Rendering Multi-party Mobile Augmented Reality From Edge

Lei Zhang*", Andy Sun', Ryan Shea', Jiangchuan Liu’, Miao Zhang"
{lza70,hpsun,rwsl,jcliu,mza94}@sfu.ca
*College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
School of Computing Science, Simon Fraser University, Burnaby, Canada

ABSTRACT

Mobile augmented reality (MAR) augments a real-world environ-
ment (probably surrounding or close to the mobile user) by computer-
generated perceptual information. Utilizing the emerging edge com-
puting paradigm in MAR systems can reduce the power consump-
tion and computation load for the mobile devices and improve
responsiveness of the MAR service. Different from existing studies
that mainly explored how to better enable the MAR services utiliz-
ing edge computing resources, our focus is to optimize the video
generation stage of the edge-based MAR services—efficiently using
the available edge computing resources to render and encode the
augmented reality as video streams to the mobile clients. Specifi-
cally, for multi-party AR applications, we identify the advantages
and disadvantages of two encoding schemes, namely colocated
encoding and spilt encoding, and examine the trade-off between
performance and scalability when the rendering and encoding tasks
are colocated or split. Towards optimally placing AR video render-
ing and encoding in the edge, we formulate and solve the rendering
and encoding task assignment problem for multi-party edge-based
MAR services to maximize the QoS for the users and the edge
computing efficiency. The proposed task assignment scheme is
proved to be superior through extensive trace-driven simulations
and experiments on our prototype system.

CCS CONCEPTS

« Information systems — Multimedia content creation; - Com-
puting methodologies — Mixed / augmented reality; « Net-
works — Cloud computing; « Human-centered computing —
Ubiquitous and mobile computing systems and tools.

KEYWORDS
Augmented Reality, Mobile, Edge Computing

ACM Reference Format:

Lei Zhang**, Andy Sunf, Ryan Shea, Jiangchuan Liut, Miao ZhangT. 2019.
Rendering Multi-party Mobile Augmented Reality From Edge. In 29th ACM
SIGMM Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV ’19), June 21, 2019, Amherst, MA, USA. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3304112.3325612

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NOSSDAV °19, June 21, 2019, Amherst, MA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6298-6/19/06...$15.00
https://doi.org/10.1145/3304112.3325612

RIGHTS L1 N Hig

67

Rendering & Encoding

Encoding Instances
Instances

Rendering
Instance

Sensor Data/
User Inputs

weans 0apIA

°

MAR Clients

MAR Clients

(a) Collocated Encoding (b) Split Encoding

Figure 1: MAR rendering and encoding

1 INTRODUCTION

Integrating powerful sensing capability and unparalleled mobile
communication abilities smartphones have led to a plethora of new
and exciting applications, e.g., cognitive assistance, virtual/augmented
reality (VR/AR). Such mobile augmented reality (MAR) is extremely
promising for a wide range of applications such as gaming, tourism,
entertainment, advertisement, education, and manufacture [2]. It
has been reported that MAR will be the primary drive of a $108
billion virtual/augmented reality market by 20211, In response to
such great popularity and huge market increase, major industry
players have released their AR develop platforms, such as Apple’s
ARKit? and Facebook’s AR Studio, to incubate various novel MAR
apps. Other than the single-device AR applications, multi-party AR
applications are emerging and becoming more and more popular,
which allow multiple users to share and interact with the same aug-
mented reality and thus significantly enhance the user experience.
Examples of multi-party AR applications can be the AR games*
that allow multiple players to participate and compete with other.
Another timely example is augmented vehicular reality[10], which
utilizes visual information from nearby vehicles to broaden the
vehicle’s visual horizon through AR. Rather than being generated
by each client individually, such multi-party AR is contributed and
affected by all the users.

Uhttps://www.digi-capital.com/news/2017/01/after-mixed-year-mobile-ar-to-drive-
108-billion-vrar-market-by-2021/

Zhttps://developer.apple.com/arkit/
Shttps://developers.facebook.com/products/ar-studio
4https://developer.apple.com/documentation/arkit/ swiftshot_creating_a_game_for_
augmented_reality

RIGHTS LI

NOSSDAV 19, June 21, 2019, Amherst, MA, USA

Supporting the resource-hungry and delay-sensitive AR applica-
tions is not an easy task for mobile devices. The amount of com-
putation required to analyze data from the smartphone sensors,
render the augmented elements, and finally compose the AR scene
demands considerable power from mobile devices. As mobile de-
vices are energy limited due to battery restrictions, a rich AR ap-
plication can quickly drain even the largest smartphone batteries.
Cloud-based MAR systems [1] are designed to reduce the power
consumption and the computation load for mobile devices by ex-
ploiting the high-end CPUs and GPUs in powerful cloud servers.
However, due to the long delay and expensive bandwidth, cloud
computing becomes unable to meet the stringent requirements
of latency-sensitive applications such as MAR. It is also impracti-
cal to transmit all the ever-growing distributed data over today’s
already-congested backbone networks to the remote cloud. The
emerging mobile edge computing paradigm becomes a timely solu-
tion [12], in which highly responsive computing nodes are placed
in close proximity to mobile devices. Existing studies show that
edge-based solution can reduce the service response time up to 200
ms compared to the conventional cloud offloading approach [4].

Existing enhancements on MAR systems mainly explored how
to better enable MAR services: tailoring the computation-intensive
computer vision algorithms for executing on mobile devices [8]
and reducing the amount of data required to be uploaded to re-
mote servers [9]. Different from pervious works, our focus is to
optimize the later stage, the video generation of edge-based MAR
services—using available resources in the edge to render and encode
the augmented reality as video streams to the users. We attempt to
investigate the problem of the rendering and encoding task place-
ment for multi-party MAR services to maximize QoS for the users
and the edge computing efficiency. In MAR systems, different task
types (i.e., rendering tasks and encoding tasks) can be colocated in
the same edge server or split to multiple edge servers, as shown
in Fig. 1. We refer to the two cases as (a) colocated encoding and
(b) split encoding, respectively, indicating whether the rendering
and the encoding are accomplished on the same server. Intuitively,
colocated encoding could provide the best QoS (e.g., lowest render-
ing delay) to a single user. However, in a multi-party AR session,
putting rendering and encoding tasks for all the users together may
lead to severe resource shortage/contention, while keeping them
sperate may increase the interaction delay between multiple users.
To this end, split encoding can provide a better scalability with low
interaction delay for a large number of users, but it may impair
single-user QoS inevitably due to the increased system complexity
and the introduced communication overhead.

The less-studied problem is challenging since it is difficult to
mitigate the trade-off between the MAR service performance and
the edge system’s scalability. In this paper, we attempt to solve
the featured and compelling rendering/encoding task placement
problem for edge-based multi-party MAR systems. We first identify
the advantages and disadvantages of two encoding schemes in the
case of multi-party MAR systems. We next propose the resource
demand models and the performance metric models, and formu-
late the multi-party AR video rendering/encoding task placement
problem. The optimization problem is solved by carefully designed
heuristic algorithms. Finally we implement and evaluate the per-
formance of a prototype edge-based multi-party MAR system.

Ay

Lei Zhang*T, Andy Sun®, Ryan Shea', Jiangchuan Liuf, Miao Zhang’

68

2 BACKGROUND AND MOTIVATION

Edge-based MAR systems are offloaded systems, which consist
of mobile client side and edge server side. Figure 2 illustrates a
high-level breakdown of the system framework. The mobile client
collects and transmits AR metadata and user inputs to the edge
cloudlets that is responsible for remotely rendering and encoding
the AR video following the application logic. Rather than extracting
information from a user’s surroundings for MAR services, our focus
in this work is to generate the augmented video scenes, which is a
critical and resource-demanding task.

Local Encoding FPS by # of Clients and Instance Type
W cllarge
- 9e

AR Overlay Rendering Engine B

Stte Rendered
Applltatmn chonges | AR Overlay [oty
Rendering
(\ o
,4
Sensor D

Video
Encoder

rge
B cd.dxlarge

=

Client
Interaction Slveam\ng

e
iy

Video
Metapata st Processing

AR Video Overlay.

MetaData
Processor

Figure 2: Edge-based MAR Figure 3: Colocated encoding
framework performance

Naively, one may expect that a powerful edge server with a
high-end GPU can easily support the rendering and encoding for a
large number of MAR clients. However, this is not true in practice.
The traditional use-case for a GPU is rendering a graphic to a
monitor, a highly optimized rendering pipeline where frames are
asynchronously rendered in parallel and sent to the framebuffer
and from there to the monitor. In case of edge-based MAR services,
since the output target is a mobile thin client wirelessly connected
to the server, the contents of the framebuffer must be read after
every frame, breaking the rendering pipeline and forcing the GPU
to wait until the current frame is finished before beginning the
next, which leads to a much less efficient rendering process and
thus higher consumption for resources.

2.1 Colocated vs Split Encoding

A straight-forward way of generating the AR video is to render and
encode the video steam at the same server, which is referred to as
the colocated encoding scheme. The colocated encoding introduces
the least overhead, while it may not be scalable for supporting mul-
tiple clients due to the mentioned inefficient resource usage. We
next examine the scalability of colocated encoding. We virtualize
the colocated encoding instances on our university’s computing
server clusters with 4 different configurations that attempt to mirror
Amazon Web Services’ (AWS) Elastic Compute Cloud’s C4 offer-
ings®. Each configuration doubles the core count and memory of
the lower one. We deploy a single server instance on each of the 4
configurations to support different number of clients. The server
is implemented in Node]S and uses FFMPEG to encode the video
streams on the CPU. We measure the aggregate frames per sec-
ond (FPS) output over 10 second intervals, and plot the results in
Figure 3.

The lack of a result for a given client count on a instance type
in Figure 3 is generally due to the server being unable to keep

Shttps://aws.amazon.com/ec2/instance-types/

RIGHTS

Rendering Multi-party Mobile Augmented Reality From Edge

Clients | CPU% (ffmpeg+node) | GPU% | Tx (kB/s)
1 34.17+7.27 1.64 107.77
2 83.86+12.57 3.21 214.18
3 143.82+18.17 4.96 321.93
4 218.52+23.07 6.62 422.37

Table 1: Colocated Encoding Profiling

up with the number of clients and resulted in taking too long to
render the frames in an acceptable time span. An exception is that
the c4.large instance ran out of memory as it attempted to buffer
the data to be piped into the encoders for any client count greater
than 4. Figure 3 evidences the unacceptable (vertical) scalability
of colocated encoding, since it could only support 2-3 additional
clients per doubling of core count and memory. Even with the
standardized commercial cloud servers, colocated encoding can
only support a very limited number of users by one instance, not to
mention using the less-powerful edge servers. To further identify
the bottleneck of resources, we profile three basic metrics, CPU
utilization, GPU utilization, and network transmissions, averaged
over a period of 90 seconds while varying the number of clients
to roughly determine the cause of inefficiencies. Table 1 shows
that the resource contention is mainly from CPU and the major
cause is video encoding, the heavy CPU-based task from FFMPEG,
whose CPU utilization increases nonlinearly with the number of
concurrent clients.

In multi-party MAR services, users can share and interact with
the same AR world. According the MAR system framework, the
rendering server executes the application logic before rendering
the scene. If the video steams for the participants of a multi-party
AR session are rendered separately at different servers, the appli-
cation logics are then executed remotely from each other. In such
case, whoever initiates a change in the multi-party AR world, the
application logic needs to be updated and synchronized to all the
participants at geo-distributed rendering servers, which may im-
plies long interaction delay. Therefore, putting the rendering for
those users of a multi-party AR session on the same server (physical
machine) or the least number servers is important for synchroniz-
ing the video streams to minimize the interaction delay and thus
provide the uniform user experience.

Apparently, the colocated encoding cannot work well in this
situation due to its limited scalability. Since the video encoder is a
black box, the encoding process can be offloaded to separate edge
cloudlets to remove the computation bottleneck, which is referred
to as the split encoding scheme. Although the split encoding is a
practical approach to better scale out the MAR systems, it is not
cost-free. First, offloading the video encoders adds extra commu-
nication hops into the MAR systems, which increases the service
latency by the RTT between the rendering and encoding servers.
As the key performance metric for such latency-sensitive applica-
tions, it undoubtedly hurts user experience. Second, split encoding
introduces extra operation costs, including the activation cost for
opening/running the encoding servers and the bandwidth cost for
the data transmissions between the rendering servers and the en-
coding servers. Given the heterogeneity of the edge resources and
the user demands for MAR services, the assignment of rendering
and encoding tasks should be carefully considered. A good render-
ing/encoding task assignment scheme should be flexible to choose

Ay

69

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

from colocated encoding and split encoding to guarantee the satis-
factory QoS for multiple users, and be able to optimally patch the
rendering and encoding tasks so that the limited edge resources
can be efficiently utilized.

3 SYSTEM MODEL

We consider a mobile edge network with n MAR clients and m
heterogeneous edge servers. Denote U = {uj, ug, ..., un} as the set
of MAR clients and S = {s1, s2, ..., S, } as the set of edge servers. The
delay between any client and server (any two servers) is given by the
function d(u, s) foru € U,s € S (d(s,s’) for s, s’ € S). We set x{f’s
as the binary decision variable to denote whether the rendering
task from client u is placed on server s, set xl}i s as the decision
variable for the encoding task, and set x{f}i as the decision variable
for the colocated rendering and encoding task. In addition, assume
that the users are divided into k different groups Uy, Us, .., Ur.. We
use a user group to indicate the users/clients in the same multi-
party AR session as mentioned in the previous section, and thus
the rendering tasks from the same user group should be assigned
to the same/least number of servers.

3.1 Characterizing Resource Demands

We first propose the the analytical model to abstract the compli-
cated features of the resource demands. Typically, a task’s resource
demand is affected by 3 factors: the task type ¢, the task complexity
¢, and the influence from the assigned server f. Therefore, we adopt
the following model

Computation_Demand(t, c, f) = ¢;(ry) - fr(Ns), (1)

where the task type t € T = {R, E, RE}, ry, denotes the resolution
(the number of pixels in one frame) of the video streamed to client
u, and Ny = ZueU(x,If’s + x,ﬁs + xﬁ‘g) is the number of tasks
assigned to server s. In the proposed analytical model, ¢;(ry,) and
ft(Ns) are fitted functions for the task complexity and influence
factor from the server, respectively, using the data acquired from
the measurements in the last section. Rather than getting the exact
mathematical results for the test system, the goal of fitting this
model is to characterize the resource demands for rendering and
encoding tasks that can be easily re-captured by measuring other
MAR systems.

3.2 Performance Metric Models

3.2.1 User Group Rendering Locality. Since the users in the same
user group (in one multi-party AR session) can interact with same
AR world and thus affect others’ application logic, if their renders
are located on the same edge server, the interaction delay between
multiple parties in the AR session can be minimized, which can
help provide uniform user experience for MAR services. Therefore,
it is crucial to put together the video rendering for the participants
of a multi-party AR session. For each user group U;, the number of
edge servers that are used to render for the users in this group can
be calculated as }};cg maxy, ey, (xfjfg", x,}f’ s)- We define the locality
metric as the maximum number of assigned servers for rendering
for one user group

L = max max (xRE xR .
ie[l,k]sesueU,» ’ ?

@

RIGHTS

NOSSDAV 19, June 21, 2019, Amherst, MA, USA

We want to maximize the user group rendering locality, because
higher rendering locality implies lower interaction delay for the
user group. Given the above definition, maximizing the user group
rendering locality is to minimize L and thus minimize the QoS
variance within the same user group.

3.2.2 Transmission Latency. The service latency is one of the most
important metric to evaluate edge-based MAR systems. For colo-
cated encoding, the round-trip latency between the server to the
clientis 2 Y s¢s xg,}id (u, s). For split encoding, the latency consists
of three parts, from the client to the renderer, from the renderer to

the encoder and from the encoder to the client, 3 ¢ csass’ (x,lisd(u, s)+

xisxf d(s,8) + xf +d(u,s")). In the network edge, d(u,s) and
d(s,s”) should be easy to measure or estimate, since either of the
communications should have very few hops. The total transmission

latency for one user group (one AR session) can be given as

D= Z [2 Z xf’}gd(u,s)+

uelU seS (3)
R R _E E
Z (R d(u,s) +x8 xE d(s.s") +xE Ld(u.).
s,s’eSAs#s’

The transmission latency here does not include the task execution
time, since it is not affected by the selection of servers when enough
computation resource is provisioned. We calculate D for each user
group, which is also the transmission latency for the corresponding
multi-party AR session.

3.2.3 Server Operational Cost. For each of the edge servers, if there
is at least one rendering/encoding task assigned to it, a one-time
static cost has to be paid for activating the server. Such operational
cost is related to the capacity/configuration of the server/instance
and irrespective of the number of tasks/clients or the type of the
workload assigned to the server. Denote e as the operational cost
for server s. The total operational cost for all edge servers can be
given as

E= Z I[Ns > 0]es = Z]I[Z (xff,s + X, 5

seS seS ueU

+x5,]§) > 0les, (4)

where I[-] is the indicator function.

3.24 AR Video Quality. The video quality is directly related to
the user experience in MAR services. We use r;, the number of
pixels per frame for the video streamed to client u to represent
the video resolution. The user experience can be modeled as a
concave function of video resolution/bitrate g(ry) (e.g., q(ru) =
alog(ry) + b) [3]. The overall subjective QoS of the MAR system

can be given as
Q= Z q(ru).
uelU

®)

3.3 Problem Formulation and Solution
3.3.1 Optimization Objective. Our goal is to find the task assign-
ment X = {(xﬁs,xis,xfig)lu € U,s € S} and the resolution
setting R = {ry|u € U} that minimize the service delay and the
operational cost and maximize the video quality. To formulate the
multi-objective optimization problem, we adopt the weighted sum
method and introduce three weighting parameters «, and y to

Ay

Lei Zhang*T, Andy Sun®, Ryan Shea', Jiangchuan Liuf, Miao Zhang’

70

Algorithm 1: Task Placement

1 Initialize Ry, a, B, and 7;
2 Re— Ry, i« 0;
3 while true do
4 X « solve Problem P with fixed R (described in detail
below);
5 R « solve Problem P with fixed X;
6 Fi(X,R)=L+aD+ BE-yQ;
if |(F; — Fi—1)/F;| < 7 then
‘ break;
end
10 i—i+1;

11 end
12 return X and R.

reflect the preference. Therefore, the optimization problem # can
be formulated as

Minimize F(X,R) =L+ aD + PE — yQ; (6)
s.t. Z Z xb oft(Ns)er(ry) < Cs, Vs € S;)

teT ueU
lelf’swfoig:l,VueU; ®)

SeS
le}is+x5€:1,VueU; 9)

seS
x,is,xfgs, xff; €{0,1},Vu e U, Vs € S; (10)

where Cs denotes the computation capacity of server s and B(s, s”)
indicates the available bandwidth between server s and server s”.
Eq. 7 ensures that the workload of the tasks assigned to an edge
server does not exceed its capacity. Eq. 8 and Eq. 9 indicate each
rendering and encoding task should be assigned to some server.

3.3.2 Optimization Solver. The formulated problem is a nonlinear
integer programming problem, which is known to be difficult to
solve [6]. One of the reasons for the problem’s hardness is from
the multiple decision variables and multiple conflicting objectives.
To solve the optimization problem, our intuition is to divide and
conquer these objectives and variables. We first develop a two-step
heuristic solution generally based on the block coordinate descent
method [5]. The main idea is to solve the problem # with fixed R
and X, respectively, and the decision variables are optimized itera-
tively until the objective function F converges to a certain range
of 7. As shown in Algorithm 1 (step 1), we sequentially fix one
variable, i.e., R and X, and update the other one. It is worth noting
that, in practice MAR services usually provide discrete resolution
selections, e,g, 360p, 720p 1080p, which suggests that Algorithm 1
may only need a very limited number of iterations. The initial reso-
lution setting R can be specified as by the user/system preferences,
(e.g., the minimal resolution that is acceptable by the users). Solving
P with fixed X is relatively simple, since the special case of the
problem is convex with respect to R. However, solving P with fixed
R is still hard, at least as hard as multiple Knapsack problem.

RIGHTS LI MNI

Rendering Multi-party Mobile Augmented Reality From Edge

Following the intuition of divide and conquer, we propose an-
other heuristic (step 2) to solve # with fixed R: (1) We first check
if there is a server with enough capacity that can accommodate
frE(IUil)crEg(r), the computation demands for the colocated tasks.
(2) If so, we search all the qualified servers and assign the colocated
tasks to the one producing the minimal objective value; (3) If not,
split encoding is selected and we employ a similar procedure to
assign the rendering tasks and the encoding tasks. The only dif-
ference is that, for the colocated tasks and the rendering tasks we
search and assign the server for the whole user group, while for
the encoding tasks we check the servers for each user individually.
The time complexity for this heuristic is bounded by the placement
of the encoding tasks, which is O(k|U;|m). In the worst case, we
employ split encoding for all the user groups, and thus need to
place the rendering and encoding tasks for every user, where the
time complexity is O(nm).

4 PERFORMANCE EVALUATION
4.1 MAR System Implementation

We design a test AR application to render an avatar of a virtual
object (e.g., the earth in Figure 4) and attach it to the client’s camera
stream at a specific location and pose. With the assistance of the
sensors, we can estimate the camera pose by reading the orienta-
tion from the gyroscope and position from the GPS, which can be
easily translated into XYZ coordinates in a virtual world. To enable
the multi-party interaction, we set the application logic to be that
whenever the avatar is touched by a user on the screen its color is
changed, which is light-weight and easy to be synchronized.

We adopt the system framework in Figure 2. The server was im-
plemented in Node]S primarily due to the abundance of pre-existing
support libraries for Three.js, a popular open-source API for manip-
ulating 3D graphics, along with the versatile offered functionality.
The MetaData Processor (MDP) and Client Interaction modules in-
gest, validate, and process the client data by performing sensor
fusion to predict and reduce noise from the incoming sensor data.
Based on the received data, Application Logic computes the updates
to the virtual world, which is passed to the AR Overlay Rendering
module. The generated image frames are then sent to the Video
Encoder. The black box encoder converts the raw image data into
an alpha-channel enabled VP8-encoded WebM bytestream that is
then forwarded to client. The client is a simple HTML webpage
that utilizes the device’s underlying sensors and camera to deter-
mine the user’s pose as well as displaying the surrounding physical
environment. It establishes a connection with the server using a
WebSocket; sending the server orientation updates while receiving
the corresponding encoded video stream. This stream is then over-
layed on top of the camera to provide a pixel-perfect alignment
between the real and virtual objects.

To realize the split encoding scheme, we break the rendering
pipeline to refactor the encoder so that it can be offloaded to a
separate server. Offloading the encoder may cause a bandwidth
issue, as raw images/frames need to be transmitted from the render
to the encoder. To solve the problem, we cannot perform software
encoding as we would otherwise return to square one; a hardware-
accelerated encoder would be a viable alternative, but there are

71

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

Figure 4: A snapshot of the prototype edge-based MAR system with
multi-party interaction (before/after)

currently no encoding formats that officially support alpha chan-
nels. To this end, we add in an LZ4 compression module prior to
sending the image data to the encoder, whose lossless compression
can perform at line-rate. This algorithm takes advantage of that our
data, when viewed as a scanline bytestream, is sparse and highly
repetitive: a large portion of the AR video overlay will be trans-
parent resulting in a repeated 4-byte pattern of (0,0,0,255) until a
virtual object is present.

4.2 Evaluation Results

We simulate the user demand based on the two-week long Pokemon
Go dataset [11], consisting of Pokemon Gym EXP changes at differ-
ent locations. We take every 1000 EXP change as a user joining a AR
session for 10 minutes. The users at the same location are assumed
to join one multi-party AR sessions, and thus can be classified into
12 groups (12 multi-party AR sessioins). Figure 5 plots the average
hourly user demand per user group, which suggests peak hours
are often at night and weekdays have larger variances than week-
ends. Our prototype system is deployed to our university’s local
computing research platform, backed by 9 TB of RAM and 1000
logical CPUs split across three physical racks with 10 Gb/s Ethernet
switches. This server instance is provisioned with 4x2.4 GHz cores,
16 GB of RAM, and an NVIDIA GRID-K1 GPU with the encoding
done using FFMPEG on the CPU. The client is a Samsung Galaxy
S7 (§GS7) on Android 6.0.1 running Google Chrome 55.0.2883.91.
We introduce a random transmission delay from 0 to 50 ms fol-
lowing a uniform distribution [7] to emulate network jitters. For
comparison, we implement three other task placement algorithms
to minimize the transmission latency (Min_Latency), minimize the
system operating cost (Min_Cost), and maximize the AR video qual-
ity (Max_Resolution), respectively. We adopt three performance
metrics — average transmission latency, hourly operating monetary
and AR video resolution.

We first check the effects of varying weights. We fixed « = 1 and
changed the values of § and y to examine the tradeoffs between
the conflict goals. Figure 6 shows the transmission latencies and
the hourly operating costs of the MAR system when the ratio of
B/a change from 0 to infinity. Figure 7 plots the same performance
metrics when we vary the ratio of y/a. From the figures, we can see
clear tradeoff between the transmission latency and the operating
cost. We also observe that the operating cost increases when we
weight more on the video quality, while the transmission latency
does not show the same trend (and thus ignored in Figure 7). Based
on the results, we adopt the optimal weight settingas a = 1, =
100,y = 200.

RIGHTS LI N

NOSSDAV 19, June 21, 2019, Amherst, MA, USA

Lei Zhang*T, Andy Sun®, Ryan Shea', Jiangchuan Liuf, Miao Zhang’

x10°
100 60 7 7
*
% P-meme. Q
= _ i _
3) g I s
° > 2 < g
g g ¢} g S
2 kit 2 @ 2
5 3] e} £
£ < 40 s x5 s
3 S g =3 3
] g g
5 2 S 5 9]
] £ > =1 >
H 5 33 3
E 2
= 30 I 84 E=
El Ry - v —o-Average = T
50 * v -* Weekday
K - Weekend
P 20 2 3 3
0 5 10 15 20 0 1 5 10 20 5 100 500 Inf 10 100 200 500 1000
Clock time Ratio of 3/ a Ratio of 7/ o
Figure 5: User demand Figure 6: Effects of a, Figure 7: Effects of a, y
s
80 25 11210
[« Proposed
[Proposed 10p ", ¢ Max_Resolution
70 2 ©Max_Resolution R ", Min_Latency
— P T |-8-Min_Cost
- a Min_Latency - g Fo g S o o
E60 p |-8-Min_Cost & S g -
IS - 2 -
3 - 3 3
& —%-Proposed 15 g
2 50 2 2
5 9 Max_Resolution =]
] X6
s Min_Latency S 5
g 40 ~8-Min_Cost 8 10 S 5
5 = =
X 3 ° 4
230 <}
5 - Sy T am.
20 i [=
2 i S
10 0= 1
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

Number of User Groups

Figure 8: Transmission latency vs Num of Figure 9: Monetary cost vs Num of user Figure 10:

user groups groups

We next examine the system scalability when handling the user
demands from different number of user groups. As one user group is
considered to have a multi-party AR session, varying the number of
user groups means the MAR system is required to support different
number of concurrent multi-party AR sessions. As shown in Fig-
ure 8, our approach has close performance to Min_Latency (much
better than Min_Cost and Max_Resolution) in terms of the average
per-user transmission latency, which does not change much against
different user demand. When the user demand grows, Min_Latency
and Max_Resolution have significant operating cost increases, while
our proposed approach keeps relatively low operating cost as shown
in Figure 9. However, Figure 10 shows that the proposed approach
trades the video quality to achieve good performance in transmis-
sion latency and operating cost, which can be changed by increasing
the value of y.

5 CONCLUSIONS

In this work, we systematically studied the AR video rendering
and encoding task placement in the edge-based MAR system. We
identified the trade-off between scalability and performance using
two encoding schemes, namely colocated encoding and split encod-
ing, for the multi-party AR applications. We formulated and solved
the rendering/encoding task placement optimization problem. A
prototype edge-based MAR system is further implemented, and our
rendering/encoding task placement scheme is proved to be superior
through evaluations.

REFERENCES

[1] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, Arailym Butabayeva,
Rui Zheng, Morteza Golkarifard, and Pan Hui. 2017. Hyperion: a wearable

72

Number of User Groups

[2]

3

=

[4]

[5

[

l6

-

7

—

8

=

[

—

[10]

(1]

[12]

Number of User Groups

Video resolution vs Num of
user groups

augmented reality system for text extraction and manipulation in the air. In
Proceedings of ACM MMSys 2017. ACM, 284-295.

Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. 2017.
Mobile augmented reality survey: From where we are to where we go. IEEE
Access 5 (2017), 6917-6950.

Chao Chen, Xiaoqing Zhu, Gustavo de Veciana, Alan C Bovik, and Robert W
Heath. 2015. Rate adaptation and admission control for video transmission with
subjective quality constraints. IEEE JSTSP 9, 1 (2015), 22-36.

Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu,
Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, et al. 2017. An
empirical study of latency in an emerging class of edge computing applications for
wearable cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing. ACM, 14.

Luigi Grippo and Marco Sciandrone. 2000. On the convergence of the block
nonlinear Gauss—Seidel method under convex constraints. Operations research
letters 26, 3 (2000), 127-136.

Raymond Hemmecke, Matthias Koppe, Jon Lee, and Robert Weismantel. 2010.
Nonlinear integer programming. In 50 Years of Integer Programming 1958-2008.
Springer, 561-618.

Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen,
Padmanabhan Pillai, and Mahadev Satyanarayanan. 2016. Quantifying the impact
of edge computing on mobile applications. In Proceedings of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems. ACM, 5.

Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. Deepmon: Mo-
bile gpu-based deep learning framework for continuous vision applications. In
Proceedings of ACM MobiSys 2017. ACM, 82-95.

Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth
Offload for Mobile AR. In Proceedings of ACM CoNEXT 2016. ACM, 237-251.
Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
AVR: Augmented Vehicular Reality. In Proceedings of ACM MobiSys 2018. ACM,
81-95.

Ryan Shea, Di Fu, Andy Sun, Chao Cai, Xiaoqiang Ma, Xiaoyi Fan, Wei Gong,
and Jiangchuan Liu. 2017. Location-based augmented reality with pervasive
smartphone sensors: Inside and beyond pokemon go! IEEE Access 5 (2017),
9619-9631.

Lin Wang, Lei Jiao, Ting He, Jun Li, and Max Miihlhduser. 2018. Service entity
placement for social virtual reality applications in edge computing. In Proceedings
of INFOCOM.

