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Abstract—Smart systems are often battery-constrained, and
compete for resources from remote clouds, which results in high de-
lay. Collaboratively sharing resource among neighbors in proxim-
ity is promising to control such delay for time-sensitive applications.
Rather few existing studies focus on the design between ubiquitous
cooperation and competition with learning-enable incentives. In
this article, intelligent algorithms are introduced in a distributed
fashion, which encapsulates cooperation and competition to coor-
dinate the overall goal of the cellular system with individual goals
of Internet of Things (IoT) devices. First, the utility function of
the cell and IoT users are designed, respectively. For the former, an
incentive mechanism is constructed, where a novel deep actor-critic
learning algorithm is developed with a prioritized queue for contin-
uous action space in the differentiated decision-making procedure.
For the latter, the energy model is taken into account. Furthermore,
the coalition game combined with deep Q-learning framework
is explored so as to model and incentivize the cooperation and
competition process. Theoretical analysis and simulation studies
demonstrate that the improved algorithms perform better than the
original version, and they can converge to a Nash-stable optimal or
asymptotically optimal solution.

Index Terms—Coalition game, deep learning, decision-making
control, resources sharing, smart Internet of Things (IoT).

I. INTRODUCTION

W ITH the proliferation of Internet of Things (IoT) devices
of computing and communication capabilities, mobile

applications embedded in such devices are also surging in an ex-
plosive growth. Consequently, continuous growth in data traffic
is witnessed in the network. In addition, the energy-harvested
IoT devices with limited battery are severely constrained to
address such heavy traffic. Therefore, it is the energy of user
equipments (UEs) such as smartphones, vehicles, and drones
that is the main bottleneck for serving users [1].
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Fortunately, mobile edge computing (MEC) (i.e., fog/edge
cloud servers), offering tremendous computing and storing re-
sources, has brought new functionalities of IoT devices, such
as machine to machine or device to device communication.
MEC has been widely adopted, which is regarded as an efficient
paradigm for coping with massive traffic data for mobile UEs,
who can save plenty of energy and other resources like comput-
ing and storing resources [2]. Since UEs can be highly mobile,
they may encounter problems such as service interrupting upon
switching from one cell to another. It is desirable for users to
enhance their quality of experience (QoE) by exploiting their
neighbors’ idle resources instead of cloud’s. Sharing spare re-
sources reduces the network delay, including round-trip commu-
nication delay, improving user QoE. It also significantly reduces
the maintenance overhead of cloud for base stations (BSs).

Nevertheless, each IoT device is subject to its own energy
capacity limit, which depletes sooner by helping neighbors to
process their computing jobs. In such a system, “free-riding”
happens when a user utilizes others’ resources without offering
its own. A well-designed incentives plan is naturally desired, to
encourage individual users to participate in the sharing service.

It remains to be an overwhelming drawback of costlier main-
tenance for cloud servers [3]. From the network operators’
perspective, they anticipate to maximize overall network utility,
including resource utilization within their overhead. Therefore,
it is desirable to design an incentive mechanism to incentivize the
individual users to sacrifice their energy for sharing resource un-
der these special circumstances. For example, the cloud cannot
accomplish the UE’s traffic before its desired completion time.
The cloud servers are overloaded. Compared with the distance
between its neighbor and the nearest cloud, the UE’s remaining
energy is not sufficient to transmit to the cloud.

Extensive studies exist on game-theoretical approaches,
which fall into two contrasting categories: cooperative and
noncooperative game [4]–[6]. An actor-critic approach, deep
deterministic policy gradient (DDPG) [7], for continuous control
was introduced by Google’s DeepMind. DDPG randomly selects
samples from experience replay that uses for caching samples to
generate next action. However, the samples with the prioritized
order are not taken into consideration [7]–[9].

Existing decision-making policies, to the best of our knowl-
edge, are not adequate to accommodate such dynamics of
continuous varying network conditions that are stirred by the
tremendous traffic growth. Furthermore, little work exists in
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integrating the cooperative-competitive scheme with deep mod-
els. We aim to strike a delicate balance between 1) the coopera-
tion focusing on the overall interests of system gains and 2) the
competition focusing on the self-interest of power consumption
loss. The main challenges are as follows.

1) How does it enable each IoT device to make a sophisti-
cated decision between the overall interests and individual
benefits independently?

2) How does it model the coalition game formation between
cooperation and competition?

3) How can it combine the deep actor-critic reinforcement
learning (DARL) approach of the prioritized sampling
model with coalition game so as to coordinate the cellular
goals and the individual users?

A novel coalition game algorithm integrated with a deep
model of prioritized sampling is introduced to address the chal-
lenges above. Besides, a delicate tradeoff between the coopera-
tion and the competition is found out by the stable solution of
Nash Equilibrium.

Below are the main contributions of this article.
1) We propose intelligent algorithms that encapsulate coop-

eration and competition to coordinate the global goal of
cellular system with the individual one of IoT devices,
which is more applicable to real-world settings.

2) We formulate the UEs’ energy model and explore the
formation of coalition game, facilitating cooperation and
competition.

3) A novel deep actor-critic learning algorithm is devel-
oped, which investigates the prioritized sampling so as
to provide the differentiated services for different users in
decision-making procedure on BS’s side.

4) A typical distributed deep Q-learning network (DQN) al-
gorithm with individual energy model is explored. For ease
of comparison, we provide an elaborate DQN algorithm
with coalition game, which is cost-efficient for a plethora
of emerging traffic data on the fly.

5) Corroborated by massive simulations, our proposed al-
gorithms can be capable of converging to a Nash-stable
optimal solution or an asymptotically optimal one after
theoretical analysis and proof.

The remainder of this article is organized as follows. The
related work is reviewed in Section II. Preliminaries and prob-
lem formulation are depicted in Section III. Subsequently, a
distributed coalition game that is combined with the DARL with
the prioritized sampling model is presented in Section IV. Then,
the theoretic analytics and extensive simulations of our proposed
algorithms are elaborated in Section V. Finally, we conclude the
article in Section VI.

II. RELATED WORK

Resource sharing was extensively studied in recent literature.
A Stackelberg game between BS system and end-users was em-
ployed in a cooperative manner, yielding the maximal revenue
of each player [5]. Cao and Cai [6] modeled the competitive
channel resource of a mobile cloud as a noncooperative game.
This model does not consider device’s energy consumption. We
emphasize user energy loss in the process of its interaction

with other devices and clouds. Energy efficiency in cognitive
optimization with imperfect hybrid spectrum sensing was in-
vestigated in [10], which did not refer to the learning algorithm.
A noncooperative energy game with incomplete information
was proposed in [11], which leverages a typical reinforcement
learning (RL) approach to search for Nash Equilibrium. Further-
more, the strategy of regularized Lagrange multiplier enabled the
algorithm to converge to a unique Nash Equilibrium. Conversely,
the multiresource scheduling method was proposed in [12],
which the cooperative scheduling mechanism was designed by
graph theory. However, the RL method was not covered.

RL [13] has emerged as a revolutionary technique to enable a
system to “think” and “learn.” The agent of RL interacts with its
observed environment that produces a reward (penalty) signal
to it. Then, the agent takes a corresponding action under certain
policy. In this manner, the learner or agent continues to accumu-
late its experience reserved in the experience replay so that it can
search for the optimal value under some state-action pairs in the
next time slot, thereby maximizing its long-term rewards [14].
Chen et al. [8] employed RL for traffic optimization in a scalable
datacenter network, which leveraged their designed components
to make local and global decisions, respectively.

Action schema network was studied in a seminal work [15],
which used deep learning to optimize the sharing weights.
Chinchali et al. [16] leveraged the RL method to schedule traffic
in cellular networks, which catered a specific scenario of the high
volume applications. The RL method was applied to the problem
of cache placement that defined the popularity of accessing a
file for discrete and discontinuous action space in [9]. Yu and
Neely [17] focused on the power control of energy intake, which
is aided by the learning method with the discrete action space.
While, as opposed to them, we take the continuous action space
on the BS side and do not discretize the space into different
levels into account.

The conventional RL approach was modeled as the actor-critic
network for regulating the training gap between the estimated
value of the main network and the targeted values of the target
network in [18]. Similarly, the approach of eligibility trace was
developed by [19], which overcame the inherent delay reward
of RL. Zhu et al. [20] exploited the ε-greedy selection to obtain
the initial Q-value that is composed of the action, state, and
rewards in the experience replay. While, in [21], the Boltzmann
probability distribution for making decision was investigated,
circumventing the extreme case of ε-greedy selection. In this
regard, the priority model with the prioritized sampling sequence
to choose next action instead of the greedy or stochastic selection
is formulated.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, the basic knowledge about the DARL ap-
proach, network scenario, energy model, and problem formu-
lation are described, respectively. For ease of reference, major
notations are summarized in Table I.

A. DARL Approach

Generally, RL is composed of an agent interacting with
the learning objective (i.e., environment) in discrete decision
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TABLE I
SOME NOTATIONS

epochs. The agent (i.e., the device or cellular system) observes
the state st and takes an appropriate action at under certain
policy π(s) at each decision epoch t. Then, it receives an
immediate reward R in an iterative manner. The overarching
objective of the agent is to find an optimal policy π(s) mapping
a state to a deterministic action or a probability distribution over
the stochastic actions space according to the maximal value of
the cumulative discounted reward under the current state-action
pair, which is expressed by

Q∗[st, at] = R[st, at] + β

⎡
⎣∑

s′t

P [st, at, s
′
t] max

a′t
Q∗[s′t, a

′
t]

⎤
⎦

(1)
where Q∗[st, at] represents the Q-value of the state-action pair
[st, at] under the optimal policy.P [st, at, s

′
t] denotes the agents’

transition possibility from current state st to next state s′t for
the given action at. The name of Q learning is acquired by
estimating the Q-value Q[st, at] of the classic RL algorithm.
While the DQN employed the parameterized neural network to
find out the optimal Q-function, accommodating the dynamics
of network [22].

The procedure of DARL adopted a neural network (or even
the deep convolutional neural network abbreviated as DNN)
to approximate the Q-value function, which involves the actor
part and the critic one. The actor is to search the optimal or
suboptimal strategy that is parameterized. Then, it generates
actions according to the observed environmental state. Whereas
the critic one is to estimate and criticize the current policy by
receiving rewards, which, therefore, is called as the estimated
Q-function. The evaluated Q-function is guided by the temporal
difference (TD) error and trains the corresponding critic net-
work. The TD error is used to reconcile the gap between the
actor part and the critic one, diminishing the gap mostly. The
actor network, then, uses the output of the critic network to
update its parameters of the policy [23].

Recent efforts on employing the DARL approach to achieve
the crowdsourcing mechanism of BS such as the study in [24]

used the method for continuous control. Subsequently, the en-
deavors in DeepMind corporation introduced the DDPG ap-
proach [7] [25]. The core idea was to coordinate a parameterized
actor function π[st|θπ] about θπ with a parameterized critic
function Q(st, at|θQ) with respect to θQ. The parameterized
actor function returns a Q-value. The parameterized critic func-
tion criticized the Q-value how good it is [19]. The parameters
θπ of the actor network that has the actor function π[t] can be
updated by applying the chain rule to the expected cumulative
rewards, both of which are respectively given by [26] and [27]

π[t] = R[st] + βπ[s′t]|θπ] (2)

∇θπJ = E[∇θπ log πθ[a|s]Q[s, a|θQ]|s=st,a=π[st|θπ]]

≈ E[∇θπQ[s, a|θQ]|s=st,a=π[st|θπ]]

≈ E[∇aQ[s, a|θQ]|s=st,a=π[st] · ∇θππ[s|θπ]|s=st ]
(3)

where J represents the expected cumulative reward. π is the
state value with respect to θπ . E[.] is the estimated value.
Correspondingly, the critic function in the training network is
supervised by the loss function [28] that is denoted as the TD
error δθQ [t]. It is calculated by

δθQ [t] = E
[
[Q′[s′t, a

′
t|θQ]−Q[st, at|θQ]]2

]
(4)

where Q′[s′t, a
′
t|θQ] is the estimated target value, which is ex-

pressed by

Q′[s′t, a
′
t|θQ] = R[s′t, a

′
t] + βQ[s′t, π[s

′
t|θπ]|θQ]. (5)

The DDPG approach carried out the uniform sampling from
the experience replay. While it did not take the importance of
samples into account. Furthermore, a method with the prioritized
sampling was introduced in [29], which demonstrated that the
prioritized sampling strategy is superior to the state-of-the-art
schemes on game-playing tasks. Each transition sample is en-
dowed a priority regarded as the sequential order of accessing the
resources in each epoch so as to fulfill the distinguished service.
For example, it is anticipated that the cellular system adopts
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DDPG with the prioritized sampling sequence to inspire IoT
devices to share their idle resources with each other, preventing
the “free-riding behavior” effectively. Therefore, a prioritized
sampling method compatible with the cellular utility and the
individual one is devised, which not only guarantees the fairness
during the competition at BS side but also accounts for the
energy consumption of UEs during the cooperation in real-world
settings. Analogous to the DDPG algorithm, we employ the
parameterized actor-critic network, wherein πG[sG[t]|θπ] indi-
cates the parameterized actor function of BS with respect to θπ .
QG[sG[t], aG[t]|θQ] is the parameterized critic function of BS
with respect to θQ. BS is the core system in the network model
described as follows.

B. Network Model

Consider a software defined network (SDN)-based commu-
nication cellular networks with a set K of k mobile UEs, where
SDN has the SDN controller and the OpenFlow switches [30].
The SDN-based cellular core network sets up connection by the
Internet or center cloud. The BS with the function of gateway
governs hybrid communications for UEs within its coverage and
controls its cloud servers (here, it is called a cloudlet). More
importantly, BS manages to balance the cloudlet’s workload
of resources. Mobiles users with energy-constrained power are
connected by wireless networks such as Wifi or Bluetooth.

Generally, for the selfish and rational UEs, they are not willing
to offer their resources to those who needs them at the expense
of depleting energy because of the finite battery. Additionally,
the time of processing traffic requested by users is later than
the deadline of request, implying that UEs’ QoE will be sharply
degraded when the cloudlet’s workload is overloaded. To this
end, BSs are supposed to make an appropriate mechanism of
inspiring their UEs to share their idle resources with its neigh-
bors. For example, it is a good way of increasing the weight or
the priority of the preemptive resources in cloudlet during the
competition so as to encourage the UEs to serve its neighbors.

The mode of UEs competing for cloudlet’s resources and
cooperating with those who need help is portrayed in Fig. 1. The
UEs of A, B, C, and D have different energy in power-limited
battery. In the case of the adequate energy, UEs will request some
resources such as computing or storing the cloudlet’s resources
in a competitive manner. BS manages the cloudlets to prioritize
the accessing queue. The cloudlet becomes overloaded if its
queue turns to be red. The UE C with lower energy will ask
its neighbor UE D in a close proximity to it for help. Whether
the user D is ready to cooperate with UE C or not depends on
the comprehensive measurement covering the energy state, total
cost, and the individual payoff, which is modeled subsequently.

C. Energy Model

Since we consider IoT devices with renewable energy by
conventional power grid or new rechargeable energy (i.e., solar,
radio signal, and so on), the finite-size battery can be viewed
as backlog in an energy queue. Provided that l[t, k′] stands
for the amount of cycles performed by CPU in device, which
can be estimated the requested amount of resource for the

Fig. 1. Ecological mode of cooperation and competition.

UE k′(k′ ∈ K, k′ �= k) at time slot t and can be acquired by
exchanging messages. Obviously, the executing time of task can
be calculated by l[t,k′]

c . The residual energy eleft[t, k] of UE k at
time t can be estimated by

eleft[t, k] = e[t] + ehar[t]− ecom[t]− eser[t, k
′] (6)

where eser[t, k
′] = ( l[t,k

′]
c ) ∗ eloss.

After sharing its private resources, the energy left of UE k
will follow the constraint of the utilizable energy below

eleft[t, k] ≥ ethre. (7)

The energy queue backlog e[t] evolves as follows when the
constraint of (7) is satisfied on each slot:

e[t+ 1] = min{eleft[t, k], emax} ∀t. (8)

Afterwards, the process of formulating problem from the
respective of the RL model will be detailed.

D. Problem Formulation

Based on the aforementioned network and energy model, we
focus on how to promote the good ecological mode of integrating
the cooperation and the competition, taking BS’s utility and UEs’
gains into consideration. For simplification, assume there are K
UEs within the BS’s coverage. As for multiple BSs, the design
can be further extended for this article. In terms of BS, it man-
ages to determinate how to make a decision of the continuous
control and how to boost to share resources mutually so that UE
k(k ∈ K) is willing to cooperate with its neighbor v(v ∈ V).
V = {X1, X2, . . . , XV }. As for the UEs, they are capable of
taking proper measures according to the energy left and the
revenue of their own.

In general, Markov decision process (MDP) is regarded as the
foundation of decision-making models in the learning algorithm,
which describes a sequential decision problem [31]. Therefore,
the following definition of MDP is given before formulating the
model of our problem.
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Definition 1 (MDP): An MDP is a tuple encompassing
{S,A,R, P}, where S is the state space; A is the action
space of agent; R : S ×A→ R is the reward function mapping
state-action pairs to rewards; and P : S ×A× S → [0, 1] is the
transition function.

Elaborate learning models based on the definition of MDP are
formulated from the perspective of BS and UE, respectively.

As for the BS, it operates with unconstrained energy on each
slot t(t ∈ T). Let the tuple of sG(L[t], D[t, k]) ∈ S denote its
state, where L[t] can be obtained at slot t and D[t, k] is yielded
once the traffic packets arrivals in BS. Accordingly, its action
space aG ∈ A is to assign the weight ratio to each UE k at t,
which is calculated by

aG[t, k] =
w[t, k]∑K
k=1 w[t, k]

. (9)

Aiming to express the weight, we measure the importance
between TD error and Q gradient, both of which are introduced
in Section III-A. The weight is estimated by

w[t, k] = μ · (δ + σ) + (1− μ) · E[|∇aGQ|] (10)

where E[|∇aGQ|] is the average of the absolute values of the Q
gradient. σ is a small positive constant for avoiding the edge-
cases of transitions that they are not being revisited if σ is zero.

Of note is that the action space is continuous, which is as
opposed to [9] and [17] that adopted the discrete action.

Generally speaking, the crowdsourcing platform as the mo-
tivator fulfills the incentive mechanism to inspire its users to
accomplish their assigned missions [32]. Obviously, it is the
employment relationship that is produced between the platform
and its users. Nevertheless, unlike [32], the motivator BS and
the motivated UEs are a symbiotic relationship that is reflected
in rewards between BS and UEs in this article. Specifically,
the BS’s rewards relies on the UE’s accumulated frequency for
sharing resources. Its rewards is calculated by

RG
k =

XV∑
Nv=X1

1{aI
k=1} ∗ n[Nv, k] (11)

where Nv indicates the statistical number of sharing resources
of UE k with its neighbor v, which is returned by Algorithm 2
in Section IV-C; let aIk denote the action of the individual UE k;
aIk = 1, suggesting the UE k serves its neighbor; and n[Nv, k]
is the total times of serving its all neighbors of UE k.

The goal of BS is to search the optimal Q-values QG∗
k [s, a] of

UE k, which is calculated by

QG∗
k [s, a] = RG

k [s, a] + β

[∑
s′

P [s, a, s′] max
a′

QG∗ [s′, a′]

]
.

(12)
From the perspective of BS, it anticipates all UEs within its

coverage to share their idle resources and to serve its neighbors
who need help so as to alleviate the operational overhead of
cloudlet and to facilitate the idle resource to be made full use of.
That is, the global utility function of BS system is given by

UG =

∑K
k=1 Q

G∗
k [s, a]

M [BG]
(13)

where the processing capacity of the cloudlet in BS is a variable
denoted as BG. M [BG] is the function with respect to BG,
indicating the overhead of maintaining cloudlet and users.

As for UEs based on the energy model defined in
Section III-C, let sI(eleft[t, k], l[t, v]) ∈ S denote UE k′s state
space. The action space aIk ∈ A is an indicator function, i.e.,
aIk ∈ {0, 1}. The UE k is willing to serve its neighbor v for
provisioning the corresponding resource requested if aIk = 1.
Otherwise, the user k does not share its resources. The action of
UE k relies on the immediate revenue RI

k acquired from BS un-
der certain policy at time slot t. Namely, RI

k = aG[t, k]. Similar
to the BS, the long-term goal of individual UE is calculated by

QI∗
k [s, a] = RI

k[s, a] + β

[∑
s′

P [s, a, s′] max
a′

QI∗ [s′, a′]

]
.

(14)
Once the network is established, each UE k will build a map

of G{V, E}, where V represents the collection of requesting the
resources from UE k, which is regarded as the UE k′s “ego”
network. E stands for the amounts of requesting traffic, which
is yielded by exchanging the messages. They expect the allo-
cated weight ratio becomes increasing. Meanwhile, the energy
consumption for service is less than that of other neighbors
requesting resources under the equivalent amounts of traffic. In
other words, the higher the weight ratio is, the more competitive
resources in cloudlet they can acquired. It means the completion
time of task executed by the cloudlet will be shortened. The UEs
can achieve high QoE. Hence, the individual utility function is
defined as

U I =
F [w]

D[e] + 1
∗ Yk,v[t]

s.t. D[e] ≥ 0

F [w] ∈ [0, 1]

Yk,v[t] ∈ {0, 1} (15)

whereF (w) = aG.D(e) = min eser[t, v].Yk,v[t] is an indicator
function, denoting UE k selects its neighbor v if Yk,v[t] = 1.
Otherwise,Yk,v[t] = 0. Each UE k is supposed to select no more
than one neighbor at time slot t in order to have no influence on
the resource usage itself.

Herein, the objectives of BS and UEs are formulated, respec-
tively. However, there exist the intractable challenges to be ad-
dressed. For instance, it is nontrivial to model the coalition game
between the cooperation and the competition. In addition, it is
challenging to combine the DARL approach of the prioritized
sampling model with the coalition game in order to coordinate
the BS’s objective and the individual goal.

To this end, an elaborate solution of challenges above in the
following section is provided.

IV. SOLUTIONS OF CHALLENGES

To elucidate how to bridge the gap between the cooperation
and the competition and address the challenges above, we elab-
orate on the coalitional game formation, the deep actor-critic
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learning approach with the prioritized sampling and the dis-
tributed algorithms establishment, respectively.

A. Coalitional Game Formation

Since UE k can acquire more payoffs of its individual util-
ity than that of not forming coalition if it shares resources
with its neighbors, UE k(k ∈ K) is willing to cooperate with
its neighbor v(v ∈ V,V = {X1, X2, . . . , XV },V ⊆ K). It is
evident that there exists (V + 1) coalitions formed as C =
{Cx1

, Cx2
, . . . , CxV

, CxV +1
}, where Cxz

⋂
Cxz′ = ∅, for any

z �= z′, and
⋃V+1

z=1 Cxz
= K.

However, because its power consumption is huge if UE k
is in cooperation with all neighbors, UE k will not form the
grand coalition when taking individual rationality into account.
Consider that UE k in the coalitional game can join or leave the
coalition after measuring its utility in the physical environment.
As a consequence, the coalitional game with the transferable
utility is taken into account, which is given as follows.

Definition 2 (Coalition game): Coalition game is viewed
as a triple tuple (K, U I ,C). The coalitional revenues for
the individual will be assigned to the (V + 1) coali-
tions after forming the cooperation, i.e., for ∀Cx ⊂ C
and ∀z �= z′,C = {Cx1

, Cx2
, . . . , CxV

, CxV +1
}, Cxz

⋂
Cxz′ =

∅ and
⋃V+1

z=1 Cxz
= K.

Like [33], assuming that, for any UE k(k ∈ K), let “k”
denote the preference order, which is defined as a complete,
reflexive and transitive binary relation over the set of all coali-
tions that the user k can possibly form. Hence, each user is
able to sort its potential coalitions according to the well-defined
preference relation when choosing to join one of the coalitions.
The definition of preference order is introduced to estimate the
potential coalitions.

Definition 3 (Preference order): For any given UE k(k ∈
K), Cx k Cx′ represents UE k prefers to join the coali-
tion Cx(Cx ⊂ C) rather than Cx′(Cx′ ⊂ C) according to the
following estimation of utilitarian order [34]. Namely, for
∀k, k ∈ K and k ∈ Cx, Cx′ , we have Cx k Cx′

.
= (U I [Cx] +

U I [Cx′ \k]) > (U I [Cx\k] + U I [Cx′ ]), where we use “
.
= ” to

denote “is defined to be equal to” in this article.
It is observed that the preference relation excludes the case that

the UE k is equally willing to be a member of the two coalitions
(i.e., Cx and Cx′ ) in accordance with Definition 3. The utility
sequence implies that the UE k will join in coalition Cx instead
of Cx′ on the premise that the coalition Cx makes the user’s
utility high when compared with coalition Cx′ . Afterwards,
the following transfer trigger to form transferable coalitions is
defined.

Definition 4 (Transfer trigger): Based on Definition 2, we
fix a partition C = {Cx1

, Cx2
, . . . , CxV

, CxV +1
} of UE set K, if

UE k(k ∈ K) executes a transfer trigger from Cx to Cx′(Cx �=
Cx′), then the current partition C is modified into a new partition
C′ such that C′ = {C\{Cx, Cx′ }}

⋃{Cx\{k}, Cx′
⋃{k}}.

In nature, it is noted that the transfer trigger is triggered by
the preference relation defined in Definition 3. The cooperation
among neighbors is set up by the coalition game defined above.
Subsequently, the BS employs the DARL approach with the

TABLE II
PARAMETER SETTING IN EXPERIMENTS

prioritized sampling to carry out the distinctive service for UEs
in competitive scenarios.

B. DARL Approach With the Prioritized Sampling

The DARL approach employed ε-greedy selection [20] or the
Boltzmann probability distribution [21] to yield next action in
the experience replay. Recent research on DDPG [7] adopted
the uniform sampling. Fortunately, the prioritized sampling was
explored in [27], in which Xu et al. merely considered the impor-
tance between the TD-error and the Q gradient for the targeted
sampling in the replay. However, it did not take the individual
utility of UE into consideration. Besides, the approach in [27] did
not apply to our proposed models or scene. Therefore, based on
the UE’s practical situation such as the energy consumption and
payoffs and so on, the priority model weighed by the individual
utility of UEs and global utility of BS is developed, enhancing
the bridge of the cooperation and competition. The priority is
estimated by

p = ξ · U I + (1− ξ) · UG (16)

where ξ, belonging to (0, 1), indicates the balance factor of
fine-tuning the utility between the individual and BS.

C. Distributed Algorithms Establishment

In this section, five algorithms for BS and UEs are elaborated
on. A novel DARL algorithm with well-defined priority for
sampling is adopted for the continuous control of BS. While
the improved DQN algorithm with energy model is developed
for the discrete control in the decision-making process in terms
of UEs. Moreover, the coalitional game algorithm is designed to
boost the cooperative-competitive relationship between BS and
UEs.

The DARL framework is outlined in Algorithm 1 first for
comparison in simulations. In it, the DARL algorithm employs
the double actor-critic networks to further regulate network
parameters in the training procedure, i.e., the actor network, the
critic network, and the corresponding target networks. Notice
that there exist quite a few hyper-parameters in the learning
framework. According to the result of empirical study and the
validation in extensive simulations, we have found the good
settings for some hyper-parameters. The configuration of pa-
rameters is outlined in Table II in Section V-E. Of note is that
the conventional gradient of the actor-critic network is used
for updating network (lines 9–10) with no consideration of the
priority. As a result, the DARL algorithm with the prioritized
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Algorithm 1: DARL Framework in BS.

Input: Initialize π[.] with θπ and Q[.] with θQ;
Initialize π′[.] with θπ

′ .
= θπ and Q′[.] with θQ

′ .
= θQ;

Initialize sG, aG and β.
Output: AG.
1: Receive the initial observed state sGk [t]
2: for t = 0 to T − 1 do
3: aGk [t]← select(AG) by ε-greedy algorithm [20]
4: Execute aGk [t] and observe the immediate reward

RG
k [t]

5: Put the transition sample
(sGk [t], a

G
k [t], R

G
k [t], s

G
k [t+ 1]) into buffer D

6: Calculate the targeted value π′[t] and Q′[t] :
π′[s′t|θπ] = R[s′t] + βπ[s′t|θπ]
Q′[s′t, a

′
t|θQ] = R[s′t, a

′
t] + βQ[s′t, π[s

′
t|θπ]|θQ]

7: Calculate the gradient of actor network and critic
one by (3) respectively: ∇θππ and ∇θQQG

8: Calculate TD-error δθπ and δθQ :
δθπ [t] = π′[s′t|θπ]− π[st|θπ]
δθQ [t] = Q′[s′t, a

′
t|θQ]−Q[st, at|θQ]

9: Update the parameters of actor network and critic
one, respectively:
θπ[t+ 1]← θπ[t] + ζπ · δθπ [t] · ∇θππ; reset
∇θππ ← 0 θQ[t+ 1]← θQ[t] + ζQ · δθQ [t]
· ∇θQQ; reset ∇θQQ← 0

10: Update the parameters of the corresponding target
network:
θπ
′
[t+ 1]← φθπ[t] + (1− φ)π′[t]

θQ
′
[t+ 1]← φθQ[t] + (1− φ)Q′[t]

11: end for

sampling is additionally devised. As illustrated in Algorithm 2,
the prioritized sampling is presented (lines 6–17). Note that the
measurement between the TD error and the gradient of functions
acts as the coefficient of priority (lines 10–12). Furthermore,
the user-oriented interface is designed to embody the UE’s
influence on BS system (line 8). BS can choose the maximal
utility according to (13) that will be the candidate of next sample
(line 15).

Here the DQN algorithm with energy model and with coalition
game on UE’s side are illustrated, respectively. For simplicity,
the DQN framework is first extracted in Algorithm 3 [22].

The DQN algorithm with energy model for UE is described
in Algorithm 4. Observe that each UE needs to choose the
appropriate neighbor according to the estimated utility U I if
its residual energy satisfies the energy constraints (lines 4–8).
Then, the DQN algorithm is invoked to learn with trial and error
(line 14).

In addition, the DQN algorithm with the coalition game for UE
is developed in Algorithm 5, in which the cooperative procedure
with its neighbors is interpreted. To be specific, the UE (agent)
k first judges whether the preference order is satisfied according
to Definition 3 (lines 7–14). Second, the coalitional partition
is updated iteratively in accordance with Definition 4 until the
partition converges to the final Nash-stable (lines 3–15). Finally,
combined with the coalitional partition, the individual explores

Algorithm 2: DARL Algorithm With the Prioritized
Sampling.

Input: Initialize π[.] with θπ and Q[.] with θQ;
Initialize π′[.] with θπ

′ .
= θπ and Q′[.] with θQ

′ .
= θQ;

Initialize sG, aG and β;
Initialize priority in D: p← 0.

Output: AG.
1: Receive the initial observed state sGk [t]
2: for t = 0 to T − 1 do
3: aGk [t]← select(AG) by ε-greedy algorithm [20]
4: Execute aGk [t] and observe RG

k [t]
5: Put sample (sGk [t], a

G
k [t], R

G
k [t], s

G
k [t+ 1]) into D

6: while ||D|| �= ∅ do
7: Calculate Q[.] and UG by the corresponding (12)

and (13) respectively
8: if (BS has received U I ) then
9: Calculate δθπ [t], δθQ [t], ∇θππ and ∇θQQ

10: Calculate the weight ratio of actor and critic
network respectively:
wπ = μ · (δθπ [t] + σ) + (1− μ) · E[|∇θππ|]
wQ = μ · (δθQ [t] + σ) + (1− μ) · E[|∇θQQ|]

11: Calculate p according to (16)
12: Update variation of weight ratio respectively:

�wπ
←�wπ

+ wπ · p
�wQ

←�wQ
+ wQ · p

13: Update the parameters of actor and critic
network respectively:
θπ[t+ 1]← θπ[t] + ζπ · �wπ

; reset�wπ
← 0

θQ[t+ 1]← θQ[t] + ζQ · �wQ
; reset�wQ

← 0
14: else
15: Select the maximal UG as next sample
16: end if
17: end while
18: Update the parameters of the corresponding target

network respectively: θπ
′
and θQ

′

19: end for

the coalition and judges whether the coalition converges to the
optimal or near-optimal Q-value (line 16).

V. THEORETICAL ANALYSIS AND NUMERICAL RESULT

A. Convergence

In this section, the convergence of the proposed coalition
formation algorithm is guaranteed [36].

Theorem 1: Any initial coalition Cini in user set K in
Algorithm 5 will always converge to a final coalitional partition
Cfin, which includes a number of the disjoint coalitions after it
has been undergone a series of transfer trigger operations.

Proof: We observe that each transfer trigger in Algorithm 5
will either yield a new partition according to the result of calcu-
lating the preference utility or stay the unchangeable partition.
Hence, part of coalitions may degenerate into the sets of few
users, and even be empty. There exist at most (V + 1) partitions
in the network, namely V nodes of requesting resource from UE
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Algorithm 3: DQN Framework.
Input: Initialize replay buffer D;

Initialize statistical number Nv: Nv ← 0;
Initialize the main DQN with parameters ϕ and
corresponding target DQN with parameters ϕ′, ϕ′ .= ϕ.

Output: Nv and AI .
/* Return AI by DQN */

1: Observe sI [t, k]
2: if (Yk,v[t] = 1) then
3: Perform aI [t, k] = 1
4: Obtain the immediate reward RI

k and next
observation sI [t+ 1]

5: Store the experience (sI [t, k], aI [t, k], RI
k, s

I [t+ 1])
into buffer D

6: Capture Z samples from D by mini-batch gradient
descent method [35]

7: Calculate the target Q-value Q′ [t+ 1] from the
target DQN:
Q′[t] = RI

k[t] + βQ[sI [t+ 1], argmaxaI′ Q[sI [t+
1], aI

′ |ϕ]|ϕ′]
8: Update the parameters of main DQN by minimizing

the loss function L[ϕ]:
L[ϕ] = E[Q′[t]−Q[s[t], a[t]|ϕ]]2 and execute a
gradient descent step on L[ϕ] with respect to ϕ

9: Update the parameters of target DQN with update
rate τ :
ϕ← τϕ+ (1− τ)ϕ′

10: else
11: aI [t, k] = 0
12: end if
13: Update individual energy by (8)
14: Nv ++

Algorithm 4: DQN Algorithm With Energy Model for UE.
Input: Initialize D and Nv: Nv ← 0;

Initialize the main DQN with parameters ϕ and
corresponding target DQN with parameters ϕ′, ϕ′ .= ϕ.

Output: Nv , U I and AI .
1: for t← 1 to T do
2: Calculate eleft[t, k] according to (6)

/* Select the neighbor with maximal utility for UE k
sharing resources */

3: for v ← 1 to V do
4: if ((7) holds) then
5: Yk,v[t]← 1
6: Receive the immediate reward from BS
7: Calculate the utility U I [k, v] by (15)
8: Send U I [k, v] to BS
9: else

10: Yk,v[t]← 0
11: Send no message to BS
12: end if
13: end for
14: The same statements from line 1 to 14 in Algorithm 3
15: end for

Algorithm 5: DQN Algorithm With Coalitional Game for
UE.
Input: Given any partition Cini of neighbor set V for UE k;

Set current partition as Ccur ← Cini;
Initialize D and Nv: Nv ← 0;
Initialize main DQN with parameters ϕ and
corresponding target DQN with parameters ϕ′, ϕ′ .= ϕ.

Output: Nv , U I and AI .
1: for t← 1 to T do
2: Calculate eleft[t, k] according to (6)

/* Select the neighbor with maximal utility for UE k
sharing resources */

3: repeat
4: Choose one neighbor v(v ∈ V) and denote its

coalition as Cx(Cx ⊂ Ccur); set Yk,v[t] = 1
5: Randomly search for another possible coalition

Cx, Cx′ ⊂ Ccur, where Cx′ �= Cx; set Yk,v′ [t] = 1
6: Calculate U I [Cx] and U I [Cx′ ]
7: if (Cx′ k Cx) then
8: UE k leaves its current coalition Cx and joins the

new coalition Cx′

9: Nv ← Nv + 1
10: Update the current partition set:

Ccur ← {Ccur\{Cx, Cx′ }}
⋃{Cx\{k},

Cx′
⋃{k}}

11: Update individual energy by (8)
12: else
13: Nv ← 0 and set Yk,v′ [t] = 0
14: end if
15: until The partition converges to the final Nash-stable

partition Cfin

16: The same statements from line 1 to 14 in Algorithm 3
17: end for

k in the UE’s “ego” network and UE k itself with no coalition.
Since the number of partitions for the given user set K is the Bell
number [34]. It is concluded that the sequence of transfer trigger
will terminate and converge to a final partition Cfin. �

B. Stability

It is a crucial factor for system to stay stable. Thereby, the
system’s stability is evaluated by the following definition.

Definition 5 (Nash-stable structure): A coalitional partition
C = {Cx1

, Cx2
, . . . , CxV

, CxV +1
} is Nash-stable, if ∀k ∈ K,

k ∈ Cx, Cx k (Cx′
⋃{k}) for all Cx, Cx′ ⊂ C, Cx′ �= Cx.

Theorem 2: The final partition Cfin yielded by Algorithm 5
is Nash-stable and the coalitional game has the Nash-
stable coalitional structure if no user can make its contribu-
tion to the BS’s utility rise by varying its shared resource
strategy, namely C∗x = argmaxCx

U I [Cx], ∀Cx ⊂ C, C∗ =
{C∗x1

, C∗x2
, . . . , C∗xV

, C∗xV +1
} is the final Nash-stable coalitional

structure.
Proof: Contradiction is adopted. Provided that the final

formed coalition partition Cfin is not Nash-stable. There exists
a UE k(k ∈ K) located in one coalition Cx(Cx ⊂ C) currently.
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Fig. 2. Comparison of gap between targeted values and estimated values under
the average rewards of BS and individual rewards with different ego size.

If it chooses another coalition Cx′(Cx′ ⊂ C) according to the
preference order (Cx′

⋃{k}) k Cx, then the user leaves the
current coalition Cx and joins the new coalition Cx′ , suggesting
that the final partition Cfin should be updated. It contradicts with
the definition of Cfin. �

C. Optimality

Theorem 3: Algorithm 2 and Algorithm 5 will converge to
an optimal or asymptotically optimal solution after a limited
number of iterations.

Proof: Since the coalition transfer is triggered according to
the individual utility, the coalition partition is repeated until the
partition is converged to a Nash-stable solution. In addition, the
solution is validated by DQN algorithm after the loop is termi-
nated. During the loop, the objective is to find out the optimal
solution or approximated optimum. It is observed that the gap
between the estimated UE’s Q-value and the targeted one is quite
small as demonstrated by simulations in Fig. 2 in Section V-E.
The improved DARL approach with the prioritized sampling is
illustrated in Algorithm 2. The TD error is adopted to guide the
training network by the finite iterations. Likewise, as sketched
in Fig. 2, the gap of BS’s Q-value is still negligible. Hence, it
is concluded that the optimal performance of Algorithm 2 and
Algorithm 5 can be guaranteed. �

D. Complexity

Theorem 4: GivenT ,D, andV , the asymptotically computa-
tional complexity of Algorithm 2 and Algorithm 5 is O(T ×D)
and O(T × V ), respectively.

Proof: Algorithm 2 is running on the TensorFlow [37],
which is appointed graphic processing unit to capture the fea-
tures of BS system. Thereby, the parallel processing parameters
in the double actor-critic networks is applicable. According
to Algorithm 2, there exist two-fold loops nested. The com-
putational complexity is approximated as O(T ×D). As for
Algorithm 5, the number of coalitions depends on the size of UE
k′s “ego” network. Assuming that there are V neighbors who
need help. V iterations are carried out according to Algorithm 5
(lines 3–14). That is, the computational complexity is estimated
by O(T × V ) in the worst case. �

Fig. 3. Impact of individual utility and residual resources on the increasing
number of UEs when η = 4.

Generally speaking, the size of buffer D and “ego” network is
quite small in our physical applications, i.e., D, V � T . Hence,
it is linear for the asymptotically computational complexity of
Algorithm 2 and Algorithm 5.

E. Numerical Result

In this section, massive simulations for corroborating the per-
formance of the proposed algorithms are carried out. The system
performance is evaluated under the various parameters in terms
of the total system utility (i.e., BS system) and individual utility
(i.e., IoT devices). Besides, the deep analysis for the acquired
simulation results has been made. Note that the benchmark
DDPG algorithm is adopted, i.e., Algorithm 1 for comparison.
Algorithm 1 is the core idea of DDPG. Since, to the best of
our knowledge, our proposed the learning-enabled incentives
with coalitional game for resources sharing in cellular networks
is the first work in relative fields, we, therefore, just employ
the enhanced algorithms like Algorithm 2, Algorithm 4, and
Algorithm 5 to compare the state-of-the-art algorithm DDPG.

In our implementation, a 2-layer fully connected feed-forward
neural network is used to serve as the actor and critic network.
There were 64 and 32 neurons in the first and second layers,
respectively. The Leaky Rectifier [38] acted an as activation
function before the final output layer, which utilizes the softmax
for activation. The activation function of softmax is to ensure
the sum of output values equals one. The empirical settings by
extensive simulations are outlined in Table II. The simulation
parameters are mostly derived from [39].

Let the size of UE’s “ego” network be fixed to 3 and 7 by
varying the number of UEs within one cellular system to be
10–82. The number of coalitions η is derived as 4 and 8, respec-
tively. Fig. 3 shows the impact of individual utility and residual
resources on the increasing number of UEs when the number of
coalitions η is four. Note that the curves of both UE’s utility and
its residual resources are decreasing as the number of UEs rises
when η = 4. The reason is that the size of queue for computing
the cloud’s task is limited and that the UEs competing for the
resources from cloud are increasing. Thus, the weight is divided
by increasing other users. Meanwhile, more UEs are inspired
to share their spare resources. Undoubtedly, their utilizable
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Fig. 4. Impact of individual utility and residual resources on the increasing
number of UEs when η = 8.

Fig. 5. Relationship between BS utility and individual utility with the increas-
ing UEs when η = 4 and η = 8.

resources are fewer and fewer. The individual utility is reduced
as the increased number of UEs. Herein, we recall (15) defined
in Section III-D. The growth of UEs implies the competition
of cloud’s resources becomes increasing. Nevertheless, the total
sum of allocating weight ratio of each UE is unchanged, meaning
F [w] is decreasing. Likewise, the ratio of the residual resources
in the individual devices is also diminished since user shares
its idle resources to yield more rewards of weight ratio. Once
it shares its own resources, it inevitably depletes its restricted
energy regarded as one of resources.

Correspondingly, when η = 8, the impact of the individual
utility and the residual resources on the increasing number of
UEs is sketched in Fig. 4. It shows the changing curves of the
individual utility and resources left under the ever-increasing
network scale of UE is constructed after network establishment.
It is observed that UE’s utility almost keeps stable even though
its resources available are reduced by 22.4%, suggesting that
its idle resources are sufficiently leveraged by sharing resources
with others. According to Algorithm 2, we have acquired that the
more the number of times for resource sharing is, the more the
rewards are assigned to the user. Therefore, although the curve
is slightly declining, the individual utility is hardly changed.

Fig. 5 illustrates the relationship between BS utility and
individual utility with the increasing UEs when η = 4 and
η = 8, respectively. We find that the BS system utility becomes
higher when η = 8 than that when η = 4 as the number of UEs
rises. Because the number of coalitions becomes skyrocketing,

Fig. 6. Comparison of BS utility and individual utility with iterations under
different algorithms.

achieving the original system objective that facilitates users to
share resource with its neighbors as possible as they can rather
than compete for cloud’s resource. Obviously, the workload
of BS is mitigated to maintain the cloudlets. Observe that the
UG when η = 8 is larger about 9.23% than that when η = 4
if UEs have increased to 80. On the contrary, the individual
utility is rather low when η = 8 compared with that when η = 4
as the number of UEs increases. Because more and more UEs
participate in competing for cloud’s resources, leading to the
partition of weight that have been reduced. Furthermore, the
sum of weight ratio is fixed to 1. The variable quantity of F [w]
in (15) is lower than that of D[e], which is consumed by the
sharing procedure. Therefore, the curve of individual utility is
still declining. It is worth mentioning that the curves of BS and
the individual utility is smoothly decreasing even if the users
are increasing, which means that our proposed DARL with the
prioritized sampling is compatible with the participation of some
uncertain users. Overall, our proposed algorithm possesses the
scalability.

The comparison of BS’s utility and the individual utility
with iterations under different algorithms is depicted as Fig. 6.
From a holistic perspective, since the definition of BS utility
in Section III-D, the trend of BS utility is not decreasing until
convergence with the growth in iterations, which is in contrast to
that of individual utility. Clearly, BS’s maintenance cost incurred
by managing the users who share idle resource, while it is noted
that BS utility of DDPG in Algorithm 1 is higher than that of
Algorithm 2 at initial phase. On one hand, the reason is that
Algorithm 2 needs to scan the buffer and adopts the prioritized
sampling to train the deep model. On the other hand, the effi-
ciency of the analogous DDPG algorithm is high according to
(13). There is no need for DDPG to compute the priority that
is obtained by the response of users. However, the approach
turns to be worse than our improved Algorithm 2 as iterations
rise. Aiming to find the stable solution of UG, the iterations of
Algorithm 1 are more than Algorithm 2. In other words, the
convergence rate of DARL approach with prioritized sample is
faster than the conventional DDPG algorithm. From the views
of UEs, It is observed that the convergence of DQN algorithm
with coalitional game is better than that without coalition. To
illustrate, Algorithm 4 and Algorithm 5 experience about 2500
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and 2350 iterations, respectively. In particular, the subgraph
shown in Fig. 6 from 400 iterations to around 1500 iterations
is deliberately enlarged. It is observed that gradual descent of
curves about Algorithm 2 and Algorithm 5 among the special
iterations, suggesting that the performance can be guaranteed
as the amounts of iterations are rapidly increasing. The turning
point that the BS utility of Algorithm 2 turns to higher than
that of Algorithm 1 occurs at about 700 iterations. While the
individual utility of Algorithm 5 is continuously higher than
that of Algorithm 4, showing that the coalition game method
with DQN performs better performance than that without the
consideration of coalitions. To sum up, it demonstrates that the
enhanced algorithms like Algorithms 2 and 5 outperform the
counterparts.

VI. CONCLUSION

In this article, we developed a learning-enabled incentive
mechanism with coalitional game for resources sharing to boost
the efficient utilization of spare resources in UEs as well as
the cloud servers. Since the competition and cooperation are
ubiquitous in resource sharing, we managed to address the brand
new challenges about incentive mechanism from the view of the
pervasive deep learning model and coalition game. To this end,
the double actor-critic RL framework for ease of comparison in
simulations was first presented. Second, a prioritized sampling
with the above-mentioned learning framework was explored,
which was compatible with the real-world utility of the indi-
vidual. Third, the advanced DQN algorithm at UE’s side was
investigated, which was combined with the designed energy
model. Subsequently, the DQN integrated coalition game and
the energy model was developed to further promote the IoT
devices to make a precise decision. Last but not least, extensive
simulations had coincided with the game-theoretical proofs that
learning-enabled incentives with coalitional game outperformed
the counterparts and could converge to a Nash-stable solution.

In future work, it is necessary to make the data-driven learning
model combine with the common model-based formulation,
which is worth to be concerned. The reason is that the nature
of trial and error for learning model at the initial training phase
will cause the oscillation of learning result, especially for some
incomplete information or small amount of data offered.
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