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Network entities cooperating together can improve system performance of media streaming. In this paper, we address the
“incentive issue” of a cooperative proxy caching system and how to motivate each proxy to provide cache space to the system.
To encourage proxies to participate, we propose a “revenue-rewarding scheme” to credit the cooperative proxies according to
the resources they contribute. A game-theoretic model is used to analyze the interactions among proxies under the revenue-
rewarding scheme. We propose two cooperative game settings that lead to optimal situations. In particular, (1) We propose a
distributed incentive framework for peers to participate in resource contribution for media streaming; (2) Proxies are encouraged
to cooperate under the revenue-rewarding scheme; (3) Profit and social welfare are maximized in these cooperative games; and
(4) Cost-effective resource allocation is achieved in these cooperative games. Large scale simulation is carried out to validate and
verify the merits of our proposed incentive schemes.
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1. INTRODUCTION

Cooperative networks, in particular P2P or overlay networks, have caught much attention in recent
years. In such systems, network entities collaborate with each others by sharing their own resource,
such as storage, bandwidth or computational power, to form a resource pool, and this aggregated re-
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source pool helps to improve the system performance. Many applications have been deployed, such
as distributed file sharing systems [Kazaa] [BitTorrent], collaborative web caching, P2P streaming
[Zhang et al. 2005], distributed computing, etc. It is generally agreed that the cooperative network per-
forms significantly better than the traditional client-server model in supporting large amount of users.
In short, it provides an inexpensive platform for application that requires scalability, efficiency and
robustness.

However, most cooperative systems assume that peers are “voluntary” to contribute. In fact, this
assumption is not realistic. The autonomous peers are selfish in nature, and without concrete incentive,
there is no motivation to contribute resources, by which they incur service degradation or suffer from
cost. A study in Gnutella file sharing system [Adar and Huberman 2000] suggested that over 70% of
users share little or no content. The large-scale deployment of the cooperative systems are obstructed by
the free-riding problem, and motivating the users to cooperate is critical to the success of such systems.

To increase the involvement of peers, participation incentive mechanisms [Lui et al. 2002] have to
be used to effectively encourage the users’ collaboration in the network [Ranganathan et al. 2003].
Different approaches have been proposed in the literature. Better quality of service is given to the
peers who contribute to the network, while free-riders are discriminated against. However, effective
resource allocation that differentiates the contributors in a highly dynamic network is complicated.
Others suggested using the reputation based system, where reputations of the participating peers are
accumulated so as to reflect their contribution. The major issues here are how to quantify the user’s
contribution, how to provide a secure and trusted reputation system to prevent fake reputation (and it
is difficult to achieve without a centralized authority). Furthermore, whitewashing is possible for the
malicious user by pretending to be another user.

Another approach is to setup a contribution-rewarding mechanism to credit the peers cooperating
in the system. The reward may come from the overall revenue of the cooperative network, by means
of service pricing or cost reduction. The simplest way to achieve this goal is to grant a fixed credit to
a peer whenever it participates. Such a scheme can be implemented easily, but it is unfair to the peer
who contribute more resource. One can also reward the peers in proportional to the resources they
contributed. This scheme not only achieves proportional fairness, but also encourages peers to supply
sufficient amount of resource. By rewarding appropriately, sufficient amount of resources are supplied
by the peers, and the efficiency of the overall system can be improved.

In this article, we propose a “revenue-rewarding mechanism” to encourage participants to supply
caches in a cooperative proxy caching system for media streaming. Ip et al. [2005, 2007] showed that
proxies “cooperating” together can significantly reduce the aggregated transmission cost in delivering
the video streams, and it is worthwhile to setup the cooperative system. However, the authors did not
address the incentive issue. It is important to point out that our revenue-rewarding scheme works
complementary with the cooperative network in encouraging participation from the proxies. In fact,
our analysis has suggested that it is profitable to setup an incentive-based cooperative system for media
streaming [Hefeeda et al. 2003].

Our work follows the contribution reward-based incentive approach to reward the contributors by
the partial revenue obtained from the cooperative system. We focus on how peers’ contributions are
influenced by the revenue-rewarding scheme. we propose a game theoretic model is used to analyze the
interaction between proxies under different resource allocation games. We show that in the noncoop-
erative environment, the proxies selfishly optimize its own utility. As a result, the optimal aggregated
benefit received by the network nodes may not be guaranteed. We further propose two “cooperative re-
source allocation games” that lead to two different optimal situations. We examine the performance of
the scheme in terms of profit maximization and utility maximization. By evaluating the net profit and
the social welfare received by the network entities, we demonstrate that the proposed game settings
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Fig. 1. The architecture of the cooperative proxy caching system.

motivate different entities in the network to cooperate. In addition, two system-wide objectives, net
profit and social welfare, are achieved. Also, the resulting resource allocation is cost-effective as only
the proxies with low-cost participate in the system. Our contributions are summarized as following:
(1) We propose a distributed incentive framework for peers to participate in resource contribution for
media streaming. (2) Proxies are encouraged to cooperate under the revenue-rewarding scheme. (3) Net
profit and social welfare are maximized in the cooperative games. (4) Cost-effective resource allocation
is achieved in the cooperative games.

The article is organized as follows: Section 2 gives an overview of the system, and presents the
mathematical formulation. Section 3 describes the revenue-rewarding scheme applied in the three
resource allocation games: Non-cooperative game, Profit maximizing game and Utility maximizing
game. The performance of these games are evaluated in Section 4. Section 5 reviews the related work.
Finally, Section 6 concludes.

2. SYSTEM MODEL

In this section, we present the overall system architecture and then we will present our mathematical
formulation.

2.1 Overview of System Architecture

Figure 1 illustrates a cooperative proxy caching system for multimedia streaming. It consists of a logical
video server, a number of proxies and their clients, and a network service provider (NSP). The NSP
provides solely the network connection service to the entities in the network. The client requests for
videos, which are streamed from the far-located server to the client through the intermediate proxies.
It is assumed that the intermediate proxies are setup by the clients of the NSP, such as Internet Service
Provider (ISP) which provides Internet service to the end users. The proxy is similar to the peer in the
cooperative network in the sense that it represents an autonomous entity, which has its own freedom
in making decision so as to optimize its performance. Thus, the proxies are treated like peers in some
cooperative streaming system [Ip et al. 2005].
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The proxies are capable of caching the video stream passing through them. However, they are different
from mirror server as they cache only part of the video. Each video is divided into equal-sized segments
for caching, and whether a segment is being cached in the proxy is determined by the cache allocation
algorithm. In general, the frequently accessed video segments are cached in the local proxy to reduce
network traffic. The proxies are logically connected by direct or indirect links. They cooperate with
each others by sharing the cached segments among themselves, that is, a proxy can request for a video
segment cached in other proxies.

An example of the cooperative caching multimedia system is the COPACC architecture proposed in
Ip et al. [2005], which is a cooperative proxy-and-client caching system. The system aims at reducing
the aggregated transmission cost by allocating efficiently the video segments to the cache provided
by the proxies and clients. According to the cache allocation algorithm, videos are partitioned into
prefix (Pi), prefix-of-suffix (Qi) and the remaining suffix, and the proxies and clients are responsible to
cache the prefix and prefix-of-suffix respectively. Based on the video transmission scheme used (either
unicast or multicast), the optimal partitioning of the videos are computed to minimize the aggregated
transmission cost. The optimal prefix and prefix-of-suffix are further divided into smaller segments in
order to fit in multiple proxies and clients. Optimal placement of these segments into the proxies and
clients is also considered to minimize the cost. The merit of the COPACC relies on the proxy cooperation.
However, COPACC and other cooperative multimedia streaming systems did not address the “incentive
issues” for the proxy’s participation. That is, what motivates each proxy to provide the cache space and
how much cache space should be allocated. We extend the cooperative multimedia streaming system
by proposing a revenue-rewarding scheme to provide incentive for the proxies to cooperate.

In order to increase profit, the NSP is keen to admit new clients. However, since the capacity of the
network links is limited, the NSP may not be able to serve a large number of video-streaming users
having high bandwidth and short startup latency requirements. Unfortunately, upgrading the network
facility is not desirable because the investment cost is usually high. A cost-effective approach is to setup
a cooperative caching system, so as to reduce the aggregated transmission cost in the network. As such,
the same link capacity can support more clients. Hence, the NSP has a strong incentive to encourage
the proxies to participate in the cooperating caching.

In general, if there are more caches, the better the performance of the system is. From the NSP’s
prospective, it wants a higher contribution of caches because it can support more users at a lower
operating system cost. However, resources are not supplied for free. The proxy has to pay certain cost
to maintain the resources, although the cost is usually implicit. Therefore, the proxies participated in
the incentive-based system have to decide carefully the amount of cache storage to be contributed. If
they contribute too little storage, the reward is small; if they contribute too much storage, the cost of
maintaining the cache is higher than the reward. In this article, we assume that the cost follows the
general rule of increasing marginal cost, that is, the cost of providing an additional unit of cache is
higher than that of the previous unit. Thus, proxies are reluctant to provide too much resources to the
system.

Therefore, a revenue-rewarding scheme is established by the NSP to reward the contributing proxies.
The reward, in terms of credit, is determined based on the amount of resource shared by the proxy and it
should be proportional to the proxy’s contribution. Proxies are rewarded regularly for every fixed period
of time. Only the proxies with full participation throughout the period are qualified for the rewards.
This encourages the proxies to stay in the network until the end of each period, thus avoiding the
unpredictable proxy departure from the system.

An authority, such as the NSP, is responsible to define a price value, which specifies how much
“credit per unit” storage should be granted to the participating proxy. Ideally, the price should match
the demand and supply of resource such that social optimal is achieved. It is important to point out
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Table I. A Summary of the Notations.
Notation Definition

H Number of proxies.
si Cache space supplied by proxy i.
Ŝi Storage capacity of proxy i.
q Total cache space supplied to the system.
Ci(si) Cost of supplying si unit of cache space by proxy i.
R(q) Revenue of the system with q units of cache space supplied.
P (q) Credit granted to the proxy for each unit of cache space supplied.
Ui(si) Utility of supplying si unit of cache space by proxy i.
E(q) Net profit of the NSP in the system with q units of cache space supplied.
SU (s1, s2, . . . , sH ) Social Utility of the system.
Ai , θi , bi Parameters defining the cost function of proxy i in COPACC
A, θ , b Parameters defining the revenue function of the NSP in COPACC

that proxies are selfish in nature, they strategically allocate the amount of storage that maximize
their benefit only, that is, maximize the reward minus cost, regardless of other proxies. Meanwhile, the
NSP wants to achieve the largest benefit by giving out less reward. This forms a noncooperative game
between the NSP and the proxies that often leads to a nonoptimality condition. In this case, the proxies
tend to over-supply the resource.

2.2 Model Formulation

We use a game-theoretic approach to model the economic of the resource supplying from the proxies.
There are two types of player, NSP and proxy. The NSP provides network connectivity to the proxies,
while the proxy provides cache storage to reduce the transmission cost of the system. The notations
used in the paper are summarized in Table I.

There are H proxies cooperating in the system. Let si be the unit of cache space that proxy i decided
to allocate to the system, and Ŝi be the maximum cache capacity of the proxy i. A feasible si is the unit
of cache space the proxy i can supply, that is, 0 ≤ si ≤ Ŝi. The sum of the cache space supplied to the
system is q = ∑H

i=1 si. In order to supply si units of cache space, proxy i has to pay Ci(si), where Ci(si)
is the cost function of supplying si from proxy i, and the cost function can be heterogeneous between
different proxies. In this article, we consider the cost function to be strictly increasing with convex
shape. The cost function for proxy i is defined as following:

Ci(si) =
{

Ai exp θi(si − bi), 0 < si ≤ Ŝi

0, si = 0.
(1)

Note that this cost function is quite general. This form of exponential cost function is suitable because
it reflects the general rule of increasing marginal cost. The parameter Ai defines the initial cost of
setting up the proxy, while θi determines the increasing rate of the cost. For example, a cost function
with large value of Ai and θi have a high cost. When θi is set to zero, the cost function becomes a constant
Ai, meaning that the cost is fixed regardless of the amount of cache supplied. The last parameter bi

provides better modeling of the cost by shifting the exponential function. Each proxy can have different
values and can assign its own cost function by adjusting the parameters Ai, θi and bi.

The NSP is in charged to estimate the revenue R(q) in the system. For example, the revenue function
can be obtained from the cooperative proxy system by approximating the transmission cost reduction
with respect to the total cache space q. In general, the more resources supplied by peers, the higher
the revenue. However, the marginal revenue is decreasing as the resource increased. When the cache
space reaches a specific amount, the cost reduction approaches the limit. Thus, we model the revenue
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function as a non-decreasing and concave function, which is defined as

R(q) = A
θ

[1 − exp(−θ (q − b))], q > 0. (2)

The price is a function of q, which is the total cache space in the system, and it is set according to
the revenue curve. The product of the price and the total available cache unit q should not exceed the
corresponding revenue. The NSP has its freedom to decide how much revenue is to be rewarded to
the proxies, by setting an appropriate price function. We suggest two possible ways to define the price
function.

(1) Total-Rewarded Pricing. The price function PT (q) is defined as the revenue divided by the total
resource supplied, that is, PT (q) = R(q)/q for q > 0.

(2) Marginal-Rewarded Pricing. The price function PM (q) is defined as the marginal gain of the system,
that is, PM (q) = R ′(q).

In general, P (q) is a decreasing function with a convex shape. When the amount of resource tends to
infinite, the price of each unit of resource approaches to zero. The total and marginal-rewarding price
are defined as following:

PT (q) = A
θq

[1 − exp(−θ (q − b))], q > 0. (3)

PM (q) = A exp(−θ (q − b)), q > 0 (4)

We like to emphasize that this methodology is not restricted to the use in the caching system, but it
may also be applied to other P2P system with the cost and the rewarding function setup properly. We
now present the resource allocation game among the proxies in the COPACC.

3. RESOURCE ALLOCATION GAME

We model the behavior of the proxies and the NSP as a strategic game. All proxies (or system adminis-
trators who manage the proxy) are rational, and they strategically choose the amount of cache si so as
to maximize their benefit. We use a utility function to represent the level of satisfaction of the proxy.
The utility Ui(si) of proxy i can be measured in terms of its net gain, which is equivalent to the reward
earned minus the cost to provide the cache. The utility is expressed as follow:

Ui(si) = si P (q) − Ci(si). (5)

The resource allocation game is a repeated and asynchronous game. Each proxy can make or change
its decision about the amount of cache at the beginning of each round. To be realistic and scalable,
we assume imperfect knowledge of each proxy, meaning that the proxy only knows about the total
cache space supplied to the system, q, and the price function, P (q). The NSP (or proxy coordinator) can
publicize the current price and the total amount of cache space such that other proxies can obtain the
information easily. Based on these information, the proxy updates its own strategy in each move so to
maximize its utility.

3.1 Noncooperative Game

In the noncooperative game, the proxies make decision regardless of the other proxies. They choose si

based on the public information: the aggregated cache space q and the price function. The objective
of each proxy is to maximize its own utility with respect to si over [0, Ŝi]. Formally, proxy i needs to
perform:

max
0≤si≤Ŝi

Ui(si) = si P (q) − Ci(si). (6)
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Given the total cache space q and the price function P (q), the proxy can determine its best strategy
si by solving the maximization problem. Note that q is implicitly depends on si. If the value of si is
changed, the value of q, as well as P (q), will be changed accordingly. Thus, in the optimization, the
value of q would be better presented in terms of si. Let s−i be the amount of cache collectively supplied
by the proxies except proxy i, then s−i = q′ − s′

i, where q′ and s′
i are the total amount of cache and the

amount of cache supplied by proxy i respectively in the previous round. The equivalent optimization
problem is shown as following:

max
0≤si≤Ŝi

Ui(si) = si P (si + s−i) − Ci(si). (7)

Specifically, the objective function can be written as

max
0≤si≤Ŝi

Ui(si) =
{

si A exp(−θ (si + s−i − b)) − Ai exp(θi(si − bi)), 0 < si ≤ Ŝi

0, si = 0.
(8)

The marginal-rewarded pricing is used here. This maximization problem is simple, and the first-
order condition is sufficient to solve the optimal value of si. In general, the game will converge to
a Nash equilibrium. However, the Nash equilibrium may not be unique as the order of move will
influence the equilibrium point. The first mover (i.e., or the first proxy which decides on the amount of
supplying cache) is more likely to get advantage over the later mover by supplying more cache space
at the beginning. The outcome of this noncooperative game is not desirable since there is no guarantee
that the equilibrium is socially optimal.

In the noncooperative environment, the proxies act selfishly to maximize their utility. The outcome,
however, may not meet their expectation: that is, the utility may be worse than the achievable individual
optimal, in which the proxies cooperatively decide how much cache to supply. Under the noncooperative
situation, each proxy seems to optimize their individual benefit, but actually the system-wide behavior
does not reflect the optimization of any objective. Without the whole system view, it is difficult to
determine whether the outcome (or the Nash equilibrium) is Pareto optimal or not. According to different
kinds of player in the game, either one of the following system-wide objectives can be achieved:

(1) Maximize the net profit of the Network Service Provider (NSP);
(2) Maximize the social utility among all proxies involved in the system.

To achieve the above objectives, we suggest two cooperative resource allocation games, namely the
Profit Maximizing Game and the Utility Maximizing Game.

3.2 Profit Maximizing Game

Being the NSP, the objective is to maximize its net profit of the cooperative proxy architecture. The net
profit, E(q), of the NSP is defined as the revenue earned minus the reward paid to the proxies, which
can be expressed as

E(q) = R(q) − qP (q). (9)

As shown in Eq. (9), the net profit is determined by the total cache space q supplied to the system,
and the NSP can only influence the value of q by setting the price function P (q) at the beginning of the
game. Once the price function is set and publicized, the NSP has no control about the value of q, which
is the Nash equilibrium point resulting from the moves of the proxies over many iterations.

The noncooperative game is not desired in maximizing the NSP’s profit because it does not lead to a
unique Nash equilibrium. For a defined price function, the system may converge to different equilibrium,
depending on the sequence of move of the proxies. There is no guarantee for the NSP to set a particular
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marginal-rewarded pricing function that leads to a desirable outcome, which maximizes its net profit.
To ensure the existence of a unique, predictable Nash equilibrium, we simplify the price function to
a constant p. That is, the price no longer depends on the cache supplied to the network. By setting a
constant price, we show that the game admits a unique Nash equilibrium, and the NSP can choose a
proper price p to maximize its net profit.

With this assumption, we model the interaction as a Stackelberg game [Basar and Olsder 1999] that
has one leader (the NSP) and H noncooperative Nash followers (the proxies). The NSP strategically
decides the price p, and the proxies react with the best amount of cache si to supply. This defines a
noncooperative game between each independent proxy in the network, with the underlying solution
being the Nash equilibrium. Each proxy selfishly selects si to satisfy its objective function:

max
0≤si≤Ŝi

Ui(si) = si P (q) − Ci(si) = si p − Ci(si). (10)

If the net utility of a proxy is less than or equal to zero, it will not participate in the system, and it
will be removed from the list of proxies. Note that there is a boundary constraint for the variable si,
that is, 0 ≤ si ≤ Ŝi. The problem is formulated as a constrained optimization, which can be solved by
the method of Lagrangian Multiplier.

Let {si
∗}H

i=1 be a set containing the amount of cache supplied by the proxies to the system such that
it satisfies

max
0≤si≤Ŝi

Ui(si) = Ui(si
∗). (11)

One can analytically find the value of s∗
i based on the value of p, using the first-order condition.

U ′
i (si) = p − C′

i(si) = 0 (12)
C′

i(si) = Aiθi exp(θi(si − bi)) = p (13)

si = ln(p/Aiθi)
θi

+ bi. (14)

By solving si in Eq. (13), one can obtain the solution of s∗
i .

s∗
i =

⎧⎪⎨
⎪⎩

0, si ≤ 0

si, 0 < si ≤ Ŝi

Ŝi, si > Ŝi.

(15)

The following theorem states the important result of having one unique equilibrium point.

THEOREM 1. The profit maximizing game admits one and only one Nash equilibrium

PROOF. Consider the second derivative of the utility Ui(si),

U ′′
i (si) = −C′′

i (si). (16)

Since the cost function is defined as a strictly increasing function with convex shape, the second
derivative should always be positive, that is, C′′

i (si) > 0. It shows that U ′′
i (si) is always less than zero,

and the utility function admits at most one maximum. Thus, the strategy of proxy i is either s∗
i that

satisfies the Eq. (13) if the maximum located in the range of (0, Ŝi), or the boundary value 0 or Ŝi.
As each proxy has it own unique optimal strategy s∗

i independent of others, a unique {si
∗}H

i=1 does
exist.
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Thus, given the value of price p, the NSP can predict the total cache space q∗ contributed to the
system, that is

q∗ =
H∑

i=1

s∗
i . (17)

If the NSP knows the parameters Ai, θi and bi of all the proxies, it can formulate its own maximization,
which aims at maximizing the net profit with respect to q∗.

max
p≥0

E(q∗) = R(q∗) − q∗ p (18)

Since the total amount of cache space q∗ solely depends on the value of price p through Eqs. (15)
and (17), one can rewrite the objective function by substituting q∗ in terms of p. In the cooperative
proxy caching system, if all the si do not violate the feasible constraints, the objective function can be
rewritten as:

max
p≥0

E(p) = R

(
H∑

i=1

(
ln(p/Aiθi)

θi
+ bi

))
− p ·

H∑
i=1

(
ln(p/Aiθi)

θi
+ bi

)
. (19)

The derivative of q∗ and E(p) with respect to p are shown below. The optimal price, p∗, can be obtained
by solving the first-order condition in Eq. (23).

dq∗

dp
= 1

p

H∑
i=1

1
θi

, (20)

E ′(p) = A exp(−θ (q∗ − b)) · 1
p

H∑
i=1

1
θi

− q∗ − p · 1
p

H∑
i=1

1
θi

, (21)

= A
p

(
H∑

i=1

1
θi

)
exp(−θ (q∗ − b)) − q∗ −

H∑
i=1

1
θi

, (22)

E ′(p) = 0. (23)

Although it is difficult to find the close-form solution of p∗ for Eq. (23), one can solve this optimization
efficiently using numerical method, for example, Newton method is applied to solve the value of the
optimal price p∗. Once the NSP finds the optimal price, it can calculate the value of all s∗

i using Eq. (15).
If all s∗

i are inactive, that is, they satisfy the condition 0 ≤ s∗
i ≤ Ŝi, the net profit of the NSP is guaranteed

to be maximum by setting the optimal price to p∗.
For this optimization, we also need to consider other scenarios, that is, what if some of the constraints

are active and they do not satisfy the boundary condition of si? The problem becomes more complicated,
but one can still find the optimal value of p mathematically. The solution is based on the techniques
of Lagrangian multiplier. It can be shown that the objective function E(p), without considering the
cache constraints, is a concave function, and all the constraints regarding si are linearly. Thus, it is a
concave programming problem, and there exists a unique solution that satisfies the KKT-conditions in
Eqs. (25)–(30).

L = E(p) −
H∑

i=1

μl
i si +

H∑
i=1

μu
i (si − Ŝi) (24)
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Fig. 2. Profit maximizing algorithm for the NSP in the profit maximizing game.

∂L
∂p

= ∂E(p)
∂p

−
H∑

i=1

μl
i
∂si

∂p
+

H∑
i=1

μu
i

(
∂si

∂p
− Ŝi

)
= 0 (25)

μl
i ≥ 0, i = 1, . . . , H (26)

μu
i ≥ 0, i = 1, . . . , H (27)

μl
i si = 0, i = 1, . . . , H (28)

μu
i (si − Ŝi) = 0, i = 1, . . . , H (29)

0 ≤ si ≤ Ŝi, i = 1, . . . , H. (30)

We now present an algorithmic approach to find the optimal value of p, which is derived directly
from the KKT-conditions. Figure 2 illustrates the profit maximizing algorithm for the NSP in the profit
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maximizing game. It first assumes that the boundary constraints of all si are inactive, i.e. all the
cache space si lie between 0 and Ŝi. Thus, the Eqs. (28) and (29) hold only if the μl

i and μu
i are zero.

The optimization problem is now similar to the unconstrained problem in Eq. (19), and we can apply
the numerical method stated previously to calculate the optimal price p∗ as well as all si. If the si are
feasible, we have obtained the best solution. Otherwise, we know that some of the boundary constraints
are violated, and the corresponding values of μl

i or μu
i are not equal to zero. In that case, the value of

si is forced to be the boundary value (either 0 or Ŝi) followed by Eqs. (28) or (29). We can identify the
active constraints of si from the result obtained in Eq. (23). If the optimal si found in the unconstrained
optimization is less than zero, the proxy should not participate in the system. Therefore, we remove
the proxy from the system by setting si = 0. If the optimal si is greater than the maximum capacity
the proxy can provide, the proxy supplies Ŝi units only, and si = Ŝi. After hard-setting the value of
certain si, we execute the algorithm again to find the numerical solution for the optimal value of p. If
the outcome of all si are feasible, we get the best solution. Otherwise, we repeat the previous steps to
adjust the value of si and execute the algorithm until the resulted si are feasible. In practice, integral
value of cache quantity is desired. Thus, an additional checking on �si� and �si	 as the solution should
be made to assure optimality.

Until now, we assume the NSP knows the characteristic of the cost function of each proxy such
that it can determine the behavior of the proxies, and it can construct its own objective function. But
one interesting question to ask is whether the NSP can maximize its net profit without knowing the
individual cost function of each proxy. As such, the NSP can only observe the action of each proxy by
setting a probing price. The NSP keeps adjusting the price gradually until a desirable profit is obtained.
It is similar to a commodity market, where the price is determined by tatonnement process [Uzawa
1960] through numerous iterations of refinement. However, the optimization objective is different. The
tatonnement process selects a price to achieve social optimal by matching the demand and supply of
goods, while the profit maximizing game selects a price to maximize the profit for the NSP.

Although the NSP does not know the exact amount of total cache space q supplied to the system
for each p, it is always true that increasing the price leads to a nondecreasing movement of the total
cache space. Figure 3 plots a sample relationship between the total cache space q and the price p. The
quantity q is calculated for different price p using equation (14). Both p and q move nonlinearly in
the same direction. Due to the boundary constraints of si, the function relating p and q is continuous
but not differentiable. Figure 4 plots a sample relationship between the net profit E(p) and the price
obtained from Eq. (9). We observe that the value of E(p) in Eq. (19) generally increases with a small
increase of p. Then it reaches the global maximum, and decreases with increased value of p.

Let us propose a Price Establishing Protocol for the NSP to determine the optimal price used in the
system. We assume the proxies choose the best si to maximize their net utility, stated in Eq. (10), based
on the price p given from the NSP. The NSP keeps announcing different value of price p, and the proxies
reply to the NSP with the amount of cache space it agrees to contribute. Based on the total cache space
q supplied by the proxies, the NSP decides the best pricing strategy to maximize its net profit. It can
be thought as a search problem for an optimal value of p without a formal equation.

At the beginning of the protocol, the NSP makes an initial guess of the probing price, say ṗ. It
announces the price to the proxies, and retrieves the corresponding value of q. The net profit E( ṗ) can
be calculated based on the value of ṗ and q. In each iteration, the NSP decides a new probing price
based on the old price and the percentage change of the net profit. It then sets a new price and measure
the change of the net profit as compared with the old one. The process goes on until the price converges
to an optimal value, which achieves the maximum profit.

The search method stated above is the simplest one of the zero-order method (or maximization method
without derivatives) in the literature. However, this simple search method may result in local optima.
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Thus, some advanced direct search methods should be applied in the Price Establishing Protocol to
achieve global optimization with fast converging speed. Pattern Search Method [Kolda et al. 2003] can
be used to find the optimal price in the protocol. Other search method that guarantee global optimal
can also be applied.

So far we have presented the way for the NSP to maximize its net profit by setting up proper price.
Sometimes, the NSP has no preference about maximizing its net profit. Instead, the proxies may prefer
to maximize the social utility among themselves. In this situation, the objective of the optimization
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becomes maximizing the social utility, which is defined as the total net utility summed over all proxies.
In what follows, we will present the utility maximizing game.

3.3 Utility Maximizing Game

Another system-wide property we would like to achieve is the social utility. It reflects the level of
satisfaction of the proxies participating in the network. In this section, we present a resource allocation
game that aims at maximizing the social utility of the system. Cooperation of the proxies is essential
in this optimization.

The net utility Ui(si) of each proxy supplying si units of cache is shown in Eq. (5). We define the social
utility as the individual utility summed over all proxies, which is

SU (s1, s2, . . . , sH ) =
H∑

i=1

Ui(si). (31)

The global objective is to maximize the social utility with respect to si subjected to the boundary
constraints 0 ≤ si ≤ Ŝi, that is

max
0≤si≤Ŝi

H∑
i=1

Ui(si) = max
0≤si≤Ŝi

H∑
i=1

[si P (q) − Ci(si)]. (32)

As the value of q equals to
∑H

i=1 si and the current price is calculated based on the value of q, the
net utility Ui(si) of proxy i does not solely depends on si supplied by itself, but also depends on the
cache space s−i contributed by the other proxies. The multi-variable optimization of the above objective
function becomes difficult. It is desirable to break down the problem into smaller subproblems, and
each subproblem can be handled easier.

To solve the above problem, one can observe that the objective function in Eq. (32) can be simplified
as:

max
0≤si≤Ŝi

H∑
i=1

Ui(si) = max
0≤si≤Ŝi

[
q · P (q) −

H∑
i=1

Ci(si)

]
. (33)

The first term is equivalent to the credit rewarded to the proxies, while the second term represents
the total cost of providing q units of cache by the proxies. Note that with the fixed quantity of cache
space q, the first term is always constant regardless of the si. The social utility varies only by adjusting
the allocation of si. Hence, the best social utility with a fixed cache quantity can be obtained when the
total cost of providing the cache is minimized. The objective function in Eq. (32) can be rewritten as
below:

max
0≤si≤Ŝi

H∑
i=1

Ui(si) = max
0≤q≤Q̂

[
q · P (q) − min

0≤si≤Ŝi

H∑
i=1

Ci(si)

]
(34)

s.t. q =
H∑

i=1

si (35)

Q̂ =
H∑

i=1

Ŝi. (36)

Thus, the problem can be decomposed into two subproblems, namely Minimal cost caching problem
and Optimal cache quantity problem.
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(1) Minimal Cost Caching Problem (MinCost): Find the minimal cost to provide q units of cache by the
cooperative proxies with respect to si.

(2) Optimal Cache Quantity Problem (OptQ): Find the quantity of cache space q that guarantee best
social utility.

These two subproblems are linked together by the common variable q. In the first subproblem, given
the value of q, we claim that it is always possible to find a unique set of allocation si that minimizes
the total cost. Thus, there is a one-to-one mapping between q and {si}H

i=1. Once the first subproblem is
solved, the whole problem depends only on the variable q, while not the actual allocation {si}H

i=1. We
then solve the second subproblem by finding the optimal value of q, as well as the price P (q), to generate
maximum social utility.

We now present the concrete formulation and the proposed solution to the subproblems.

3.3.1 Minimal Cost Caching Problem. This subproblem is about finding the cheapest way to supply
q units of cache space among the proxies. We are also interested in the cache space {si}H

i=1 allocated by the
proxies that minimize the total cost. The minimal cost caching problem is formulated mathematically
as:

MinCost: MinCost(q) = min
H∑

i=1

Ci(si) (37)

such that 0 ≤ si ≤ Ŝi, i = 1, . . . , H (38)

H∑
i=1

si = q. (39)

This optimization problem can be solved algorithmically using the the dynamic programming method.
Let B(i, j ) be a two-dimensional matrix that stores the minimum cost of contributing j units of cache
by the first i proxies, where 1 ≤ i ≤ H and 0 ≤ j ≤ q.

B(i, j ) =

⎧⎪⎪⎨
⎪⎪⎩

C1( j ), 0 ≤ j ≤ Ŝ1

∞, i = 1, Ŝ1 < j ≤ q

min
0≤k≤ j ,k≤Ŝi

B(i − 1, j − k) + Ci(k), 2 ≤ i ≤ H, 0 ≤ j ≤ q.

(40)

The matrix can be filled in plane-order starting from B(1, 0) to B(H, q), and the latter gives the
minimum cost of providing q units of cache. The corresponding si of each proxy can be obtained through
backtracking the iterations. This dynamic programming algorithm has time complexity O(q · H · M ),
where M = max1≤i≤H Ŝi.

Although the dynamic programming method solved the MinCost problem, it is not always desirable
because it is a centralized algorithm which requires a dedicated node in the network to execute the
algorithm. As a consequence, a distributive algorithm is generally preferred to solve the problem in the
network.

Before proceeding, it is a good idea to understand the mathematical solution of this cost minimization
problem using optimization theory. Consider the problem stated in Eq. (37), the following theorem states
some important property of this optimization problem.

THEOREM 2. MinCost is a constrained convex optimization problem.

PROOF. To show this, we have to prove the truth of the following two statements.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 1, Article 5, Publication date: January 2008.



Cooperative Proxy Caching for Media Streaming Systems • 5:15

(1) The feasible region of the solution space si under the constraints is convex.
(2) The summation of the individual cost function is a convex function.

Statement (1) follows directly from the fact that all the constraints for si are linear. It is obvious that
the equality constraint involving q and the boundary constraints for each si are linear equation of si.
Thus, the feasible region is a convex set.

Consider the Hessian matrix of the total cost function,

∇2

[
H∑

i=1

Ci(si)

]
=

⎡
⎢⎢⎢⎣

C′′
1(s1) 0 0 0
0 C′′

2(s2) 0 0
0 0 C′′

3(s3) 0
0 0 0 . . .

⎤
⎥⎥⎥⎦ (41)

or

∇2

[
H∑

i=1

Ci(si)

]
i j

=
{

0, i �= j

C′′
i (si), i = j .

(42)

Since the cost function Ci(si) is strictly convex, the value C′′
i (si) are always positive. The Hessian matrix

is positive semi-definite. Thus, the total cost function is a convex function. Statement (2) holds.

Convexity is an important property in constrained optimization. In a convex optimization, the local
minimum guarantees to be the global minimum. As a result, the KKT-condition is the sufficient and
necessary condition for optimality. In other words, a set of {si}H

i=0 that satisfies the KKT-condition is the
solution to our cost minimization problem. The KKT-condition for the MinCost problem is shown below:

L(si) =
H∑

i=1

Ci(si) − λ

(
H∑

i=1

si − q

)
−

H∑
i=1

μl
i si +

H∑
i=1

μu
i (si − Ŝi) (43)

∂L
∂si

= C′
i(si) − λ − μl

i + μu
i = 0, i = 1, . . . , H (44)

μl
i ≥ 0, i = 1, . . . , H (45)

μu
i ≥ 0, i = 1, . . . , H (46)

μl
i si = 0, i = 1, . . . , H (47)

μu
i (si − Ŝi) = 0, i = 1, . . . , H (48)

0 ≤ si ≤ Ŝi, i = 1, . . . , H (49)

H∑
i=1

si = q. (50)

The MinCost is a convex optimization problem, meaning that there exists a unique solution {si}H
i=1

satisfying the Eqs. (44)–(50). The optimal cache allocation si can be determined by solving the set
of linear equations. We are now ready to present our distributed approach to the cost minimization
problem.
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We start with a simplified version of the MinCost problem in Eq. (37), having the storage constraints
removed from each proxy. It becomes an equality constrained problem, which can be solved by the
method of Lagrange multiplier. The necessary condition is similar to the KKT-condition stated pre-
viously, but with the equations involving μl

i and μu
i omitted. Note that the plus or minus sign of the

multiplier term does not affect the solution.

L(si) =
H∑

i=1

Ci(si) − λ

(
H∑

i=1

si − q

)
(51)

∂L
∂si

= C′
i(si) − λ = 0, i = 1, . . . , H (52)

H∑
i=1

si = q. (53)

We instantiate the cost function according to some cooperative caching systems, for example, systems
presented in Ip et al. [2005]. Given Eq. (52), we can derive si in terms of λ.

C′
i(si) = Aiθi exp(θi(si − bi)) = λ (54)

si = ln(λ/Aiθi)
θi

+ bi. (55)

The variable λ is called shadow price, which is introduced by the proxies to establish implicitly the
best cache allocation among them. The equation of si is similar to the one shown in Eq. (14), but in here
we have one more condition about the total cache quantity (in Eq. (53)) to hold. By substituting si to
Eq. (53), we can solve the value of λ, and thus, the values of all si.

H∑
i=1

[
ln(λ/Aiθi)

θi
+ bi

]
= q (56)

λ = e
q+∑H

i=1[ln(Ai θi )/θi−bi ]∑H
i=1 1/θi . (57)

If we have all the parameters about the individual cost function of each proxy, we can find the optimal
λ as well as the si directly. However, in the distributed approach, we must rely on iteratively refining
the value of λ until the optimal value is reached. The resulted total cache space is used as an indicator
for optimality. The minimal cost is achieved when

∑H
i=1 si is equal to q. In order to use the distributive

algorithm, we assume the proxies are cooperative, and they do follow the cost minimization protocol
to determine the amount of cache contributed to the system. The protocol runs collaboratively with
assistance from a proxy coordinator.

The coordinator first make an initial guess of the shadow price λ, and notifies the proxies. Each proxy
reacts to the shadow price with a si obtained by Eq. (55), which is privately known to the proxy. Then,
the coordinator updates the shadow price based on the total cache space contributed to the system. If
the total cache space is more than required, that is,

∑H
i=1 si > q, the shadow price is set too high, and it

should be reduced. If the cache supply is insufficient, the shadow price should be increased. The process
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Coordinator Proxy 1 Proxy 2 Proxy H
...

λλλ

si=ln(λ/A i i)/ i+bi

s1 s2 sH

λ λ+λη (q- si)/q

Fig. 5. Mechanism of the cost minimization protocol.

continues until the optimal value is achieved, where the total cache supplied matches the requirement,
i.e.

∑H
i=1 si = q.

The remaining technical issue is how to update the shadow price according to the cache supplied.
The updating rule should be selected carefully as it determines the effectiveness of the protocol. Since
the problem is shown to exist only one minimum, one can use any standard numerical search method
to find the optimal solution.

Figure 5 shows the mechanism of the cost minimization protocol. We adopt to a simple updating rule,
which increase/decrease the value of λ in proportional to the difference between the desirable cache
space q and the total contributed cache from the proxies. The updating rule of λ is

λ ← λ + λη

(
q − ∑H

i=1 si

q

)
. (58)

The parameter, η, is a factor that controls the converging speed and the accuracy of the protocol. A
large value of η is used initially to speed up the convergence, and it starts to decrease gradually in order
to obtain an accurate solution. The protocol is executed periodically to ensure that the cost remains
minimal after any join or leave of the proxies. In steady state, the λ leads to a cache allocation with
minimal cost.

The solution of this simplified MinCost problem can be extended to the original problem with the
cache constraints. The participating proxies react to the shadow price similarly as in the simplified
MinCost problem. The only difference is that the proxy coordinator has an additional task to determine
whether the cache constraints of the proxies are violated.

Consider the Eq. (47) in the KKT-condition, either μl
i equals zero or si equals zero. Similarly in Eq. (48),

either μu
i equals zero or si equals Ŝi. To solve the set of linear equations, we have to examine whether

μl
i and μu

i are equal to zero. Assume both μl
i and μu

i are zero, the formulation of the original problem
reduces to the simplified version. We apply the cost minimization protocol to obtain the best cache
allocation for a total of q units of cache space. However, the resulted si may not satisfy the boundary
constraints specified in Eq. (49). In that case, depending on the value of si, one of the μl

i and μu
i is not

zero. If si is less than or equal to zero for certain proxy i, we are sure that this si has optimal value
of zero, and the corresponding μl

i is not zero. The proxy is not eligible for contributing as the cost of
supplying the cache is comparatively high. Similarly, if si is greater than Ŝi, we are sure that the si

of the proxy has optimal value of Ŝi. This proxy should provide as much cache as possible since the
cost is comparatively low. Thus, we can eliminate some proxies, whose value of si is known already,
from the problem formulation and resolve the si for the remaining proxies. Note that the total required
cache space q of the eliminated problem should be updated accordingly, by subtracting the Ŝi of the
oversupplied proxies. The algorithm for the cost minimization protocol used by the coordinator is shown
in Figure 6.

By the cost minimization protocol with a given fixed total cache quantity, the proxies can cooperatively
allocate the best amount of cache space to achieve minimal cost.
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Fig. 6. Cost Minimization Protocol for the proxy coordinator.

3.3.2 Optimal Cache Quantity Problem. The next problem is to determine the optimal amount of
cache quantity. The optimal cache quantity problem refers to the problem of finding the total quantity
that results in maximum social utility. Let M (q) be the minimum cost of providing q units of total cache.
For each q, the value of M (q) can be evaluated by solving the corresponding MinCost problem, using
the cost minimization protocol. The OptQ problem can be formulated as

OptQ: max
0≤q≤Q̂

[
q · P (q) − M (q)

]
(59)

where Q̂ =
H∑

i=1

Ŝi.
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Fig. 8. A sample plot of social utility versus cache quantity q.

Obviously, the objective function depends on the variable q only, where P (q) is a decreasing function
of q and M (q) is an increasing function of q (see Figure 7). In fact, the objective function may contain
multiple maxima, depending on the cost functions and revenue function used in the system. Figure 8
plots the revenue, minimum cost and social utility with respect to cache quantity in the COPACC
system. In this example, the social utility is calculated using the total-rewarded price, and the maximum
is achieved when the cache quantity is around 75.

Since we do not have the close form solution for the MinCost problem, we cannot rely on any opti-
mization method that involves derivative of the objective function. In order to find the optimal cache
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quantity, we suggest to use direct search method, which is similar to the one used in the profit maximiz-
ing game. Pattern search with multiple initial guesses is a good approach to the optimal cache quantity
problem.

In the pattern search method, an initial step size s is chosen and the search is initiated from a starting
point q. The method involves the steps of exploration and pattern search. In the exploration step, it
tries to probe the value of the social utility by increasing or decreasing the cache quantity. Let q′ = q,
the objective function is evaluated at q′+s. If the value increases, then q′ is updated to q′+s. Otherwise,
the function is evaluated at q′ − s. If the value increases, q′ is updated to q′ − s. In case both of them
fail in the test, the original value of q′ is retained. An exploration is said to be successful if the function
valued at q′ is higher than q by a predetermined amount. The pattern search algorithm starts from a
quantity q. The exploration step is made in q. If the exploration fail, the step size is reduced by a factor
of r, that is, s ← rs. Otherwise, a new base point of q is established according to the exploration. The
search continues until the cache quantity q converged. To avoid trapping in the local maxima at the
steady state, the proxy coordinator should periodically probe the system to see if the cache quantity is
still optimal.

The solution of the optimal cache quantity problem is indeed the optimal quantity for the original
utility maximizing problem. It guarantees maximal social utility in the network. Moreover, the optimal
cache space supplied by each individual proxy is determined through the cost minimization protocol,
and the price is set according to the price function.

In this section, we have presented the utility maximizing game, which aims at maximizing the social
welfare of the proxies in the network. The performance of the three resource allocation games are being
evaluated in the next section.

4. PERFORMANCE EVALUATION

The main focus of this section is to evaluate the effectiveness of the proposed revenue-rewarding scheme
in encouraging the participation of the NSP and the proxies. We show that the scheme can provide a
strong incentive for different entities to join the system. We have examined the use of revenue-rewarding
in the three resource allocation games, that is, noncooperative game (NonCoop), profit maximizing game
(ProfitMax), and utility maximizing game (UtilMax). We have studied the net profit of the NSP as well
as the social utility of the proxies in the games. We have also compared the individual utility of the
proxies in each game. The results demonstrate that under different resource allocation games, different
level of incentive are given to different entities in the network. Moreover, an economical cache supply
is achieved in the ProfitMax and the UtilMax, where the “good” peers, which have cheaper cost in
providing cache, are retained to participate in the system.

Unless otherwise specified, the following default settings were used in the evaluation. We considered
a proxy caching network consisting of five proxies, which operated under the same NSP. The revenue
function was approximated by the experimental results from the cost reduction in the COPACC system.
Each proxy was assigned with an exponential cost function. The parameters used for the cost and
revenue functions are shown in Table II, and the corresponding functions are plotted in Figure 9. Note
that proxy 1, 2 and 3 have similar cost function with different level of expensiveness. Proxy 4 supplies
cache with low initial cost but high variable cost. In contrast, proxy 5 has high fixed cost but low variable
cost. For simplicity, each proxy has the same storage capacity. Lastly, the marginal-rewarded pricing
was applied in the non-cooperative game and the utility maximizing game.

The evaluation of different rewarding schemes were done based on mathematical simulation, which
was implemented in MATLAB 7.0. The built-in Pattern Search Tool, provided in the Genetic Algorithm
and Direct Search Toolbox of MATLAB, was used to solve the search problem.
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Table II. Parameters Used in the Resource Allocation Game.
Proxy i Ai θi bi Ŝi Cost

1 10 0.06 0 50 Normal
2 10 0.06 15 50 Low
3 15 0.08 0 50 High
4 8 0.12 10 50 Low for small quantity, high for large quantity
5 10 0.04 0 50 High for small quantity, low for large quantity

A θ b
15 0.03 0

0

50

100

150

200

250

0 10 20 30 40 50

C
o

s
t 
o

f 
s
u

p
p

ly
in

g
 s

i 
u
n

it
 o

f 
c
a

c
h

e
 b

y
 P

ro
x
y
 i
 (

C
i(
si
))

Cache supplied by Proxy i (si)

Proxy 1
Proxy 2
Proxy 3
Proxy 4
Proxy 5

0

100

200

300

400

500

600

0 50 100 150 200 250

R
e

v
e

n
u

e
 (

R
(q

))

Total cache quantity (q)

(a b) ( )

Fig. 9. Cost and revenue functions being used in the evaluation.

4.1 Convergence

The first issue we are looking at is the convergence. It is a basic requirement that the resource allocated
by the proxies should converge in each game. We analyze the behavior of each game based on the cache
contributed at the steady state. Figure 10 depicts the quantity of cache supplied by the five proxies in
each iteration. It demonstrates that all three resource allocation games converge to a steady state after
a number of iterations. It is observed that the NonCoop converges fast, while it takes more iterations for
the ProfitMax and the UtilMax to stabilize. For the ProfitMax and the UtilMax, the speed of convergence
is depended on the direct search method implemented. In the pattern search method, a large step size
is used initially, therefore, the cache quantity varies dramatically at the beginning. As the step size
decreases gradually, the cache quantity stabilizes and converges to the optimal value. Fortunately, the
converging speed does not affect the performance of the game. As long as the search method converges
to an optimal value, the corresponding objective function is optimized, and the goal is achieved.

4.2 Participation Incentive

The primary design objective of this work is to present an incentive mechanism to encourage participa-
tion of the entities in the network. The evaluation results show that this incentive mechanism applied
in the COPACC system provides a strong incentive for both the NSP and the proxies. In addition, the
incentive for the NSP is different from that of the proxies. The NSP is motivated by the attractive net
profit to setup the COPACC system in its network, while the proxies are encouraged by the positive net
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Fig. 10. Quantity of cache supplied by each proxy.
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Fig. 11. Net utility of each proxy.
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utility to supply cache to the system. Hence, in this subsection, we evaluate the two incentives in the
three resource allocation games.

4.2.1 Net Profit. Figure 12 plots the net profit of the NSP in the three resource allocation games. As
we expected, the profit maximizing game generated the highest net profit among the three games. The
net profit of the ProfitMax was 352.8, which was 21% higher than that of the NonCoop, and it was 2.26
times of the net profit in the UtilMax. The UtilMax performed the worse because it tried to maximize
the benefit in other dimension, social utility, by trading off the net profit.

We also evaluated the performance of the three games under systems having different revenue
function. All the revenue functions had the same ratio of A/θ , but the value of θ varied from 0.01
to 0.08. Remember that the larger the θ , the higher the revenue is for the same quantity of cache.
The net profit of the NSP in the systems with different revenue function is plotted in Figure 13.
The result further illustrates that the ProfitMax achieves the highest net profit among the three
games.

We are also interested in the amount of rewards given to the proxies. The total reward paid to the
proxies in the ProfitMax is 73.6, which is only 17% of the total revenue. Most of the revenue become the
net profit for the NSP. Thus, we conclude that the profit maximizing game provides a strong incentive
for the NSP to setup the revenue-rewarding scheme in the COPACC system.

4.2.2 Social Utility. In this subsection, we evaluate the social utility in different games. Figure 11
demonstrates the individual utility of the proxies under different games. Only the proxies having
positive net utility supplied cache to the system. It illustrates that the positive net utility provides an
initiative incentive to the rational proxies to cooperate.

Figure 14 shows the social utility of all proxies in the three games. The social utility achieved by the
UtilMax was the highest among the three. In this example, the social utility of the UtilMax was 161.7,
which was much higher than that of the ProfitMax (16.1) and the NonCoop (69.9). In Figure 15, the
social utility of different games were examined under the systems with different revenue function. The
result also agrees that the UtilMax outperforms other games in utility maximization.
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Fig. 13. Net profit of the NSP in the system with θ varied from 0.01 to 0.08.
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Fig. 14. Social utility in each resource allocation game: NonCoop, ProfitMax and UtilMax.

Since the ProfitMax is designed to maximize the net profit by trading off the social utility, the utility
achieved in the ProfitMax is the lowest. Note that the social utility of the ProfitMax and the NonCoop
decreased with an increase of θ . It shows that more utility is traded for the net profit when the θ is
large.

We are also interested in the total reward received by the proxies and the cost in providing the
cache. As the UtilMax performs better in utility maximizing, we focus this specific game. The total
reward granted to the proxies was 182.1, and among those, 20.4 (around 11% of the reward) was used
to maintain the cache. The remaining of the reward (about 89% of the total) was owned by the proxies.
When we consider the return on investment, which is defined as the ratio between the utility and
the cost, that is, 7.9, it can definitely encourage the proxies to participate. In contrast, the return on
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Fig. 16. Sum of the social utility and the net profit in each resource allocation game with 5 proxies where θ varied from 0.01 to
0.08.

investment of the ProfitMax was 0.28. Thus, under the UtilMax, the proxies have a strong incentive to
contribute cache in the system.

4.2.3 Discussion. In fact, the ProfitMax and the UtilMax have different design objective: the former
one optimizes the net profit, while the later one optimizes the social utility. The key discussion here is
which approach, the ProfitMax or the UtilMax, is better. There is no strict answer to this question. It
depends on the objective of implementing the incentive mechanism, and whether to benefit the NSP or
the proxies. There is a trade-off between the net profit and the social utility.

Indeed, one can compare the performance of the ProfitMax and the UtilMax by looking at the sum
of the social utility and the net profit as shown in Figure 16. It can be seen that the UtilMax is not
performing well as compared to the ProfitMax and the NonCoop. The reason is that under marginal-
rewarded pricing, the price of resource drops quickly as the quantity increases. As a consequence,
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Table III. Cost per Unit Cache Supplied by the Proxies in Different Game.
Cache Supplied Cost per Unit Cache

NonCoop ProfitMax UtilMax NonCoop ProfitMax UtilMax
Proxy 1 13 0 0 1.68 – –
Proxy 2 21 26 20 0.68 0.74 0.67
Proxy 3 0 0 0 – – –
Proxy 4 13 12 9 0.88 0.85 0.79
Proxy 5 20 25 0 1.11 1.09 –

Overall system 67 63 29 1.04 0.9 0.71

the UtilMax tries to keep a high price by avoiding large quantity of cache supplied to the system.
Thus, only a small revenue is obtained, and the achievable sum of the social utility and the net profit
becomes less. We also examined the UtilMax using the total-rewarded pricing, in which the net profit
of the NSP is always zero. The UtilMax(Total) showed in Figure 16 demonstrates that by using total-
rewarded pricing, it achieves the best performance. In fact, we can show that the social utility obtained
in UtilMax(Total) is equivalent to the maximal achievable sum of the social utility and the net profit.
Consider the objective function of maximizing the sum of the social utility and the net profit, that is

max
0≤si≤Ŝi

[
E(q) +

H∑
i=1

Ui(si)

]
= max

0≤si≤Ŝi

[
R(q) −

H∑
i=1

Ci(si)

]
. (60)

Since P (q) = R(q)/q in the total-rewarded pricing, the optimization objective of the UtilMax(Total) is
equivalent to the above objective. Hence, it is the maximal achievable social utility.

In general, the ProfitMax is suitable for the system that contains a centralized authority, like the NSP,
and the UtilMax is good for a non-coordinated P2P-like application. By applying the revenue-rewarding
scheme, the network entities are stimulated to participate in the system.

4.3 Cost Effectiveness

It can be seen in Figure 10 that not all the proxies playing in the resource allocation game participate
in the system at the steady state. In fact, all the proxies in the network used the same strategy to
decide the amount of cache to contribute, excepted that they had heterogenous cost function. In this
subsection, we study how the cost function influences the behavior of the proxies. We show that only
the cost-effective proxies contribute cache to the system.

Table III lists the quantity of cache supplied in each game. The quantity of cache admitted in each
game was different. The NonCoop admitted the largest amount of cache, while the UtilMax admitted
the smallest. It is due to the underlying game rule, which induces the “best” quantity (or price) of cache
for the system. Clearly, the overall cost for a unit cache in the UtilMax should be the lowest because
it equips with a cost minimization protocol to achieve the lowest cost. In addition, the UtilMax tends
to employ few proxies, which have low cost among the proxies, to participate. Hence, we conclude that
the UtilMax provides a cost-effective resource supply to the system.

We further investigate the cost of maintaining the cache for each individual proxy, which is listed in
Table III. Actually, the three resource allocation games implicitly choose the best proxies to cooperate.
We observed that Proxy 3 was rejected in all the games because its cost was the most expensive. Proxy
2 had a low cost function, thus, it contributed cache in all the games. Proxy 4 only contributed small
amount of cache as the cost for large quantity was high. In contrast, Proxy 5 supplied large quantity due
to the lowest cost. These results illustrated a desirable property of the system: the game automatically
admits the best set of proxy to contribute, depending on the heterogenous cost function adopted by the
proxies.
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Fig. 17. Sum of the social utility and the net profit in each resource allocation game with 20 proxies where θ varied from 0.01
to 0.08.

4.4 Scalability

In this subsection, we examine the scalability issue of the proposed revenue-rewarding scheme. A graph
similar to Figure 16, but have number of proxies increased to 20, is plotted in Figure 17. Note that the
five categories of proxy shown in the Table II are preserved in this simulation. The comparison of these
two figures demonstrates that the overall gain of the system increases with more proxies participating
in the system, especially for the system having small θ . Recall that the small θ implies more quantity of
cache is required to obtain the same amount of revenue. And large number of proxies means they can
supply cache with less cost. Thus, it takes advantage in our revenue-rewarding scheme. For instance,
when θ equals 0.02, the overall gain of RevMax and UtilMax(Total) are 362.6 and 348.3, which are
19.6% and 8.4% higher than that of 5 proxies scenario.

We then look into the system with θ equals 0.03, and we plot the overall gain against the number
of proxies in Figure 18. As we expected, the overall gain increases with the number of proxies in
different cache allocation game. Obviously, large cooperating system can provide a better choice of
cache allocation (in terms of operational cost) among the proxies. In steady state, only the proxies that
provide cost-effective cache are remained. Thus, the performance of the large system is often better.

In summary, the evaluation results demonstrated that the proposed revenue-rewarding scheme ap-
plied in incentive-based COPACC system provides a strong incentive for both the NSP and the proxies
to participate in the system, and the gaming approach yields a cost-effective resource allocation from
the proxies.

5. RELATED WORK

There has been a lot of research work on multimedia streaming and video-on-demand services, from
fault-tolerance [Golubchik et al. 1998], to dynamic replication [Lie et al. 2000], I/O redution techniques
[Golubchik et al. 1996; Lau et al. 1998]. In the past few years, researchers consider how to provide
multimedia services in a P2P environment. Also, recently a lot of efforts have been made to address the
problem of free-riding and tragedy of the commons [Hardin 1968] in the cooperative network. Various
incentive mechanisms have been proposed to encourage the selfish nodes to cooperate by sharing their
own resources with the community. In particular, differential service-based incentive has been well
studied in the literature. Under such scheme, the peers that contribute more resource receive better
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 4, No. 1, Article 5, Publication date: January 2008.
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equals 0.03.

quality of service, while the selfish peers contributing less are discriminated. Buragohain et al. [2003]
have suggested a game theoretic framework to improve the system’s performance by eliminating non-
cooperative users. Ma et al. [2004a, 2004b, 2006] proposed a service differentiated scheduling policy
that allocates bandwidth according to the peer’s contribution. It showed that the social welfare is
maximized when all peers have the same contribution value. Habib and Chuang [2004] have suggested
to differentiate the service in peer selection process of P2P streaming. By using the rank-based peer-
selection mechanism, the contributors are rewarded with flexibility and choice in peer selection.

Another well-known incentive model is Reputation-based incentive. The reputation reflects a peer’s
overall contribution to the network. The peers with high reputation value have extra privilege over the
others. Reputation can also be used to identify how reliable and trustful a peer is [Kazaa]. Gupta et al.
[2003] suggested two alternative computation mechanisms to compute dynamically the reputation score
of each peer in the network. The peers having high reputation is more likely to obtain better service.
Based on the reputation system, Ye and Makedon [2004] suggested how to monitor the users behavior
in a streaming network, and it tried to maintain a satisfactory level of service for the collaborative
peers. Feldman et al. [2004] used the generalized prisoner’s dilemma to model the system, and they
proposed a family of incentive techniques. Similar approach was adopted in Jiang et al. [2003, 2005].
They used iterated prisoner’s dilemma to model the peers’ interaction, and proposed a reputation-based
trust model with incentive mechanism incorporated.

Our work is different from the above schemes that we follow the Contribution reward-based incentive
approach, where monetary reward is given to the peers in proportional to their contribution. Golle et al.
[2001] have proposed a micro-payment mechanism to reward users for upload. The results demonstrated
that the users are encouraged not only to upload files, but also to share new files to the P2P system. In
Tamilmani et al. [2004], a credit-based trading mechanism have been presented for P2P file sharing. In
the model, peers ,who exchange pieces of a file, use a pairwise currency to reconcile trading differences
with each other. The monetary scheme provides a clean economic model for the incentive mechanism.
However, it is argued to be impractical in P2P system, where a reliable accounting infrastructure has
to be established to track the transactions between every peers. In contrast, its application in our coor-
dinated system with centralized authority is viable because the payment is made in a single direction
only, that is, from the NSP to the proxies. Wang and Li [2003] also considered revenue rewarding to
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the contributed peers. They modeled the P2P system as a Cournot Oligopoly game and used control-
theoretic to maximize individual net gain. System performance requirements, like storage utilization
and bandwidth stress, were considered as the global desirable properties. Our work is different from it
as we model the system as a Stackelberg game, and we focus on maximizing the net profit and social
utility in the network.

Our work relies on pricing to regulate users’ contribution. The pricing aspects of P2P network have
received much attention recently. Turner and Ross [2004] presented a currency model that can be used
to exchange peer resources. Based on this paradigm, Adler et al. [2004] suggested how to define the
price for the multimedia content in a P2P network. A charge-per-usage pricing model was studied in
Basar and Srikant [2002], where the users are charged for their bandwidth usage. By analyzing the
strategies of the users toward the price, the optimal price is computed to maximize the revenue of the
service provider. It also showed that the pricing scheme provides an incentive for the service provider to
increase the network capacity. Campos-Nanez and Patek [2003] proposed an adaptive pricing strategy
that adjusts the price in realtime, and the objective is to maximize the revenue for the service provider.
Their work assumed prior knowledge about the user arrival pattern, and thus it may not be appropriate
for the P2P system with highly dynamic nodes. On the other hand, He and Walrand [2005] proposed a
fair revenue-sharing policy to distribute profit between cooperative providers. The fair allocation policy
encourages collaboration among the providers, and hence produces higher profit for all the providers.
We also adopt the proportional fairness in rewarding the revenue to the proxies. Gupta and Somani
[2004] described a pricing strategy for carrying out lookups in P2P networks. We apply similar approach
to reward the contributors in the cooperative network, but suggest different pricing strategy to achieve
different objective.

6. CONCLUSION

In this article, we introduce a revenue-reward mechanism to address the incentive issue of a coopera-
tive proxy caching system for media streaming. We study the problem of what motivates each proxy to
provide cache space and how much cache space should be allocated. We propose a revenue-rewarding
scheme to encourage proxy cooperation. In this scheme, credits are granted to the proxies for their con-
tribution. A game theoretic model is used to analyze the interactions between proxies under different
resource allocation games. It is shown that no system-wide property is achieved under a non-cooperative
environment. Thus, we propose two cooperative resource allocation games that lead to two different op-
timal situations: maximized net profit and maximized social welfare. Both centralized and distributed
algorithms are presented for the games to achieve different optimal situation. We also carried out ex-
tension simulations to show the merits of our distributed algorithms. In general, a significant improve-
ment in terms of performance and cost-effectiveness of resource can be allocated when the cooperative
schemes are used. Note that the proposed pricing and incentive mechanisms can be implemented via
the micro-payment methods Adler et al. [2004], which can faciliate the transactions and deployment.
Currently, we are working on the issue of cheat-proof mechanism so as to detect and avoid peers to
check their contributions.
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