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ABSTRACT
Enabling users to interact with broadcasters and audience, the

crowd-interactive livecast greatly improves viewer’s quality of

experience (QoE) and attracts millions of daily active users recently.

In addition to striking the balance between resource utilization and

viewers’ QoE met in the traditional video streaming service, this

novel service needs to take supererogatory efforts to improve the

interaction QoE, which reflects the viewer interaction experience.

To tackle this issue, we conduct measurement studies over a

large-scale dataset crawled from a representative livecast service

provider. We observe that the individual’s interaction pattern is

quite heterogeneous: only 10% viewers proactively participate

in the interaction, and the rest viewers usually watch passively.

Incorporating the insight into the emerging cloud-edge architecture,

we propose a framework PIECE, which optimizes the Personalized

Interaction Experience with Cloud-Edge architecture (PIECE) for

intelligent user access control and livecast distribution. In particular,

we first devise a novel deep neural network based algorithm to

predict users’ interaction intensity using the historical viewer

pattern. We then design an algorithm to maximize the individual’s

QoE, by strategically matching viewer sessions and transcoding-

delivery paths over cloud-edge infrastructure. Finally, we use

trace-driven experiments to verify the effectiveness of PIECE.

Our results show that our prediction algorithm outperforms the

state-of-the-art algorithms with a much smaller mean absolute

error (40% reduction). Furthermore, in comparison with the

cloud-based video delivery strategy, the proposed framework

can simultaneously improve the average viewers QoE (26%

improvement) and interaction QoE (21% improvement), while

maintaining a high streaming bitrate.

CCS CONCEPTS
• Networks → Cloud computing; Overlay and other logical
network structures; •Computer systems organization→Cloud
computing; Neural networks; Real-time system architecture;
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1 INTRODUCTION
Nowadays, the crowd-interactive livecast (CIL) has been the main

fuel of the rapid growth of live streaming, such representative

services as YouTube Gaming
1
, Douyu.tv

2
, Inke.tv

3
, and Twitch.tv

4

have attracted millions of daily active users. The salient feature

of CIL is allowing common users (broadcasters) to broadcast live

streaming to viewers using the ordinary devices, and enabling

viewers to interact with the broadcaster and other viewers.

Except for the streaming transcoding and delivery modules, a

representative CIL service also includes an interaction module

enabling viewers to send interactive messages, and deliver the

interaction messages to the broadcaster as well as the viewers.

Although previous interactive streaming services allow viewers

to perform operations such as fast forward and pause, never before

has the crowd interaction been so important like in today’s CIL

service. Viewers in the CIL service not only watch the streaming

itself, but also participate in the interaction. As a practical example,

a significant amount of 14.2 billion interactive messages are sent in

the Twitch platform in 2016
5
.In the TwitchPlaysPokemon

6
channel,

the game progress is even determined by themajority of the viewers’

opinion. In summary, viewers are highly engaged to the livecast

with the frequent interactions and their behaviors also noticeably

affect the livecast process. As a result, conventional streaming

QoE definition [17] considering the bitrate, the startup delay, and

rebuffer cannot characterize the interaction experience of viewers.

Instead, the viewer QoE consists of not only the streaming QoE, but

also the interaction QoE. Specifically, the interaction QoE is affected

by whether the streaming and the interactions are synchronous,

and whether sending an interaction can be immediately responded

by the broadcaster. Once a viewer with a large latency sends an

1
https://gaming.youtube.com/

2
https://www.douyu.com/

3
https://www.inke.com/

4
https://www.twitch.com/

5
https://www.twitch.tv/year/2016/

6
https://www.twitch.tv/twitchplayspokemon
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interaction message, all the other viewers and the broadcaster will

see the interaction with a large latency, harming the interaction

experience of all the parties.

To study the viewers’ interaction pattern, we conduct measure-

ment on a large-scale interaction dataset collected by crawling the

Twitch.tv’s API. From the crowd’s perspective, the interaction is

massive. However, from the individual’s perspective, the interaction

is quite heterogeneous. We define the viewers who frequently

interact with the broadcaster and other viewers as proactive viewers,
and the viewers seldom interact with others as passive viewers.With

the above definition, we observe the following viewer patterns:

1) Viewers are heterogeneous in terms of interaction frequency,

i.e., 10% proactive viewers generate a large portion of interactive

messages, while the rest 90% passive viewers seldom interact. 2)

The crowd viewers’ interaction intensities in different broadcast

channels are diverse. 3) One viewer has diverse interaction

behaviors in different broadcast channels. With the awareness

of the viewer’s interaction pattern, we can conclude that the

proactive viewers are more sensitive to large latency compared to

the passive viewers. For example, proactive viewers cannot tolerate
large latency, as the messages they send to the broadcaster are

severely delayed. If a proactive viewer bears large latency, all the
others’ interaction QoE will be harmed due to delayed interaction.

However, passive viewers can bear large latency, as long as the

streaming and the interaction are synchronous.

Besides the heterogeneous requirement for the latency brought

up by personalized interaction pattern, the requirement for the

bandwidth is also overwhelming in the CIL service as the broadcast

channels are numerous, not to mention the viewers. Thus, an

ideal scheme to satisfy the personalized QoE requirement of each

viewer is to choose the network path with the proper metrics. Many

architectures have been proposed for live streaming delivery [5],

including the centralized architecture, e.g., CDN [8] and cloud-based

approaches [1], and the distributed architecture, e.g., P2P [6] and

crowdsourced [2] approaches. However, the centralized architecture

fails to provide fine-grained service as the server number is limited,

while the distributed architecture will introduce instability and

latency overhead. Satisfying each individual viewer’s personalized

QoE requirement is challenging, as this calls for ultra-flexible

and fine-grained management of the transcoding and delivery

architecture in the granularity of each viewer.

To tackle the above problems, we develop a framework PIECE

to optimize the personalized interaction experience with cloud-

edge architecture. Specifically, we design a novel framework to

predict viewer interaction patterns and utilize the results to lead

the streaming transcoding and delivery in the newly emerged cloud-

edge architecture. The new design philosophy allows us to optimize

the personalized viewer’s QoE with the awareness of viewers’

interaction pattern. As the viewer’s interaction pattern is quite

complicated and the data volume of the interaction is large, the

challenge arises as to how to predict the viewer interaction precisely.

Considering that the traditional machine learning methods may

not perform well on the large data volume, we design a powerful

deep neural network framework to predict the viewer interaction

pattern, which performs better with more training data.

Recently, the edge network has emerged as a novel approach to

deliver the video streaming [3, 13], which can reduce the delivery

latency and the burden of the cloud. Yan et al. [15] implemented a

novel system to integrate CDNs and edge clouds. Pang et al. [9, 10]
utilized the edge network to improve the broadcaster uploading

performance in crowdsourced live streaming. Ma et al. [7] used
an edge computing-assisted paradigm to deliver the streaming in

mobile personal livecast. Despite the interest from the academia,

edge computing also attracts the attention of the industry. NVIDIA

released an edge computing device in March, i.e., Jetson TX2,

which supports 4K x 2K 60 Hz video encoding
7
. In the cloud-

edge architecture, the cloud serves as the centralized component

guaranteeing sustainable service quality and the edge devices

serve as the distributed components to provide diverse service

quality for personalized viewers. Specifically, each viewer can

achieve different network performance by choosing different edge

devices. For example, choosing a low-latency path for the proactive
viewers, and choosing a high-bitrate path for the passive viewers,
via matching the viewer session with the proper edge device. In

summary, the most important benefit of the cloud-edge architecture

is flexible and fine-grained network management for each viewer.

The cloud-edge architecture also has the following benefits: (1) The

transcoding and bandwidth load on the cloud can be decreased

dramatically with the assistance of the edge. (2) As the edge devices

are closer to viewers, the startup delay can also be decreased by

assigning the viewers to nearby edge devices.

To the best of our knowledge, our study is the first to explore

the interaction pattern and utilize the cloud-edge architecture in

crowd-interactive livecast. Our contributions are summarized as

follows: (1) We conduct large-scale measurement studies to get

insight into the viewer interaction pattern in the CIL service. (2) We

propose the PIECE framework to optimize the CIL service. (3) We

design a deep neural network framework to accurately predict the

viewer interaction pattern. (4) With the assistance of the cloud-edge

architecture and the viewer’s interaction prediction, we formulate

the viewers’ personalized QoE optimization problem and design a

practical algorithm to solve it.

The rest of the paper is organized as follows: We provide

the measurement results in Section 2, and provide the system

overview of the PIECE framework accordingly in Section 3.

We further provide the interaction prediction model in Section

4. The QoE representation is illustrated in in Section 5. The

viewers’ personalized QoE optimization problem in the cloud-edge

architecture is presented in Section 6. We provide the experiment

results in Section 7 and conclude in Section 8.

2 MEASUREMENT
In this section, we conduct large-scale measurement studies on

viewer’s interaction pattern.

2.1 Dataset Description
We collected the interactive messages from Twitch.tv, which is the

pioneer ILS in the world with 15 million daily active users (DAU)

by February 2018
8
. In the rest of the paper, we use interaction

and message interchangeably. The interaction data of Twitch was

collected by an Internet Relay Chat Protocol based crawler in

7
https://developer.nvidia.com/embedded/develop/hardware

8
http://twitchadvertising.tv/audience/
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Figure 1: CDF for the total watching duration
of each viewer.
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Figure 2: CDF for the total interactions of
each viewer.
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Figure 3: CDF of viewers’ interaction fre-
quency.
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Figure 4: An example distribution of chan-
nels in average viewer and interaction num-
ber.
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Figure 5: CDF of the channel interaction
intensity.
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Figure 6: The CDF of visited channel number
for each viewer.
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Figure 7: CDF of interaction and duration
percentage for the TOP-1 channel.
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Figure 8: CDF of the duration/interaction
ratio for the TOP-1 channel.

50 consecutive days. Using the crawler, we can join multiple

channels and gather the messages and viewer data from 300 most

popular Twitch channels
9
. The items we can derive are “viewer

id”, “broadcaster id”, “time”, and “action”. There are three types of

actions, we capture “JOIN” when a viewer enters a channel, “PART”

when a viewer exits a channel, and “MSG” when a viewer sends a

message. We can further extract the content from the message.

During this time period, we collected 158.3 million viewer

messages in the 300 channels. We also collected all the viewer

data in the channels, which contains 6.7 million unique viewers

establishing 99.3 million viewer sessions. The channels can be

classified into 45 categories by the content type, most of which

are games.

2.2 Measurement Results
2.2.1 Viewer Patterns. We first investigate the total watching

duration and the total interaction number of all viewers. We

show the cumulative distribution function (CDF) of total watching

duration and interaction number of viewers in Figure 1 and Figure 2,

respectively. We observe that both the watching duration and the

interaction number is highly skewed. The distributions indicate

that there are a dominant fraction of passive viewers in the crowd-

interactive livecast.

We define the viewer interaction frequency as the average

interaction number generated by the viewer per unit time (1

minute), calculated as
# of interaction

# of duration
. The interaction frequency

illustrates the viewer activeness when watching live streaming.

Figure 3 shows the CDF of the interaction frequency. We notice

that the distribution of the interaction frequency is highly skewed,

and over 90% viewers’ interaction frequency is lower than 0.5.

Figure 1 to Figure 3 indicate that a small portion of proactive

viewers post most of the messages, while most of the passive

9
https://help.twitch.tv/customer/portal/articles/1302780-twitch-irc

viewers watch the livecast but send few messages. The prevalent

methods ignore the interaction diversity and may cause QoE

degradation for these proactive viewers and the corresponding

broadcasters.

2.2.2 Channel Patterns. We can calculate the average interac-

tion number of one channel by averaging all the interaction number

within the unit time. Similarly, we also calculate the average viewer

number of one channel by averaging all the online viewer number

within the unit time. We plot the relationship between the average

interaction and viewer number in Figure 4 of three games, i.e.,

CS:GO, Dota 2, and H1Z1. We choose the three games which is

representative game of FPS
10
, MOBA

11
, and BRG

12
.

We notice that channels are quite diverse as to the two metrics.

Although the CS:GO channels have few viewers, the viewer

interaction is proactive. The H1Z1 channels have many viewers,

but the interaction is not proactive. This may result from the

broadcaster and the game type. Thus, we need to better characterize

the channels. Next, we define the interaction intensity for each

channel, which is computed as
# of average interaction

# of average viewer
. We show the

interaction intensity distribution in Figure 5, which is highly

skewed. This also validates that viewers send more messages when

watching CS:GO.

The above observations show that the interaction intensity is

heterogeneous across channels, and the channel type affects the

interaction intensity obviously. The prevalent methods ignore the

interaction diverse across channels and may incur QoE degradation

for certain types of channels.

2.2.3 Viewer-Channel Pair Patterns. We further investigate how

many channels the viewer visited during the time period. Figure 6

illustrates the channel number distribution of viewers. We notice

10
https://en.wikipedia.org/wiki/First-person_shooter

11
https://en.wikipedia.org/wiki/Multiplayer_online_battle_arena

12
https://en.wikipedia.org/wiki/Battle_royale_game
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that the average channel number that the viewers visited is 4.23, and

90% viewers watch no more than 10 channels. Another observation

is that 33% of viewers visit only one channel.

As the number of visited channels is relatively small, we further

focus on the TOP-1 channel for every viewer. The TOP-1 channel is

defined as the channel in which a viewer watch the longest duration.

We first show the percentages of the watching duration and the

interaction number generated from the TOP-1 channel as depicted

in Figure 7. The first observation is that 33% viewers visit only one

channel. In this case, the relative duration and interaction equal 1.

The second observation is that the average interaction and duration

percentages are relatively high: 62% of interactions are generated

from the TOP-1 channel, and 79% of the duration is spent in the

TOP-1 channel. These observations show that most viewers are

attracted by one channel, which further motivates us to investigate

the viewer pattern in the TOP-1 channel.

Next, we define the duration ratio as the average duration in the

TOP-1 channel divided by the average duration in all channels. If

the duration ratio is larger than 1, the viewer will stay longer in

the TOP-1 channel. Similarly, the interaction ratio is defined as the

average interaction in the TOP-1 channel divided by the average

interaction in all channels. If the relative interaction is larger than

1, the viewer will send more messages in the TOP-1 channel. As the

relative duration and interaction are constant 1 for viewers visiting

only one channel, the analysis is especially for the viewers visiting

more than one channel.

We provide the distribution of the duration and interaction ratio

in Figure 8. We observe that 91% of viewers will stay longer in the

TOP-1 channel, and the average duration ratio is 2.19, indicating

that viewers will stay in the TOP-1 channel for more than 2 times

longer. Counterintuitively, the interaction number does not show

the similar pattern as the duration distribution. Only 28% of viewers

interact more in the TOP-1 channel, and 56.4% of viewers interact

fewer in the TOP-1 channel. This may be caused by the diverse

viewer behaviors: some viewers watch the TOP-1 channel passively,

i.e., they focus on the streaming itself and the interaction between

the broadcaster and other viewers. Some viewers watch the TOP-1

channel actively, i.e., they prefer to communicate and influence the

streaming process, as they are familiar with the broadcaster.

From the above analysis, we observe that viewers will stay longer

in the TOP-1 channel, while the interaction frequency is determined

by whether a viewer is proactive or passive. The prevalent methods

ignore the interaction diverse across the viewer-channel pairs, and

may incur QoE degradation.

3 PIECE: A SYSTEM OVERVIEW
Motivated by the aforementioned measurement insights, we

introduce the cloud-edge based system design for crowd-interactive

livecast, and detail the workflow of our system.

Figure 9 shows the cloud-edge architecture specifically designed

for the CIL service. The cloud-edge architecture can offload the

transcoding and delivery cost to edge devices, provide service

with lower latency via the close-to-user edge devices, and most

importantly enable flexible and fine-grained network management.

In our scenario, broadcasters upload the raw streaming to the cloud.

Then, the cloud transcodes the streaming to only high resolutions,

Broadcaster Cloud

Raw streaming

1080p

720p 360p720p

1080p
480p

Interaction

1080p

Edge
720p

Viewer

Proactive viewers

• Rare interactions

• High tolerance for delay

• Prefer higher bitrate

Passive viewer

• Frequent interactions 

• Low tolerance for delay

• Prefer lower delay

1. Online Training

2. Viewer Classification

3. Delivery optimization

1080p

480p

Figure 9: Design of the PIECE framework.
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Information
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Viewer 
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Online 
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Schduling
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SelectionGroudTruth 

Collection
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Figure 10: SystemWorkflow.

and deliver to edge devices. Then, edge devices transcode the video

to the requested bitrates and deliver to viewers. As the viewers

have different interaction patterns, the proactive viewers can be

assigned to a low-latency path, and the passive viewers can be

assigned to a high bandwidth path. The challenge is to predict the

viewer interaction pattern and choose a proper edge device for her.

Figure 10 shows the workflow of the system. The system can be

divided into two layers by the function, i.e., the control layer and the

delivery layer. In the control layer, the cloud collects the viewers’

historical data and perform proper preprocessing. On one hand, the

real-time request data is fed to the learning model to predict the

viewer’s interaction behavior. On the other hand, when the ground

truth is collected, the model training process is triggered to update

the model online. Besides, the network metrics are also collected

for intelligent decision-making. With the predicted interaction

behavior and the measured network metrics, an intelligent decision

is made to optimize the viewer’s delivery path via performing

the transcoding and delivery in the control layer. Next, we will

introduce the interaction prediction module and the cloud-edge

delivery module, respectively.

4 INTERACTION PREDICTION MODEL
In this section, we first introduce how to preprocess the input data

to get an integrated input vector for the neural network. Then,

as the interaction number is highly imbalanced as shown in the

measurement, we design a cost-sensitive neural network (CSNN)

to cope with the problem.
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Figure 11: The nerual network architecture.

4.1 Data Preprocessing
With the insights provided in the measurement section, we design

a deep neural network model to predict the interaction frequency.

However, the dataset heterogeneity poses great challenge for

efficient learning in the following aspects: (1) some data fields

describe the categorical information (content type), while some

others are numerical values (viewer’s average duration); (2) finding

a proper representation for the categorical information can be

difficult, as the category number may be large, and there exists

inherent relationship among the categories.

The input data includes viewer’s average watching duration,

average interaction number, and interaction frequency, channel’s

category and interaction intensity, and viewer’s average interaction

frequency, duration and duration rank in the channel. To address

the above challenges, we divide the input data into two types:

categorical information, and numerical values. For the numerical

values, we simply use a linear preprocessing layer to process the

input. For the categorical information, as the conventional one-hot

encoding is high-dimensional and sparse, the input vector grows

with the category number. This results in computational inefficiency

and low accuracy. For this reason, we need to find low-dimensional

and dense representation methods for the categorical information.

Thus, we design an embedding layer for the categorical information

to reduce the dimension. Then, we concatenate the preprocessed

input and feed them to the neural network, as shown in Figure 11.

4.2 Cost-Sensitive Neural Networks
The neural network is built by stacking multiple fully connected

layers, and the output layer is one neuron returning the predicted

interaction number when a session is established. As the ground

truth interaction number ranges from zero to infinity, we choose

the ReLU function as the activation function for the output neuron

in the network, whose output is in the range [0,+∞). In addition,

the activation function in the fully connected layers is set as tanh.
In the training phase, the neural network used for regression is

usually trained to minimize the mean square error.

5 QOE REPRESENTATION IN CIL SERVICE
This section provides the QoE representation in the CIL system. We

first formulate the viewer’s QoE, and then design the conceptual

viewer’s interaction QoE.
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Figure 12: The example of the interac-
tion function. The parameter settings
are a = 1.5, and b = 0.2.

Figure 13: The values of the interaction
QoE under different latency and interaction
number settings.

5.1 Introducing the Viewer’s QoE
In our design, taking advantage of the edge devices, a viewer can

be directed to an ideal path. This design principle allows viewers

to choose the edge device with the largest QoE based on her own

interaction pattern. We formulate this problem as an optimization

problem. We denote the viewer set as V = {1, 2, ...,V }.When a

viewer watches a broadcast channel, the corresponding viewer-

channel session is formed. Each session bears an interaction index

iv , which is the estimated viewer interaction number during the

session. Recall that the value of iv is determined by viewer v , the
broadcast channel b, and other context information. We use the

CSNN method introduced in Section 5 to predict the value of iv .
We further denote the bitrate and latency as bv and lv , respectively.
Consequently, we can formulate the viewer’s QoE as follows:

Qv = α · bv + β · I (lv , iv ) − γ · l
+
v , (1)

where the first term reflects the bitrate, which is widely adopted

in the QoE definition of video streaming. The second term is the

interaction QoE, a component we design to evaluate the viewer’s

interaction experience under certain setup of lv and iv . The third
term is the startup delay, which is the delay between the initiated

streaming source and the viewer. Note that the startup delay l+v is

no longer than the broadcaster-viewer delay lv by nature. α , β and

γ are the weight parameters.

5.2 Formulation of the Interaction QoE
Next, we provide the detailed definition of the interaction QoE.

The interaction QoE is affected by the latency and the interaction

number following the three rules: (1) a lower latency will reduce

the communication uncomfortableness between the broadcaster

and the viewers, thus incurring higher interaction QoE. (2) viewers

sending more interaction messages expect a lower latency more

than viewers that seldom send interaction messages. (3) If the

latency equals zero, i.e., the broadcaster and the viewers can

communicate in real-time, viewers sending more interaction

message will achieve higher interaction QoE.

Inspired by [12], we choose the exponential function e−x to

characterize the interaction QoE. This function captures the notion

that the marginal reduction in QoE decreases at longer latency. We

provide the example function as follows:

I (iv , lv ) = (a + iv ) · e
−b ·iv lv ,a,b > 0, (2)

where a and b are the weight parameters. The mathematical

properties of the above QoE function are as follows. When we

fix the interaction number arbitrarily as i∗v , I (lv , i
∗
v ) is a decreasing
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function of lv to reflect the viewer latency, which can adjust the

interaction QoE according to lv so that a larger latency will induce

lower viewer QoE. Formally, this is represented as follows:

I (l1v , i
∗
v ) > I (l2v , i

∗
v ), ∀l

1

v < l2v , i
∗
v (3)

Different values of iv affect the derivative of I (lv , i
∗
v ) for lv . A

larger i∗v corresponds to faster decrease of I (lv , i
∗
v ). Formally, this

is represented as follows:

I (l1v , i
1

v ) − I (l
2

v , i
1

v ) < I (l1v , i
2

v ) − I (l
2

v , i
2

v ), ∀l
1

v < l2v , i
1

v < i2v . (4)

When lv = 0, proactive viewers will achieve higher interaction

experience, as they can interact with the broadcasters without any

delay. Formally, this is represented as follows:

I (0, i1v ) > I (0, i2v ), ∀i
1

v > i2v , (5)

We show the example interaction QoE functions in Figure 12,

where iv = 0, 1, 3, 5. We further provide the values of the interaction

QoE under different latency and interaction number settings in

Figure 13, which validates the above three rules.

6 INTERACTION-AWARE OPTIMIZATION
This section provides the network optimization of the cloud-edge

architecture, which is built on the viewer interaction pattern.

After introducing the viewer’s QoE function, our aim is to choose

the proper path for the viewer to maximize the QoE. We denote

the edge device set as E = {1, 2, ...,E}, and the regional server

set as S = {1, 2, ..., S }. Viewers can use different edge devices and

cloud servers as delivery path options, incurring different network

latencies and bitrates. That is to say, lv and bv are the functions of

the edge devices and the servers. The edge device and the server

selected for viewer v is denoted as ev and sv . Hence, the viewer’s
QoE can be formulated as the function of the chosen edge device

ev and server sv :

Qv (ev , sv ) = α ·bv (ev , sv )+β ·I (lv (ev , sv ), iv )−γ ·l
+
v (ev , sv ). (6)

The latency of choosing a path can be calculated by adding the

latency between the viewer and the edge device and the latency

between the edge device and the server. The end-to-end latency

measurement methods can be derived using previous work [4]. The

startup delay can be measured in a similar way. Once there exist the

requested or higher representations, the streaming can be delivered

from the edge device directly, thus the startup delay is the latency

between the edge device and the viewer. Otherwise, the streaming

has to be delivered from the server, thus the startup delay is the

latency between the server and the viewer.

As the viewer interaction patterns are quite heterogeneous in

terms of viewer, channel, and viewer-channel pair, each viewer’s

optimal decision depends on not only the network performance but

also the viewer interaction pattern. Viewer v’s optimal selection is:

(e∗v , s
∗
v ) = argmax

(e,s )
Qv (e, s ), ∀e ∈ E, s ∈ S. (7)

The bitrate can be calculated by finding the bandwidth bottleneck

from the viewer-to-edge bandwidth Bve , and the edge-to-server

bandwidth Bes . The server delivers the unique viewer requests in
terms of the channel and the bitrate to edge device e . Bve can be

directly measured, and Bes can be calculated by the total bandwidth
B∗es minus all the representations via edge device e . If the current

Algorithm 1 Interaction-aware Cloud-Edge Selection Algorithm

1: procedure Edge Device Selection(v,b)
2: Bes = B∗es ,∀e ∈ E, s ∈ S
3: if viewer v arrives: then
4: Predict iv with the deep learning model

5: (e∗v , s
∗
v ) = argmaxQv (e, s ), ∀e ∈ E, s ∈ S

6: if no representation or lower representation then
7: Request streaming from the server

8: Be∗v s∗v ← Be∗v s∗v − bv (e
∗
v , s
∗
v )

9: end if
10: end if
11: if viewer v departures: then
12: if no bv (e

∗
v , s
∗
v ) or lower resolution request then

13: Be∗v s∗v ← Be∗v s∗v + bv (e
∗
v , s
∗
v )

14: end if
15: end if
16: end procedure

bitrate representation of the channel on the edge device is larger

than Bve , it will either be delivered to the viewer directly or be

transcoded to the expected representation by the edge device and

then delivered to the viewer. We denote the available bitrate set as

br = {br1,br2, ...,brn }. Thus, the bitrate is calculated as follows:

bv (ev , sv ) = arg max

bv ∈br
bv , ∀bv < minBve . (8)

If no representation exists on the edge device, the allowed bitrate is

determined by the bottleneck of both the Bve and Bes . The bitrate
is calculated as follows:

bv (ev , sv ) = arg max

bv ∈br
bv , ∀bv < min(Bve ,Bes ). (9)

If a lower representation b+ exists on the edge device, the bitrate is

calculated as follows:

bv (ev , sv ) = arg max

bv ∈br
bv , ∀bv < min(Bve ,Bes + b

+), (10)

in which case, the server will send the bv (ev ) bitrate representation
to replace the b+ representation.

The interaction-aware cloud-edge selection algorithm is illus-

trated in Algorithm 1. The algorithm works when a viewer enters

a channel: predicting the viewer interaction and perform the path

selection. When a viewer exits a channel, the network resource is

released. The complexity comes from the traverse of the edge-server

pair, so the operation time is O (ES ).

7 EXPERIMENT RESULTS
We first provide the experiment setup, and then evaluate the

proposed CSNN interaction prediction algorithm. The performance

of PIECE is provided in the end.

7.1 Experiment Setup
We conduct both the viewer’s interaction prediction and the QoE

optimization experiment on the top 300 channels in our dataset. We

assume that 3 regional cloud servers are deployed for video delivery.

The default number of geo-distributed edge devices is set to 80, and

the available bandwidth of each edge device is set as 150Mbps. As
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Table 1: Measurement results on Twitch of bandwidth requirement and transcoding cost.

resolution 1080p60f 1080p 720p60f 720p 480p 360p

bandwidth

(Mbps)

5.86 4.45 2.75 1.93 1.1 0.52

transcoding

(vCPU

usage)

454.46% 332.91% 210.28% 141.71% 81.6% 50.51%

shown in Table 1, we measure the average bandwidth requirements

for different resolutions by Twitch’s official video statistic tool. We

further evaluate the transcoding cost of each resolution on the AWS

c4.8xlarge instance
13
, which is allocated 36 vCPUs [14], as shown

in Table 1. The weight parameters of the QoE are set as follows:

α = 2, β = 3, and γ = 1, which normalize the three terms to close

values. The parameters defined in the Interaction QoE function are

set as follows: a = 1.5, b = 0.2.

7.2 Performance of the Interaction Prediction
The number of the fully connected layer is set to 5, and the neuron

number in each layer is set as 16 in CSNN. The category number is

embedded as 10 dimensions.With the features extracted in Section 2,

we compare the CSNN algorithm with the conventional regression

algorithms: Decision Tree, Random Forest, and Naive Bayes. Note

that we use the above regression algorithms in the scikit-learn tool

kit [11]. We divide the whole dataset into the train set (the first 30

days) and the test set (the last 20 days) by the temporal sequence.

Since the problem is cast as a regression problem, the ground truth

is the true interaction number. To evaluate the performance of the

CSNN algorithm, we calculate the mean absolute errors (MAE) and

root mean square errors (RMSE).

Table 2 shows the comparison results on the Twitch dataset at the

aspect of the regression error and the execution time. Both RMSE

andMAE reflect the prediction error, and our algorithm achieves the

lowest values among all the algorithms. Specifically, the proposed

CSNN algorithm can obtain 40% lower MAE than the best result

of the random forest algorithm. Despite achieving lower MAE, our

algorithm also obtains 13% lower RMSE than the best result of the

random forest algorithm. The reason that our algorithm performs

best is that we efficiently solve the input heterogeneity and the

data imbalance problems. In addition to the prediction error, we

also investigate the execution time of each algorithm. The training

time of different algorithms range from several seconds to several

minutes, which is negligible considering that the time span of the

training data is one month. We notice that the training time of

CSNN is the longest, indicating CSNN sacrifices computation to

reduce the prediction error.

7.3 Evaluation of the PIECE Framework
Next, we evaluate the performance of PIECE. We compare PIECE

with (1) the traditional cloud architecture with non-interaction

[18] (C-nI): The path selection relies on the cloud, and the viewer’s

interaction is not considered. Thus, the objective QoE function of

13
https://aws.amazon.com/ec2/pricing/on-demand/

Table 2: The RMSE and MAE of different interaction prediction algorithms.

algorithm Decision

Tree

Random

Forest

Naive

Bayes

CSNN

RMSE 14.332 7.696 10.652 6.674

MAE 2.529 1.865 1.941 1.106

training time (s) 9.44 13.02 2.88 215.89

this method is [16]:

Qv = α · bv − γ · l
+
v . (11)

(2) interaction-aware cloud architecture (CI): The path selection

relies on the cloud, considering the viewer’s interaction. We further

use CSNN and random forest (RF) as the interaction prediction

algorithms, namely CI-CSNN, CI-RF. (3) cloud-edge non-interaction

architecture (CE-nI): The path selection relies on cloud and edge,

without considering the viewer’s interaction. (4) interaction-aware

cloud-edge architecture with random forest (CEI-RF).

We first evaluate the viewer’s average QoE under different edge

device numbers, as depicted in Figure 14. We derive the following

observations: (1) As the C-nI, CI-RF, and CI-CSNN methods do not

use the edge devices for distribution and transcoding, the achieved

QoE is identical to different number of edge devices. (2) The average

QoE of the CE-nI, CEI-RF, and PIECE methods increase with the

number of edge devices, as deploying more edge devices provides

more options for delivery path selection. (3) Our proposed PIECE

method outperforms the baselines including the CEI-RF method

under all the edge device numbers. For example, when the number

of the edge device reaches 32, our method increase the average

viewer’s QoE by 26% compared to CI, and outperform the traditional

cloud-based method by 67%. (4) Using CSNN as the prediction

algorithm outperforms the RF method by 10% as CSNN has lower

prediction error. (5) Interaction-aware methods outperform the

corresponding methods which do not consider viewer’s interaction

by optimizing the newly proposed interaction QoE.

Moreover, we investigate the viewer’s average QoE under

different capacities of the edge device, which is shown in Figure 15.

The average viewer’s QoE of the cloud-edge methods increase with

the capacity (available bandwidth) of the edge device. However, we

observe that the average viewer’s QoE is identical when the capacity

is in range [0, 5]. The reason is that the bitrate bears large weight

in the conventional QoE definition, while ignoring the viewer’s

interaction experience. Thus, the edge devices with low capacity are

not utilized even if they may achieve better interaction experience.

When the capacity reaches 32, PIECE outperforms the baselines by

16%.

To better understand the QoE achieved by PIECE, we analyze the

individual components in our overall QoE definition. Specifically,

Figure 16 compares PIECE with the baselines in terms of bitrate,

interaction experience, and the startup delay. Specifically, PIECE

does not outperform the baselines on all the QoE components.

Instead, it can balance the components to optimize the QoE: PIECE

focuses on achieving the higest interaction QoE and the lowest

startup delay, while retaining sustainable bitrate. Specifically, our

method can improve the interaction QoE by 21% than the best
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baseline, i.e., CI-CSNN, and can lower the startup delay by 30% than

the wide-adopted centralized content delivery.

We further investigate the transcoding cost and the data

traffic consumed in the cloud and the edge. Figure 17 shows the

transcoding cost comparison of the proposed method and the

baselines. Recall that the transcoding computing cost is measured in

Table 1. We notice that the transcoding cost in the cloud is identical

for C-nI and CI-CSNN, as the source streaming is transcoded to all

possible resolutions in the cloud. The proposed PIECE method

explores more on the edge devices than CE-nI, indicating that

the interaction experience can be better satisfied with the edge

devices. However, the cloud-edge architecture may induce larger

transcoding cost as there exists transcoding redundancy. Figure 18

shows the data traffic comsumed in the cloud and the edge. We find

that CI-CSNN consumes less data traffic thanC-nI in the cloud, as CI-

CSNN focuses on not only increasing the bitrate but also improving

the interaction experience. As PIECE can explore more on the edge

devices, the data traffic utilization is also larger compared to the

CE-nI method.

After the above analysis on the viewer’s overall QoE and the

costs of different methods, we further focus on the efficiency of the

methods, i.e., how much viewer’s QoE can be achieved with unit

cost. We set the price of transcoding and delivery in the cloud as

unit price and the price in the edge is p. The efficiency is defined as

the achieved average QoE divided by the consumed cost. The results

of transcoding and delivery efficiency are provided in Figure 19

and Figure 20, respectively. The efficiency of methods using the

cloud-edge architecture decrease with the edge price p. Note that
p = 1 is a special case that the price in the cloud equals that in the

edge, in which case our method achieves the highest efficiency as

for the transcoding cost as well as the delivery cost. In the future

network, the price of the edge network is promising to decrease,

which will further benefit the cloud-edge architecture.

8 CONCLUSION
This paper addresses the challenges of the video delivery problem in

crowd-interactive livecast, resulting from the heterogeneous viewer

interaction pattern. By conducting extensive measurement of traces

obtained from the Twitch system, we observe unique characteristics

related to viewers, broadcasters, and viewer-broadcaster pairs.

Based on the observations, we design a deep neural network model

to capture the viewer interaction pattern. Specifically, we employ

a data preprocessing method considering continuous values and

categorical information, and design a cost-sensitive neural network

to cope with the data imbalance problem. Sequently, for the first

time, we study the interaction QoE in the CIL service. In order to

realize flexible network management, we design an efficient path

selection algorithm in the cloud-edge architecture. Experiments

on real traces further demonstrate the superiority of our design,

which can improve the average viewer’s QoE by 26%. Specifically,

the startup delay is reduced by 30% and the interaction QoE is

improved by 21%.
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