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Abstract—The use of virtual machines (VMs) to provide
computational infrastructure and services to organizations is
increasingly prevalent in the modern IT industry. The growing
use of this technology has been driven by a desire to increase
utilization of resources through server consolidation. Virtual-
ization has also made the dream of such utility computing
platforms as cloud computing a reality. Today, virtualization
technologies can be found in almost every data center. However,
it remains unknown whether the VMs are more vulnerable
on external malicious attacks. If so, to what extent their
performance degrades, and which virtualization technique has
the closest to native performance? To this end, we devised a
representative set of experiments to examine the performance
of most typical virtualization techniques under typical denial-
of-service (DoS) attacks. We show that, on a DoS attack, the
performance of a web server hosted in a VM can degrade by
up to 23%, while that of a nonvirtualized server hosted on
the same hardware degrades by only 8%. Even with relatively
light attacks, the file system and memory access performance of
hypervisor-based virtualization degrades at a much higher rate
than their nonvirtualized counterparts. We further examine the
root causes of such degradation and our results shed new lights in
enhancing the robustness and security of modern virtualization
systems.

Index Terms—Cloud security, denial of service, virtualization.

I. Introduction

IN THE PAST decade, virtualization of computers has gone
from little more than an interesting research topic to a

nearly ubiquitous technology. A recent survey showed that
90% of organizations use virtual machines (VMs) in some
capacity in their IT infrastructures [1]. As of 2011, 34%
of organizations use virtualization to meet the majority of
their server needs [2]. This uptake has been happening at
a staggering rate considering that, prior to 2006, less than
5% of organizations had deployed virtualization on their sys-
tems [2]. This rapid uptake owes itself to promises of increased
utilization of resources, increased server consolidation, and
decreased costs [3]. Virtualization is also one of the keystone
technologies that make such utility computing platforms as
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cloud computing possible. A prominent example is Amazon’s
EC2, the current market leader in cloud computing, which
makes heavy use of the open-source Xen Virtualization sys-
tem.

As with any new technology that has experienced such a
dramatic expansion, there are a number of new challenges to
be addressed, among which security and privacy have long
been a focus. There has been significant research in this field,
particularly on data leakage between running VMs and, in
the case of public utility computing platforms such as cloud
computing, the data leakage between a guest and the host
itself. Yet, the external attacks that attempt to directly target the
VMs have seldom been examined. It remains unclear whether
virtualization is resistant to such attacks, or is even more
vulnerable than conventional physical machines.

In this paper, we present a study on the performance
of modern virtualization solutions under networked denial
of service (DoS) attacks. We devise a representative set of
experiments to examine the performance of most typical
virtualization techniques under standard TCP-based distributed
denial of service (DDoS) attacks. We also compare them with
the same DDoS on the same services running on nonvir-
tualized servers. Our experiments cover a full spectrum of
virtualization solutions with state-of-the-art implementations,
and we also examine a comprehensive set of benchmarks.
With these, we attempt to answer the following two critical
questions.

1) Are virtual machines more vulnerable under DoS at-
tacks? If so, to what degree does their performance
degrade?

2) Which virtualization technique has the closest to native
performance and, under what condition?

The answers to these questions will have significant im-
plication to the deployment of virtualization, as any virtual
server will be facing persistent threats from DoS attacks.
The answers from our experiments however are not very
optimistic. We show that, upon a DoS attack, a web application
server hosted in a VM can degrade by up to 23%, while a
nonvirtualized server hosted on the same hardware degrades by
only 8%. Even with relatively light attacks, the file system and
memory access performance of hypervisor-based virtualization
degrades at a much higher rate than their nonvirtualized
counterparts. These observations suggest that the state-of-the-
art virtualization solutions need to be substantially revisited
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in this perspective. We further examine the root causes of the
performance degradations, shedding lights in enhancing the
robustness and security of modern virtualization systems.

II. Overview of Virtualization

To properly analyze and compare virtualization techniques
under DoS attacks, we need to select representative samples of
virtualization packages, so as to cover the typical and state-of-
the-art solutions. Broadly speaking, all current virtualization
solutions can be classified into three main categories, which
we discuss as follows.

A. Paravirtualization (PVM)

Paravirtualization was one of the first adopted versions
of virtualization and is still widely deployed today. PVM
requires no special hardware to realize virtualization, instead
relying on special kernels and drivers that are aware they
are being virtualized. The kernel inside a guest machine
running on a PVM host will send privileged system calls and
hardware access directly to a hypervisor, which in turn decides
what to do with the request. The use of special kernels and
drivers means a loss of some flexibility in terms of choice
of operating systems. In particular, a user of a PVM-based
virtualization solution must use an operating system that can
be modified to work with the hypervisor. Although this does
not present a significant problem for open-source operating
systems such as Linux, it does create a problem for those
wishing to use a proprietary OS such as Microsoft Windows.
Paravirtualization does offer some advantages, such as reduced
overhead to virtualize privileged operating systems calls, as
special hardware is not needed to intercept them. Typical
paravirtualization solutions include Xen [4] and User Mode
Linux [5].

B. Hardware Virtual Machine

Hardware virtual machine (HVM) is the lowest level of
virtualization, which requires special hardware capabilities to
trap privileged calls from guest domains. It allows a machine
to be fully virtualized without the need for any special operat-
ing systems or drivers on the guest system. The guest simply
interacts with hardware drivers unaware that it is running in a
VM and actually communicating with an emulated interface.
Most modern CPUs are built with HVM capabilities, often
called virtualization extensions. AMD and Intel both support
HVM, under the name of AMD-V and VT-X, respectively.
They detect when a guest VM tries to make a privileged
call to a system resource such as sending on the network
interface card. The hardware intercepts this call and sends it
to a hypervisor which decides how to handle the call. This
creates great flexibility for the guest since practically any OS
can be run in these VMs, as it is not required that the guest be
aware it is a VM. It has been noticed however that HVMs can
also have the highest Virtualization overhead and as such may
not always be the best choice for a particular situation [6],
[7]. It is important to note that work has been done on
Paravirtualization drivers for input/output (I/O) devices like

the Network Interface Card. These drivers are aware of the
fact that they are running in a virtualized system and can
greatly alleviate the overhead introduced by HVMs. One such
example of a paravirtualization driver package is the open-
source VirtIO [8]. Representative Virtualization solutions that
are HVM include VMware Server [9], KVM [10], and Virtual-
Box [11].

C. Container Virtualization

Container Virtualization, also know as OS-level virtual-
ization, creates multiple secure containers to run different
applications in. It is based on the intuition that a server
administrator may wish to isolate different applications for
security or performance reasons while maintaining the same
OS across each container. Container virtualization allows a
user to share a single kernel between multiple containers
and have them securely use computer resources with minimal
interference from others containers. It has been shown to
have the lowest overhead among all the existing virtualization
techniques [6]. This superiority however comes at the price of
much less flexibility as compared to other solutions. In short,
the user cannot mix different operating systems, e.g., a Debian
Squeeze and an Open Solaris. Typical container virtualization
implementations include OpenVZ [12], Linux-VServer [13],
and Solaris Zones [14].

It is important to note that Hardware Virtualization and
Paravirtualization both use a Hypervisor to interact with the
underlying hardware whereas Container Virtualization does
not. This distinction is crucial because the use of the hy-
pervisor generally improves performance isolation between
guests on a host by acting as a gatekeeper to the underlying
hardware. However, it has been noted that the hypervisor can
also introduce measurable overhead [15].

In our experiments, we chose Xen, KVM, and OpenVZ to be
evaluated under DoS attacks. The choice was motivated by two
key facts. First, they are all open source with publicly available
documents and with cross-platform implementations. We can
run their packages with the same platform without changing
OS or computer hardware. This makes a fair comparison
possible and the results reproducible. Second, all of them have
been widely used in real-world production environments for
server consolidation and cloud computing. As mentioned pre-
viously, Xen has been used heavily to provide cloud computing
functionality, for example in Amazon EC2; KVM has been
used by Ubuntu Enterprise Cloud [16] and Eucalyptus Cloud
Service [17]; OpenVZ is a popular choice in offering virtual
private server containers to the public.

III. Overview of Denial of Service

DoS attacks are attempts by a nonlegitimate user to degrade
or deny resources to legitimate users. There are many different
forms a DoS attack can take. In this paper, we will focus on
networked DoS, the most common threat against modern IT
infrastructure. In particular, we examine the TCP SYN flood
attack against a target machine, which is one of the most
common attacks on the Internet today and is notoriously hard
to filter out before it reaches the end system. In this section,
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we first give a brief discussion on the TCP SYN flood attack
and its potential threat to virtual machines.

A. Transmission Control Protocol SYN Flood

The transmission control protocol (TCP) is one of the
foundations of the global Internet. It provides users with
a powerful protocol to send data between two computers
with many service guarantees. TCP provides reliable in-order
delivery of whatever data the users wish to send [18]. When
TCP was initially developed, the Internet remained a small
private collection of computers and security issues inherent
in the protocol were of little concern. As such some features
of TCP can be exploited to perform DoS attacks. Specifically,
many TCP-based DoS attacks take advantage of the TCP three-
way handshake which we will describe next.

The TCP SYN flood is one of the simplest and most com-
mon attacks seen on the Internet. This attack takes advantage
of the amount of resources that have to be allocated by a
server in order to perform a three-way handshake. An attacker
tries to overload a victim with so many connection requests
that they will not be able to respond to legitimate requests.
To perform this attack, the attacker initiates many connections
to the victim’s system using TCP SYN packets. The victim
allocates buffers for the new TCP connection and transmits a
SYN-ACK in response to the connection request. The attacker
has no intention of opening a connection, so it does not
respond to the SYN-ACK. If this attack uses up enough of
the server resources, any connection requests from legitimate
users will be rejected [19]. Flooding-based attacks can also
exhaust other resources of the system such as CPU time.

B. TCP DDoS Mitigation Strategy

Many defenses have been proposed to combat the TCP SYN
flood. The simplest is to use a firewall to limit the number of
TCP SYN packets allowed from a single source. However,
many attacks use multiple hosts or employ address spoofing.
The case where multiple hosts are involved in an attack is often
called a distributed denial of service attack (DDoS). More
complex solutions have met with a better level of success
and are usually deployed either on the end host or on the
network. Network-based solutions include firewall proxies,
which only forward the connection request after the client side
ACK is received [20]. There has also been research done into
filtering based on packet inspection. One effective solution is
Hop Count filtering, which inspects the packets TTL field and
drops suspected spoofed packets. It has been reported that this
technique can achieve up to 90% detection rate [21], [22].
End point solutions include SYN cookies and SYN caches,
both of which have been widely deployed. SYN caches work
by allocating the minimum amount of data required when a
SYN packet arrives, only allocating full state when the Client’s
ACK arrives [20]. SYN cookies allocate no state at all until
the client’s ACK arrives. To do this, the connection’s states are
encoded into the TCP SYN-ACK packet’s sequence number.
On receipt of the ACK, the state can be recreated based on
the ACK’s header information [23].

Since virtual machines interact with the network through
their virtual interfaces in much the same way that physical

machines interact with the network, many of the considerations
and defenses for DDoS attacks mentioned above apply to
virtualized systems. However, it is well known that current
hypervisor-based virtualization can experience high overhead
while using their I/O devices such as the network interface.
Since DoS attacks attempt to exhaust resources on a targeted
server, the stresses on the network interface would amplify the
virtualization overhead and thus become even more effective at
degrading the target. This will be demonstrated by our experi-
mental results, even though such preventive strategies as SYN
cookies and caches have been enabled in our experiments.

IV. Related Works

In the recent literature, there have been many performance
analyses performed on different applications and scenarios in
virtualized systems. In 2007, researchers from the University
of Michigan and HP performed a performance evaluation
comparing different virtualization techniques for use in server
consolidation [6]. They compared Xen, a hypervisor-based
paravirtualization technique, and OpenVZ, a container-based
virtualization technique. The results showed that OpenVZ had
better performance and lower overhead then Xen. Xen also
suffered from much longer response to HTTP requests when
under load in their benchmarks.

Soltesz et al. [15] performed a comparison between Xen
and Linux VServer in terms of performance and architectural
design. Researchers at Clarkson University tested HVM, PVM,
and container virtualization for performance isolation [24].
They found that HVM has better performance isolation, fol-
lowed closely by PVM, and that container-based solutions
provide the least isolation.

Recently, Ostermann et al. [25] performed a performance
analysis on Amazon EC2 to determine its suitability for high-
performance scientific computing. They found that the use
of virtualization can impose significant performance penalties
on many scientific computing applications. The impact of
virtualization on network performance in Amazon EC2 was
evaluated in [26]. It showed that, due to virtualization, users
often experience bandwidth and delay instability.

In a recent issue of IEEE Network we explored the overhead
created by network interface virtualization [27]. We found that
even with hardware pass-through devices such as single-root
I/O virtualization (SR-IOV) the overhead of virtualized inter-
faces remains several times higher than their nonvirtualized
counterparts.

There have also been recent works on virtual machines
performance hosted in the cloud computing context [28]–[30].

Despite these pioneer works on quantifying the overhead
and performance of virtualization under various environments,
to our knowledge, the performance of virtualization under
networked DoS attacks remains largely unexplored.

V. Experimental Architecture

To evaluate each virtualization technique, we created a small
scale yet representative test network and system in our lab. We
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Fig. 1. Network setup.

now give a detailed description of the hardware and software
used in our tests.

A. Physical Hardware and Operating System

We used a modern mid-range PC with an Intel Core 2
Q9500 quad core processor running at 2.83 GHz. We enabled
Intel VT-X in the bios as it is required for HVMs support. The
PC was equipped with 4 GB of 1333 MHz DDR-3 SDRAM
and a 320 GB 7200 RPM hard drive with 16 MB cache. The
network interface is a 1000 Mb/s Broadcom Ethernet adapter
attached to the PCI-E bus.

The host and the guests all used Debian Squeeze as their
operating system. The kernel version remained constant at
2.6.35-5-amd64 across all tests. Since Xen and OpenVZ re-
quire special kernel patches, we used 2.6.35-5-Xen and 2.6.35-
5-OpenVZ for those tests. In all tests, we use the amd64
version of the kernel and packages.

B. Network Setup

To emulate a DDoS attack against our servers, we employed
the network configuration as shown in Fig. 1. All machines
on the network are attached directly to a Linksys 1000 Mb/s
SOHO switch. The attack emulator has been configured to
have a link rate of only 10 Mb/s. The client emulator used in
our experiments was a dual core Pentium D PC, which created
clients for our comprehensive benchmarking. The gateway is
the default route for any host outside this directly connected
subnet. When we simulate an attack, the gateway is configured
to drop forwarded packets. Dropping these packets makes it
appear as though they have been forwarded to an external
network from the perspective of the virtual machine host. If
the gateways were not present, many gratuitous ARP requests
would have been created by the virtual machine host as it
searched for a route to deliver the packets to the external
network.

C. Emulating a Denial of Service Attack

The DDoS attack simulated for our experiments is the
standard TCP SYN flood. Our choice of this attack was

motivated by the fact that it is one of the most common DoS
attacks seen on the Internet today. It is also notoriously hard
to be filtered out from legitimate traffic. In our experiments,
we assume that a 100 Mb/s distributed SYN flood is being
performed on our network and we have successfully filtered
out 90% of the attack. A total of 10 Mb/s of attack TCP SYN
traffic has bypassed the detection and reached the end host. We
believe this is a reasonable setting as no existing solutions have
been shown to effectively filter out all attack traffic without
greatly affecting legitimate clients [21]. On the end host, we
have enabled the SYN cookies defense and, by default, the
Linux Kernels use the SYN Cache defense.

To generate the actual attack, we used the open-source
hping3 [31] tool. The tool allows us to create arbitrary packets
with which to flood a target host. We set hping3 to create TCP
SYN packets and randomly selected the source address. We
targeted an open port on the target machine. In the case of
our synthetic benchmark, it is the secure shell (SSH) port 22;
in our comprehensive benchmarks, it is Apache running on
port 80. The DDoS traffic originates from our attack emulator,
which can be seen in Fig. 1.

D. Virtualization Setup

As explained earlier, we have chosen Xen, OpenVZ, and
KVM in our experiments, for their open-source nature and
their extensive deployment in the real world. In our exper-
iments we create only a single VM on our host. Although
the use of a single VM is not common in practice, the use
of this setup allows us to investigate the best case scenario,
where a VM has access to 100% of the systems resources.
In a multiple VM environment the effect of a DoS attack is
likely to be more severe, since the VM has access to less of
the host’s system resources.

1) Xen System Setup: We installed the Xen 4.0 Par-
avirtualization Hypervisor on our test system. To configure
networking we created a bridged adapter and attached our
primary interface and Xen’s virtual interfaces to it. Xen virtual
machines received an IP address from the DHCP running on
our gateway. For disk interface, we used Xen’s LVM features.
We set the number of virtual CPUs (VCPU) to four and the
amount of RAM to 2048 MB.

2) OpenVZ System Setup: We installed the OpenVZ
container-based virtualization package from the Debian repos-
itory. We configured our container using the Debian Squeeze
template. The container was given access to 2048 MB of main
memory and complete access to the four CPU processing
cores. Like the Xen setup, network access was provided to the
container by bridging the container virtual Ethernet interface
to our physical interface.

3) KVM System Setup: We used kernel-based virtual
machine (KVM) version 0.12.5 from the Debian Squeeze
repository. Once again the virtual machine was given access
to all four processing cores as well 2048 MB of memory. The
disk interface was configured as a flat file on the physical
host’s file system. Networking was configured once again as
a bridge between the virtual machine’s interface and the sys-
tem’s physical NIC. To enable the best network performance,
we configured KVM to use the VirtIO network drivers [8].
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4) Nonvirtualized Vanilla System Setup: Finally, as the
baseline for comparison, we had a Vanilla setup with no
virtualization running, i.e., all direct access to the hardware.
The same drivers, packages, and kernel were used as in the
previous setup. This configuration enabled us to obtain the
minimal amount of performance degradation that our system
can experience.

VI. Benchmark Setup

We have chosen a comprehensive set of synthetic bench-
marks and a single comprehensive benchmark to evaluate the
impact of DDoS attacks on different components of our test
machines. Our goal is to test the CPU, network, memory, and
file system performance under normal and attack conditions.
We now describe the benchmarks chosen to test these system
components.

A. CPU Benchmark

We chose the 7-Zip benchmark [32] and the SysBench [33]
CPU test to measure the CPU performance because they are
both well known and regularly used for gauging raw CPU
performance.

7-Zip is an open-source LZMA-based compression appli-
cation. Among its various features is a multithreaded bench-
marking mode, which calculates a system’s performance in
millions of instructions per second (MIPS). The benchmark
compresses and decompresses a set of data and measures
the performance. The 7-zip benchmark is not configurable,
it simply runs with as many threads as processing cores and
outputs the number of MIPS. We recorded the number of MIPS
achieved in the compression portion of the benchmark. The
7-Zip test, although CPU bound, is also a moderate user of
memory for its benchmarking. For this reason we also selected
SysBench since it is more isolated to the CPU.

The SysBench CPU test runs a prime number calculator.
It continues to calculate primes until a threshold chosen by
the user is reached and the results are presented as the total
time to calculate the primes. We chose to calculate the primes
in the first 50 000 integers and assigned four threads, so that
each of our four cores would be involved in the benchmark.
We then recorded the total amount of time taken to calculate
the primes.

B. Memory Benchmark

For memory benchmarking, we chose the SysBench mem-
ory bandwidth test. The benchmark allocates a segment of
either global or thread local memory and performs either read
or write operations on it. It outputs the total time taken as
well as the memory bandwidth. In our experiments, we assign
a single thread to perform 10 GB of writes to main memory.

C. Network Benchmark

To test network performance, we use two tests, namely,
iperf [34] and tbench [35]. Iperf is a simple application
that attempts to find the maximum TCP or UDP bandwidth
between two network hosts. To do this we specified iperf to run

Fig. 2. Comprehensive benchmark setup.

in server mode on one host and use it as a client on the other
host. In our experiments, the client emulator in our network
was chosen as the server and TCP was used as the protocol.
Each test was run for 25 s, and the results are output in Mb/s.

Our second benchmark is tbench, which emulates the
network portion of the standard Netbench performance test.
Tbench sends TCP data based on a workload profile which
simulates a network file system. We specified our client
emulator as the tbench server and the virtual machine as
a client, and then ran the work load for 50 s to find the
throughput. The results are given in MB/s.

D. File System Benchmark

The file system performance was tested using the SysBench
fileio test. This benchmark creates a specified set of files on
the disk and performs read and write operations on them. For
our experiments, we created 2 GB worth of files and a single
thread performed random read and write operations on the
files. The results are given as MB/s.

E. Comprehensive Benchmark—Web Application

To further understand the overall system performance, we
have devised a comprehensive benchmark based on a simple 2-
tier Web Server and Database. We used the Debian repositories
to install the Apache 2.2 Web Server and the SQL database
MySQL Server 5.1. To create a web application representative
of a real-world service, we installed the RuBBoS [36] bulletin
board benchmark. We chose the PHP version of the RuBBoS
and installed the necessary Apache extensions for PHP. We
stored the RuBBoS data into our MySQL database. RuBBoS
was then installed in each of our test configurations.

Although RuBBoS comes with its own client simulator,
we chose to use the Apache benchmark instead. This is
because it has been commonly used for web server stress
testing. Although the RuBBoS simulator can perform tests
specific to RuBBoS, we only require maximum request rate
and connection timing, which are much more straight forward
to extract with the Apache Benchmark.
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TABLE I

CPU Usage While Under Attack: System Idle

TCP DDoS UDP DoS
System 10 Mb/s 100 Mb/s 10 Mb/s 100 Mb/s

KVM ˜102% (˜75%)1 ˜205% (˜213%)1 ˜64% ˜272%
Xen ˜98% (˜60%)1 ˜187% (˜170%)1 ˜46% ˜145%

OpenVZ ˜8% (˜6%)1 ˜100% (˜30%)1 ˜1% ˜1%
Vanilla ˜6% (˜4%)1 ˜90% (˜25%)1 ˜1% ˜1%

Fig. 3. Simplified network architecture.

We ran the Apache Benchmark against the RuBBoS website
in each of the test setups. We simulated 200 clients requesting
the latest forum topics page. By using this page, the web server
must perform a single SQL query and render the PHP page
for each user request. We then used the Apache benchmark to
calculate how long it takes to service 500 000 requests. Fig. 2
shows the network configuration and the traffic flows during
this experiment.

VII. CPU Usage During DoS

We first measure the impact of DoS traffic on CPU usage
while the system idle. To this end we started the system and
killed all nonoperating system processes. To provide a target
for the TCP DDoS we ran a SSH server and configured it
to listen to port 22. For KVM, OpenVZ, and Vanilla, the
measurements were performed using the Linux top command.
Since Xen is not compatible with the standard Linux top
command, we used the xentop command to measure the CPU
usage. We ran each system under both 10 and 100 Mb/s TCP
SYN floods. To illustrate the effect enabling SYN cookies have
on our systems, we provide CPU usage for our systems when
SYN cookies are enabled as well as when they are disabled.
We also included the CPU usage from a 10 and 100 Mb/s UDP
flood. The results are given in Table I.

Under a 10 Mb/s TCP DDoS, the hypervisors in both KVM
and Xen consume the CPU time of an entire core simply
delivering SYN packets to the VM and returning SYN-ACKs
to the network. OpenVZ and Vanilla, on the other hand, use
only between 6% and 8% of CPU time on a core to service
the same attack. If we increase the attack rate to 100 Mb/s,
all systems increase their CPU usage; however, both Xen and
KVM consume nearly half of the systems total CPU resources
simply processing the attack traffic. As we increase the attack
traffic rate, the corresponding increase in CPU usage indicates
that the systems will continue to degrade as they are exposed
to higher attack rates. As can be seen, enabling SYN cookies
increases the CPU usage in each of our systems. This is an

TABLE II

Xen: CPU Usage of Different Networking

Modes While Under Attack

Bridged Routed NAT
Xen ˜98% ˜105% ˜125%

expected observation, since SYN cookies ensure each incom-
ing SYN packet generates a SYN-ACK, which is returned to
the network. This increase in outgoing packets manifests itself
in the increased CPU utilization experienced by all systems.
The deployment of SYN cookies ensures a server can still
establish incoming TCP connections even while under attack
by a TCP SYN flood. Without SYN cookies enabled our test
systems would quickly exhaust their connection queues and
connections to our SSH server would be impossible.

Though our focus is on TCP SYN attack, we have also
devised a UDP DoS to determine if TCP was the culprit for
the massive CPU usage experienced by the virtual machines.
To create the UDP flood, we once again used hping3 with
10 Mb/s and 100 Mb/s of UDP traffic target the system. We did
not randomize the source address and the packets contained
no data. As can be seen, the high CPU usage is present for
both KVM and Xen in the UDP case as well. This tells us that
high CPU phenomena is experienced whenever the hypervisor
experiences a data stream that contains small packets at a high
rate. We also tested ICMP and plain IP packets and found that
any small packet sent at a high rate reaching the end system
leads to this phenomena.

To ensure the bridge interface used in our Xen and KVM
systems was not the cause of the CPU usage, we configured
our Xen system to use each of its networking modes and
ran each configuration under a 10 Mb/s random source SYN
Flood. The Xen networking modes include Bridging, Routing,
and network address translation (NAT). Table II shows that
our choice of a bridged interface has the lowest CPU usage
at 98%, followed by routed at 105% and NAT at 125%. It
is unsurprising that routing and bridging are quite similar in
terms of performance, since they work on a similar principle,
essentially forwarding the packet unmodified to the virtual
machine. NAT on the other hand is in a strikingly different
situation, where each packet must have a network layer header
replacement before it is sent or received by the VM.

Our data show that the CPU must expend much more
resources processing small packets in hypervisor-based virtual
machines, such as KVM and Xen, than in Vanilla or OpenVZ.
Much of this extra CPU usage comes from the many extra
operations that must be performed to deliver a packet to a
virtualized system. Fig. 3 shows a simplified drawing of the
steps involved in delivering packets to a Xen VM, as well as
to our Vanilla host. On receipt of a packet in Xen, the physical
NIC driver delivers the packet to the bridge; Once the packet
arrives at the bridge it is transferred to the Netback module,
which allocates buffers for the packet and notifies Netfront,
in the Guest VM, of the incoming packet; Finally, Netfront
receives the packet and passes it the guests’ network layer.

1TCP SYN cookies disabled.
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Our Vanilla host on the other hand collects the packet from
the physical NIC and delivers it to the bridge; the bridge then
passes the packet directly to the network layer. It is clear that
the many extra steps involved in delivering packets to a VM
must contribute to the CPU usage we have discovered.

In the next section, we will perform benchmarks on our sys-
tems under a 10 Mb/s TCP DDoS to quantify the performance
degradation experienced by the systems.

VIII. Benchmark Results under DoS

For each test, we ran each benchmark four times and
calculated the mean. To ensure our results are statistically
significant, we also calculated the standard deviation for each
measurement and express it as percentage of the mean. We
calculate the performance degradation experienced by the
system while SYN cookies are both enabled and disabled. Per-
formance degradation is quantified as the percentage change
from the base line benchmark performance to the attack
performance.

A. Result CPU Benchmark

The 7-Zip benchmark results are given in Table III, where
higher number of MIPS implies higher performance. The
SysBench Prime benchmark is given in Table IV and lower
completion time is better in this case. We can see that in the
baseline case all virtualization techniques perform within 5%
of each other on both tests. It is interesting to note that our
OpenVZ and Vanilla systems appear to give near identical
performance, as in both tests they are within a standard
deviation of each other.

However, we can see that even a relatively small 10 Mb/s
DDoS has a significant effect on the CPU performance of
both KVM and Xen. When SYN cookies are disabled the 7Zip
results show both KVM and Xen degrade by 16%. When SYN
cookies are enabled the degradation increases dramatically
to over 24% for both KVM and Xen. The Sysbench prime
number benchmark show similar results for KVM and Xen.
With KVM suffering from 16% less performance while SYN
cookies are disabled and 31% while enabled. Xen loses over
15% performance when SYN cookies are disabled and 30%
while enabled. This loss is due to the amount of time the
Xen/KVM hypervisor spends on the CPU servicing the attack
packets. OpenVZ and nonvirtualized Vanilla host fared much
better, both with a smaller but still measurable amount of
performance degradation. It is worth noting that all systems
consume more CPU resources when SYN cookies are en-
abled, which is unsurprising as each incoming SYN packet
is generating a corresponding SYN-ACK packet. The added
CPU consumption comes both from generating the SYN-ACK
packet using the SYN-Cookie algorithm, as well as sending
the packet on the network.

B. Result Memory Benchmark

The memory benchmark results shown in Table V provided
some intriguing results as there is a wide variation in the base
line performance. In this particular benchmark, Xen fared by

far the worst, being almost 10× slower than our Vanilla system
setup. KVM fared much better then Xen but still managed only
about half of the memory bandwidth of Vanilla or OpenVZ.

Under the TCP DDoS, all setups showed a measurable
slowdown in performance, with Vanilla, OpenVZ, and Xen
having all below 8% performance degradation with both SYN
cookies enabled and disabled. KVM on the other hand experi-
enced a slowdown of 13% when SYN cookies were disabled
and over 17% when SYN cookies are enabled. In KVM the,
hypervisor must map a memory access request from the guests
memory address to the corresponding physical address on the
host machine. We conjecture that the KVM hypervisor is busy
servicing I/O request created by the DDoS packets. With this,
the memory requests must wait longer to be mapped to the
correct physical address. This delay manifests itself in the
large performance degradation experienced by KVM in this
test.

C. Result Network Benchmark

The Iperf results are given in Table VI and the tbench
results are given in Table VII. The Iperf benchmark measures
maximum transfer rate between two hosts. The maximum
transfer rate base line performance is comparable for the
Xen, OpenVZ, and Vanilla systems. KVM however has over
17% lower performance in this bandwidth test. The tbench
tested a more complex set of TCP connections between client
and server. This benchmark also provided some interesting
results as OpenVZ and Vanilla performed with near identical
performance. Xen was noticeably slower suffering from 13%
lower performance than Vanilla and OpenVZ. KVM however
has abysmal performance in this test being over 60% slower
then OpenVZ and Vanilla.

Under TCP DDoS attack, the IPerf results showed only a
slight drop in the throughput for our OpenVZ and Vanilla
systems. With SYN cookies enabled Xen lost nearly 5% of its
throughput. KVM however lost nearly 16% of its throughput
with SYN cookies disabled but interestingly less than 11%
when the SYN cookies are enabled. We conjecture the reason
for this surprising result is due to an optimization found
in KVM VirtIO drivers. The VirtIO drivers can reduce the
virtualization overhead of sending packets by bundling several
packets into a single delivery to the hypervisor. The packet
bundle is either delivered to the hypervisor when a timer
expires or a threshold based on the number of packets is
reached. Since SYN cookies creates a SYN-ACK packet for
every SYN packet generated by our DoS, it is likely the
number of packets threshold is reached sooner, creating a
slight increase in performance when SYN cookies are enabled.

Tbench also provided some interesting results. OpenVZ
and Vanilla experienced only a small amount of performance
degradation when under attack. Xen however lost a measurable
7% with SYN cookies disabled and 14% when enabled, likely
due to the CPU time consumed by the hypervisor while
servicing the DoS packets. KVM once again lost the most
performance, with nearly 31% with SYN cookies disabled and
33% when enabled. For applications that have a similar profile
to tbench, it is clear that KVM should be avoided, as it is an
extremely poor performer.
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TABLE III

7-Zip Benchmark Result

Base Attack Attack SYN cookies
System MIPS ST-DEV (%) MIPS ST-DEV (%) Performance Degradation (%) MIPS ST-DEV (%) Performance Degradation (%)
KVM 8360 1.60 7004 1.72 16.22 6346 0.71 24.09
Xen 8445 3.70 7090 3.44 16.05 6417 2.29 24.02

OpenVZ 8690 2.46 8007 1.55 7.87 7525 1.74 13.40
Vanilla 8607 0.99 8018 0.59 6.85 7807 0.54 9.29

TABLE IV

SysBench CPU Benchmark Result

Base Attack Attack SYN cookies
System Sec. ST-DEV (%) Sec. ST-DEV (%) Performance Degradation (%) Sec. ST-DEV (%) Performance Degradation (%)
KVM 19.91 0.03 23.17 0.28 16.36 26.11 0.11 31.12
Xen 19.92 0.21 22.93 0.40 15.06 26.00 0.31 30.47

OpenVZ 19.84 0.04 20.55 0.04 3.59 21.34 0.07 7.57
Vanilla 19.82 0.01 20.35 0.09 2.63 20.83 0.15 5.07

TABLE V

SysBench Memory Benchmark Result

Base Attack Attack SYN cookies
System MB/s ST-DEV (%) MB/s ST-DEV (%) Performance Degradation (%) MB/s ST-DEV (%) Performance Degradation (%)
KVM 1056 0.45 914 1.94 13.48 870 0.73 17.66
Xen 234 0.68 226 2.17 3.20 220 1.79 6.11

OpenVZ 2326 0.27 2233 0.34 3.99 2143 0.19 7.85
Vanilla 2325 0.13 2265 0.48 2.60 2190 0.40 5.82

TABLE VI

Iperf Network Benchmark Result

Base Attack Attack SYN cookies
System Mb/s ST-DEV (%) Mb/s ST-DEV (%) Performance Degradation (%) Mb/s ST-DEV (%) Performance Degradation (%)
KVM 535 1.62 450 3.68 15.93 478 1.60 10.63
Xen 656 0.12 652 1.31 0.65 625 2.41 4.80

OpenVZ 649 1.05 635 2.51 2.12 633 3.48 2.50
Vanilla 656 0.19 637 2.31 2.82 636 1.88 2.94

D. Results I/O Benchmark

Our final synthetic benchmark result is for the SysBench
I/O test, given in Table VIII. Although there is a significant
difference in base line performances in this test, it is hard
to make a direct comparison, due to the nature of disk
benchmarking. For example, Xen showed significantly faster
performance than the others tested, however its LVM volume
was allocated near the outside track of the physical disc.
With current hard drive design, being near the outside of the
disc can be significantly faster than being near the inside.
For these reasons, we will refrain from comparing system’s
baseline performance on this benchmark and instead focus on
the performance loss during a DoS.

Under the DoS conditions, OpenVZ and Vanilla systems
suffered no significant performance loss. On the other hand,
both KVM and Xen lose considerable performance. KVM
loses the most performance, with SYN cookies disabled 26%,
and a staggering 29% when SYN cookies are enabled. Xen
also loses considerable performance with nearly 22% lower-
random access to its file system while SYN cookies are
disabled, and 25% when SYN cookies are enabled. We believe
that Xen and KVM’s performance loss is likely due to the
hypervisor delaying disk access and instead favoring to deliver

attack packets to the virtual machine. We also tested Xen
performance when using a flat file for its file system instead
of LVM. With SYN cookies enabled this system suffered from
nearly 19% lower random access to its file-system.

IX. Comprehensive Benchmark Results: Web

Application

From our synthetic benchmarks, it is clear that hypervisor-
based virtualization techniques are more susceptible to per-
formance degradation under DoS attacks. Although synthetic
benchmarks are excellent at pinpointing performance bottle
necks, we further examine a more complex scenario to gauge
the effect these attacks have on a real-world web system.
In this experiment, SYN cookies are enabled on all systems.
Without SYN cookies the throughput of our web server drops
to zero on all systems. This is because without SYN cookies,
the TCP connection queue is quickly filled by the TCP SYN
DoS packets, leaving no room for legitimate connections from
our client simulator.

A. Requests Per Second

We start our evaluation from the maximum throughput
of each system. We express the maximum throughput as
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TABLE VII

Tbench Network Benchmark Result

Base Attack Attack SYN cookies
System MB/s ST-DEV (%) MB/s ST-DEV (%) Performance Degradation (%) MB/s ST-DEV (%) Performance Degradation (%)
KVM 16.1 0.88 11.1 1.21 30.91 10.7 0.49 33.34
Xen 41.8 0.37 38.7 0.21 7.44 36.0 0.96 14.02

OpenVZ 47.9 0.09 47.3 0.75 1.23 46.2 0.40 3.54
Vanilla 48.2 0.15 47.8 0.14 0.86 47.2 0.08 2.09

TABLE VIII

SysBench IO Benchmark Result

Base Attack Attack SYN Cookies
System MB/s ST-DEV (%) MB/s ST-DEV (%) Performance Degradation (%) MB/s ST-DEV (%) Performance Degradation (%)
KVM 4.79 5.83 3.52 1.83 26.59 3.40 6.70 29.09
Xen 7.89 1.70 6.17 2.75 21.80 5.89 1.00 25.28

OpenVZ 5.68 4.09 5.55 6.70 2.32 5.52 5.49 2.73
Vanilla 4.72 0.53 4.71 0.80 0.32 4.69 1.05 0.80

TABLE IX

Request Serviced per Second

Base Attack
System Requests/s ST-DEV (%) Requests/s ST-DEV (%) Performance Degradation (%)
KVM 1654.8 0.21 1267.7 0.96 23.39
Xen 1850.7 0.12 1481.1 0.28 19.97

OpenVZ 2886.5 0.02 2556.0 0.16 11.44
Vanilla 3179.8 0.11 2949.4 0.31 7.24

maximum number of requests serviced per second. As can
be seen in Table IX, KVM and Xen have significantly lower
performance in the base line test than OpenVZ and Vanilla.
Both KVM and Xen service 35% less requests per second
that OpenVZ or Vanilla. As expected, under DDoS conditions
all systems experienced measurable performance degradation.
Vanilla was the least susceptible falling by less then 8%
followed by OpenVZ at less than 12%. Xen suffered a 20%
performance degradation and KVM lost over 23%. When the
systems are under attack, KVM and Xen provided less than
50% of the throughput that the Vanilla host can provide while
using the same amount of system resources.

B. Increase in Connection time

Next, we measure the average time taken to establish the
HTTP connection to the web server. The Apache benchmark
collects the time taken to create each connection to the server
and calculates the average from all connections. The results
are given in Table X. We can see from the table that all
connection times are relatively close. Interestingly KVM and
Xen are both measurably faster than OpenVZ and Vanilla in
the baseline tests.

The attack scenario showed some very interesting results.
Note that the connections to the web server in KVM and Xen
both took a considerably longer time under our 10 Mb/s DoS.
Specifically, KVM increased from 6 ms to almost 33 ms, an
increase of nearly 4.5 times; Xen increased from an average
connection time of 6 ms to a staggering 84 ms, which is
over 13 times longer. On closer inspection we found that, in
both KVM and Xen, the median connection time remained
the same. The massive change in the average connection
time is because of an increase in connections that take an
abnormally long amount of time to establish. We observed

TABLE X

Increase in Average Connection Time

Base Attack
System Connection Time (ms) Connection Time (ms) Increase (%)
KVM 6 32.75 445.83
Xen 6 84.25 1304.17

OpenVZ 8 9 12.50
Vanilla 8 8 0

that, when Xen and KVM were under attack, up to 5% of
connections take over 250 ms to establish. Xen suffered the
worst abnormally long connection times, with up to 2% of its
connections taking over 2500 ms to establish. Overall, we can
see that the connection processing time is greatly affected in
our hypervisor-based virtualized systems.

X. Further Discussions and Conclusion

The use of end-point defenses such as SYN cookies has
mitigated much of the effect that TCP SYN-Floods have on
nonvirtualized systems. However, our experiments have shown
that they do not provide adequate protection for hypervisor-
based virtualization systems such as KVM and Xen. One pos-
sible solution is to implement SYN-Proxies in the hypervisor.
Since a SYN-Proxy works by only forwarding a connection
once the final ACK is received, this modification could prevent
the attack traffic from reaching the VM. In Section VII, we
show that any small packet sent at a high rate can cause
degradation to a virtualized system; a SYN-proxy will not
solve the general problem of small packets sent at a high rate.
A more general solution could involve modifying the network
virtualization drivers to make them more efficient at processing
small packets. For example, instead of having the hypervisor
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deliver every packet as it arrives, a more efficient strategy
could be to wait for a small time out, and deliver all packets
that arrived in that time period. In a related work, we modified
the VirtIO drivers in KVM and verified that this buffering
strategy does indeed alleviate some of the overhead [37].

The performance implications of larger DoS attacks have
yet to be quantified. Based on our CPU usage tests in Sec-
tion VII, high data rates will clearly lead to larger performance
degradation. Our preliminary experiments with high data rates
also show that any small packets sent at high rate can severely
degrade both KVM and Xen systems.

Recent advances in hardware design have led to products
that help alleviate the inherent overhead of network virtualiza-
tion. In particular, SR-IOV replicates certain hardware on the
network card to provide each VM with more direct access to
the device. This technology has been shown to offer a increase
in throughput and a reduction in overhead when run against
paravirtualization drivers such as VirtIO [38]. The same re-
search however, indicates that the CPU overhead of processing
small packets remains much higher in virtualized system.

We have also preformed preliminary experiments on two
other Virtualization systems, namely VMware Server and
Oracle’s Virtual-Box. The experiments indicate that a similar
degradation is experienced by these systems while under a
DoS attack. This is a strong indication that this problem
is indeed general to hypervisor based virtualization and not
isolated to KVM and Xen.

Further, though the TCP SYN DoS attack targets mainly the
network infrastructure of a system, it has serious impact on the
performance of other system components in Xen and KVM.
In particular, they lost a considerable amount of throughput
to their respective file systems. Much of this degradation
owes itself to the large amount of CPU overhead we found
when the virtualized systems are under attack. In the global
Internet, a 10 Mb/s SYN flood is considered rather small;
however both the KVM and Xen hypervisors used the CPU
time of an entire core, simply servicing that level of attack.
When compared to OpenVZ and Vanilla, which used only 6%
of a single core to serve the same attack, it becomes clear
that it is significantly more expensive to use hypervisor-based
virtualization on systems exposed to DoS traffic.

In this paper, through extensive experiments, we showed
that even a light DoS attack on a virtualized system can have
serious performance impacts. Our experiments suggested that
all virtualization techniques suffer from greater performance
degradation compared with its nonvirtualized counter parts.
This is, particularly, severe for PVM and HVM due to their
inherent virtualization structure. The container-based virtual-
ization thus becomes a potentially better solution for a system
exposed to DoS attacks.
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