
Ridesharing as a Service: Exploring Crowdsourced
Connected Vehicle Information for Intelligent

Package Delivery

Fangxin Wang†, Yifei Zhu†, Feng Wang‡, Jiangchuan Liu†∗
School of Computing Science, Simon Fraser University, Canada†

Department of Computer and Information Science, the University of Mississippi, USA‡

Abstract—Nowadays online shopping has become explosively
popular and the vast numbers of generated packages have
brought great challenges to the traditional logistics industry,
especially the last mile package delivery. Traditional delivery
approaches rely on dedicated couriers for package dispatch, while
the labor cost is quite expensive and the quality is hard to guaran-
tee due to the diverse delivery addresses and tight deadlines. On
the other hand, modern cities are full of available transportation
resources such as private car trips. The mobile crowdsourcing
through 4G/5G and vehicle-related communications enables the
vehicle resources to be connected as an intelligent transportation
system. As such, we believe ridesharing will be a core service for
connected vehicles, which we refer to as Ridesharing as a Service
(RaaS).

In this paper, we focus on the quality of service (QoS) of
RaaS in the last mile package delivery. Mining from real-world
car trips, we build up a citywide routing graph and conduct
a personalized travel cost prediction considering both the travel
time of each driver and the fuel consumption of each vehicle. We
then design an online algorithm to assign proper package delivery
tasks to the submitted car trips, aiming to maximize the utility of
the ridesharing service provider. Our extensive real-world trace-
driven evaluations further demonstrate the superiority of our
RaaS based package delivery.

I. INTRODUCTION

The explosive growth of online shopping brings tremendous

opportunities as well as heavy burdens to traditional logistics

industry, where a mass of packages are to be delivered every

day. Among the entire logistics chain, the cost of last mile
delivery is the most expensive part, ranging from 13% to

even 75% of the entire delivery cost [1]. In the traditional

approach, the diverse delivery addresses rely on dedicated

couriers where large-scale package consolidation via trains

or planes no longer applies, leading to expensive labor cost.

The packages generated in China’s 2017 online Singles’ Day

are estimated to achieve 1.5 billion and have to be delivered

in a few days [2]. Such a massive package delivery demand

obviously surpasses the last mile logistical capability, delaying

the eventual package delivery time for days or even weeks [3].

Even though, a worldwide survey from McKinsey reveals

This work is supported by a Canada Technology Demonstration Program
(TDP) grant, a Canada NSERC Discovery Grant, and an NSERC E.W.R.
Steacie Memorial Fellowship. This work is also partly supported by an NSF
I/UCRC Grant (1539990).
∗Corresponding author: Jiangchuan Liu(jcliu@sfu.ca).

Source

Pick up location Drop off location

Destination

Cloud

BS

BS

Logistics service
provider

Vehicles

Package
Delivery Tasks

RaaS

Fig. 1. The architecture of RaaS based last mile package delivery. A driver
is planning to travel from the source to the destination through the dashed
route. Assume that a package is scheduled to be delivered from a shop to a
house, where the shop is close to the source and the house is close to the
destination. Then the driver can deliver this package incidentally during the
trip through the alternate route shown by solid lines.

that the majority of consumers still prefer the home delivery

service, especially the same day delivery [4].

The contradiction between the limited delivery capacity

and the ever-increasing package delivery demand is becoming

increasingly serious, which degrades the quality of service

(QoS) in package delivery. It is no doubt costly to improve the

logistics capacity to catch the delivery demand. Besides, the

sudden burst of demand during large online shopping holidays

(e.g., Black Friday in US and Singles’ Day in China) further

greatly challenges the delivery services, leading to escalating

delivery delay. And it is also not cost-efficient to overprovision

the delivery capacity to meet such transient demand.

In fact, the hidden delivery capability within an urban envi-

ronment is enormous – modern cities never lack transportation

resources, only if we can utilize them effectively. With the

mobile crowdsourcing through 4G/5G [5] and vehicle-related

communications [6] (e.g., vehicle-to-vehicle and vehicle-to-

infrastructure), the vehicle information can be readily accessed

anytime and anywhere, which enables the citywide vehicles

to be connected as an intelligent transportation system. This

opens an opportunity toward a new generation of last mile

delivery that explores the crowd intelligence of connected

vehicles. In particular, the citywide car trips are a rich set

978-1-5386-2542-2/18/$31.00 c©2018 IEEE

Fig. 2. The framework of our RaaS based package delivery system.

of resources to share, with packages being hitchhiked. A

driver can take the delivery task released by the platform

(or service provider) and finish the delivery during his/her

trip with a reward. The crowdsourced car trip sharing makes

the most effective use of transportation resources, filling the

gap between the insufficient logistics provision and massive

delivery demand. As such, we believe ridesharing will be a

core service in the intelligent package transportation, which

we refer to as Ridesharing as a Service (RaaS), where the

architecture is illustrated in Fig. 1.

There are several main challenges to realize RaaS based

package delivery. First, each package should be delivered by its

arrival deadline. Yet it is hard to predict the accurate package

arrival time considering the uncertain traffic conditions and

personalized driving styles. Second, taking a delivery task will

impose extra costs (e.g., extra time cost and fuel consumption)

to a driver due to the route change. A prerequisite is that the

incentive reward of a package must be higher than his/her

expectation. Given that many car trips can be suitable to take

a task, how to select the best choice and set a reasonable price

remain a problem. Third, such a schedule system requires a

fast online assignment process given the delivery tasks and car

trips are coming in real time.

In this paper, we focus on the QoS of RaaS and explore

crowdsourced car trip information for intelligent package

delivery. Mining from the real-world car trips, we first build

up the citywide routing graph and learn the travel cost (travel

time and fuel consumption) features of each road segment. We

conduct a personalized analysis to achieve accurate travel cost

prediction considering different time period, driving styles and

vehicle fuel efficiencies. We then design an online algorithm

to assign proper tasks to the submitted car trips, aiming to

maximize the utility of the platform. Our real-world trace-

driven experiments demonstrate that our personalized travel

cost prediction reduces the error rate by up to 60% com-

pared to the approach without such consideration. And our

online assignment algorithm can achieve an average of 52%

improvement on the utility of the platform compared to the

best baseline method.

The rest of the paper is organized as follows. Section II

presents the overview and framework design of our RaaS

based delivery system. In section III, we describe the triple-

dependent analysis on edge cost prediction and the person-

alized trip cost calculation. In section IV, we introduce our

online task assignment algorithm. We show the trace-driven

experiment results in section V. We introduce the related work

in section VI and conclude this work in section VIII.

II. OVERVIEW AND FRAMEWORK

In the RaaS based package delivery, people can submit their

trips online to the platform. The platform will determine how

to assign package delivery tasks to the best candidate car

trips. We first introduce several basic definitions as follows.

A car trip T denotes a trip plan from one location to another,

which is defined as < T .s, T .e, T .t, T .dr, T .ve >, where

T .s is the trip start location, T .e is the trip end location,

T .t is the trip start time, T .dr is the driver identification

and T .ve is the vehicle type of this trip. The trip cost
includes two components, i.e., the time cost and the fuel

cost. Given a particular trip, the trip cost is represented as

C(T) : (CT (T), CF (T)), where CT and CF denote the travel

time cost and fuel consumption cost, respectively. A package
delivery task P includes five properties: a pick up location

P.p, a drop off location P.d, a task submission time P.t, a

required arrival deadline P.ddl, and a value P.v. The value of

a task can be considered as the cost of delivering P through

dedicated couriers.

When deciding whether to assign a set of tasks to a

trip, the platform has two main considerations. First, the

assigned packages must be delivered before their required

arrival deadlines. Yet the ever-changing road conditions and

drivers’ personalized driving styles make the package delivery

time prediction even challenging. Second, since different trips

can have different extra costs when taking the same package

delivery tasks, the corresponding expected rewards can vary

with each trip, leading to different gains. The platform wants

to assign tasks to the most suitable car trips to maximize the

total utility.

In this paper, we explore crowdsourced car trip information

and propose a RaaS based package delivery system to solve

this problem. The framework of our system consists of three

components, including Data Preprocessing, Travel Cost Pre-
diction, and Online Task Assignment, as illustrated in Fig. 2.

Data Preprocessing. We first build up the routing graph

based on the collected massive trajectory data. We conduct a

vehicle trajectory data mining and filter out those trajectories

out of the target location coverage. The qualified time-stamped

GPS points are then mapped onto the road network. Since

the GPS records of each trajectory can be skewed, we first

calibrate the GPS locations of each trajectory using Google

SnapToRoads API1 and get the unified GPS samples for

each trajectory. When two trajectories intersect, we identify

the point of intersection as a landmark, indicating a vertex

in our graph. Given the massive trajectories cover all the

citywide main roads, we therefore construct a routing graph

G = (V,E), where each edge E is a road and each vertex V

is an intersection of at least two roads. With the timestamp

and fuel consumption records, we are able to calculate the

travel time and fuel cost of each trajectory on each edge in

the graph2.

Travel Cost Prediction. The main objective of this com-

ponent is to achieve an accurate delivery time and travel

cost prediction, which serves for the delivery task assignment.

We conduct a personalized prediction based on the massive

trajectory data. Different from existing works [7] that only

considered time-varying traffic conditions, we comprehen-

sively analyze the impact of different time, different driving

styles and different vehicle types on the travel time and travel

cost. We predict the expected cost of each edge employing a

Gaussian mixture model (GMM) based algorithm. We further

construct a dynamic weighted graph to calculate the trip cost

for any particular car trip.

Online Task Assignment. We first study the online as-

signment from its offline scenario and formulate the task

assignment as an optimization problem. We then conduct a

comprehensive analysis on the reward design mechanism. We

propose a heuristic task selection algorithm based on the extra

cost of different trips and the threshold gain according to the

waiting ratio of each task. For each coming trip, we repeatedly

select one task with the maximal gain difference and allocate

it to the trip until no suitable tasks can be allocated.

III. TRAVEL COST PREDICTION

A. Time Slot Slicing

The traffic conditions are usually changing quickly in dif-

ferent time periods, and can cause a large variance in time and

fuel cost. A typical example is that traffics are more crowded

in rush hours than during other time, leading to more fuel

consumption and longer travel time even on the same road.

Some previous works [7], [8] only divided the time of a day

into several time periods and predicted features in different

periods. However, this coarse-grained partition is not accurate

1https://developers.google.com/maps/documentation/roads/snap
2For ease of computing, we assume that a vehicle only starts or ends at a

landmark, which only introduces marginal errors.

work days:

rest days:

night-time hours rush hours day-time hours

00:00 7:00 9:00 17:00 19:00 22:00 24:00

00:00 7:00 22:00 24:00

Fig. 3. The distribution of time periods.

enough to describe the fast-changing travel cost. We therefore

use a fine-grained two-level time slot slicing mechanism to

capture the time-dependent features of travel time cost and

fuel cost on each edge. We first conduct a day level partition

that considers the traffic difference from a view of days and

weeks. A week is divided into work days and rest days, where

both holidays and weekends are included in the rest days. The

work days include three time periods: rush hours Wr, daytime

hours Wd and nighttime hours Wn; and the rest days include

two time periods: daytime Rd and nighttime Rn. Thus, we

have five time period types. The second level is minute level
partition that divides a day into L = [24∗60α] time slots, where

α indicates the time slot duration between two consecutive

slots, e.g., 15 minutes. Fig. 3 illustrates the time periods of

work days and rest days, respectively.

For a time slot l and an edge ek, we filter out the car trips

whose trajectory passes through this edge during this particular

time slot as Sl
ek

. Considering the periodic feature of traffic

flow, we extend one time slot in a particular day to an extended

time slot set of a time cycle (e.g., a week or a month) with

the same day level type (i.e., work days or rest days). For

example, we consider time slot l of work days on edge ek
and the time cycle is a week. Then Sl

ek
includes Sl

ek
(Mon)+

Sl
ek
(Tue) + ... + Sl

ek
(Fri), not including the rest days. In

the rest of this paper, we refer to a time slot as the extended

time slot set unless otherwise specified. Based on Sl
ek

, we can

obtain the cost-count set Cl
T,ek

and Cl
F,ek

as {(cost, count)},

where cost means the travel time or fuel consumption, and

count represents how many such trips are observed.

Although the time slot slicing to some extent demonstrates

the general traffic characteristics in different time periods, it

is far from enough to achieve an accurate cost prediction

for every trip. We next conduct a personalized edge cost

calibration considering the driving style of each driver and

the fuel efficiency of each vehicle.

B. Analysis of Different Driving Styles

People with different driving styles can have different time

cost for an edge, even departure at the same time. For example,

skilled drivers may often change lanes and overtake other cars

to avoid slow traffic, and thus passing through a road faster. On

the other hand, conservative drivers (especially new drivers)

are usually more cautious. They usually follow the speed limit

strictly and will not overtake others, leading to a longer travel

time on the same road. This difference can cause a large

variance in Cl
T,ek

. Therefore, the actual benchmark travel cost

of each edge is quite dependent on drivers’ driving styles and

we need to consider it for personalized cost prediction.

30 40 50 60 70 80 90 100 110 120

Travel time (s)

0

1

2

3

4

5

6

C
ou

nt

current slot
nearby slots

Fig. 4. The cost overlay mechanism for a particular time slot based on the
travel time cost of a road.

To this end, we identify different drivers for each trip and

calibrate the costs according to different driving styles. We

assume that each car in our dataset is used by the same driver

and the driver keeps his/her driving style constant. Then we

define the driving style index DSu related to a particular driver

u as the mean ratio between his/her travel time through every

road and all drivers’ average travel time through the same road.

We calculate DS for each driver by the following steps. For

a particular driver u, we first extract all the edges he/she has

driven in all time slots. Given that each car has a unique ID

and a car is usually used by its owner, we can easily extract

all the car trips as well as the related edges belonging to a

driver. For a particular Cl
T,ek

, we denote DSl
u,ek

as the ratio

of the travel time cost of driver u to the average travel time

cost of all drivers at edge ek during time slot l. By traversing

all our dataset, DSu can be easily calculated as the average

value of all DSl
u,ek

. Repeating this process, we can obtain the

driving style index for every driver. At last, we calculate the

benchmark travel time cost for an edge at a given time period

through dividing each cost in Cl
T,ek

by the corresponding

DSu.

C. Analysis of Different Fuel Efficiencies

Similarly, different vehicle types also have different fuel

efficiency (represented by fuel consumption of per 100 kilo-

meters in city way), which can cause diverse fuel consumption

collection in Cl
F,ek

. For example, a van can consume much

more fuel than a household sedan. We thus need a unified

indicator to evaluate the benchmark fuel cost of an edge.

We first select a baseline vehicle type v0 and specify the

fuel efficiency of this vehicle type fv0 as the baseline fuel

efficiency. Note that the fuel efficiency data can be obtained

from the official vehicle manuals with the detailed car types

from our dataset. Similarly, we define a fuel efficiency index
FE of vehicle v as FEv = fv

fv0
, indicating the fuel efficiency

ratio of car type v to the baseline car type v0.

With this index, we then calibrate the benchmark fuel

consumption cost for each edge through dividing each cost in

Cl
F,ek

by the corresponding fuel efficiency index FEv . These

calibrated metrics further enable us to learn the actual char-

acteristics of travel cost, and achieve an accurate personalized

prediction.

30 40 50 60 70 80 90 100 110 120
Travel time (s)

0

0.01

0.02

0.03

0.04

0.05

P
ro

ba
bi

lit
y

de
ns

ity N(80,6.5)
N(60,4)
N(102,5.5)
GMM

Fig. 5. An example of using three-component GMM to predict the travel
time distribution.

D. Edge Costs Prediction

We assume that the costs of each time slot follows some

random distributions and estimate random variables RV l
T,ek

and RV l
F,ek

for each cost. Cl
T,ek

and Cl
F,ek

can be simply used

for such estimation. Yet such a prediction can be inaccurate

and not robust for two reasons. First, as the road traffic usually

changes gradually with time, this hard time slot slicing can cut

off the continuity of time and cause inaccurate feature extrac-

tion. Second, due to the fine-grained time slot granularity, the

count of trajectories in each time slot can be limited, or even

empty, e.g., it is likely that no car passes through a road in

midnight. Thus using such hard time slot slicing may fail to

estimate every road in every time slot (because some road may

lack record data in some time slots.)

Considering the continuity of time periods, we use a cost
overlay mechanism to address this issue. When estimating

the random variable in time slot l, we not only consider

the costs in l (i.e., Cl
T,ek

and Cl
F,ek

), but also include the

costs of other nearby time slots. That is, the costs of nearby

time slots are multiplied by a weighted factor and then added

to the costs in l. Intuitively, time slot that is more further

away should have a smaller weight. We thus employ the

widely-used exponential decaying function Decay(t) = e−
t
λ ,

where λ indicates the mean lifetime. The contribution of

time slot x regarding the target time slot l is described as

Decay(x, l) = e−
1

λ(x,l)
·min{|x−l|,|x+D−l|,|x−D−l|}

, where D
is the number of time slots in a day and equals to [24∗60α].
We set λ(x, l) as different values according to whether x and

l have the same time period type, different from [9] using a

constant mean lifetime parameter. If they are in the same time

slot, we set a larger value τla; otherwise we set a smaller value

τsm. In this way, the final Cl
T,ek

and Cl
F,ek

can be calculated as

{(cost,∑x count(x)·Decay(x, l))}. Fig. 4 illustrates a simple

case of using cost overlay mechanism for a particular time

slot based on the travel time cost of an edge. This mechanism

can complement the defect of the sparse data and makes the

characteristics of cost clearer.

With the benchmark travel time and fuel consumption cost

for each time slot on every road, we next consider learning

corresponding random variables and their probability func-

tions. Given the possibly diverse data distribution, we need

a model that can generally fit all kinds of distributions well.

As such, we consider using Gaussian mixture model (GMM)

to estimate these random variables. As a linear combination of

multiple Gaussian distributions, GMM is able to approximate

any probability distribution [10], which fits well in our context.

Fig. 5 shows an example of using three-component GMM

to estimate the travel time distribution. We can observe that

GMM is able to match the distribution curve precisely.

At last, we estimate the expectation of random variables

RV l
T,ek

and RV l
F,ek

as the final benchmark travel cost (in-

cluding travel time cost E(RV l
T,ek

) and fuel consumption cost

E(RV l
F,ek

)) for time slot l on edge ek. Considering the fea-

tures of travel cost can change with time (e.g., the travel cost of

an edge may greatly increase due to the road maintenance), we

need to update the travel cost timely. Recall that we maintain

a time cycle (a week or a month) when calculating the costs

of each time slots. We update the predicted travel cost as well

as the cost-count set by incorporating a new day in the cycle

and removing the last day from the cycle every time.

E. Personalized Trip Costs Calculation

With the predicted edge cost, we next consider how to select

the optimal routing path for a particular trip and achieve an

accurate trip cost prediction. Different from the static shortest

path problem, the cost of every path is uncertain since the edge

cost in the routing graph is changing with different time slots,

different drivers and different vehicles. Thus this problem is

actually finding the shortest path in a dynamic weighted graph.

We next try to find the optimal path to minimize the travel time

for a given trip.

The problem actually includes two situations. In the first

situation, a travel trip is very short and the entire time period

falls in one time slot. As the routing graph is static in this

situation, we can simply use the traditional shortest path

finding algorithm such as Dijkstra algorithm [11] to find the

travel path with the lowest travel time cost. Second, a trip can

travel through several time slots, where the weight of each

edge for each time slot is different in the routing graph. Then

in this situation, the weights of edges may change during

this path searching. We assume that all the car trips satisfy

the first-in-first-out (FIFO) property3, which is exhibited in

many networks, especially transportation networks [12]. Then

we can solve this dynamic shortest path problem in multiple

stages, where a stage is corresponding to a time slot.

We define the weight of an edge ek in a particular time slot

l as w(ek, l). Then an edge has a total of L different weights,

where L is the total time slot number. If a trip departs at a

particular time within time slot l, then we begin to search the

shortest path using the weights w(ek, l). When the arrival time

at any node spans a time slot during the searching process,

we then change the cost of every edge as w(ek, l + 1) and

continue searching. If we reach the last time slot in a day, we

next switch to the first time slot of the next day. We repeat

this process until we reach the destination node.

3The FIFO property stipulates that vehicles exit from an edge in the same
order as they entered, so that delaying one’s departure along any path never
results in an earlier arrival at an intended destination.

For each particular car trip, we calculate their personalized

travel time and fuel consumption. Recall that we have obtained

the driving style index for each driver and the fuel efficiency

index for each vehicle. Thus, when calculating the travel cost

of a trip related to a particular driver u, we calibrate the edge

cost of the routing graph by multiplying the original cost by

DSu to obtain the driver specific cost. Besides, if a trip is

related to a vehicle type v, the specific fuel consumption cost

is the product of corresponding benchmark value and the fuel

efficiency index FEv . For those new drivers without historical

records or car trips without specifying vehicle type, we set the

two indexes both as 1 so that their predicted cost is the same

as the benchmark value. In this way, we finally obtain the

package delivery time and the corresponding travel cost for

each particular trip.

IV. ONLINE TASK ASSIGNMENT

In this section, we consider how to assign the tasks to proper

car trips in the online scenario. We first analyze the problem

from the offline problem formulation. Then we conduct a

comprehensive analysis on the reward design mechanism and

develop a heuristic online algorithm to solve the real-time

assignment effectively.

A. Problem Formulation

To better understand the challenges of implementing the

online task assignment mechanism, we start from analyzing its

offline scenario with all the task and trip information known

in advance.

Practically, a driver who submits the trip plan will accept

package delivery tasks when offered a reasonable reward. We

assume that a driver’s expected reward ER is proportional to

the extra cost for package delivery with a base reward ER0.

The base reward is necessary since in the situation that a task

and a trip share the identical path, the driver still needs an

incentive to take the task though almost no extra cost exists.

The expected reward of tasks S = (P1, ...,Pi) assigned to the

trip Tj is represented as

ERj = ER0 + η[C(T̃j)− C(Tj)] (1)

where η is the expected reward coefficient and T̃j indicates the

new trip with the delivery tasks. Thus, the actual gain AGS
j

for these tasks S taken by trip j is:

AGS

j =
∑
i∈S

Pi.v − ERj (2)

where Pi.v is the value of task i.
We aim to assign delivery tasks to proper candidate trips to

maximize the total utility of the platform. Specifically, given

a set of package delivery tasks P = (P1,P2, ...,Pn) and a

set of trips T = (T1, T2, ..., Tm), find the task assignment <
(Pi1 ,Pi2 , ...,Pik) → Tj > with the objective of maximizing∑

U(T̃j) for every Tj ∈ T, where U is the total utility to the

platform, and T̃j = (Tj , (Pi1 ,Pi2 , ...,Pik)) indicating the new

trip with the assigned tasks.

We denote xij ∈ {0, 1} as a variable indicating whether

task Pi is assigned to trip Tj . Let ArrT (T̃j ,Pi) denote the

arrival time of Pi in trip T̃j . Then the offline task assignment

problem can be formulated as follows:

Max :
m∑
j=1

[
n∑

i=1

xijPi.v − ERj

]
(3)

s.t. ∑
j

xij ≤ 1, ∀i (4)∑
i

xij ≤ Nj , ∀j (5)

Pi.ddl ≥ ArrT (T̃j ,Pi), ∀i (6)

Constraint 4 specifies that any task is taken by at most one trip,

namely package itself is indivisible. Constraint 5 indicates that

the upper limit of allowed delivery package amount is Nj for

each trip Tj , given the vehicle space limitation. And constraint

6 indicates that the package arrival time should be no later than

the required deadline.

From the offline problem formulation, we know that a

driver will have a small extra cost when assigned tasks that

have similar trip routes with his/her original trip plan. This

further leads to a low expected reward and high utilities to the

platform. However, in practice, drivers’ trips may not be pre-

known well ahead by the platform, as drivers usually submit

their trip plans when they are ready for departure. The platform

has to make an assignment decision and react to the driver

instantly. How to make an assignment decision is not easy. On

one hand, if the platform assigns tasks to a particular trip, there

may appear another more attractive trip with smaller expected

reward in the near future. On the other hand, if the platform

skips this trip and keeps waiting for other more suitable trips,

it may happen that there is no better or even no other suitable

trips for this package delivery. In this situation, the platform

has to send dedicated couriers for the corresponding delivery

tasks, gaining no profit. Thus, it is challenging for the platform

to decide how to assign proper tasks to trips submitted by

drivers in an online fashion.

B. Online Assignment Algorithm

In the online task assignment scenario, both the tasks and

trips arrive over time. Our target is to serve each coming trip

instantly and assign the most suitable tasks to each trip to

achieve maximal utility. A reasonable online task assignment

mechanism should consider both the gain of the current task-

trip matching and the possibility of having a better candidate

trip in the future. For each delivery task i, we can estimate

the necessary delivery time length ci if dedicated couriers take

the task. We define the remaining waiting time WTi(t) as

WTi(t) = Pi.ddl − t− ci (7)

where t is the current time. This indicates how much remaining

time the platform can use to wait for other possible available

Task 1

Trip 1

Task 2

z = 0.1
TG = 10
AG = 11

z = 0.9
TG = 2

AG = 10

GD = 1

GD = 8

Fig. 6. An example of gain difference based selection. The platform prefers
to assign task 2 to trip 1 considering the larger gain difference.

trips before it is mandatory to send couriers for package

delivery. When there is still a long time before the necessary

delivery process, the platform may have a strict requirement

for the target trip, namely, the expected gain should be

relatively large. This actually requires that the tasks and the

trip share more similar route paths. With the time passing,

the platform should gradually relax the requirement for the

target trip and allow a smaller gain. When the deadline further

becomes very urgent, any candidate trip that will lead to a

positive gain can be selected as the target trip.

To this end, we seek to use a decaying function to describe

the threshold gain of every task currently on the platform. We

first introduce the waiting ratio zi(t) for a task i as the ratio

of already waited time to the total available waiting time:

zi(t) =
t− Pi.t

Pi.ddl − P.t
(8)

The waiting ratio of a task is actually served as a unified

indicator that describes the level of urgency to deliver this task.

We next design an exponential decaying function to indicate

the threshold gain TGi(z) for assigning the task Pi:

TGi(z) =

(Li

Ui

)z

Ui (9)

where Ui and Li indicate the upper bound and the lower bound

of the expected gain of the platform for delivering task i. Given

the current time and task information, we can calculate the

waiting ratio and the threshold gain of each task. Then for

each task-trip matching, we can obtain the gain difference as

GDi
j = AGi

j − TGi(z) (10)

which indicates the amount of gain beyond expectation.

It is worth noting that our online assignment mechanism

considers the gain difference as the trip selection criterion

rather than the actual gain. When there are multiple feasible

tasks for a trip, we prefer to select the matching with the

maximized gain difference rather than the maximized actual

gain. This is because the gain difference actually considers not

only the current gain but also the future possible gains. If the

current trips cannot have a positive gain difference, we skip

these trips and wait for future trips. We use a simple example

to explain this as illustrated in Fig. 6. In this situation, although

choosing task 2 will get a lower actual gain (10 compared to

11 when choosing task 1), this gain difference is very large,

Algorithm 1: Online Task Assignment Algorithm

Input: Current time t, task set P , the submitted trip Tj ,

and the task limit Nj for this trip.

Output: The task assignment M .

1 Calculate the gain difference for every task-trip matching;

2 Select the tasks with GD > 0 as a candidate set W ;

3 Set the allocated task set M = ∅;

4 while W 	= ∅ do
5 Find task i with largest GDi

j ∈ M and add it to M ;

6 if M == Nj then
7 break;

8 Recalculate the GD for other tasks in W ;

9 Remove tasks with GD ≤ 0 from W ;

10 return Task assignment result M ;

indicating a gain far beyond the expectation, especially when

the waiting ratio is 0.9.

Based on this principle, we try to assign proper tasks

to maximize the sum of the gain difference. However, this

allocation problem has a property that the cost sum of taking

a set of tasks at once is not equal to the sum of taking these

tasks individually. That is to say, the trip cost for taking a

set of tasks is an uncertain function of these tasks. In this

way, there are a total of 2N combination, where N is the

remaining number of tasks to be assigned. When we consider

the realistic car space limit, each trip j is limited to take at

most Nj packages. Even this realistic constraint reduces the

total combinations, this problem is still not straightforward to

solve.

To this end, we propose a heuristic algorithm to allocate the

suitable tasks to each coming trip, as illustrated in Algorithm 1.

The algorithm can be divided into three steps as follows. When

a trip plan Tj is submitted to the platform, we first calculate

the gain difference GDi
j for every available task Pi and select

all the tasks with positive gain differences into a candidate

task set. Second, we select the task Pi′ that has the largest

gain difference from the candidate set and assign it to the trip.

Note that the travel routes can have multiple choices when a

trip takes multiple tasks. The route selection can be reduced to

the traveling salesman problem (TSP) which is NP-hard. Here

we simply search for the next nearest feasible stop (a picking

up node or a dropping off node) from the trip departure node

and repeat this process iteratively in a greedy mechanism until

we reach the destination node. In this way, we can uniquely

determine the routing path for a particular trip with tasks

and the gain difference as well. Third, we recalculate the

gain difference between the newly updated trip and all the

remaining tasks in the candidate set and remove those tasks

with non-positive gain difference from this set. We repeatedly

conduct the second and third steps for task assignment until

no suitable tasks can be assigned anymore or the assigned task

number reaches the space limit Nj .

V. EVALUATION

In this section, we conduct extensive real-world trace-driven

simulations to show the performance of our system. We first

evaluate the impact of different metrics on the accuracy of

the edge cost prediction. Then we compare our online task

assignment solution with baseline methods to evaluate its

performance.

A. Experimental Setup

We first introduce the data of car trips and package delivery

tasks we use in our evaluations and the baseline method for

comparison as follows:

We use the real-world traces of car trip trajectories for

evaluations. We have closely collaborated with Mojio4, a

leading open platform for connected cars, and collected a

trajectory dataset of private cars in Vancouver from 09 June

2016 to 30 June 2016. This dataset includes more than

8,634,000 data entries of more than 382 vehicles and 25,978

car trips, recording the timestamp, GPS information, remaining

fuel level, car type, odometer and detailed driving information

(such as speed, acceleration, deceleration and RPM). We split

the entire dataset into the training set (first two weeks) and the

testing set (the last week) in the edge cost prediction. And we

use the whole data as car trips in the online task assignment.

We empirically generate the data for evaluation and restrict

the deadline for each task in a single day between 9 am to 7

pm. Considering that most packages are actually delivered in

the afternoon and only a small fraction of them are delivered

in the morning, we generate the deadline following Gaussian

distribution, i.e., ddl ∼ N(μddl, σ
2
ddl), where the mean value

μddl is set at 4 pm considering the actual situation. We

randomly generate the source and destination for each task.

Those tasks with very short delivery distance (e.g., less than

1 km) are removed out since it is not a big overhead using

other delivery methods (e.g., people can fetch their packages

themselves if the distance is very small). We assume that tasks

are released at the beginning of each day.

We implement two baseline methods for comparison, name-

ly, Largest Waiting Ratio First (LWRF) and Largest Actual
Gain First (LAGF). In LWRF, all the tasks are first sorted in

a queue by their waiting ratios in descending order. For each

coming trip, we try to assign the headmost task to the trip

if the trip can satisfy the deadline requirement and the actual

gain is positive. We repeat this process until no available trip

in this batch can be assigned. In LAGF, we use the similar

process in our online algorithm except that we every time

select the task-trip matching with the largest actual gain rather

than considering maximizing the gain difference. The LAGF

mechanism actually only focuses on the current gain, without

considering the future potentially more suitable trips.

B. Evaluation on Edge Cost Prediction

We consider the error ratio of travel time (ERT) and that

of fuel consumption (ERF) as the metrics for edge cost

4https://www.moj.io/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wd Wr Wn Rd Rn

E
R

T

Time periods

α=5 α=15 α=30 α=60

Fig. 7. Error ratio of travel time with
various time slot settings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wd Wr Wn Rd Rn

E
R

F

Time periods

α=5 α=15 α=30 α=60

Fig. 8. Error ratio of fuel consumption
with various time slot settings.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wd Wr Wn Rd Rn

E
R

T

Time periods

w d-c w/o c

Fig. 9. Error ratio of travel time when
considering drivers’ driving styles or
not.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wd Wr Wn Rd Rn

E
R

F

Time periods

w v-c w/o c

Fig. 10. Error ratio of fuel consump-
tion when considering vehicles’ fuel
efficiencies or not.

prediction, defined as ERT = Ave(|Pred time−Real time|
Real time)

and ERF = Ave(|Pred fuel−Real fuel|
Real fuel). We next evaluate

the impact of the triple-dependent analysis on the prediction

accuracy.

We first examine the impact of the time slot granularity α
(recall §III-A) on the cost prediction by setting different time

slot intervals, such as 5, 15, 30 and 60 minutes.

Fig. 7 illustrates the ERT of edges in the routing graph

under the different time slot settings. We can find that when

the time slot setting (α) is 15 minutes, the error ratio of travel

time is minimal compared to the real data records. When α is

5 minutes, the time slot interval is so small that many roads

may not have dense data records. And the travel time cost can

be less accurate with a small data size. On the other hand,

if we use a very large time slot setting (e.g., 30 minutes and

60 minutes), the road conditions during a time slot can vary

a lot due to the coarse-grained time slot setting, leading to a

large variance in travel time prediction. ERT also shows great

differences in different time periods. Compared to other time

periods, Wr, Wn and Rn have relatively smaller ERT, which is

probably due to the more consistent road conditions (e.g., most

roads are crowded in Wr and are quite clear in nighttimes).

Similarly, we also evaluate the ERF with different time slot

settings, as illustrated in Fig. 8. We can find that when we

set α = 15, fuel consumption prediction achieves the smallest

error. In rush hours, the ERF is less than 10% when α =
15, while the error ratio increases to more than 30% if α =
60. This is because even in rush hours the traffic congestion

level varies according to the different time. The overly coarse

setting, such as 60 minutes, can include many situations with

diverse road conditions and make the prediction inaccurate. In

this group of evaluation, we find that the setting of α = 15
has the best result among all the other settings, where our

prediction can achieve less than 20% error ratio in all time

periods for both travel time and fuel consumption.

We next evaluate the impact of considering drivers’ driving

styles and vehicles’ fuel efficiencies on the edge cost pre-

diction. Fig. 9 illustrates the comparison between the ERT

with the consideration of driving styles (w d − c) and the

result without such consideration (w/o c). We can find that

our model achieves much smaller error ratio of travel time

in all time periods, where the raw prediction (i.e., without

driving style consideration) achieves more than 35% error

ratio in Wd and Rd. Given that different drivers have different

driving styles, this diversity can lead to a large cost variance,

even the road conditions are identical. Through driving style

based analysis, we remove this impact factor when considering

the benchmark travel time cost, and reconsider this factor

when predicting the cost for each individual trip, enabling a

personalized trip time prediction.

The fuel consumption prediction even reveals a bigger

difference between ERF with the consideration of fuel efficien-

cies (w v−c) and the result without this consideration (w/o c),
as illustrated in Fig 10. We can find that without considering

the impact of different fuel efficiencies for different vehicle

type, the fuel cost prediction can significantly deviate from

the actual fuel consumption, achieving an average of 35% ERF

among all time periods. In contrast, we consider the different

fuel efficiencies of different vehicle types and thus is able to

achieve a more accurate prediction result, which is about 12%

among all time periods.

C. Evaluation on Task Assignment

We first explain several additional settings before the eval-

uation on task assignment. We define the extra cost of a trip

for taking the package delivery tasks as β ∗ extra time +
γ ∗ extra fuel, where β is set as the minimum legal hour

rate (e.g., $12/hour) and γ is set as the typical fuel price (e.g.,

$1.4/L). The average package delivery distance AveDis is the

distance between the pick up location and drop off location. If

we want to generate package sets with a larger AveDis, we

then remove out the tasks with very small delivery distance and

regenerate the same amount of tasks repeatedly until AveDis
is achieved, and vice versa. The ratio of packages to trips
(PTR) indicates the ratio of the total task numbers to the

total trips numbers, denoted as |total tasks|/|total trips|. For

simplicity, we set the value for a citywide package delivery

task as a constant value V (e.g., $16 as a typical value for same

day delivery), and base reward ER0 as $3. We set Ui and Li

as V − ER0 and 1, respectively. We set the package amount

limit for every trip as 3. The default settings of parameter PTR,

η, σddl and AveDis are 0.4, 1.5, 1.5 and 15km, respectively.

We first evaluate the impact of different PTR on the total

utility of the platform. Fig. 11 shows the total utility when we

set different PTRs. We can observe that as the package delivery

task amount keeps increasing, all the assignment approaches

tend to have a higher utility. When the PTR is over 0.6, the

0

2

4

6

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7

x103
T

ot
al

 U
til

ity

PTR

LWRF LAGF LGDF Offline

Fig. 11. The total utility when setting
different PTRs.

0

2

4

6

8

1.0 1.25 1.5 1.75 2.0

x103

T
ot

al
 U

til
ity

Expected reward coefficient

LWRF LAGF LGDF Offline

Fig. 12. The total utility when setting
different expected reward coefficients.

0

2

4

6

8

1.0 1.5 2.0 2.5 3.0

x103

T
ot

al
 U

til
ity

Standard deviation of task deadline

LWRF LAGF LGDF Offline

Fig. 13. The total utility when setting
different standard deviation of task
deadlines.

0

2

4

6

8

5 10 15 20 25

x103

T
ot

al
 U

til
ity

Average delivery distance (km)

LWRF LAGF LGDF Offline

Fig. 14. The total utility of setting dif-
ferent average task delivery distances.

utility becomes relatively stable, rather than rapidly increasing

when the PTR is low. Our algorithm (LGDF) can achieve an

average of 52% improvement compared to the best baseline

method, and has only 15% lower utility than the offline optimal

assignment on average when there are enough tasks. These

results indicate that our online algorithm is highly effective

with different PTRs.

We next consider the impact of different expected reward

coefficient η, as illustrated in Fig. 12. We can find that when

the coefficient is getting larger, the utility of the platform plum-

mets down when adopting the baseline assignment methods,

such as LWRF and LAGF. However, our algorithm is still

able to reach a relatively high utility (2x of LAGF and 12x of

LWRF) and only has a small difference compared to the offline

assignment. This result indicates that our online algorithm is

more efficient in assigning proper tasks to the coming trips

even when drivers’ expected reward coefficient is very high.

Besides the previous two factors, the total utility of platform

is also affected by standard deviation of task deadline σddl, as

illustrated in Fig. 13. We can observe that when the mean

deadline is set as 4 pm and the deviation σddl is 1.5, the

platform has the maximum utility compared to other parameter

settings. When the σddl keeps increasing, the utility begins

to decrease since the deadlines of many tasks are too early.

Then dedicated couriers have to be sent more frequently and

the utility is reduced. Nevertheless, even when the deadline

distribution is very widely spread (e.g., σddl = 3), our online

algorithm still remarkably outperforms other two baseline

methods by 54% and 281%, respectively. This result indicates

that our algorithm is more capable of assigning tasks even

when the deadlines are very tight.

We last evaluate the impact of different task delivery dis-

tance on the total utility, as described in Fig. 14. As the

average delivery distance increases, the performance of all the

methods gets worse accordingly. This is probably because the

excessively far delivery distance may exceed many people’s

daily car trip distance, where the arrival deadline cannot be

satisfied or the extra cost is too large. Even in this situation,

our algorithm can still achieve higher utility than baseline

methods. When the average delivery distance is 25km, our

LGDF mechanism still has a utility of 2268, achieving a 78%

improvement than the best baseline method.

VI. RELATED WORK

A. Crowdsourced Delivery

Crowdsourced delivery has attracted a lot of researches in

recent years due to its unique advantages in improving re-

source utilization, reducing the carbon emission, and satisfying

the ever increasing delivery demands. There are a few existing

works particularly targeted at the package delivery problem.

Chen et al. [7] exploited the relays of taxis with passengers

to deliver packages along with the passenger transportation

process. They assumed that packages can be temporarily

stored at the interchange station in between taxi rides and

proposed a two-phase routing plan to minimize the delivery

time during the taxi relay deliveries. Yet this relay process

actually affected drivers’ profit from passenger delivery, which

limited its practical usefulness. Sadilek et al. [13] proposed

a crowdsourced package delivery mechanism that one user

delivers the assigned package to another user nearby, which

continues until the package reaches the destination. However,

since the deliverer process is hop-by-hop and needs large

scales of participants, this delivery mechanism is also limited

for practical use and can result in an uncontrollable delivery

process. Some related works [14]–[17] also designed models

to find optimal carpool routing for urban ridesharing. They

focused on finding suitable matching between trips and pas-

sengers with personalized travel plans.

Different from these approaches, we solve the last mile

package delivery through crowdsourced car trip sharing. By

analyzing the cost of taking multiple tasks for a trip, we

develop an effective and practical task assignment mechanism

aiming to maximize the utility of the platform.

B. Trajectory Data Mining and Route Planning

The trajectory data mining and route planning are the foun-

dations in RaaS based delivery and also play important roles in

our system. Many recent works have mined massive trajectory

based data [8], [9], [18]–[20] and proposed intelligent route

planning model towards different targets. Ding et al. [21]

considered the dynamic road network with the cost varying

from time to time and studied the problem of finding the

best departure time to minimize the total travel time from

the source to the destination. Yuan et al. [8] mined the smart

driving directions and learned the user driving behavior from

massive trajectories to find the fastest route to a destination

from a given departure time. Baum et al. [22] focused on the

key problem of electric vehicle route planning, i.e., finding

a routing path that minimizes the energy consumption, and

developed a practical algorithm achieving fast computation.

Some works [9], [19] further exploited more comprehensive

routing targets considering distance, fuel cost, time cost,

weather, etc., to achieve personalized routing recommendation

based on the individual preference of each driver.

Our work not only identifies fine-grained time-varying

traffic conditions but also consider the practical individual

driving styles and vehicle fuel efficiencies. In this way, we can

accurately predict the travel cost for each individual driver and

vehicle, and accordingly schedule the most suitable tasks for

package delivery in an online manner.

VII. DISCUSSION AND FUTURE WORK

We propose a practical RaaS based package delivery system

in this paper. Yet in real applications, such RaaS based service

can be more complicated and we may need to consider more

comprehensive impact factors. Our system can be further

extended from the following aspects to make it more practical

for use.

First, we can consider more geographical impact factors

such as the weather information for the travel cost prediction

if we can have such data. The traffic conditions may vary a lot

under different weather conditions. For example, in the snowy

days, the average vehicle speed can be largely affected due

to the slippery road conditions. Yet in sunny days, the good

road conditions will enable a faster average speed. Indeed, our

system can be easily extended to integrate the weather features.

Similar to the processing of the vehicle fuel efficiency, we

just need to distinguish this feature in our data analysis and

calibrate it for the personalized cost prediction.

Second, we can conduct more in-depth optimization from

the aspect of delivery tasks if we have the real package

delivery information. For example, different regions may have

different delivery demand, e.g., industrial areas usually have

very low delivery demand while high-density residential areas

can have very high demand. To maximize the platform’s utility,

an intuitive idea is to prioritize the task assignment in the

high demand areas since one trip can possibly take many

delivery tasks. We are planning to cooperate with logistics

companies to get more detailed delivery demand data for

further optimization. We leave this for our future work.

VIII. CONCLUSION

In this paper, we proposed to explore the crowdsourced

trip information of connected vehicles for ridesharing based

package delivery. To achieve this, we first mined the charac-

teristics of the travel time and fuel consumption from our real-

world vehicle trajectory dataset and built up a routing graph

accordingly. We conducted a personalized travel cost predic-

tion considering the time-varying traffic conditions, different

drivers’ driving styles and different vehicles’ fuel efficiencies.

We further calculated the best routing paths as well as trip

costs for each particular car trip. We then designed an online

algorithm to assign proper tasks to the submitted car trip

aiming to maximize the utility of the platform. Our extensive

real-world trace-driven experiments showed that our algorithm

can yield high-quality assignment results.

REFERENCES

[1] T. Aized and J. S. Srai, “Hierarchical modelling of last mile logistic dis-
tribution system,” The International Journal of Advanced Manufacturing
Technology, vol. 70, no. 5-8, pp. 1053–1061, 2014.

[2] “1.5 billion packages to be shipped during chinas singles’ day.” http:
//fortune.com/2017/11/11/china-singles-day-alibaba-2/.

[3] “Argos customers have been left furious by long delays to deliveries after
black friday.” http://www.dailymail.co.uk/news/article-3341898/Argos-
customers-fury-delays-Black-Friday-deliveries.html.

[4] M. Joerss, J. Schröder, F. Neuhaus, C. Klink, and F. Mann, “Parcel
delivery–the future of the last mile,” McKinsey & Company, 2016.

[5] J. An, K. Yang, J. Wu, N. Ye, S. Guo, and Z. Liao, “Achieving sustain-
able ultra-dense heterogeneous networks for 5g,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 84–90, 2017.

[6] L. Zhang, B. Jin, and Y. Cui, “A concurrent transmission enabled coop-
erative mac protocol for vehicular ad hoc networks,” in Proceeding of
22th International Symposium on Quality of Service (IWQoS), pp. 258–
267, IEEE, 2014.

[7] C. Chen, D. Zhang, X. Ma, B. Guo, L. Wang, Y. Wang, and E. Sha,
“Crowddeliver: planning city-wide package delivery paths leveraging
the crowd of taxis,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 6, pp. 1478–1496, 2017.

[8] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: driving directions based on taxi trajectories,” in Proceedings
of the 18th SIGSPATIAL GIS, pp. 99–108, ACM, 2010.

[9] B. Yang, C. Guo, Y. Ma, and C. S. Jensen, “Toward personalized,
context-aware routing,” The VLDB Journal, vol. 24, no. 2, pp. 297–318,
2015.

[10] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.
[11] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.
[12] B. C. Dean, Continuous-time dynamics shortest path algorithms. PhD

thesis, Massachusetts Institute of Technology, 1999.
[13] A. Sadilek, J. Krumm, and E. Horvitz, “Crowdphysics: Planned and

opportunistic crowdsourcing for physical tasks,” in Proceedings of the
7th International Conference on Weblogs and Social Media (ICWSM),
ACM, 2013.

[14] N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for
dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295–303, 2012.

[15] W. He, K. Hwang, and D. Li, “Intelligent carpool routing for urban
ridesharing by mining gps trajectories,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 2286–2296, 2014.

[16] S. Yan, C.-Y. Chen, and Y.-F. Lin, “A model with a heuristic algorithm
for solving the long-term many-to-many car pooling problem,” IEEE
Transactions on Intelligent Transportation Systems, vol. 12, no. 4,
pp. 1362–1373, 2011.

[17] E. Kamar and E. Horvitz, “Collaboration and shared plans in the open
world: Studies of ridesharing.,” in IJCAI, vol. 9, p. 187, 2009.

[18] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” in Proceedings of the 17th SIGKDD, pp. 316–324,
ACM, 2011.

[19] J. Dai, B. Yang, C. Guo, and Z. Ding, “Personalized route recommen-
dation using big trajectory data,” in Proceeding of the 31st International
Conference on Data Engineering (ICDE), pp. 543–554, IEEE, 2015.

[20] X. Fan, J. Liu, Z. Wang, Y. Jiang, and X. S. Liu, “Crowdnavi: Demystify-
ing last mile navigation with crowdsourced driving information,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 2, pp. 771–781,
2017.

[21] B. Ding, J. X. Yu, and L. Qin, “Finding time-dependent shortest paths
over large graphs,” in Proceedings of the 11th International Conference
on Extending Database Technology (EDBT), pp. 205–216, ACM, 2008.

[22] M. Baum, J. Dibbelt, T. Pajor, and D. Wagner, “Energy-optimal routes
for electric vehicles,” in Proceedings of the 21st ACM SIGSPATIAL GIS,
pp. 54–63, ACM, 2013.

