is always time-

consuming. Even a variety of crowdsourcing schemes can

help [4], [5], the quality of crowdsourced data needs extra

care.

Sparse recovery based AoA estimation is extensively

studied in signal processing and information theory ar-

eas [25], [31], [32], which also inspires this work. Those

works mainly focus on the theory or numerical validation

aspects, not for practical systems, including WiFi. They

usually do not take into account practical challenges, such

as time/frequency synchronization and phase calibration.

Moreover, they do not consider the multi-carrier feature

of signals, which is the core of today’s WiFi. In contrast,

ROArray builds on those well-studied theory results and

further develops a working WiFi localization system using

off-the-shelf devices.

VI. CONCLUSION

We have presented a robust WiFi localization system,

ROArray, that addressed the poor performance with low

SNRs, which was difficult for state-of-the-art approaches.

The insight of ROArray was to cast AoA estimation into

a sparse recovery problem, which has been able to yield

sharp and sparse AoA spectrum. Through jointly estimating

the ToAs and AoAs of all the paths across the time domain,

we have achieved direct path identification and the increase

of resolvability at the same time. We believe ROArray

can benefit a range of indoor applications that require

high robustness in challenging low-SNR scenarios, such as

localization solutions for enterprise and military.
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