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Abstract—With the multi-antenna design of WiFi interfaces, phased array has become a promising mechanism for accurate WiFi

localization. State-of-the-art WiFi-based solutions using Angle-of-Arrival (AoA), however, face a number of critical challenges. First,

their localization accuracy degrades dramatically due to low Signal-to-Noise Ratio (SNR) and incoherent processing. Second, they

tend to produce outliers when the available number of packets is low. Moreover, the prior phase calibration schemes are not multipath

robust and accurate enough. All of the above degrade the robustness of localization systems. In this paper, we present ROArray, a

RObust Array based system that accurately localizes a target even with low SNRs. The key insight of ROArray is to use sparse

recovery and coherent processing across all available domains, including time, frequency, and spatial domains. Specifically, in the

spatial domain, ROArray can produce sharp AoA spectrums by parameterizing the steering vector based on a sparse grid. Then, to

expand into the frequency domain, it jointly estimates the Time-of-Arrival (ToAs) and AoAs of all the paths using multi-subcarrier OFDM

measurements. Furthermore, through a novel multi-packet fusion scheme, ROArray is enabled to perform coherent estimation over

multiple packets. Such coherent processing not only increases the virtual aperture size, which enlarges the number of maximum

resolvable paths but also improves the system robustness to noise. In addition, ROArray includes an online phase calibration technique

that can eliminate random phase offsets while keeping communication uninterrupted. Our implementation using off-the-shelf WiFi

cards demonstrates that, with low SNRs, ROArray significantly outperforms state-of-the-art solutions in terms of localization accuracy;

when medium or high SNRs are present, it achieves comparable accuracy.

Index Terms—Backscatter communication, frequency selection, RFID, tags

Ç

1 INTRODUCTION

WITH the advances in wireless communication and the
deep penetration of WiFi networks, WiFi-based local-

ization that aims to deliver GPS-like positioning services for
indoor environments has seen rapid growth in the past
decade [1], [2]. Early WiFi localization has mainly focused on
fingerprinting methods that assume each distinct location has
a unique WiFi signature [3], [4], [5]. In spite of meter-level
accuracy achieved, they suffer from laborious site survey or
demand crowdsourced data that are often not available or
of poor quality. More importantly, they typically require doz-
ens of access points (APs) to acquire desirable localization
accuracy. Realizing the availability of rich sensor data on
advanced smartphones and tablets, sensor-enhanced solu-
tions have been developed to boost the localization accuracy
and reduce the demands onAPs [6], [7], [8]. They are unfortu-
nately not universal to all-size WiFi clients, in particular, to
such thin clients as WiFi-tags [9]. Recently, inspired by the

wide deployment ofmulti-antenna transceivers, phased array
with smart signal processing on APs has become a promising
mechanism for accurate WiFi localization. In particular, deci-
meter accuracy can be achieved using Time-of-Arrival (ToA)
[2] or Angle-of-Arrival (AoA) [1] techniques.

ToA tracks the signals’ time of flight to estimate a client’s
distance and relative position to APs. The resolution of ToA is
fundamentally limited by the narrow bandwidth of WiFi sig-
nals. Though higher resolution can possibly be made by the
virtual wide-band [2], [10], [11], these methods either are not
compatible with off-the-shelf devices [11] or rely on channel
hopping that inevitably disrupts regular communication [2],
[10]. AoA, on the other hand, identifies angles of the multi-
path signals received at the antenna array of an AP [1], [12],
[13]. The typical solution of AoA is done bymultiple signal clas-
sification (MUSIC) [14], which explores the fact that the signal
space is orthogonal to the noise space. Such state-of-the-art
AoA implementations as SpotFi [1] can achieve a median
localization accuracy of 40 cm and is fully compatiblewith the
current WiFi interfaces. Their practical application and fur-
ther improvement, however, face several critical challenges.

1) Low SNR barrier. The resolvability ofMUSIC inherently
degradeswhen SNRdecreases.1 Particularly, when the
noise space is tangled with the signal space, its perfor-
mance could significantly deteriorate. Although this is
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a known problem for MUSIC [15], we empirically
investigate this aspect in detail as later shown in
Section 2,which demonstrates that itsmedian accuracy
degrades to 15.2� with SNRs lower than 2 dB.

2) Incoherent processing. Usually, multiple OFDM chan-
nel measurements contain information from the
spatial domain by multiple antennas, from the fre-
quency domain by subcarriers, and from the time
domain by a series of consecutive packets. Neverthe-
less, prior systems fail to make the best of them. For
example, Ubicarse [8] and ArrayTrack [12] only
focus on the spatial domain and time domain. SpotFi
[1] coherently performs ToA&AoA estimation but
applies clustering, a non-coherent processing, across
packets, losing the opportunity to improve SNRs in
the time domain.

3) Inefficiency of direct path identification. Most existing
methods suffer from being unable to work with a lim-
ited number of packets. For instance, SpotFi [1] tends
to produce spurious estimates, and thus dozens of
packets are needed to do clustering; Ubicarse [8] and
ArrayTrack [12] needmotion on either mobile users or
APs to select the stable (or unchanged) path as the
direct path. This inevitably prolongs the localization
process. Even worse, frame aggregation, which wraps
several Ethernet frames into a single frame, has been
extensively used to improve the throughput in mod-
ern WiFi networks [16].2With frame aggregation, only
one single channel state information (CSI) measure-
ment is available for multiple frames, and the time
cost of localization can thus be significantly amplified.

4) Offline and multipath-susceptible Phase Calibration. Prior
phase calibration schemes are either designed for off-
line correction or are not robust to multipath effects.
For example, both ArrayTrack [12] and Argos [17] can
obtain accurate phase offset estimation through addi-
tional offline measurements, yet it is hard to apply
them to commercial off-the-shelf (COTS) devices as
they are originally designed for software defined
radios. Phaser [13] can work with COTS APs, but its
performance could severely degrade in multipath-rich
environments.

To address these challenges, this paper presents
ROArray, a RObust phased Array based WiFi localization
system using off-the-shelf devices. It works with one or a
limited number of packets. More importantly, it can reliably
locate targets with low SNRs. The design of ROArray is
based on a key observation: in an indoor environment, the
number of dominant paths is sparse (e.g., 5) [1], [12]. For
example, if we divide all possible directions [0�; 180�] into
an equally spaced sampling grid and the spacing of the grid
is 1�, 5 can be safely considered sparse as 5 � 180. Such
sparsity is even more obvious when the frequency and spa-
tial domains are considered simultaneously. As such,
advanced sparse recovery techniques can be used in this
context for AoA and ToA estimation, some of which have
been proved robust in noisy cases [18], [19], [20].

Different from MUSIC that focuses on the orthogonality
of noise and signal, our concentration is based on the spar-
sity of signals and coherent processing across the spatial,
frequency, and time domains at the same time. First, with
multipath, we transform AoA estimation into a sparse
recovery problem by parameterizing the space over a sam-
pling grid. By enforcing sparsity on this grid, the resulting
AoA spectrum is guaranteed to be sharp and robust. Fur-
thermore, together with the help of OFDM that transmits
over a set of subcarriers simultaneously, we jointly estimate
the ToAs and AoAs of all the paths and pick up the smallest
ToA path as the direct path. Moreover, to overcome the
uncertain dynamic delay and lack of sparsity across packets,
a novel coherent ToA and AoA estimation based on multi-
packet fusion is introduced. To eliminate random phase off-
sets each time the working channel changes or powers on/
off, we introduce an online phase calibration method, which
leverages the orthogonality between steering vectors and
the noise space. ROArray has several advantages over pre-
vious ones [1], [12]. It is insensitive to poor model order (the
number of paths) estimates and hence does not suffer from
spurious peaks as MUSIC does. It also works with a fairly
large operation range, as low as a single packet. Through a
coherent combination of information from the spatial, fre-
quency, and time domains, we further improve the spatial
resolution by increasing the aperture size, and the robust-
ness to noises by signal decomposition.

We have implemented ROArray on off-the-shelf devices
with Intel Ultimate NWiFi Link 5,300 cards, and evaluated it
in real-world indoor settings. With low SNRs (� 2 dB),
ROArray achieves a median localization accuracy of 0.91 m,
which is remarkably better than that of SpotFi (2.61 m) and
ArrayTrack (3.52 m). With medium or high SNRs, ROArray’s
accuracy is comparable to SpotFi and ArrayTrack; yet it can
work well with both a single and multiple measurements,
whereas the latter two both require dozens of packets.

Contributions. To the best of our knowledge, ROArray is
the first WiFi localization system that provides robust per-
formance under challenging low-SNR scenarios using off-
the-shelf devices. Our system applies to static or slow-mov-
ing targets of which localization accuracy is more concerned
than real-time tracking needs with low SNRs.

2 BACKGROUND AND MOTIVATION

To understand the limits of MUSIC, we start from the basics
of AoA estimation [12] and then investigate the perfor-
mance of SpotFi [1], the best-performing AoA implementa-
tion, under different SNR scenarios.

2.1 AoA Estimation Basics

In an indoor environment, a signal usually travels along the
direct path and several other reflected paths from a trans-
mitter to a receiver, a.k.a., the multipath effect. Suppose
there are K propagation paths. For the kth path, let uk and
ak be the angle and complex attenuation with it respectively.
When the signal travels along this path and arrives at the
antenna array as shown in Fig. 1, the amplitude of attenua-
tion should be almost the same across antennas for the far
incoming signal but the phase difference is noticeable
among antennas, which depends on u, �, and d, where d is

2. 802.11n defines two types of frame aggregation: MAC Service Data
Unit (MSDU) aggregation and MAC Protocol Data Unit (MPDU)
aggregation.
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the distance between two adjacent antennas. Since d and �
are usually static, the kth path now can be uniquely decided
by ak and uk. Therefore, for an antenna array of size M with
an incoming signal at uk, those introduced phase shifts rela-
tive to the first antenna are given by a vector,

sðukÞ ¼ ½1;LðukÞ; . . . ;LðukÞðM�1Þ�T ; (1)

where LðukÞ ¼ e�2pd cos uk=�. It shows that an AoA can be
viewed as creating a vector of phase shifts on the antenna
array, which is why the antenna array is also called a phased
array. Ifwe combine those vectors along all the paths, amatrix
can be given by

S ¼ ½sðu1Þ; sðu2Þ; . . . ; sðuKÞ�: (2)

S is usually called the steering matrix and sðuÞ is the steer-
ing vector.

From physics, we know that the received signal vector, y,
at the antenna array due to all the paths follows the super-
position principle,

y ¼ Sa; (3)

where a ¼ ½a1; a2; . . . ; aK �T .
To put the above into a typical WiFi system with 3 anten-

nas, the overall attenuations and phase shifts are measured
at each subcarrier of each antenna, which are reported as
Channel State Information values. For example, if the trans-
mitter uses 1 antenna and the receiver with an Intel 5,300
WiFi card uses 3 antennas, for each successfully decoded
packet, the receiver is able to obtain a CSI matrix

C ¼
csi1;1 csi1;2 . . . csi1;30
csi2;1 csi2;2 . . . csi2;30
csi3;1 csi3;2 . . . csi3;30

0
@

1
A; (4)

where csii;j denotes the CSI value from the ith antenna at the
jth subcarrier and is a complex number. Each column of the
above matrix can be considered as one realization (snapshot)
of y in Equation (3). Now the key question becomes how to
estimate the AoAs of incoming signals, S, with the overall
measuredmatrixC.

2.2 Rationale and Caveats

To answer the above question, state-of-the-art AoA based
WiFi localization systems [1], [12], [13] chooseMUSIC as their
base. The crux of MUSIC is that the signal space is orthogonal
to the noise space. Hence, after estimating the noise space via

eigen-decomposition, the AoAs can be derived by finding the
peaks of an AoA spectrum.3 Intuitively, the resolvability of
MUSIC depends on the SNR [15]. To investigate howMUSIC
performs with different SNRs empirically, we have con-
ducted a series of experiments.4 Using the results of SpotFi [1]
as a case in Fig. 2, we have two important observations:5 (1) as
SNRs become lower, the beams in AoA spectrums are getting
less sharp, which means the resolvability degrades; and (2)
the accuracy of AoA estimates becomes much worse when
SNRs are low. Such degradation of AoA estimates brought by
low SNRs inevitably affects the overall localization accuracy.

To overcome the low SNR barrier with MUSIC (and hence
with most today’s AoA implementations), it is necessary to
find better alternatives, which leads to our design of ROArry
that explores the robust performance of sparse recovery [22],
[23], [24].

3 ROARRAY: DESIGN AND OPTIMIZATION

The central question of sparse recovery is how to accurately
recover a high-dimensional vector from a small set of meas-
urements with performance guarantees. Consider a system

B ¼ Ax; (5)

where x 2 Cn, B 2 Cm, matrixA is of sizem� n. If the follow-
ing two conditions are satisfied, I) x is sparse,m � n; and II)
A is known, then the above equation can be considered as a
sparse recovery problem [24]. Using convex optimization, we
can have highly robust results under noisy cases.

As mentioned, in the indoor environment, the number of
dominant paths is sparse. Our ROArray explores this oppor-
tunity to transform AoA estimation into a sparse recovery
problem that satisfies Conditions I and II. Furthermore, we
show that after linearization, both ToAs andAoAs can be esti-
mated by enforcing the sparsity constraints. Moreover,
ROArray can work well with a limited number of snapshots,
even a single packet. Also, it is insensitive to inaccurate ini-
tialization, such as K̂.

3.1 Sparse Recovery for AoA Estimation

Wefirst revisit Equation (3), y ¼ Sa. At first glance, all the two
conditions are not met. By a proper transformation, we can
cast Equation (3) into a sparse recovery problem. The idea is
to linearize it by expanding the matrix S via setting up a grid.

Specifically, let { ~u1; ~u2; . . . ; ~uN } be an equally spaced grid,
spanning over [0�; 180�]. In order to meet Condition I, usually
N needs to be much greater thanM, which is usually 3 in an
AP. For example,we can setN ¼ 181 if wewant the grid spac-
ing to be 1�, orN ¼ 361 to obtain an even finer grid. Then, we
can construct a new steeringmatrix consisting of steering vec-
tors that correspond to each element in the grid,

~S ¼ ½sð ~u1Þ; sð ~u2Þ; . . . ; sð ~uNÞ�: (6)

This way we find that Condition II is also satisfied in the

above linearization because the vector { ~u1; ~u2; . . . ; ~uN } is

Fig. 1. An antenna array consisting of a series of equally spaced anten-
nas. Suppose the AoA of a far-field incoming signal is u, then the relative
phase difference between two adjacent antennas is �2pd cos u=�, which
is due to the difference between two parallel paths, d cos u. To avoid
ambiguities for u 2 ½0; 180�, d needs to be less than or equal to �=2, where
� is the wavelength of the incoming signal.

3. For MUSIC algorithms, please refer to [14], [15], [21].
4. Details of the experiment settings can be found in Section 4.
5. Although it is difficult to obtain the ground truth AoAs for all

paths in practical indoor environments, we use the ground truth of the
direct path in Line-of-Sight (LoS) scenarios.
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known by the gridding, and each row of sð~uiÞ is pre-deter-
mined by themanifold of the antenna array as in Equation (1).

At the same time, a should be replaced by ~a ¼ ½ ~a1; ~a2; . . . ;
~aN �T , in which ~ai is nonzero and equal to ak if some path, e.g.,

kth, comes from ~ui and is zero otherwise. Note that the major

difference between S and ~S is that ~S is known and does not

depend on any ground truth ui.
Now we can cast Equation (3) into a sparse representa-

tion,

y ¼ ~S~a: (7)

To solve the above equation, an important and necessary
assumption is the sparsity of ~a. Fortunately, this assumption
is satisfied in indoorWiFi systems as the number of dominant
paths is around 5, which is empirically observed in [1], [12],
[13]. The ideal measurement of the sparsity of a vector is the
‘0 norm, k~ak0. However, solving mink~ak0 such that y ¼ ~S~a is
quite hard and almost intractable even when ~a is of moderate
size. Hence, we employ one of the well-known approxima-
tions for this problem, using ‘1 norm to approximate ‘0 norm.
The rationale behind this is that if ~a is sparse enough, this
approximation actually can lead to exact solutions [22].

So far we have not discussed noises, which are inevitable
in practice. Considering the additive Gaussian noise, the
model in Equation (7) becomes

y ¼ ~S~aþ n: (8)

In noisy cases, our objective is to solve the following optimi-
zation problem,

mink~ak1; (9)

s:t:ky� ~S~ak22 � g; (10)

where g is a parameter to specify the level of noise the sys-
tem can tolerate. We can reformulate the above equations
using the method of Lagrange multipliers as,

minky� ~S~ak22 þ kk~ak1; (11)

where k is a parameter used to enforce the level of sparsity.
It is easy to verify that the above objective function is con-
vex, which means we can make use of second-order cone
(SoC) programming6 to efficiently solve the problem [23].
One salient feature of using SoC programming is that the
number of iterations in the worst case is bounded [23]. Once
~a is found, the AoA estimates are the peaks in ~a. An illustra-
tive example is given in Fig. 3. Note that ‘1 based algorithms
have global convergence regardless of the initialization [22],
i.e., insensitive to initialization.

3.2 Direct Path Identification

After we obtain AoA estimates from the previous section, to
localize the target, we need to distinguish the direct path from
other reflected paths. State-of-the-art AoA based systems are
all based on dozens of measurements ormotion to pick up the
stable (unchanged) path with the smallest variation as the
direct path. In contrast, we intend to jointly estimate ToAs and
AoAs for all the paths and pick up the direct path that is with
the smallest ToA. Note that LTEye [25] shares the same direct
path identification criteria with ours, but it requires multi-
packet measurements through a motorized array whereas our
schemedoes not requiremotion of targets orAPs.

From physics, we know that each independent propaga-
tion path comes with a distinct ToA and AoA. For a narrow-
band signal, ToAs are usually omitted as they introduce no
noticeable phase shift. However, the OFDMWiFi consists of a
number of narrow bands (subcarriers), where phase shifts
brought by ToAs are not negligible. Particularly, we observe
that AoAs introduce no much difference across subcarriers,
but ToAs contribute to measurable phase shifts across subcar-
riers. For example, for the kth path, the phase shift introduced
across two subcarriers (fi; fj) spaced by 20 MHz is �2pd

cosukðfi � fjÞ=c, where c is the speed of light, so if d ¼ �=2

and � ¼ 5:2 cm for 5 GHz band, themaximaof this phase shift
(uk ¼ 0) only amounts to 0.0054 radians, which is too small to

Fig. 2. The indoor experimental results of SpotFi under different SNRs. We keep the AoA of direct paths (LoS) fixed at 150� across a range of SNRs.
We can see that the performance of SpotFi is very well when SNRs are 18 dB and 7 dB. Nevertheless, when the SNR drops to 2 dB, the estimate is
about 12� obviated from the ground truth. The situation is even worse when the SNR is below 0. With the low SNR, the resolvability (the sharpness
of beam) is being poor. Note that the power in the y-axis is normalized for all scenarios. For the rest of this paper, we follow this convention unless oth-
erwise stated.

Fig. 3. Progress with iterations using SoC programming to build the AoA spectrum. The iterative procedure improves with more iterations and finally
yields a sharp spectrum that gives two AoA estimates, one of which goes well with the ground truth angle.

6. This is because our data is complex. For real data, it can readily be
solved using quadratic programming.
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measure. By contrast, even if the ToAof the kth, tk, is only 5 ns,
the phase shift introduced by the same two subcarriers of an
antenna along this path, is �2pðfi � fjÞtk ¼ 0:628 radians,
which is much greater than 0.0054 radians. Therefore, this
motivates us to jointly estimate ToAs and AoAs for paths in
OFDMWiFi systems as either ToAorAoAalone is not enough
to account for overall phase shifts. Hence, by including all the
subcarriers inWiFi, we can remodel the narrow-band steering
vector sðuÞ to a new joint ToA and AoA steering vector sðu; tÞ.
Specifically, we know that for a path with tk, the phase shift
introduced between two adjacent subcarriers is

GðtkÞ ¼ e�2pfdtk ; (12)

where fd is the spacing of two adjacent subcarriers.7 Then
we stack the steering vectors across subcarriers into a new
steering vector that is represented by different phase shifts
caused by ToAs and AoAs,

sðu; tÞ ¼ ½1;Lu; . . . ;L
M�1
u|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

subcarrier 1

; . . . ;GL�1
t ;LuG

L�1
t ; . . . ;LM�1

u GL�1
t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

subcarrier L

�T ;

(13)

where L is the number of measured subcarriers. Then similar
to the previous section, we can further linearize this new

steering vector by setting up two grids: { ~t1; ~t2; . . . ; ~tNt } for To

A, and { ~u1; ~u2; . . . ; ~uNu } for AoA. The range of this ToA grid is
½0; tmax�, where tmax ¼ 1=fd. For example, if Intel 5,300 cards

work with a 40 MHz band, then 1=fd ¼ 1:25 MHz and thus

tmax ¼ 800 ns.
Specifically, considering CSI values from Intel 5,300 cards,

to jointly estimate ToAs and AoAs, we stack all the subcarrier
measurements and linearized steering matrices together as
follows

yut ¼ Sutaut þ n; (14)

yut ¼ ½csi1;1; csi2;1; csi3;1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
subcarrier 1

; . . . ; csi1;30; csi2;30; csi3;30|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
subcarrier 30

�T ; (15)

Sut ¼ ½sð ~u1; ~t1Þ; . . . ; sð ~uNu ; ~t1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
size of 90�Nu

; . . . ; sð ~u1; ~tNt Þ; . . . ; sð ~uNu ; ~tNt Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
size of 90�Nu

�;

(16)

aut ¼ ½a1; . . . ; aNuNt �T ; (17)

where yut and sðu; tÞ are of size 90� 1, Sut is of size 90�NuNt,
and aut is of size NuNt � 1. Since all the K paths are sparse
both in AoA and ToA domains, solving the above equation
equals to

minkyut � Sutautk22 þ kkautk1: (18)

This way, the estimated spectrum can result in a desirable
sharpness for both ToAs and AoAs, as shown in Fig. 4a.

Once we obtain the AoAs and ToAs of all paths, we just
pick up the smallest ToA path as the direct path. This idea has
been evaluated and deemed as a suboptimal approach in
SpotFi [1]. Actually, we have found it does not suit SpotFi as
MUSIC tends to produce spurious peaks due to inaccurate K̂.
Nevertheless, it just fits our ROArray, because our method is
not sensitive to inaccurate K̂. Note that there is another
important benefit brought by stacking all the subcarriers into
a single vector: the increased aperture size of the antenna
array, whichmakes the number of resolvable pathsmore than
M. Before stacking, the aperture size of an antenna array is
always limited by the number of antennas (usually 3), where
the number of resolvable paths is less thanM.

3.3 Complexity

In terms of time complexity, to solve Equation (18), it requires
OððNuNtÞ3Þwhile being almost independent of the number of
antennas, M, and the number of subcarriers, Nsub. This time
complexity is higher than that of SpotFi, OððMNsubÞ3Þ. But
thanks to the interior point method that has low iteration
times [24], a general implementation can be quite efficient.
For instance, ourMatlab implementationwith an Intel i7 CPU
at 3.4 GHz takes about 10 s to generate a ToA&AoA spectrum,
when Nu ¼ 90, Nt ¼ 50. The optimization of computation
time is one of our future work. Actually, we think of this
higher computation cost as the tradeoff between accuracy
and computation time because the better performance under
low SNRs does not come for free. Despite the higher time cost,
ROArray is highly suitable for applications that concern

Fig. 4. The estimated ToA&AoA spectrums from two time-samples are presented in (a), (b). Even with the same ground truth (both the transmit and
receiver are static), both spectrums are associated with different packet detection delays. After delay estimation and multi-packet fusion, the result,
(c), becomes sharper (more accurate).

7. In typical WiFi standards like 802.11n/ac, fd ¼ 312:5 KHz. How-
ever, in practice, fd depends on measured CSI values in different sys-
tems. For example, for Intel 5300 cards that report CSI values every
4 subcarriers on a 40 MHz band, fd ¼ 1:25MHz.
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accuracy more than computation time/power, especially
when low SNRs are present.

3.4 Multi-Packet Fusion

While ROArray canworkwell with a single packet, it can also
leverage multi-packet measurements to further improve the
accuracy for slowly moving and static objects. Different from
prior methods that either treat each packet independently
and then use clustering to filter outliers [1], we adapt the
method in [26] and use the Singular Value Decomposition
(SVD) to simultaneously reduce the problem size efficiently
and maintain the high performance. Nevertheless, there are
two key differences in our approach. First, our scheme builds
on ToA and AoA joint optimization while only AoA is con-
cerned in [26]. Second, we need to account for the uncertain
dynamic delays for different packets, which is not considered
in [26] either.

Suppose we have Nt CSI measurements from a series

of time samples, Y ¼ ½y1ut; . . . ; yNt
ut �; therefore, Equation (14)

becomes

Y ¼ SutAþN; (19)

where A ¼ ½a1ut; . . . ; aNt
ut �; and N similarly. Solving the above

equation is straightforward but time-consuming as the time

cost grows superlinearly with Nt. To reduce Nt to a reason-

able level, we employ SVD to separate the signal space from

the noise space,8 and derive the signal space version of Equa-

tion (19) as

Ys ¼ SutAs þNs; (20)

where Ys is a matrix of size 90�K. As and Ns are similar.
The core of the above processing is that Ys still captures
most of the signal power while the size of the time dimen-
sion is effectively reduced from Nt to K. To obtain the
ToA&AoA spectrum using multiple packets, our sparse
recovery problem becomes

minkYs � SutAsk2f þ kkÂ‘2k1; (21)

Â‘2 ¼ ½Â‘2
1 ; Â

‘2
2 ; . . . ; Â

‘2
K �; (22)

Â
‘2
i ¼ kÂið1Þ; Âið2Þ; . . . ; ÂiðKÞk2; (23)

where k 	 kf denotes the Frobenius norm, and Âi is the ith col-
umn ofAs. The reason of using the Frobenius norm is that Ys

is a matrix, not a vector anymore and the optimality of using
the Frobenius norm can be found at Chapter 7 of [26]. Another
important thing worth noting is that the sparsity constraint of
the Equation (21) is not applied on all the elements of the

matrix, As, but only on the ‘1 norm of Â‘2 ¼ ½Â‘2
1 ; Â

‘2
2 ; . . . ;

Â
‘2
K �, where Â

‘2
i ¼ kÂið1Þ; Âið2Þ; . . . ; ÂiðKÞk2. As such, the

final impact of the sparsity constraints, including k and the ‘1
norm of Â‘2 , is enforcing the sparsity only on the ToA-AoA
domain but not on the packet domain, which exactly fits the

real-world cases because dominant paths exhibit sparsity

only in the ToA-AoA domain but exist in all the packets (and

singular value basis).
Onemaywonder that in order to obtain the signal space, an

estimate, K̂, is still needed. We shall address this point later

and show that a rough guess, which is not necessarily accu-
rate, is enough. Another big problem is that the ground truth
of ToAs across packets is hardly the same due to the dynamic
packet detection delay and sample frequency offset (SFO) [2].
To solve this, we adopt the linear regression to remove the
instability of ToAs across packets. For each CSI measurement
of a packet, we estimate the uncertain delay as follows,

t̂u ¼ argmin
h

XM;Nsub

m;n¼1

ffðm;nÞ þ 2pfdðn� 1Þhþ "g; (24)

where fðm;nÞ is the unwrapped phase of the mth antenna at
the nth subcarrier, h and " are the slope and intercept parame-
ters of linear regression. After obtaining the estimate, t̂u, we
apply it to correct the originalmeasurement phase as

f0ðm;nÞ ¼ fðm;nÞ þ 2pfdðn� 1Þt̂u: (25)

Note that as SFO and packet detection delay are the same
across antennas due to the frequency-locked loop (FLL), thus
the above correction is based on all the antennas instead of
any single one. Nevertheless, this correction is only good at
removing the instability across packets but not making the
ToA estimates close the ground truth. Thus, the resulted
ToAs are still relative ToAs. As shown in Figs. 4a and 4b, the
delays of paths are different for different packets. After the
above correction process, solving Equation (21) finally yields
sharpAoAs and stable ToAs as shown in Fig. 4c.

Although using SVD to separate the signal space from
the noise space has been used in MUSIC for a long time, our
way is different. MUSIC first uses SVD to find the noise
space using K̂, and then find the signal peaks that are
orthogonal to it, which makes it quite sensitive to the inac-
curate K̂. In contrast, ROArray uses SVD to “compress”
multiple packets and enforces sparsity on the spatial and
frequency domains other than the time domain, keeping it
from the bad influence of inaccurate K̂. An example is
shown in Fig. 5. From this figure, we can know that unlike
MUSIC, ROArray is insensitive to K̂, and is suitable for
direct-path identification, which avoids spurious peaks. In
practice, we can make 3 as an initial guess ofK.

3.5 Multi-AP Localization

At this step, ROArray attempts to localize the target by comb-
ing direct-path AoAs from several APs. Let {’1;’2; . . . ;’l} be

Fig. 5. Comparison of SpotFi and ROArray with the sensitivity to different
estimated K̂. As expected, SpotFi is quite sensitive to different K̂ and
tends to produce spurious peaks due to the characteristics of MUSIC,
whereas ROArray is insensitive to inaccurate K̂. Note that in practice,
the ground truth K is difficult to obtain, but we can use the deviation
between the estimated peaks and the direct path AoA to tell which
method is better.

8. SVD details and the relationship between the noise space and sig-
nal space are omitted here, please refer to [1], [15].
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the estimatedAoAs from lAPs and {R1; R2; . . . ; Rl} be the cor-
responding RSSIs. ROArray intends to localize the target by
minimizing the deviation betweenRSSI-weightedAoAs,

min
Xl

i¼1

Rið’̂i � ’iÞ2: (26)

Hence, we search the candidate area by forming a 10 cm by
10 cm grid and pick up the location that achieves the mini-
mal of the above equation.

3.6 Phase Calibration

Every time when the working channel changes, a random
phase offset will be introduced in measured CSI values. We
empirically measure phase differences between 2 antennas
for 20 times as an AP powers on/off. The results are shown in
Fig. 6. It clearly shows the randomness of these phase offsets,
which makes phase calibration necessary. Moreover, for
COTS devices, offline calibration usually disrupts communi-
cation or is not easy to deploy. Therefore, we intend to design
an online andmultipath-compatible phase calibration scheme
for COTS APs. Specifically, we employ a MUSIC-based cali-
bration that uses the orthogonality between steering vectors
and the noise space of signals. To account for random phase
offsets, the Equation (13) becomes

spðu; tÞ ¼ Dpsðu; tÞ; (27)

Dp ¼ diagf1;F1;1; . . . ;F1;M�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
subcarrier 1

; . . . ; 1;FL;1; . . . ;FL;M�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
subcarrier L

g; (28)

where Dp is the phase offset matrix. For subcarrier i, there
are ðM � 1Þ unknown phase offsets to estimate, namely
F1;1; . . . ;F1;M�1, because the first antenna is used as the basis.
Therefore, in total we have LðM � 1Þ unknowns. To estimate
these unknowns, we leverage two observations. First, accord-
ing toMUSIC [14], we know that the steering vector should be
orthogonal to the noise space of the received signals, denoted
as Un. Second, although it is hard to get the ground truth for
all the steering vectors undermultipath environments, it is not
a problem to measure the Line-of-Sight path, i.e., uL; tL. The
above observations can be formulated as follows,

kspðuL; tLÞUnk2 ¼ 0: (29)

Since there are only K dominant paths (typically 5), the
above equation has LM �K sub-equations, which is more
than the number of unknowns, LM � L. To further increase
the number of sub-equations, we perform the above process

at multiple anchor points, where the locations are measured
in advance. Finally, we obtain an overdetermined system of
equations and thus apply the least square method to opti-
mize the results. The spatial smoothing is also used to com-
bat the coherence of multipath signals [27].

Note that the involved cost of the above calibration
would be negligible as it is only invoked when the AP
administrator sets or changes the channel, and there is usu-
ally no channel hopping involved in regular WiFi communi-
cation. Also, the calibration process is done under high SNR
scenarios to ensure the quality. While this method shares a
bit common with D-Watch [28], it has several major differ-
ences. First, we correct phase offsets across both subcarriers
and antennas whereas D-Watch only deals with phase off-
sets among antennas. Second, we need to remove the insta-
bility of ToAs across packets before calibration as in
Equation (24), which is not included in D-Watch.

3.7 Other Implementation Considerations

There are a number of implementation considerations worth
noting here.

Inter-Carrier Interference. Between the transmitter and
receiver, both Carrier Frequency Offset (CFO) and Sampling
Frequency Offset are inevitably included, resulting in inaccu-
racy for measured CSI values. Fortunately, the Schmidl-Cox
synchronization algorithm can effectively estimate CFO,
reducing the Inter-carrier Interference (ICI) to a negligible
level. The ICI caused by SFO is also negligible because accord-
ing to 802.11n, the SFO shall be within 20 parts per million
(ppm) for the 5 GHz band and within 25 ppm for the 2.4 GHz
band. Hence, the remaining SFO and CFO with off-the-shelf
WiFi cards can be safely considered as noise.

Time Synchronization. For time synchronization within the
antenna array, the SFO and packet detection delay does pro-
duce time shifts in our ToA estimates, which is the main rea-
son we only use ToAs to distinguish the direct path.
However, all the antennas on an AP are frequency-locked,
which means the same delay being added to all the anten-
nas [1]. Hence, they won’t affect phase shifts across anten-
nas due to AoAs and thus keep AoA estimates unchanged.
Another time synchronization we need to consider is how
to synchronize time among APs. For this, we put the cus-
tomized packet sequence number into the payload for each
packet at the transmitter and check the number at the
receiver. By matching sequence numbers, it is easy to syn-
chronize behaviors among distributed APs.

Grid Refinement. In theory, one wants the grid in S to be as
fine as possible. However, an overly fine grid would affect
the recovery accuracy due to the increasing coherence
inside S [20]. We address this by using a gradient-based
optimization approach [29] to measure the mutual coher-
ence in S and thus find the optimal grid spacing.

Near-Field Signal. Although we assume far-field signals for
simplicity in the previous sections, the framework of ROArray
is easy to include the dimension of range. In order to localize
the target in the near-field of the array, we can further parame-
terize the steeringmatrix on the dimension of range based on a
grid, { ~r1; ~r2; . . . ; ~rNr }. Then by stacking all the vectors into a
vector, we shall get the same sparse recovery form as for the
far-field case. Also, sparsity should be enforced on the dimen-
sion of range due to the distinct range associated with each

Fig. 6. The 20 times power on/off of phase difference measurements
between two antennas. The results show that there are random phase
offsets associated with each antenna. The distribution of these offsets is
close to a uniform distribution, which is difficult to predict.
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independent path. The new problem can be solved similarly
as Equation (18). Obviously, the MUSIC framework is hard to
deal with near-field signals and does not have such
convenience.

Note that our smallest ToAs for direct path identification is
inspired by SpotFi [1]. Same as [1], the resolution of ToAs
derived above are on the order of several nanoseconds. Thus,
they are not accurate enough for small distances and sub-
meter single AP localization. Actually, the main purpose of
adding ToA to AoA estimation is to make AoA estimates
more accurate. For example, if there are two paths (3.2 ns,
70�), (8.4 ns, 68�), such two paths are indiscernible in previous
AoA methods that do not consider ToAs [12] and thus the
energy of two paths are merged into one. Nevertheless, for
our method and SpotFi, both two paths are easy to separate,
making AoA estimates more accurate. But sometimes the
path with the smallest ToA may not be the direct path when
the direct path is tooweak. Hence, all the ToA/AoA estimates
would be for reflected paths. To deal with such cases, our
solution, which usesmulti-packet fusion, can increase the dis-
cernability of weak signals by reinforcing the signal space
through a series of time samples. This idea appears similar to
SpotFi as well. But SpotFi uses a non-coherent approach, clus-
tering, while our multi-packet fusion is a coherent approach
ensuring that the found direct path exists on the same signal
subspace of the time domain.

Array Geometry. While the principle of ROArray can be
generalized to more flexible array geometry, there are sev-
eral issues worth further investigation. The first is how to
choose the best (irregular) array placement. Usually, having
array elements spaced further away makes beams sharper
but comes with more ambiguity while reducing the array
spacing can remove the ambiguity but also brings down the
resolution. Hence, finding the best array placement is the
key to optimizing ROArray for arbitrary array geometry.
This issue becomes even more difficult when someone
wants to use channel hopping to increase the resolution of
ToA, because WiFi bands are not evenly distributed across
2.4/5 GHz. While this paper mainly focuses on the solution
and validation of ROArray under regular spacing at half of
the wavelength, similar to [1], [12], we leave optimizations
of ROArray for irregular arrays for future work.

4 EXPERIMENTS

4.1 Implementation

To verify the design of ROArray, we implement it using off-
the-shelf Intel 5,300 WiFi cards. Linux CSI Tools [30] are
employed to obtain CSI measurements. Due to firmware
limitations that produce phase ambiguity on 2.4 GHz band
[1], [13], all tests are done in 5 GHz band. We randomly
choose a non-busy 40 MHz channel in our testbed and fix it
during all tests. Note that Intel 5,300 cards give CSI values
only for 30 out of 116 subcarriers. We employ 6 desktops
working as APs and one Intel NUC unit as a mobile client.
All the APs and the client are equipped with Intel 5,300
cards. Each AP is with 3 antennas that are equally spaced at
half wavelength, 2.6 cm. All the APs work in the monitor
mode while the client uses packet injection to send out data.
We set MCS index at 1 for all packets, which means 1 spatial
stream, QPSK modulation, and 1/2 coding rate. The CSI

tools [30] can output an SNR for each subcarrier. We use the
average of all subcarriers to denote the SNR of an antenna.

After the client sends out a packet, APs transmit mea-
sured CSI values to a central server for further processing.
The central server synchronizes measurements by matching
sequence numbers in the payload. Then it runs MATLAB-
implemented algorithms to obtain estimated locations. We
use cvx solvers [31] to deal with the sparse recovery prob-
lem and note that the code speed could be further opti-
mized. We have tested our prototype in a classroom testbed
and part of the tested locations are marked in Fig. 8. In total,
we tested 300 different locations. Note that the sliding doors
and chairs are mainly used to test for NLoS scenarios.

We compare ROArray with state-of-the-art AoA based
WiFi systems, SpotFi [1] and ArrayTrack [12]. WiDeo [32] is
not included, because it requires software defined radios to
implicitly eliminate packet detection delay (and the fractional
SFO), which is not compatible with Intel 5,300 cards. Ubicarse
[8] and CUPID [6] are not compared either, as they need iner-
tial sensors and mobility of clients, whereas ROArray, SpotFi,
andArrayTrack donot have such assumptions and are readily
implementable to all kinds of devices that have WiFi. Note
that although original Arraytrack implementation requires 6-
8 antennas and software-defined radios, we implement its
algorithms using the aforementioned hardware settings (3-
antenna), ensuring fair competition. For phase calibration, we
compare ours with Phaser [13]. But Phaser’s localization
scheme is not included due to its additional hardware require-
ments, such as antenna rerouting,

Doing experiments with different SNRs usually has two
ways. The oneway is to use the Transmit PowerControlmech-
anism, which is specified inWiFi standards. Nevertheless, not
all commercial NICs support this function very well. For
example, in order to obtain CSI, we choose to use Intel 5,300
WiFi cards, whose power is fixed 15 dBm and does not allow
any changes. The other solution is to group the results based
on SNRs across various locations, which applies to all com-
mercial WiFi cards. So we adopt the second solution in our
experiments.

4.2 Localization Accuracy Comparison

Dynamic SNRs actually are quite common in indoor multi-
path-rich environments, since multipath could result in con-
structive or destructive interferences. Also, SNRs are affected
by blocking, distance, and the transmit power of APs. Herewe
do not distinguish the causes of dynamic SNRs and just clas-
sify SNRs into three categories, high SNRs ½15;1Þ, medium
SNRs ð2; 15Þ, and low SNRs ð�1; 2�. All three methods share
the same data and each uses 15 packets. We fix the number of
APs at 6 for this comparison and report results in Fig. 7.

We observe from Fig. 7a that with high SNRs, ROArray
accomplishes comparable results with SpotFi and signifi-
cantly outperforms ArrayTrack. Particularly, ROArray
achieves 0.63 m median localization error while SpotFi and
ArrayTrack’s median accuracy is 0.64 m and 2.3 m, respec-
tively. And the 90th percentile errors are 2.66 m, 2.51 m, and
5.66m for ROArray, SpotFi, andArrayTrack respectively. The
reason for ArrayTrack’s relatively poor performance is that its
aperture size is very limited, in contrast, ROArray and SpotFi
increase the aperture size by coherently combining CSI values
across subcarriers. Similar trends can be observed with
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medium SNRs in Fig. 7b. As expected, when SNRs decrease,
the performances of all the three systems deteriorate accord-
ingly. However, when SNRs drops to a low level as shown in
Fig. 7c, the median accuracies of SpotFi and ArrayTrack
degrade to 2.61 m and 3.52 m respectively whereas ROArray
achieves 0.91 m. Such performance gain of ROArray over
other systems largely comes from the robustness of sparse
recovery techniques. While ArrayTrack appears to be not that
affected by different SNRs, its median accuracy actually
degrades from 2.32 m for high SNRs and 2.81 m for medium
SNRs to 3.5m for low SNRs. Themain reason thatArrayTrack
looks like ‘robust’ to all SNRs is that its localization accuracy
at high SNRs is very low compared to SpotFi and ROArray
due to its limited resolution.

Also, the overall performance comparison of three systems
under all SNRs is shown in Fig. 7d. In particular, ROArray
achieves 0.99 m median accuracy while SpotFi and Array-
Track have 1.59 m and 3.06 m median errors. This again
shows ROArray is better than SpotFi and ArrayTrack when
there are different SNR cases for indoor environments.

4.3 Direct Path Accuracy Comparison

To further examine the resolvability of three different sys-
tems, we investigate AoA estimate errors. Since we do not
have the ground truth AoAs for all the paths, we measure
the accuracy of AoA estimation algorithms by comparing
the difference between the ground truth direct-path AoA
and the closest peaks in the spectrum.

For this test, we still conduct evaluation with three differ-
ent SNR situations. Fig. 9a plots the CDFs of AoA estimation
errors for all APs with high SNRs, where ROArray achieves
almost the same median AoA accuracy as SpotFi, which is

2.48 degrees better than ArrayTrack. When SNRs go into the
medium level as shown in Fig. 9b, the degradation of all the
three systems is quite limited as the median AoA accuracies
worsen from 6.7 to 7.32 degrees for ROArray, from 6.62 to
7.40 degrees for SpotFi, and from 9.10 to 10.0 degrees for
ArrayTrack. This phenomenon again shows good perfor-
mance of MUSIC with high and medium SNRs and confirms
that sparse recovery algorithms are robust. Note that in low-
SNR situations, the median accuracy of ROArray only drops
to 7.9 degrees whereas those of SpotFi and ArrayTrack
degrade to 12.3 degrees and 15.2 degrees respectively. Even
the aperture size of SpotFi is the same asROArray’s, the inher-
ent drawback of MUSIC that relies on the separation of the
signal and noise spaces makes SpotFi less robust compared to
ROArray. Another factor that contributes to the inaccuracy of
SpotFi is its sensitivity to inaccurate K̂.9

4.4 Impact of Phase Calibration

Next, we examine the performance of our phase calibration
method and compare it to Phaser [13] in detail. The results
are plotted in Fig. 10. First, we compare it with Phaser
regarding absolute calibration error. As shown in Fig. 10a,
as the number of anchor points increases, the performance
gain of ROArray is much better than Phaser. Specifically,
When the number of anchor point is 6, Phaser’s calibration
error is 30.2 degree while ROArray’s error is only 12.1
degree. This is mainly because Phaser is not robust to multi-
path environments, unlike ROArray where we only rely on
LoS paths. Another contributor may come from the joint
estimation across subcarriers while Phaser treats each sub-
carrier independently. Due to such performance gain, it is
not surprising to see that the AoA estimation of ROArray is
also much better than that of Phaser. In particular, the
median AoA error of ROArray is 9.8 degree whereas its of
Phaser is 20.2 degree, as shown in Fig. 10b. The localization
accuracy comparison using two different phase calibration
method is shown in Fig. 10c. ROArray’s calibration achieves
an improvement of 1.38 m over Phaser in terms of median
localization accuracy. This huge performance gain stems
from the MUSIC-based calibration scheme and least square
optimization using multiple anchor points.

4.5 Impact of Multi-Packet Fusion

To investigate the impact of multi-packet fusion, we conduct
experiments under different multipath and SNR scenarios.

Fig. 7. Comparison of ROArray’s localization accuracy with SpotFi and ArrayTrack under high, medium, and low SNR scenarios.

Fig. 8. Experiment device and deployment. Our experiments involve sev-
eral APs and a mobile client that is an Intel NUC. The testbed covers 18
m � 12 m indoor area. Red dots represent test locations.

9. In fact, SpotFi fixes K ¼ 5 [1], which intuitively cannot adapt to
various ground truthK.
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First, we examine the impact of packet numbers. We vary the
number of sampled packets from 1 to 40, and group results
into two categories, LoS and NLoS. As shown in Fig. 11a, the
accuracy improves as more packets are collected for both LoS
andNLoS cases. In particular, the average localization error is
3.04 m for LoS cases when only 1 packet is involved. It
improves to 0.74mwhen 20 packets are used. At least two fac-
tors are contributing to this. First, ROArray achieves better
accuracy by coherently combing multiple samples using SVD
decomposition. Second, multiple samples intuitively help to
filter out unpleasant outliers. Note that the gain of more pack-
ets is diminishing and almost negligible when the packet
number reaches 40. To better see the impact of multi-packet
fusion, we further compare it with the schemewithout fusion.
As shown in Fig. 11b, unsurprisingly the scheme without
multi-packet fusion is much worse than the scheme with
fusion. We observe that especially in low SNR cases, the
median accuracy of the schemewithout fusion degrades from
1.8 m with high SNRs to 4.8 m with low SNRs. Meanwhile,
the accuracy of ROArray keeps stable under 1 m, which

shows the power of multi-packet fusion that coherently com-
pressesmultiple packets.

4.6 Varying Number of APs

Next, we investigate how AP density impacts ROArray’s
accuracy. By varying the number of APs that can hear the cli-
ent from 3 to 5, we present results in Fig. 12a.We observe that
accuracy improves with the increasing density of APs, similar
to other AoA based systems [1], [12]. Because with more APs,
our RSSI-weighted localization scheme tends to give greater
weights to high-quality direct paths, largely reducing the neg-
ative impact brought by noisy estimates. We see that the
median accuracies of ROArray are 1.04 m, 1.56 m, and 2.79 m
with 5, 4, and 3 APs respectively. Note that, with only 3 APs,
the performance of ROArray almost catches up with that of
ArrayTrack.

Fig. 9. Comparison of ROArray’s AoA estimation errors with SpotFi and ArrayTrack under high, medium, and low SNR scenarios.

Fig. 10. Comparison of ROArray and Phaser in terms of absolute calibration error, AoA estimation error, and localization error. Those results show
that ROArray significantly outperforms Phaser in phase calibration.

Fig. 11. The impact of multi-packet fusion of ROArray in both LoS and
NLoS cases and various SNR cases. ROArray shows significant improve-
ment on robustness thanks to themulti-packet fusion.

Fig. 12. (a) CDFs of localization errors for ROArray with varying number
of APs, showing how AP density affects ROArray’s performance.
(b) CDFs of localization errors for ROArray with different deviation
angles of antenna polarization, indicating the importance of polarization.
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4.7 Impact of Antenna Polarization

For mobile users, the orientation of antenna keeps changing.
Tomeasure the effects of deviation angles of antenna polariza-
tion, we use horizontally polarized antennas on APs and ran-
domly deviate the elevation angles of the mobile client
between (0�, 20�] and (20�, 45�]. The results in Fig. 12b show
that the accuracy of ROArray is heavily affected by the devia-
tion angle of polarization. The performance of ROArray wor-
senswith increasing deviation angles. Themedian localization
errors degrade to 2.21 m and 4.71 m for 0�
 20� and 20�
 45�

deviation respectively. In fact, this is not surprising as the ele-
vation-angle deviation inevitably leads to very poor wireless
reception since themanifold of the antenna array in our imple-
mentation is 1-dimension. One possible solution is to employ
the 2-dimension antenna arraywith both vertical and horizon-
tal polarizations, which can adapt to more antenna orienta-
tions in 3-D space.

4.8 ToA-Based Method Comparison

We also compare ROArraywith Chronus [2], a state-of-the-art
ToA-based solution using off-the-shelf devices. The compari-
son criterion is based on different levels of SNRs. ForChronus,
we implement it on all the available bands for both 2.4&5GHz
and obtain a CSI for each band while hopping channels. The
results in Fig. 13 demonstrate that ROArray’accuracy is com-
parable with Chronus when SNRs are high and medium.
Also, Chronus only achieves 1.51 m median accuracy for low
SNRs while ROArraymaintains sub-meter localization errors.
This is mainly because Chronus does not have mechanisms
that can deal with low SNRs. Note that fair competition for
AoA and ToA systems is really difficult as there are too many
different impacting factors. For example, Chronus uses only a
single-AP but ROArray requires multiple APs. ROArray is
fully compatible with ongoing WiFi communication while
Chronus has to disrupt communication due to channel hop-
ping. Actually, both systems have their own suitable applica-
tions. Chronus’ single-AP solution is fit for small businesses
that are concerned about device cost While ROArray is more
suitable for large-scale deployment where requires stable and
communication-compatible localization services.

5 RELATED WORK

There has been extensive research in the literature on WiFi
based localization systems, so we only summarize closely
related ones here. For more complete surveys, please refer
to [33], [34]. Basically, there are two types of WiFi localiza-
tion solutions, signal processing based and RSSI based.

Signal Processing Based. With the development of multi-
antenna design, WiFi localization using signal process

techniques has received increasing attention [1], [2], [10], [11],
[12], [13]. Technically, signal processing based methods are
able to estimate two important metrics, ToA and AoA. Due to
the intrinsically limited bandwidth of WiFi signals, the accu-
racy of ToA based systems is quite limited. Recently, several
channel hopping mechanisms are proposed to combine a
number of narrow bands into a virtual wide-band [2], [10],
[11], breaking the barrier of meter-level accuracy. There are
two disadvantages associated with those methods: communi-
cation disruption due to channel hopping and slow adapta-
tion to moving mobile clients due to multi-channel
measurements. On the other hand, AoA based approaches
can maintain communication unaffected and realize high
accuracy localization [1], [12], [13]. The most recent advance,
SpotFi can even achieve 40 cm median accuracy [1]. Another
closely related method is WiDeo [32], which also uses sparse
recovery to retrieve ToA and AoA information. There are sev-
eral key differences between ROArray and WiDeo. First,
WiDeo achieves better accuracy than ROArray does but it
requires software defined radios (SDR) and 4 antennas for
each AP. One of the main reasons for the SDR requirement is
that it can make use of pilot subcarriers to calibrate uncertain
time delays, which means its ToA estimates can be included
directly in the location estimation. In contrast, our ToA esti-
mates using off-the-shelf APs contain the residual dynamic
delay in each packet [1], forwhich no solutions and calibration
methods are known yet. Second, unlike the very brief state-
ment of actual sparse recovery algorithms in WiDeo, we pro-
vide the core and analysis of joint ToA/AoA estimation in
detail. Third, the computation time of WiDeo is more than
ROArray due to the continuous basis for WiDeo whereas
ROArray is based on the discrete basis. Last but not least, we
include multi-packet fusion to coherently improve the locali-
zation accuracy while the main goal of WiDeo is to trace the
motion by identifying static reflections. In summary, prior sys-
tems that work with off-the-shelf devices would suffer from
poor and unstable performance under low-SNR scenarios,
such as far away from APs, serious NLoS, and interference.
ROArray falls into the AoA category. While it maintains com-
parable performance that state-of-the-art systems achieve at
high SNRs, it shows robustness with low SNRs. It can also
localize a target with one and more packets, making it more
applicable inmobile scenarios.

RSSI Based.Due to the high availability of RSSI values, RSSI
based systems have been studied for many years. Thosemeth-
ods either measure the range via a propagation model [3]
or collect fingerprints from a series of APs to locate a client
[5]. Nevertheless, the biggest problem for them is not-
so-impressed accuracy. The most common way to boost accu-
racy is to increase the number of APs, usually several dozens.
Another drawback is the cost of site survey [34]. When envi-
ronments or APs change, the system usually needs another
overhaul calibration, which is always time-consuming. Even a
variety of crowdsourcing schemes can help [4], [5], the quality
of crowdsourceddata needs extra care.

Others. Many sensor fusion based systems are also pro-
posed to further improve the accuracy of pure WiFi based
methods [6], [7], [8], [35]. They usually make use of sensors,
such as gyroscopes, accelerometers, to derive walking dis-
tances, orientations and moving directions. Together with
floor plans, those deduced mobile metrics can effectively

Fig. 13. Localization errors under different SNRs for ROArray and
Chronus.
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improve the accuracy of smartphone users. Meanwhile, a
great many RFIDs based localization systems also achieve
impressive performance with different application scenar-
ios [36], [37]. However, we think they are not as ubiquitous
as widely deployed WiFi infrastructure around the world.

Sparse recovery based AoA estimation is extensively stud-
ied in signal processing and information theory areas [26],
[38], [39], which also inspires this work. Those works mainly
focus on the theory or numerical validation aspects, not for
practical systems, including WiFi. They usually do not take
into account practical challenges, such as time/frequency
synchronization and phase calibration.Moreover, they do not
consider the multi-carrier feature of signals, which is the core
of today’s WiFi. In contrast, ROArray builds on those well-
studied theory results and further develops a working WiFi
localization system using off-the-shelf devices.

6 CONCLUSION

We have presented a robust WiFi localization system,
ROArray, that addressed the poor performance with low
SNRs, which was difficult for state-of-the-art approaches. The
insight of ROArray was to cast AoA estimation into a sparse
recovery problem, which has been able to yield sharp and
sparse AoA spectrum. Through jointly estimating the ToAs
and AoAs of all the paths across the time domain, we have
achieved direct path identification and the increase of resolv-
ability at the same time. We believe ROArray can benefit a
range of indoor applications that require high robustness in
challenging low-SNR scenarios, such as localization solutions
for enterprise andmilitary.

As the current time-cost of our system is still high and unfit
for real-time tracking demands, there are several possible
ways for further exploration. The first way could be to intro-
duce fast single-packet processing techniques, such Matrix
Pencil [40]. Such integration requires a coherent detector
because random phases can make the average tend to zero
[40]. The second potential optimization is to try Sparse
Bayesian Inference that can maintain high estimation accu-
racy evenunder a very coarse sampling grid. One of the issues
with this is that how to adaptively adjust grid spacing accord-
ing to different SNRs [38]. The third way is to use wide-band
WiFi, e.g., 802.11 ad with 60 GHz, that can provide ToA with
much higher resolution. Nevertheless, suchmethods are hard
to implement on off-the-shelf devices and are barely able to
handleNLoS cases.
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