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Abstract—Efficient event stream dissemination is a challenging problem in large-scale Online Social Network (OSN) systems due to
the costly inter-server communications caused by the per-user view data storage. To solve the problem, previous schemes mainly
explore the structures of social graphs to reduce the inter-server traffic. Based on the observation of high cluster coefficients in OSNs,
a state-of-the-art social piggyback scheme can save redundant messages by exploiting an intrinsic hub-structure in an OSN graph for
message piggybacking. Essentially, finding the best hub-structure for piggybacking is equivalent to finding a variation of the densest
sub-graph. The existing scheme computes the best hub-structure by iteratively removing the node with the minimum weighted degree.
Such a scheme incurs a worst computation cost of O(n?), making it not scalable to large-scale OSN graphs. Using alternative hub-
structure instead of the best hub-structure can speed up the piggyback assignment. However, they greatly sacrifice the communication
efficiency of the assignment schedule. Different from the existing designs, in this work, we propose a QuickPoint algorithm, which
removes a fraction of nodes in each iteration in finding the best hub-structure. We mathematically prove that QuickPoint converges in
O(log,n)(a > 1) iterations in finding the best hub-structure for efficient piggyback. We implement QuickPoint in parallel atop Pregel,

a vertex-centric distributed graph processing platform. Comprehensive experiments using large-scale data from Twitter and Flickr
show that our scheme is 38.8x more efficient compared to existing schemes.

Index Terms—Event stream dissemination, piggyback, densest sub-graph, online social networks

1 INTRODUCTION

SINCE the emergency of Online Social Network (OSN)
applications [16], [27], [39], [44] in the last decade, such
as Facebook, Twitter, and Tumblr, billions of people have
started to use OSNs for information sharing through the
social links [6], [13], [24], [28], [47]. In OSNs, relevant data of
a user is the data of her own and that of her neighbors (e.g.,
followers’ tweets, friends’ status updates, etc.). For sharing
the relevant data of a user, an OSN system provides two
basic operations for a user: 1) sharing events among her
friends, such as short text messages, photos, and videos;
and 2) browsing the event stream, a list of recent events
shared by her friends. In popular OSNs, event stream
browsing produces a majority proportion of requests (e.g.,
70 percent of the page views of Tumblr [1]), dominating the
workload of the systems. Popular OSN systems commonly
use the materialized view [14], where views for assembling
event streams are formed based on a per-user style. A user’s
view contains the events generated by herself and those
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shared by her friends. Due to the complex user inter-
connections, event stream dissemination in large-scale
OSNs incurs costly inter-server communications across
datacenters [26], [30]. The problem becomes particularly
acute under heavy datacenter loads [36], [37].

To support event stream dissemination, a straightfor-
ward scheme is to leverage a push or a pull based strategy.
A push-based scheme updates a user’s events, whenever
generated, to all her friends’ views. For example, in Fig. 1a,
the user A sends a newly generated event to her friends B,
C, and D. With the push-based strategy, a system achieves
local semantic, i.e., a user can read the events shared by her
friends in her own view [36]. Such a scheme is efficient for
read-dominating workloads, i.e., an event data is written
once and read frequently. In contrast, a pull-based strategy
only writes a user’s newly generated events to her own
view. The events are subsequently pulled by her friends on
demand. For example, in Fig. 1b, the user C fetches the
recent events shared by her friends A and D, whenever C
browses the event stream. The pull-based strategy reduces
the cost of write during event stream dissemination, and
thus is especially efficient for a user with frequent event
writes but followed by rare reads. However, the event
stream browsing could be costly. By combining both strate-
gies, a hybrid scheme [38] assigns either the push or the
pull strategy to each social link according to how frequently
the pair of end users of the social link generate/browse
events between each other. For example, in Fig. 1lc, the
scheme assigns the push strategy to the link A — B, as B
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Fig. 1. Event dissemination strategies in OSNs.

browses events more frequently than A generating events.
Meanwhile, the scheme assigns the pull strategy to the link
A — C, as A generates events more frequently than C
browsing events. The hybrid scheme achieves better effi-
ciency by precisely assigning the push or the pull strategy
to each social link according to the actual frequency of event
dissemination among users.

Recently, Gionis et al. [18] argue that the above per link
assignment is not necessary. They show that the communica-
tions along some links can be saved while the event
dissemination can be successfully achieved. Consider a sim-
ple example in Fig. 1d, if we assign the push strategy to the
link A — C and pull to C — B, we can save the messages
from A to B, by piggybacking the messages from A to B onto
the messages from A to C. Whenever B fetches the updates
from C, B can also obtain the recent updates of A through C.
In short, with C acting as a hub node, B can obtain the recent
updates from A with no messages transmitted through
A — B. With such a piggyback strategy, a potential large
amount of redundant messages can be saved, as a recent
research shows that the social graphs usually have very high
cluster coefficient [42] (i.e., the high possibility that a user’s
two friends are also friends) and such a triangle relation
among A, B, and C in Fig. 1d is common.

Using the piggyback strategy is not difficult. However,
how to fully exploit links for piggybacking to minimize the
communication cost over OSNs is not trivial. Finding the
best piggyback assignment is extremely difficult due to the
enormous solution space of assigning the push, pull, or pig-
gyback strategies across all links of the large-scale social
graph. Gionis et al. prove that finding the best piggyback
assignment is NP-hard [18]. To solve the problem, they
design CHITCHAT, a greedy algorithm based on a hub-
structure centred on each user (We will review the detail
of the hub-structure in Section 3). A good hub-structure
should leverage as many links as possible for piggybacking
to minimize the inter-server traffic incurred by users’ events
dissemination. Gionis et al. show that finding the defined
best hub-structure is equivalent to computing a variation of
the densest sub-graph [12]. The CHITCHAT algorithm com-
putes the best hub-structure by removing the node with the
minimum weighted degree iteratively, requiring a computa-
tion cost of O(n?) [18] in worst case. To avoid the prohibi-
tively costly computation for finding the best hub-structure,
Gionis et al. construct an alternative hub-structure. They
accordingly propose the PARALLELNOSY [18] algorithm,

which can efficiently compute the alternative structure with
an edge-centric parallel implementation using MapRe-
duce [15]. However, their results show that the communica-
tion cost obtained by using the alternative structure greatly
increases by 58 percent compared to that obtained by find-
ing the best hub-structure.

To solve the problem, in this work, we propose the Quick-
Point algorithm, which efficiently computes a densest hub-
structure by allowing each iteration to remove a fraction of
nodes. We mathematically prove that QuickPoint has an
upper bound of the number of iterations as O(log,n)(a > 1),
where a is a constant scaling the convergence rate of finding
the densest hub-structure. We implement QuickPoint in par-
allel using Pregel [31], a vertex-centric distributed graph proc-
essing platform. We conduct comprehensive experiments to
evaluate the performance of our design using large-scale
traces from real-world social network systems. Results show
that our scheme achieves a 38.8x improvement in efficiency
compared to existing schemes.

All in all, the contributions of this work are threefold.

e We propose a novel event stream dissemination
algorithm by quickly detecting the best hub-structure
for efficient piggyback in OSNs.

e We mathematically prove that the upper bound of
the number of iterations of our algorithm for identi-
fying the best hub-structure is O(log,n)(a > 1).

e We implement the algorithm in parallel on top of Pre-
gel, areal-world distributed graph processing platform.

The rest of the paper is structured as follows. Section 2

discusses the related work. Section 3 describes the preliminar-
ies of the hub-structures. Section 4 presents our algorithm
in detail. Section 5 introduces the parallel implementation.
Section 6 presents how this design copes with the dynamic
updates of social graphs. Section 7 evaluates the performance
of our design. Section 8 concludes the paper.

2 RELATED WORK

Event stream dissemination occupies a major part of the
workloads in popular OSN systems [23], [46]. Recently,
the problem of how to efficiently disseminate event
streams across online social networks has attracted a lot
of research interest [4], [18], [32], [38]. Existing schemes
can be classified into two types: link-based [4], [38] and
structure-based [18].

The link-based schemes assign each social link an event
dissemination strategy, i.e., push or pull, and can be classi-
fied into three sub-types including push-all, pull-all, and
hybrid. A push-all scheme assigns all links of the social
graph a push strategy [36]. With the push-all scheme,
an event newly generated by a user is pushed to all her
friends’ views. Thus, relevant events (e.g., news feed or
followers’ tweets) can be efficiently read from a user’s own
view when she browses the event stream in a real time style.
The problem of the push-all scheme is the high cost of write
during event stream dissemination. On the contrary, a pull-
all scheme assigns each social link a pull strategy. With this
scheme, a user’s events are only written to her own view.
When a user browses the event stream, the system pulls all
the events data from her friends’ views on demand. Such a
scheme reduces the write cost. It is inefficient for systems
with read dominating workloads [34].
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The key issue of the link-based scheme is how to
choose a pull or a push strategy for different social links.
Silberstein et al. [38] present the Feeding Frenzy system,
and propose a hybrid scheme, which selects a push or a
pull strategy for a social link according to how fre-
quently the two users at both ends of the social link
share or browse events through the social link. They
measure the statistical workloads of each user. The sta-
tistical information of event stream workloads of a user
includes a production rate and a consumption rate, rep-
resenting the average frequency a user generating events
and browsing the event stream, respectively. By compar-
ing the rates of production and consumption at the two
ends of a social link, they adaptively select the preferable
strategy for the link. For example, given a social link
u — v, they assign the push strategy to u — v if the pro-
duction rate of u is smaller than the consumption rate of
v; otherwise they assign the pull strategy to u — v.

Bao et al. [4] present the GeoFeed system, a location-
aware news feed system that follows the hybrid design of
the Feeding Frenzy system [38]. GeoFeed extends Feeding
Frenzy by enabling users to share events with spatial extent
and considering their locations when disseminating news
feed for them. Compared to the event stream dissemination
addressed in this paper, the problem solved by Bao et al. [4]
is quite different.

Another kind of schemes are based on an unique
structure feature of OSNss, i.e., the high clustering coeffi-
cient [42]. The scheme can save redundant messages
through a social link using a piggyback strategy. Gionis
et al. [18] show that a greedy heuristic to fully exploit
links for piggybacking needs to compute the best hub-
structure through all the users repeatedly. Moreover,
finding the best hub-structure for each user takes a
costly computation time of O(n?) in the worst case,
making such a scheme not scalable to large-scale OSN
graphs. Although turning to alternative hub-structures
can speed up the process, they significantly increase the
communication cost of event stream dissemination [18],
due to the sacrifice of the quality of the obtained piggy-
back structure. In this work, we propose a novel efficient
algorithm to quickly find an approximate best hub-
structure, which improves the quality of the obtained
piggyback structure while greatly accelerates the conver-
gence speed of the algorithm. We implement our algo-
rithm in parallel on top of Pregel [31].

Mondal et al. [32] present EAGr, a system supports con-
tinuous ego-centric aggregate queries over the large-scale
social graph. Mondal et al. address the problem of reducing
the communication cost for a given ego-centric query
among a subset of users in a social graph. In this work, our
design addresses a different problem of minimizing the
communication cost for event stream dissemination among
all users in a social graph.

3 DENSEST SuB-HUB-STRUCTURE FOR PIGGYBACK

In this section, we formalize the event stream dissemination
problem to fully exploit links for piggybacking throughout
the network, following the framework of Ref. [18].

An OSN user commonly consumes an order of magnitude
more content than what she generates [34]. This results in
reading dominated workloads in an OSN system [8]. There-
fore, popular OSN systems commonly rely on in-memory
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Fig. 2. Piggyback over OSNs.

distributed key-value stores, e.g., Memcache in Facebook [34],
[37]. On top of the in-memory stores, event stream dissemina-
tion is based on the mechanism of materialized per-user
view [18]. In OSNs, the relevant events of a user are the events
shared by her friends and the events generated by herself.

Fig. 2 shows an example of the request flows of the event
stream in an OSN system, where the views of the three users
A, B, and C (the social links among them form a triangle
structure consisting of links A — B, A — C,and C' — B) are
distributed to different servers (e.g., Memcache servers)
using hash partitioning. In the figure, we consider a simple
case that A shares a new event and B browses the relevant
event stream. With the traditional push-all scheme (see
Fig. 2a), which assigns each social link a push strategy, the
system produces a total number of six messages between
the Memcache clients and servers. In contrast, Fig. 2b illus-
trates the piggyback scheme, which assigns the push strat-
egy to the link A — C and pull to C' — B. It is clear that
only four messages are needed. Due to the fact that OSNs
commonly feature a high cluster coefficient [42], the triangle
structure in the above example is a common case in a social
graph. Therefore, carefully designing the assignments for
those triangle structures following the piggyback strategy
has a great potential to reduce a large amount of communi-
cation cost during event stream dissemination.

In this paper, we narrow down our study to social
graphs, in which we can identify a large number triangle
structures due the high cluster coefficient nature. Before
giving the problem definition, we introduce two important
concepts: piggybacked and piggyback assignment. For simplic-
ity, we use the notations H and L to denote the sets of push
links and pull links, respectively. Table 1 lists the notations
used in the problem statement.

Definition 1 (Piggybacked). Given a social graph G(V, E),
we call a link w— v € E is piggybacked by a hub node w if
there exists a node w €V such that w—we H and
w—uveEL.
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TABLE 1

Notations
Notations Description
H the set of push links
L the set of pull links
(H,L) a piggyback assignment
rp(u) the production rate of u
(V) the consumption rate of v
g(u) the weight of u
¢(H,L) the communication cost of (H, L)
G(X,w,Y) a hub-structure centred on w
E(X,w,Y) the set of links in G(X,w,Y)
g(X,w,Y) the total weight of nodesin X UY
G( Xy, w,Yy) the largest hub-structure of w
G(X;,w,Yr) the densest sub-hub-structure of w

G(X:, W, Yr)

) T wxk

the global densest sub-hub-structure

Definition 2 (Piggyback assignment). Given a social graph
G(V,E), for each link uw— v e E, a piggyback assignment
(H,L) must satisfies that either: 1) u—ve H, or 2)
u— v € L,or3)u — vis piggybacked by a hub nodew € V.

In the following, we discuss how to compute the commu-
nication cost denoted by c¢(H,L) for a given piggyback
assignment (H, L). Indeed, ¢(H, L) is the total communica-
tion cost generated by all the push links in A and all the
pull links in L. The communication cost of each push or
pull link © — v depends on the statistical workloads of both
the users u and v. Formally, the statistical workloads of a
user u can be modeled using two rates, the production rate
rp(u) and the consumption rate r.(u). The production rate
rp(u) represents the average frequency that user u generates
events, while the consumption rate r.(u) quantifies the aver-
age frequency that user u browses the event stream. It is not
difficult to see that the communication cost through a push
link u — v is r,(u), because the user u pushes a new event to
v’s view whenever u produces the event. Similarly, the com-
munication cost through a pull link v — v is r.(v), because
the user v pulls u’s events to v's view whenever v browses
the event stream. Thus, we compute the communication
cost ¢(H, L) by Eq. (1),

c(H,L)= Y rp(u)+ Y 7e(v). (1)

u—veH u—vEL

Based on Eq. (1), we present the event stream dissemina-
tion problem as below.

Problem 1 (Event stream dissemination problem). Given
a social graph G(V, E), the production rate r,(u)(u € V) and
the consumption rate r.(u)(u € V), find a piggyback assign-
ment (H, L) that minimizes the communication cost ¢(H, L).

Due to the enormous solution space of the piggyback
assignment that assigns the push, the pull, or the piggyback
strategy across all links of the large-scale social graph, solving
the event stream dissemination problem is extremely difficult
over the large-scale social graph.

Let’s take a closer look at the example shown in Fig. 2b. The
node C works as a hub saving the messages through the link
A — B.Inthe entire social graph, some other links can also be
piggybacked by the hub node C. Obviously, we can abstract
a dedicated piggyback structure, a hub-structure centred on

Fig. 3. Hub-structure for piggyback.

C. More generally, Fig. 3 shows an example of such a hub-
structure G(X, w,Y). In the hub-structure, w is the hub node;
X = {x1,29,...,2,} is the set of users whose events are con-
sumed by w; and Y = {y1,¥s,...,y,} is the set of users who
consume w’s events. By assigning each link z — w (z € X)
a push strategy and each link w — y (y € Y) a pull strategy,
all the messages through links from X to Y (marked as dotted
lines in Fig. 3) can be saved. For example, in Fig. 3, node v,
can achieve updates from z» and x3 by pulling those updates
from w, while it is not necessary for x; and z3 to send their
updates to y, through the links x5 — 4 and x5 — vu.

It is not difficult to see that saving messages from X to Y’
is only one side of the issue of reducing communications.
On the other side, as aforementioned, due to the actual
workloads among users, assigning all links z — w (z € X)
and w — y (y € Y) using the above policy may still be ineffi-
cient. Considering the communication cost of the hub-struc-
ture shown in Fig. 3, a user z € X has a weight g(z) = r,(x)
because the communication cost through the push link
x —w is 1,(z). Similarly, a user y €Y has a weight
9(y) = r.(y) because the communication cost through the
pull link w — y is r.(y). For simplicity, the user w has a
weight of zero. Intuitive, a good hub-structure should
reduce the communication cost from X to Y as much as pos-
sible, while achieve the total weight of all links z — w
( € X) and w — y (y € Y) as small as possible. Mathemati-
cally, the following density function computes the quality
of a hub-structure G(X,w,Y),

|E(X,w,Y)|
PR =) ©
where E(X,w,Y) denotes the set of links including z — w
foreachz € X, w — yforeachy €Y, and x — y; g(X,w,Y)
denotes the total weight of all nodes in X U'Y".

For simplicity, we use the notion G(X,,w,Y,,) to denote
the largest hub-structure centred on w. It is not difficult to
find that X, ={z|z - we E} and Y, = {y|w — y € E}.
Thus, each hub-structure G(X, w,Y) is a sub-graph [5], [21],
[29], [41], [43] of G(X,,w,Yy,), ie., X C X, and Y CY,,.
Through all the possible hub-structures G(X,w,Y’), we call
the hub-structure that has the maximum density value of
Eq. (2) as the densest sub-hub-structure of G(X,,, w, Y,,).

Definition 3 (Densest sub-hub-structure). Given the
largest hub-structure G(X.,,, w,Y,,) centred on the hub node
w, its densest sub-hub-structure G(X,w,Y.) holds that
(X2, V) = arg maxycx, ycy, D(X,w,Y).

w?r T w
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For a given social graph G(V, ), each node w € V has its
own densest sub-hub-structure G(X;,w,Y;). Through all
the densest sub-hub-structures G(X!, w,Y!), we call the

one with the maximum density value of Eq. (2) as the global
densest sub-hub-structure.

Definition 4 (Global densest sub-hub-structure). Given a
social graph G(V,E), its global densest sub-hub-structure
G(X.,w*,Y.) centred on the hub node w* holds that

w* = argmax,,c D(X},w,Y,).

w?

The basic idea of the CHITCHAT algorithm [18] is to find
the global densest sub-hub-structure in each iteration and
reasonably assign all the links of the global densest sub-
hub-structure using piggyback principle. Thus, each itera-
tion of the greedy algorithm can leverage as many links as
possible for piggybacking and achieve the communication
cost of the piggyback assignment as small as possible.

Algorithm 1. CHITCHAT

Input: The social graph G(V, E), the production rate r,(u) and
the consumption rate r.(u) forall v € V.
Output: The piggyback assignment (H, L).

1. H— @, L« @,7Z«— E;// Z: the uncovered link set

2: Foreachw € V

form largest densest sub-hub-structure G(X,, w, Y,,);
4:  (X:,Y!) < densestSubHubStructure(w, H, L, Z);

5: do

6:  select G(X:.,w*,Y}) from all G(X
7.

8

w0 Y);
H—HU{u—wue X .};
: L~ LU{w —vjveY.};
9 7 Z\E(X:.,w',Y5);

10:  For each G(X,,, w,Y,) with links in E(X?*., w*,Y})
11: update links in E(X., w*, Y. ) as ASSIGNED;
12: (X:,Y) < densestSubHubStructure(w, H, L, Z);

13: while Z = @
14: return (H, L).

Algorithm 1 introduces the CHITCHAT algorithm in
detail. The algorithm is a typical serial program. It first
forms the largest hub-structure G(X,,,w,Y,,) and computes
its densest sub-hub-structure G(X;,w,Y,;) for each node
w € V (lines 1-2). Then, it greedily selects the global densest
sub-hub-structure G(X.,w",Y).) from all G(X, w,Y)
(line 6). After selected, the algorithm makes the following
assignments (lines 7-8): the push strategy to all the links
r — w" (r € X.) and the pull strategy to w* — y (y € Y%.).
Thus, each link = — y if exists can be piggybacked by
the hub node w*. All the links in E(X.,w* Y, .) will
be removed from the uncovered link set Z (line 9). For
each hub-structure G(X,,w,Y,) which contains links in
E(X:.,w*,Y..), the algorithm will mark the status of those
contained links as ASSIGNED. These ASSIGNED links will
not be counted in E(X,w,Y) (see Eq. (2)) when computing
the densest sub-hub-structure in the subsequent iterations.
The algorithm will end when Z becomes empty and return
the piggyback assignment (H, L).

It is not difficult to find that the main computation cost of
CHITCHAT is spent on repeatedly computing the densest
sub-hub-structure. The CHITCHAT algorithm achieves the
densestSubHubStructure function by greedily removing the
node with the minimum weighted degree d(u)/g(w) [18] until
the remaining hub-structure becomes empty. Here, d(u)

represents the degree of node u. During the process, the
sub-hub-structure which maximizes the density value of
Eq. (2) is used as the approximate densest sub-hub-struc-
ture. However, such a process will take a worst computa-
tion cost of O(n?), making the CHITCHAT algorithm not
scalable for large-scale OSN graphs. Thus, it is unrealistic to
implement the CHITCHAT algorithm on top of a typical
distributed graph processing system, such as Pregel.

4 ALGORITHM

In this section, we first introduce the QuickPoint algorithm,
which can efficiently find an approximate densest sub-
hub-structure of a given hub-structure G(X,,, w, Y,,). Then we
formally prove that the upper bound of the number of itera-
tions of QuickPoint is O(log,n)(a > 1), the time complexity
of QuickPoint is O(|E(X,,, w, Y,,)|/k), and the approximation
of QuickPoint is 2a.

4.1 QuickPoint Algorithm

As aforementioned, the expensive computation cost of
finding the densest sub-hub-structure in CHITCHAT [18]
is due to the operation of removing the node with minimum
weighted degree d(u)/g(u) [18] in each iteration, where d(u)
and g(u) represent the degree and communication cost of
node u, respectively. For a hub-structure with n nodes,
the CHITCHAT [18] algorithm needs a number of n itera-
tions with a worst computation cost of O(n?) to find the dens-
est sub-hub-structure. To address the problem, we propose
the QuickPoint algorithm, which can quickly find the dens-
est sub-hub-structure of a given hub-structure within
O(logyn)(a > 1) iterations. Note that, in this paper, the
QuickPoint algorithm is dedicated to reduce the communica-
tion cost of disseminating event stream for OSN applications.
We do not aim to design a common approach to quickly find
the densest sub-hub-structure for all applications. One can
modify the QuickPoint algorithm for different applications
where computing densest sub-hub-structure dominating the
computation cost.

The key motivation of the QuickPoint algorithm is to
remove a fraction of nodes in each iteration to accelerate the
process of finding the densest sub-hub-structure. To achieve
it, in each iteration, it is critical to choose an appropriate
threshold that considers both the structure of current sub-
hub-structure and the communication cost of nodes. A
straightforward approach is to use the average weighted
degree, ie., >, . d(u)/ > e 9(u). Note that G denotes the
current sub-hub-structure G(X, w,Y") for simplicity. Such a
threshold can guarantee the convergence of the algorithm
because at least one node will be removed, e.g., the node
with the minimum weight degree. To further accelerate the
process of the QuickPoint algorithm, we multiply the above
threshold by a constant a(a > 1). It is not difficult to obtain
that > .. d(u) = 2|E(X,w,Y)| according to graph theory
knowledge. Thus, we can simplify the threshold as
2aD(X,w,Y). Intuitively, a large value of a will make the
QuickPoint coverage quickly. However, it may incur a
potential large accuracy lose in the communication cost (see
Eq. (1)) due to the coarse-grained process of removing
nodes. Since the CHITCHAT algorithm contains a series
rounds of computing the densest sub-hub-structure, it is
extremely difficult to predict the relationship between the
communication cost and the constant a. According to the
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experiment results, we recommend to choose a constant a
between 1.2 and 1.5, which can achieve a short running time
while obtain an accuracy loss within 5 percent.

Algorithm 2. QuickPoint

Input: The hub-structure G(X,,, w,Y,,), and the weight g(u) for
each node v in X, UY,,.

Output: The set of nodes of the approximate densest sub-hub-
structure.

10 S X, U{w} UY,;
2: 8%« S; /* S*: the set of nodes of the approximate densest

sub-hub-structure */
3: while S # @ do

4 p(S) — |E(9)|/9(S); /*p(S): the density of the current
sub-hub-structure*/
5 X' —A{x|zx e SNXy, ds(x)/g(x) < 2ap(S)};
6: Y —{yly € SNYuds(y)/g(y) < 2ap(S)};
7. R~ XUY’
8: if p(S) > p(S*) then
9: St — 5
10:  end if
11: S« S\R;
12: end do

13: return S*.

Algorithm 2 presents the process of QuickPoint in detail.
Given a hub-structure G(X,,w,Y,,) with g(u) denoting the
weight of each node u € X, UY,,. Let S denote the set of
nodes of the current sub-hub-structure and begin with
X, U{w} UY,, (line 1). For a given constant a > 1, the algo-
rithm computes the density of the current sub-hub-structure
by p(S) = |E(S)|/g(S) in each iteration (line 4), where |E(S)]|
denotes the total number of links in the current sub-
hub-structure, and ¢(.5) denotes the total weight of all nodes
in S. For simplicity, we use the notation dg(u) to denote the
degree of the node in the sub-hub-structure generated by
all nodes in the set S. The algorithm selects all nodes
with weighted degree [18] smaller than the threshold 2ap(S)
(lines 5~6). Thus we obtain R = {uec S|ds(u)/g(u) <
2ap(S)} (line 7), the set of nodes to be removed in the current
iteration. Then, the algorithm removes all the nodes in R
from S (line 11), as well as all the links associated with
them. Such an operation repeats until S becomes empty.
Finally, the algorithm returns S* (line 13), the set of nodes
of the approximate densest sub-hub-structure that maximizes
the density through all the sub-hub-structures during
the process.

4.2 Upper Bound of Iterations of QuickPoint

We give the formal proof of the upper bound of the number of
iterations of QuickPoint following the analysis of Bahmani [3].
Given an unweighed undirected graph, Bahmani et al. use a
greedy algorithm to find an approximate densest sub-graph.
Differently, the density in [3] is defined as half of the average
degree of the graph. However, we prove the upper bound of
QuickPoint in the directed hub-structure, where each node
has a weight (see Section 3).

Theorem 1. Given a hub-structure G(X,, w,Y,,) and a constant
a > 1, the upper bound of the number of iterations of Quick-
Point is O(log,n)(n = | X, U Yy]).

Proof. For simplicity, we use the notation S to denote the set
of nodes in the current sub-hub-structure. It is not difficult

tosee 2|E(S)| = 3, cq ds(u), which can be simplified as
20B(S)| = > ds(u)+ Y ds(u), 3

ueR ueS\R

where R denotes the set of nodes to be removed in the
current iteration, i.e., R = {u € S|dg(u)/g(u) < 2ap(S)}.0

In the following, we first prove that |R| > 1, which means
at least one node will be removed in the current iteration. For
simplicity, we use the notation u* to denote the node with
minimum weighted degree dg(u)/g(u). Thus, for each node
u € S, we have that dg(u)/g(u) > dg(u*)/g(u*). By summing
up the degree of all u € S, we obtain that ) _ods(u) >
ds(u*)/g(u*) > ,cq9(u), which can be further simplified as

ds(u”)/g(u) < 3 pesds(u)/ X ues 9(w) = 2p(S) < 2ap(S).
So far, we show that node v* will be removed in the current
iteration, i.e.,, u* € R. Thus, |R| > 1.

According to the definition of R, for each node
u € S\R, we have that ds(u)/g(u) > 2ap(S). This equals to
ds(u) > 2ap(S)g(u). Furthermore, we can change Eq. (3) as
2AB(S)] > X oesinds(u) > 2ap(8) S ,cq9(u), which can
be simplified as

3 glw) < <2g<u>) / @

ueS\R ues

Indeed, the above equation demonstrates that, after an
iteration, the total weight of all the remaining nodes is at most
a fraction of the total weight of all nodes in current sub-
hub-structure. Thus, the QuickPoint algorithm will end when
the total weight of all the remaining nodes is less than the min-
imum node weight, denoted by g¢,;,, = min,ecx, Uy, g(u). At
the begin, the hub-structure G(X,,, w,Y,,) has a total weight
of all nodes as gitar = _,ex, 9(T) + D ey, 9(Y) < 1 * G-
Here, ¢, denotes the maximum node weight, i.e., gne =
maxyex,uy, 9(u). Therefore, the QuickPoint terminates within
a number of iterations of l0g, ((¢maz/Gmin)M)- SINCE Gimaz/ Gmin
is a constant for G(X,,w,Y,), QuickPoint terminates in
O(log,n) iterations. Thus proved.

It is not difficult to find that the skewness between the
weight value of nodes, i€., gmas/gmin, has an important
impact on the convergence rate of the QuickPoint algorithm.
Thus, QuickPoint may not be very suitable for hub-structure
with highly skewed weight value of nodes.

4.3 Time Complexity of QuickPoint

In this section, we discuss the time complexity of Quick-
Point. The main running time of QuickPoint is spent on
finding the nodes to delete and updating the degree of the
remaining nodes for each iteration. It is not difficult to find
that we can achieve both: 1) finding the selected nodes for
each iteration and 2) updating the degree of the remaining
nodes in parallel. For simplicity, we use the notion % to
denote the parallelism degree for these two operations.

Theorem 2. Given a hub-structure G(X,,w,Y,) and the
parallelism degree k, the time complexity of QuickPoint is
O(|E(Xuw, w, Yu)|/K).

Proof. For simplicity, we use the notation d¢;(u) to denote
the degree of node u in G(X,,w,Y,). It is not difficult to
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find that the degree of node u in any sub-hub-structure
generated by QuickPoint is no more than d¢ (u). O

According to lines 5 and 6 of the Algorithm 2, it is simple
to obtain the nodes to delete in current iteration. Thus, we
focus on accounting the running time to update the degree
of the remaining nodes. To further improve the running
time performance of QuickPoint, we maintain lists of nodes
with the same weighted degree. In each iteration, we only
need to update the degree of neighbor nodes of the deleted
nodes.

For each deleted node w, it incurs a worst updating time of
dc(u)/k because we can update the degree of u’s neighbor
nodes in parallel. Thus, the running time of QuickPoint is at
most Y, . da(u)/k = 2| E(X,, w, Y,,)|/k. Thus proved.

4.4 Approximation of QuickPoint

In this section, we give the formal proof of the achieved
approximation of QuickPoint. For simplicity, we use the
notations W* to denote the node set of the densest sub-
hub-structure G(X},w,Y;), ie, W*={X; UwUY,}; and
p(W*) to denote the density value (see Eq. (2)), ie,
p(W*) = D(X7, w, V7).

w? ) w

Theorem 3. Given a hub-structure G(X,,, w,Y,,) and a constant
a > 1, QuickPoint achieves a 2a-approximation of the densest
sub-hub-structure G( X, w,Y}), i.e., p(S*) > p(W*)/2a.

w? ? T w

Proof. Since W* is the set of nodes in the optimal densest
sub-hub-structure, for each node v € W*, we have that
p(W*) > p(W*\{u}), which can be represented as

B0V

|E(W™)| = dw+(u)
g(W*) '

JOV) — g(u) ®

a

We can simplify the above equation as p(W*) =
|[E(W*)|/g(W*) < dw+(u)/g(u). Since QuickPoint removes at
least one node, there must exist an iteration in which a node
u € W* is first removed. We assume S is the set of nodes of
the sub-hub-structure formed in the selected iteration, and
R is the set of nodes removed in the selected iteration. It
is clear that u€¢ RNW*, and W* C S. Since W* C S, we
can obviously have dy~(u) <dg(u). So far, we have
p(W*) < dg(u)/g(u). With the definition of R, we have
dg(u)/g(u) < 2ap(S). Thus, we have p(W*) < 2ap(S). It is
not difficult to see that p(S) > p(W*)/2a.

Since S* is the set of nodes of the approximate densest
sub-hub-structure that maximizes the density through all
the sub-hub-structures generated during the process of
QuickPoint, we have that p(S*) > p(S) > p(W*)/2a. So far,
we prove that QuickPoint guarantees a 2a-approximation of
the optimal densest sub-hub-structure.

5 PARALLEL IMPLEMENTATION

5.1 Overview

To solve the event stream dissemination problem, a straight-
forward approach is to apply the QuickPoint algorithm to
implement the densestSubHubStructure function of CHIT-
CHAT (see lines 4 and 12 in Algorithm 1). It is not difficult to
see that the process of finding the densest sub-hub-structure
for each user is inherently vertex-centric,c we can greatly
improve the scalability of CHITCHAT by implementing the
QuickPoint algorithm on top of a vertex-centric graph

processing platform to solve the event stream dissemination
problem.

Based on the above observation, we choose Pregel as the
baseline platform because Pregel is a widely-used and effi-
cient vertex-centric graph processing platform. Pregel is
based on the Bulk Synchronous Parallel (BSP) computation
model. Specifically, it distributes vertices onto different
machines of a cluster to perform the computation in parallel
in a vertex-centric way. The computation consists of itera-
tions called supersteps. In each superstep, vertices receive
messages from relevant neighbors in the previous super-
step, execute their local computation functions in parallel,
and send messages to their relevant neighbors. At the end
of each superstep, vertices synchronize their states.

According to the BSP computation model of Pregel, there
are two main challenges to implement the QuickPoint algo-
rithm to solve the event stream dissemination problem. The
first challenge is how to assign strategies for links appearing
in multiple users” hub-structures in parallel. The assign-
ment for those links will impact the accuracy of our design.
To solve it, we propose a simple but effective approach by
greedily locking a link to the hub-structure with the maxi-
mum density through all the hub-structures containing the
link. The second challenge is how to reduce the communica-
tion messages between supersteps for updating link states
for hub-structures. To achieve it, we present an optimiza-
tion technique using the Bloom filter [7] to effectively
reduce the message size.

5.2 Parallelizing QuickPoint Using Pregel

In this section, we introduce how we implement QuickPoint
to solve the event stream dissemination problem on Pregel
in detail. The implementation can be divided into two parts:
the pretreatment and the link assignment. The pretreatment part
gathers information of the hub-structures for computing. The
pretreatment part contains a phase called ConstructStructure.
In the ConstructStructure phase, each vertex w constructs its
largest hub-structure G(X,,,w,Y,,) centred on w in parallel.
The link assignment part makes assignments for links and
runs in iteration containing three phases: the LockLinks phase,
the AssignLinks phase, and the UpdateLinks phase. The Lock-
Links phase, for each vertex w, locks any unassigned link
u — vin G(X},w,Y?) to only one densest sub-hub-structure.
The AssignLinks phase assigns the locked links in different
densest sub-hub-structures in parallel. In this phase, each ver-
tex w gathers all links locked in G(X};, w,Y}"), and achieves its

’Tw

locked densest sub-hub-structure G(XL, w,YL). If the locked
densest sub-hub-structure G(X’, w,Y) has a positive bene-
fit, we assign the push strategy to the link  — w for each
x € XL, the pull strategy to w — y for each y € £, and the
piggyback strategy to each link z — y.

The benefit of the locked densest sub-hub-structure
G(Xy,w,Y)) is defined by >, o, min{r,(u),r.(v)}—

w? ? T w

(X sext mp(@) + 22,y Te(y)), where G is an abbreviation of
G(XE w,YE). Then we update g(z) to zero for each z € XE
and update g(y) to zero for each y € Y;“. The UpdateLinks
phase updates the state of links appearing in different locked
densest sub-hub-structures. In this phase, any other hub-
structure G(X,s,v',Y,s) centred on w' (w' # w) containing
some links in G(XL, w,Y?) is selected to update the state of
those links ASSIGNED. After that, we compute the densest
sub-hub-structure of the selected hub-structure. The process

of the parallel implementation will terminate after all the
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locked densest sub-hub-structures without having a positive
benefit. The rest of the unassigned links will be assigned as
either a push or a pull strategy following the hybrid strat-
egy [38]. For simplicity, we call X, the incoming neighbor set
of w. Similarly, we call Y,, the outgoing neighbor set of w.
Algorithms 3 and 4 describe the two phases on top of Pregel
in detail.

Algorithm 3. Pretreatment

1: public void ConstructStructure (Iterable < QPMessage >
messages){

2:  if (getSuperstep() == 1){

3 SendMessageTo(X,, r.(w));

4 SendMessageTo(Y,,, r,(w));}

5. if (getSuperstep() == 2){

6 int u = getVertex(messages);

7 g(u) — getRate(messages);

8 SendMessageTo(Y,,, Y,,);}

if (getSuperstep() == 3){
10: int w = getld();
11: int u = getVertex(messages);
12: Y, « getNeighbor(messages);
13: store links cross v and Y,, N Yy,;}}

ConstructStructure Phase. In this phase, the algorithm
gathers and stores the essential information to construct the
largest hub-structure G(X,,, w,Y,,) centred on w in parallel.
The essential information includes the production rate r,(z)
for each x € X, the consumption rate r.(y) for each y € Y,
and all the pairs of links cross X, and Y,,. Initially, each ver-
tex w only stores her own production rate r,(w), consump-
tion rate r.(w), the set of incoming neighbors X,,, and the
set of outgoing neighbors Y,,. The algorithm gathers the
essential information for the vertex w by the following three
supersteps.

In the first superstep, each vertex w gathers the produc-
tion rate 7,(z) for each x € X,, and the consumption rate
rc(y) for each y € Y,, by sending a message including the
production rate r,(w) or the consumption rate r.(w) to its
corresponding vertices. Specifically, the vertex w sends
rp(w) to each y €Y, because w belongs to the incoming
neighbor set X, of the vertex y. Similarly, the vertex w sends
re(w) to each z € X,,,.

In the second superstep, each vertex w stores the produc-
tion rate 7,(z) for each xz € X,, and the consumption rate
rc(y) for each y € Y,, after receiving the messages from the
previous superstep. Since links cross v (v € X,,) and Y, are
equivalent to links cross w and Y, NY,, the algorithm
obtains all the pairs of links cross X,, and Y,, by gathering
the outgoing neighbor set Y, for each u € X,,. To get Y,
(u € X,,) for each vertex w, the vertex w sends Y,, to each
y € Y, because w belongs to the incoming neighbor set X,
of the vertex y.

In the third superstep, each vertex w first computes
Y, NY, (u € X,) and then stores all the pairs of links cross u
and Y, NY,, after receiving the message with Y, from the
vertex u in the previous superstep.

LockLinks Phase. In this phase, we compute the densest
sub-hub-structure G(X;,w,Y;’) of each vertex w using the
QuickPoint algorithm in parallel. Then, the algorithm locks
each unassigned link v — v in G(X},w,Y) to only one
densest sub-hub-structure. Specifically, the algorithm locks

u — v to the densest sub-hub-structure that maximizes the
density through all the densest sub-hub-structures, which
contain u — v. The algorithm achieves G/(X,w,Y,;) by the
following two supersteps.

Algorithm 4. Link Assignment

: public void LockLinks (Iterable < QPMessage > messages){
if (getSuperstep == 1){
(X7, Y") — QuickPoint(X,,, w, Y,,); /*w: vertex id*/
for each unassigned link v — vin G(X;,,w,Y;;) do
SendMessageTo(u, p(w));}
if (getSuperstep == 2){
(u,v) «— getLink(messages);
select the vertex w* maximize p(w*) for u — v;
SendMessageTo(w*, u — v);}}
public void AssignLinks (Iterable < QPMessage > mes-
sages){
11: obtain G(XE, w, YF);
12: make assignment for G(X%, w, Y1);
13: update the weight for each node in X% U Y7;}
14: public void UpdateLinks (Iterable < QPMessage > mes-
sages){
15:  if (getSuperstep == 1){
16: SendMessageTo(X,, U Y,,);}
17:  if (getSuperstep == 2){
18: (u,v) «— getLink(messages);
19: P — getVertexContainLink(u, v);
20: SendMessageTo(P, u — v);}
21:  if (getSuperstep == 3){
22: (u,v) — getLink(messages);
23: update the state of u — v as ASSIGNED;}}

ORI RN

—_

In the first superstep, each vertex w computes its densest
sub-hub-structure G(X,, w,Y,;) using the QuickPoint algo-
rithm. After that, we spread each unassigned link v — v in
G(X:,w,Y}) to its corresponding vertices, if G(X,w,Y.)
has a positive benefit. Specifically, the process performs as
follow: the vertex w spreads each unassigned link z — w
(z € X}) by sending p(w) to the vertex z, spreads each unas-
signed link w — y (y € Y;) by sending p(w) to the vertex w,
and spreads each link 2 —y by sending p(w) to the
vertex z, where p(w) is the density of the densest sub-
hub-structure G(X,, w, Y;") computed by Eq. (2).

In the second superstep, each vertex w locks the link w — y
to only one densest sub-hub-structure for each y €Y, if
w — yis currently unassigned. For all the vertices u spreading
w — y and its density p(u) to w in the previous superstep, the
vertex w locks w — y to the vertex w* that maximizes the
density through all the densest sub-hub-structures of those
vertices. Then, the vertex w sends w — y to the vertex w*.

AssignLinks Phase. In this phase, the algorithm computes
the locked densest sub-hub-structure G(X’, w, V') for each
vertex w, and assigns links in G(X£, w, Y}) using piggyback
strategy. Then, we update the weight of the locked link
u — v to zero, since it is free to leverage u — v after assign-
ing the push or the pull strategy to v — v. The AssignLinks
phase takes one superstep.

In the superstep, each vertex w gathers all links locked in its
densest sub-hub-structure G(X,,w,Y;’). The vertex w locks

eachw — y (y € V") into G(XE, w, YE) if w receives a message

w w? ? T w

containing w — y from the vertex w. The vertex w locks each
r—w (z € X!) into G(XE,w,YE) if w receives a message

w? ? w
containing * — w from the vertex z. Then, the vertex w locks
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each r — y into G(XE, w,YE) only if: 1) w receives a message
containing  — y from the vertex z; 2) bothz — wand w — y
have been locked in G(XE,w,YE). At last, the algorithm
obtains the locked densest sub-hub-structure G(X%, w,Y.l).
If G(XE w,YE) has a positive benefit, we assign the push
strategy to the link # — w for each z € X%, the pull strategy to
w — y for each y € Y, and the piggyback strategy to each
link © — y. Then, the algorithm updates g(z) to zero for each
r € XL and updates g(y) to zero for eachy € Y.

UpdateLinks Phase. In this phase, the algorithm updates the
state of those links in the largest hub-structure G(X,,,w,Y,,)
that appear in any G(X£, u,Yl). The algorithm implements
the updating process by performing the following four
supersteps.

In the first superstep, each vertex w sends a request to all
the vertices u (u € X%) and v (v € Y}) for gathering Y, and
X,, respectively.

In the second superstep, each vertex w sends X, to the
vertices u (u € XL) if receiving a messages u in the previous
superstep. Similarly, w sends Y, to the vertex v (v € Y,F) if
receiving a messages from v in the previous superstep. After
that, w sends the update messages to those vertices, whose
densest sub-hub-structures contain some links in any
G(XL, w,YE). Foreach u € XL, the vertex w sends the update
messages of u — w to the vertices u, w and each vertex
w' € Y, N X,.For each v € Y%, the vertex w sends the update
messages of w — v to the vertices v, w and each vertex
w' € X, NY,. The vertex w sends the update messages of
u — v to the vertices u, v and each vertex w' € Y, N X,, for
eachlinkz — yin G(XL w,YF).

In the third superstep, each vertex w updates the state of
ASSIGNED to those links that are contained in the messages

from the previous superstep.

5.3 Optimization

In the parallel implementation of QuickPoint, we need to
send the incoming neighbor set X,, or the outgoing neigh-
bor set Y,, to different vertices. Such a transmiting operation
will incur a large amount of traffic of a vertex containing a
large number of neighbors in its hub-structure. To address
the problem, we design an optimization technique using the
Bloom filter [7] to represent both the incoming and outgoing
neighbor sets of a vertex in the social graph.

Specifically, when the vertex w sends the incoming
neighbor set X, or the outgoing neighbor set Y;, to any other
vertex w' (W' # w), we send the corresponding Bloom filter
of X, or Y,, to w' instead. On one hand, we effectively
reduce the traffic generated during the parallel implementa-
tion of QuickPoint due to the high space-efficiency of the
Bloom filter. On the other hand, we can also speed up the
process of the parallel implementation of the QuickPoint
algorithm. For example, considering the computation com-
plexity of computing the intersection Y, N'Y,, in the parallel
implementation of QuickPoint: 1) without the Bloom filter,
the computation complexity is at least O(|Y, | + |Y;,|) with all
the members in both Y, and Y,, are sorted in the same order;
2) with the Bloom filter, we reduce the computation com-
plexity to O(|Y,|), as we can judge whether a member
y € Y, belongs to the Bloom filter of Y,, in a constant time.

Due to the false positive of the Bloom filter, the above
scheme may determine a link z — y cross X,, to Y,, belong
to G(X,,w,Y,), although G(X,,w,Y,) actually does not
contain  — y; or determine a link x — w (x € X,;,) orw — ¥y

(y € Y,) contained in G(X,,w,Y,), although G(X,,w,Y,)
actually does not contain « — w or w — y. For the former
situation, it may affect the process of finding the densest
sub-hub-structure of G(X,,, w, Y,,). Such an influence is very
slight because only a few false positive links = — y will
appear in G(X,,w,Y,). For the later situation, since
G(Xy,w,Y,) actually does not contain links =z — w or
w — y, there is no state updating for + — w or w — y. The
only influence is the extra messages between vertices, which
can be controlled by adjusting the setting of the Bloom filter
to achieve a very small false positive.

6 DyYNAMIC UPDATES

It is noticeable that social graphs are dynamically evolving
with incremental updates of user/link adding and remov-
ing [11], [17], [20], [45]. In this section, we consider such
incremental updates of a social graph in our design. In the
following, we first introduce how we deal with link adding
and removing. We examine the marginal benefit of the
saved communication cost after adding a new link. We then
transform the cases of user adding and removing into a
series of link adding and removing, respectively. For sim-
plicity, we use the notation (H, L) to denote the link set of
the piggyback assignment.

Algorithm 5 describes how we cope with the dynamic
link adding. When a social link v — v is added, we compute
the marginal benefit of assigning u — v as a push or pull
link, respectively (lines 2-3). Specifically, the marginal bene-
fit of assigning a push strategy to u — v is the total amount
of saved communication cost of u—z (u—ax¢C,
v — x € L), where u — x can be piggybacked through the
hub node v, and u — x does not exist in any other piggyback
triangle structure. The case of assigning u — v as a pull link
is similar. We then check whether u — v can be piggy-
backed (line 5): 1) If so, we assign v — v as push, pull, or
piggyback strategy, whichever achieves greater marginal
benefit (lines 6-9); 2) If not, we assign the push or pull strat-
egy to u — v according to the greater marginal benefit.

Algorithm 5. Link Adding

1: void addLink (int u, int v){

2:  double mbl = getMarginalBenefit(u, v, “pull”);
3 double mb2 = getMarginalBenefit(u, v, “push”);
4:  double min mb =mbl < mb2? mbl : mb2;

5: if (u — v can be piggybacked){
6

7

8

if (min mb = 0){
addu — vto C;

telse{
9: assignEdge(u, v, mb1, mb2);}
10:  Jelse{

11: assignEdge(u, v, mb1, mb2);}}

12: void assignEdge (int v, int v, double mb1, double mb2){
13:  if (mbl < mb2){

14: add u — vto H;

15:  }else{

16: add u — vto L;}}

Algorithm 6 describes the process of dynamic link
removing in our design. The system copes with different
kinds of links as follows. If u — v is a piggyback link (line
2), the system directly removes it from C (line 3). If v — v is
a push link (line 4), it removes it from H (line 5) and re-
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assign all the piggyback links v — ¢/ (v — ¢/ € L) in the hub
node v (lines 6-9). Specifically, the algorithm removes
u — v’ and assigns it according to Algorithm 5. Similarly, if
u — v is a pull link (line 10), the algorithm removes it from
L (line 11) and re-assigns all the piggyback links u' — v
(v — u € H) following Algorithm 5 (lines 12-15).

Algorithm 6. Link Removing

1: void removeLink (int u, int v){
2 if (u— v e O)f

3 remove u — v from C}

4:  Jelseif (u — v e H){

5: remove u — v from H;

6 for (each v/ : v — v € L){

7 if (u — v € O)f

8: remove u — v from C;
9: addLink(u, v/);}}

10:  Jelseif (u — v € L){

11: remove u — v from L;

12: for (each v/ : v/ — u € H){
13: if (W — v e O)

14: remove v’ — v from C;
15: addLink(«/, v);}}}}

It is not difficult to see that the system dynamics of user
adding/removing is equivalent to the process of link dynam-
ics. When a new user u is appended in the social network,
new social links are generated by u. We can add those social
links one by one following Algorithm 5. Similarly, when w is
removed from the social network, we remove all the links that
connect u one by one according to Algorithm 6.

7 EXPERIMENT

In this section, we evaluate the performance of our design by
comparing it with the state-of-the-art algorithms proposed by
Gionis et al. [18]. We first present the experiment setups and
the datasets used in the experiments. We then examine both
the communication cost and the running time of our design
by comparing with the performance of CHITCHAT and PAR-
ALLELNOSY schemes proposed by Gionis et al. [18]. At last,
we further build an OSN prototype system to evaluate the
actual traffic and throughput of our design.

7.1 Experiment Setups

In the experiments, we use large-scale traces collected from
popular OSN systems including Twitter and Flickr, which
is same as the traces used in [18]. The Twitter trace contains
54 million users and 1.9 billion links [9]. The Flickr trace
includes 1.86 million users and 22 million links [10]. The
large-scale traces are quite representative for real-world
OSN systems. Since it is extremely difficult to obtain the
real workloads (including the production rate and the con-
sumption rate for each user) from the commercial OSN
systems, we follow the methodology used by Gionis
et al. [18] to synthetically generate the workloads. They
generated the workloads information based on the observa-
tion of Huberman et al. [22] that a user with a higher out-
degree tends to share new events more frequently while
a user with a higher in-degree tends to read event streams
more frequently. Accordingly, in the experiments, the pro-
duction rate and the consumption rate of a user are modeled

to be proportional to the logarithm of her out-degree and
in-degree, respectively. The read /write ratio of the average
consumption rate and the average production rate of users
in the OSN graph is set to five, which is in agreement with
the setting used by Gionis et al. [18].

We implement both the CHITCHAT [18] and PARALLEL-
NOSY [18] algorithms and use them as the baseline schemes.
The PARALLELNOSY algorithm is implemented using Map-
Reduce and runs on a ten-node cluster of Intel Xeon servers
each equipped with 16 2.13 GHz cores, 16 GB main memory,
and a 1,000 Mbps Ethernet card. We implement our scheme
on the same cluster with the execution environment of
Apache Giraph [2], an open-source counterpart to Google’s
Pregel. Both the PARALLELNOSY algorithm and our scheme
are implemented using JAVA. The CHITCHAT algorithm is
implemented with C++ and executed one a single node
because the CHITCHAT algorithm is a serial program pro-
posed by Gionis et al. [18].

Since the computation cost of the baseline CHITCHAT
algorithm is prohibitively high for large-scale social graphs,
to conduct a comparable evaluation, we obtain a smaller
graph for CHITCHAT using two sampling methods [19],
[25], [33], [35], [40]: random-walk and breadth-first to restrict
the number of edges of the sampling graph of different data-
sets within five million, following the same method used by
Gionis et al. in the experiment for the baseline scheme [18].
The random walk sampling begins with a random node, and
then keeps going from a node to its next random neighboring
node until reaching five million new edges. The breadth-first
sampling starts from a random node and explores all its
neighboring nodes. Then, for each selected node, it explores
their unexplored neighbors, and so on. With both of the sam-
pling schemes, each algorithm runs five times in different
sampling graphs and reports the average result.

We also implement the algorithms dealing with the incre-
mental updates on the Flickr graph. We divide the Flickr
graph into two parts: the static and dynamic graphs. The
static graph contains 80 percent of the number of links in the
Flickr graph. We obtain the piggyback assignment for the
static graph according to QuickPoint. The dynamic graph is
used for incremental updates. For simplicity, we consider
the dynamics of link adding. Specifically, we divide the
dynamic graph into ten equal parts. For each part, we com-
pare the performance of incremental updates with that of the
piggyback assignment re-computed by QuickPoint.

We further implement an online social network proto-
type system and measure the actual traffic and throughput
to achieve a more realistic performance evaluation of our
scheme. Fig. 2 shows the architecture of our prototype. Our
prototype is deployed on the ten-node cluster. For simplic-
ity, the memcache client stores the social graph and the
piggyback assignment found by our QuickPoint scheme in
main memory. The memcache client receives the requests of
users’ event sharing and event stream browsing operations,
as well as sending the generated requests to the memcache
servers, which keep user views in main memory. In our pro-
totype, we distribute a users’ view to a random memcache
server selected by hashing the user’s id. Each user view
keeps an index including the references to the user’s events.
In our prototype, the operation of sharing event of a user
is implemented through the memcache client pushing the
user’s event to all her friends’ views after the memcache
client receives the request of the user. Furthermore, the
operation of browsing event stream can be divided into two
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step: 1) querying friends’ views on different memcache
servers to assemble the event stream; 2) fetching event data
from the storage.

In our experiment, we mainly focus on the first step of
assembling event stream. When a user generates an event,
we insert the event as a (userld, eventld, eventLength, time-
stamp) tuple into the user view and store the context of the
event into the storage. When a user browses the event
stream, we fetch the recent events of each of her friends and
return the ten latest events across all friends to the memc-
ache client. We use TCP to transmit event data among
memcache clients and servers. We consider the piggyback
assignment of our QuickPoint and PARALLELNOSY on
both the Flickr and Twitter breadth-first sampling graphs.
We generate a workload with average read/write ratio set
to five [18]. The workload is a sequence of user request of
event sharing or event stream browsing operations.

Our design considers both the system performance for
event stream dissemination and the efficiency of different
algorithms. The system performance focuses on the commu-
nication cost for event stream dissemination over the achieved
piggyback assignment [18], the actual traffic, and the through-
put of our prototype system. The actual traffic is the size of
total TCP packets generated in our prototype system for a
given workload, and the actual throughput is the average
request processing rate per-client in our prototype system.

A low communication cost and traffic are always desirable
for sharing events and browsing event streams in OSN sys-
tems. A high throughput is always preferable for real-world
OSN systems to achieve better user experience. We also
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examine the algorithm efficiency which is defined as the ratio
of the percentage of the reduced communication cost and the
running time. The running time has an important impact on
the feasibility of the algorithm in practice. Long running time
limits the applicability of the algorithm. In the experiment, we
use the actual computing time, which summarizes the time
from the beginning with all links unassigned to the end with
all links assigned.

7.2 Results

Fig. 4 plots the computing time of different schemes on the
Flickr random-walk sampling graph. We compare the com-
puting time of our scheme with that of CHITCHAT. The
results show that our scheme greatly reduces the computing
time of CHITCHAT by 91.29 percent when the read/write
ratio is set to five.

Fig. 5 shows the communication cost of different schemes
on the Flickr random-walk sampling graph. We use the
CHITCHAT algorithm as the baseline. The results show
that PARALLELNOSY increases the communication cost of
CHITCHAT by 26.49 percent, while the increment of our
scheme is only 3.98 percent. The results show that our scheme
greatly outperforms PARALLELNOSY by 84.96 percent.

Fig. 6 examines the computing time of our scheme com-
pared to that of CHITCHAT on the Twitter random-walk
sampling graph. The results show that our scheme greatly
reduces the computing time of CHITCHAT by 97.98 percent.

Fig. 7 plots the communication cost of different
schemes on the Twitter random-walk sampling graph.
We use the CHITCHAT algorithm as the baseline. The
results show that PARALLELNOSY increases the
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communication cost of CHITCHAT by 33.35 percent,
while the increment of our scheme is only 9.02 percent.
The results show that our scheme greatly outperforms
PARALLELNOSY by 72.95 percent.

Fig. 8 depicts the efficiency of our scheme compared to
that of CHITCHAT on different graphs. The results show
that our scheme significantly improves the efficiency of
CHITCHAT by a factor of 11.0x on the Flickr random-walk
sampling graph, and 38.8x on the Twitter random-walk
sampling graph.

Fig. 9 depicts the communication cost of QuickPoint and
incremental updates on the Flickr graph. We compare the
communication cost of incremental updates with that of
QuickPoint for ten equal parts of the dynamic graph. When
all links in the dynamic graph are added, the results show
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that incremental updates slightly increases the communica-
tion cost of QuickPoint by 12.73 percent.

Fig. 10 shows how the communication cost of our
scheme changes with the parameter a of QuickPoint
on different graphs. To illustrate the change, we measure
the communication cost ratio of a certain parameter a and
the parameter a =1.0. The results show that, with the
increase of the parameter a, the communication cost of
the three sampling graphs slightly increases or decreases
within a percentage of 5. Thus, our scheme can guarantee
the accuarcy of the communication cost even with a large
parameter a.

Fig. 11 plots how the computing time of our scheme
changes with the parameter a of QuickPoint on different
graphs. To illustrate the change, we measure the computing
time ratio of a certain parameter ¢ and the parameter
a = 1.0. The results show that, when the parameter a is
set to 2.5, the computing time is decreased by 4.36 percent
on the Flickr breadth-first sampling graph, by 68.13 percent
on the Flickr random-walk sampling graph, and by
39.46 percent on the Twitter random-walk sampling graph.
The results show that by choosing an appropriate parameter
a, we can reduce the computing time of our scheme without
sacrificing the communication cost.

Fig. 12 plots the reduction in the communication cost
achieved in each iteration of the link assignment of the par-
allelized QuickPoint. We use the hybrid scheme as the base-
line. We run the parallelized QuickPoint on the Flickr
breadth-first and the Flickr rand-walk sampling graphs.
The results show that the most reduction is achieved in
the first few rounds of iterations. Until the 10th iteration,
the communication cost reduction on the Flickr breadth-
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first and the Flickr rand-walk sampling graphs obtain an
86.12 and 97.91 percent reduction, respectively.

Fig. 13 shows the communication cost of different schemes
on the Flickr graph. We compare the communication cost of
our scheme with that of the PARALLELNOSY algorithm.
The results show that the communication cost of our scheme
is 4.28 x 107, while PARALLELNOSY incurs a communica-
tion cost of 6.52 x 107. The results show that our scheme
reduces the communication cost of PARALLELNOSY by
34.35 percent.

Fig. 14 depicts the traffic of different schemes on the
Flickr breadth-first sampling graph. We compare the traffic
of our scheme with that of the PARALLELNOSY algorithm.
The results show that the traffic increases with the increase
of number of the memcache clients. This is because the
piggybacking scheme works when the two end users of the
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piggyback link are assigned to different memcache servers,
and the two end users are more likely assigned to different
memcache servers with more memcache servers. The results
show that our scheme reduces the traffic of PARALLEL-
NOSY by 37.15 percent.

Fig. 15 plots the throughput of different schemes on the
Flickr breadth-first sampling graph. We compare the through-
put of our scheme with that of the PARALLELNOSY algo-
rithm. It is clear that the throughput decreases as the number
of memcache servers increases. This is because the memcache
clients are more likely to communicate with more memcache
servers with the increase of the number of memcache servers.
The results show that our scheme improves the throughput of
PARALLELNOSY by 60.37 percent.

Fig. 16 depicts the traffic of different schemes on the Twitter
breadth-first sampling graph. We compare the traffic of our
scheme with that of the PARALLELNOSY algorithm. The
results show that the traffic increases as the number of memc-
ache servers increases. The results show that our scheme
reduces the traffic of PARALLELNOSY by 28.59 percent.

Fig. 17 plots the throughput of different schemes on the
Twitter breadth-first sampling graph. We use the PARAL-
LELNOSY algorithm as the baseline scheme. The results
show that the throughput of different schemes decreases as
the number of memcache servers increases. The results
show that our scheme improves the throughput of PARAL-
LELNOSY by 41.50 percent.

8 CONCLUSION

In this work, we propose a novel algorithm QuickPoint for
quickly finding the densest sub-hub-structures of users to
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achieve efficient event stream dissemination in OSNs. We
mathematically prove that the upper bound of the num-
ber of iterations of QuickPoint is O(log,n)(a > 1), and
QuickPoint achieves a 2a-approximation. We further
implement QuickPoint in parallel on top of Pregel to
obtain the piggyback assignment for a social graph. We
also extend QuickPoint to support incremental updates in
a dynamic social graph. Experimental results show that
our scheme achieves a significant improvement in effi-
ciency compared to existing schemes.
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