
Computer Networks 193 (2021) 107875

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Online and energy-efficient task-processing for distributed edge networks
Li Yu a, Zongpeng Li b,∗, Jiangchuan Liu c, Ruiting Zhou d

a School of Computer Science, Wuhan University, China
b Wuhan University, Wuhan, Hubei, China
c School of Computing Science, Simon Fraser University, Canada
d School of Cyber Science and Engineering, Wuhan University, China

A R T I C L E I N F O

Keywords:
Online learning
Internet of Things
Task offloading
Energy efficiency
Mobile edge computing

A B S T R A C T

User equipment produces a series of tasks that are processed locally or remotely, falling into three categories:
(i) local computing only, (ii) a fraction of the task is computed locally and the remaining task unprocessed
is offloaded for remote computation, and (iii) the entire task is offloaded. Each case has attracted substantial
attention in recent studies, where a delay-constrained non-linear optimization problem is often formulated. The
solutions employed are either based on Lagrange duality, heuristic search, or dynamic programming. To our
knowledge, there is no unifying task-processing orchestrator that is an online tailored solver for learning the
model-free problems, encapsulating the three cases above. We fill this gap and present the first attempt on an
innovative actor-critic reinforcement learning approach in consideration of the energy-efficiency, to compute
the asymptotically optimal solutions via decomposing the comprehensive optimization into sub-problems.
Rigorous theoretical analyses and experience-driven simulations demonstrate significant advantages over the
benchmark approaches, in terms of task-processing delay, power efficiency, and convergence time.
1. Introduction

With the prevalence of next-generation wireless systems, the wire-
less world is to be interconnected without barriers such as the Internet
of Things (IoT), Vehicle to Internet, and Vehicle to Grid. Correspond-
ingly, intelligent devices are continuing to produce a plethora of ser-
vices termed as tasks, such as online gaming, video streaming, etc. The
exploding growth of tasks is now on a way to exhaust the capabilities
and energy of IoT devices, resulting in the degradation of the quality
of experience on user’s side, especially in ultra-dense networks.

Fortunately, Mobile Edge Computing (MEC), as a promising
paradigm of offloading computation for users, can boost their computa-
tion capability and shorten the operational time of low-power wireless
devices. IoT devices can offload part or all of their computation-
intensive tasks to the resource-rich MEC servers in proximity to shorten
their computing time [1].

A fine-grained study was made concerning the task-processing types
of the partial or binary offloading, the scheme of offloading com-
putation, the main metrics of model, and the task duration for task
completion as sketched in Table 1, which shows that the existing
works [2,3] operate in an offline fashion (i.e., the task workload is
known in advance) and hence cannot benefit certain IoT users, such
as crowdsensing with uncertain sensed data arrival, and real-time
environment predication.

∗ Corresponding author.

A flurry of latest research activities on task offloading were dedi-
cated to gaining insights from reinforcement learning, where an agent
learns to take actions to yield the most payoff or minimal cost via sys-
tematic (or environmental) interaction. Different from the supervised
learning which learns from the samples provided by an experienced su-
pervisor, reinforcement learning has to accumulate experience though
exploration and exploitation, while encountering various uncertainties
about the surroundings. The procedure is called trial-and-error learning
with delayed reward (penalty) [11,12]. The agent stores the accumu-
lated experience via experience replay, gaining the prior knowledge.
As a consequence, a learning-enabled strategy exhibits potential for
tackling the computation-intensive and delay-sensitive services in IoT
networks.

Furthermore, it is observed that i) the existing researches on task-
offloading computation are mainly classified into three categories:
partial task offloaded to servers [2,4] and binary offloading compu-
tation (i.e., the admitted traffic is either processed by local device or
totally offloaded to MEC servers) [5,6], and the combination of partial
and binary computation [7,8]. However, the formulated models of task
offloading are diverse, such as time model and utility model, which are
mostly based on models to address the corresponding problems. For
example, game-theoretic methods and heuristic searching algorithms,
which process tasks in an offline manner; ii) moreover, the problems
vailable online 24 February 2021
389-1286/© 2021 Published by Elsevier B.V.

E-mail address: zongpeng@whu.edu.cn (Z. Li).

https://doi.org/10.1016/j.comnet.2021.107875
Received 25 April 2020; Received in revised form 2 January 2021; Accepted 27 Ja
nuary 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:zongpeng@whu.edu.cn
https://doi.org/10.1016/j.comnet.2021.107875
https://doi.org/10.1016/j.comnet.2021.107875
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.107875&domain=pdf

Computer Networks 193 (2021) 107875L. Yu et al.
Table 1
Comparison of several task-processing approaches.

References Partial or binary offloading Objective of optimization Method of solution Task duration Energy consumption

[2] Partial Delay Iterative heuristic algorithm Low Medium
[4] Networking cost Packet assignment algorithm N/A N/A

[5] Binary Computation rate Bi-section search algorithm Medium Medium
[6] Delay Heuristic search N/A

[7] Both Computation rate Optimization without learning Medium Medium
[8] Energy efficiency No learning Low

[9]
N/A

Cost efficiency Iterative algorithm
N/A

N/A
[3] Cost efficiency Dynamic programming N/A
[10] Energy efficiency Heuristic search algorithm Low

[11] Partial Delay ACRL Low N/A[12]

OTS Both Energy efficiency & delay Online tailored solver with energy efficiency Low Low
Fig. 1. System architecture.

lack of the precise model to formulate will impede the derivation of
optimal solution. For instance, it is hard to formulate the real-time
and accurate model of the communication capacity with Signal to
Interference and Noise Ratio (SINR), because of the existence of inter-
ference in the dynamic network environments; iii) the energy-efficiency
formulation of IoT devices is hardly covered via using the improved
actor-critic reinforcement learning algorithm. To our knowledge, there
have been no studies about a unifying task-processing orchestrator
that is an online tailored solver for learning the model-free model in
consideration of the cases of the partial and binary task offloading.

Motivated by the above observations, we have made the following
contributions.

• A unifying task-processing orchestrator is first explored, which is
an online tailored solver taken the cases of the partial and binary
task offloading into account for learning the model-free problems.
To our knowledge, the approach is the first work.

• The energy-efficiency model of IoT devices is elaborately devised
in a distributed manner according to the real-world settings, shift-
ing the conventional architecture research to the user-oriented
IoT devices.

• The first attempt on an innovative actor-critic reinforcement
learning approach considered the energy efficiency is made,
which derives an asymptotically optimal solution.
2

• Extensive simulation analysis demonstrates our proposed ap-
proach outperforms the state-of-the-art in terms of task-processing
delay, energy efficiency and convergence time.

The remainder of this paper is organized as follows. Section 2
reviews the related work. Preliminaries and problem formulation are
elaborated on in Section 3. Our decomposition method is subsequently
presented in Section 4. In Section 5, the in-depth analysis on the result
of simulation is described in detail. Finally, we conclude the paper in
Section 6.

2. Related work

As a promising technology to augment resource usage of device and
conserve its energy, offloading tasks to MEC server has been attached
great concern [2,10] and [13]. Park et al. [4] proposed a game-
based multi-user computation offloading algorithm. Geng et al. [10]
investigated to minimize energy consumption formulated as a mixed-
integer nonlinear programming problem and exploited the heuristic
algorithm to solve the binary offloading decision and task scheduling
problems. The mixed-integer non-linear programming concerning task
offloading in the unmanned aerial vehicle networks was explored [7].
Bai et al. [8] leveraged a heuristic offloading decision algorithm. Al-
though these works [7] and [8] consider the cases of both partial
and binary offloading computing, some problems are not taken into
account. For example, the specific number of a task for offloading is
not considered as well as whether the task is more applicable to be
offloaded or not.

Yu et al. [1] devised a task-processing time model for managing
the task-offloading assignment. Nevertheless, the designed variable was
binary rather than the specific ratio for allocation that has proved
to be more significant to optimize the task-processing delay [11,12]
and [14]. Therefore, it is much-desired to design a unifying orchestrator
that can manage all circumstances covering the binary offloading,
and the partial offloading that involves how much percentage of the
admitted task can be offloaded to the MEC server.

Xu et al. [15] considered joint service caching and task offloading
using the Lyapunov optimization and Gibbs sampling to achieve the
provable close-to-optimal performance in terms of computation latency.
Zhou et al. [16] proposed a deep-learning-based approach to predict a
congestion event in advance so that the communication ratio by uplink
(or by downlink) can be flexibly adjusted, circumventing potential con-
gestion in a proactive manner. Liu et al. [17] designed an actor-critic
learning algorithm to conduct the UAV control. However, different
from them, we focus on the allocation of offloading computing. Xiao
and Krunz [18] emphasized energy efficiency in fog computing in
Tactile Internet. Unlike them, we shift the focus on energy efficiency
from the network-wide fog node to system-wide end-users.

Subsequently, we will exhibit an innovative and comprehensive
formulation of our task-offloading time model.

Computer Networks 193 (2021) 107875L. Yu et al.

r
i
a
a
t

𝑄

Table 2
Some notations.

Notation Description Notation Description

𝑒𝑚𝑎𝑥 Maximum capacity of finite-size battery 𝑤𝑛 Fairness at time slot 𝑛
𝛽 Discount factor and its range is [0, 1) 𝐷 Size of dataset in replay
𝜆 Parameter of controlling update rate U Set of users within one BS
𝑐𝑢 Computing capacity of device for user 𝑢 (cycles per unit time) 𝑒𝑙𝑜𝑠𝑠 Energy consumption at unit time
𝑒𝑐𝑜𝑚(𝑛) Self-power loss at time slot 𝑛 𝑒𝑡ℎ𝑟𝑒 Threshold of energy in device
𝑒ℎ𝑎𝑟(𝑛) Amount of energy harvested at time slot 𝑡 𝜖 Greedy selection probability
𝑒(𝑛) Energy stored in the battery at the end of slot 𝑛 − 1 (𝑛 ∈ N) N Set of epoches
𝑒𝑠𝑒𝑟(𝑏, 𝑛) Power loss of performing a task 𝑢 𝜉𝜋 and 𝜉𝑄 Hyper-parameters
𝜋′ (.) Corresponding target network with parameters 𝜃𝜋

′
𝜋(.) Actor network with parameters 𝜃𝜋

𝑄′ (.) Corresponding target network with parameters 𝜃𝑄
′

𝑄(.) Critic network with parameters 𝜃𝑄

𝑡𝑑𝑢,𝑏(𝑛) Deadline of performed task 𝑏 for user 𝑢 at 𝑛 𝐷𝑢 Number of data samples of user 𝑢
𝑄

3

w
s
[
a
T
t
f
b
r
t
e
p
i
i
n
w
e
a
u
e
u
m
t
o
S
e
c
t
t
c
t
a
t
a
i

i
a

3. Preliminaries and problem formulation

In this section, some related preliminaries and problem formu-
lation are described. For ease of reference, the major notations are
summarized in Table 2.

3.1. Actor-critic reinforcement learning

Reinforcement learning, in general, is composed of an agent inter-
acting with the learning objective (i.e., environment) in the discrete
decision epochs. The agent (i.e., the device or cellular system) observes
the environmental state 𝑠𝑛 and takes an appropriate action 𝑎𝑛 under
certain policy 𝜋(𝑠) at each decision epoch 𝑛. It receives an immediate
eward of 𝑅 in an iterative manner. The overarching objective of agent
s to find an optimal policy 𝜋∗(𝑠) mapping a state to a deterministic
ction or a probability distribution over the stochastic actions space
ccording to the maximal value of cumulative discounted reward under
he current state–action pair, which is expressed by
∗(𝑠𝑛, 𝑎𝑛)=𝑅(𝑠𝑛, 𝑎𝑛)+𝛽(

∑

𝑠′𝑛

𝑃 (𝑠𝑛, 𝑎𝑛, 𝑠′𝑛) max
𝑎′𝑛

𝑄∗(𝑠′𝑛, 𝑎
′
𝑛)) (1)

where 𝑄∗(𝑠𝑛, 𝑎𝑛) represents the Q-value of the state–action pair (𝑠𝑛, 𝑎𝑛)
under an optimal policy. 𝑃 (𝑠𝑛, 𝑎𝑛, 𝑠′𝑛) denotes agents’ transition possi-
bility from current state 𝑠𝑛 to next state 𝑠′𝑛 for given action 𝑎𝑛.

The procedure of Actor-Critic Reinforcement Learning (ACRL)
adopted a neural network (or even the deep convolutional neural
network abbreviated as DNN) to approximate the Q-value function,
which involves the actor part and the critic one. The actor part intends
to search for an optimal or suboptimal strategy that is parameterized.
Then it generates actions according to the observed environmental
state. Whereas the critic one aims to estimate and criticize the current
policy by receiving rewards, which, therefore, is called the estimated
Q-function. The evaluated Q-function is guided by the Temporal Differ-
ence (TD) error and trains the corresponding critic networks. The TD
error is used to reconcile the gap between the actor part and the critic
one, mostly diminishing the gap. The actor networks then utilize the
output of the critic network to update its parameters of the policy [19].

Subsequently, the endeavors in DeepMind corporation introduced
the DDPG approach [20]. Vamvoudakis et al. [21] used the method
for continuous control. The core idea of DDPG was to coordinate an
actor function 𝜋(𝑠𝑛|𝜃𝜋) about the parameter 𝜃𝜋 with a critic function
𝑄(𝑠𝑛, 𝑎𝑛|𝜃𝑄) with respect to the parameter 𝜃𝑄. The parameterized actor
function returns a Q-value. The parameterized critic function then
criticizes the Q-value how good it is. The parameters 𝜃𝜋 of the actor
networks with the actor function 𝜋(𝑛) can be updated by applying
the chain rule to the expected cumulative rewards, both of which are
respectively given by [22]

𝜋(𝑛) = 𝑅(𝑠𝑛) + 𝛽𝜋(𝑠′𝑛|𝜃
𝜋) (2)

∇𝜃𝜋𝐽 =E[∇𝜃𝜋 log𝜋𝜃(𝑎|𝑠)𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑛 ,𝑎=𝜋(𝑠𝑛|𝜃𝜋)]

≈E[∇𝜃𝜋𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠=𝑠𝑛 ,𝑎=𝜋(𝑠𝑛|𝜃𝜋)]
𝑄 𝜋

(3)
3

≈E[∇𝑎𝑄(𝑠, 𝑎|𝜃)|𝑠=𝑠𝑛 ,𝑎=𝜋[𝑠𝑛] ⋅ ∇𝜃𝜋𝜋(𝑠|𝜃)|𝑠=𝑠𝑛] i
where 𝐽 represents the expected cumulative reward. 𝜋 is the state value
concerning 𝜃𝜋 . E[.] is the estimated value. Correspondingly, the critic
function in the training networks is supervised by the loss function [23]
that is denoted as the TD error 𝛿𝜃𝑄 (𝑛). It is calculated by

𝛿𝜃𝑄 (𝑛) = E[(𝑄
′(𝑠′𝑛, 𝑎

′
𝑛|𝜃

𝑄) −𝑄(𝑠𝑛, 𝑎𝑛|𝜃𝑄))2] (4)

where 𝑄′(𝑠′𝑛, 𝑎
′
𝑛|𝜃

𝑄) is the estimated target value which is expressed by

′(𝑠′𝑛, 𝑎
′
𝑛|𝜃

𝑄)=𝑅(𝑠′𝑛, 𝑎
′
𝑛)+𝛽𝑄(𝑠′𝑛, 𝜋(𝑠

′
𝑛|𝜃

𝜋)|𝜃𝑄) (5)

.2. System architecture

We consider there is a set U of user equipment (termed as users)
ith power-limited IoT devices (e.g., vehicle, mobile phone, UAV, and

o on) as shown in Fig. 1. Each user is denoted as 𝑢, 𝑢 ∈ U, U =
1, 2,… , 𝑈]. Users randomly generate a variety of services denoted by

set B. Each service is denoted as a task 𝑏, 𝑏 ∈ B, B = [1, 2,… , 𝐵].
he task consists of different factors for different objects. For example,
he user requests the service. The task is mainly constructed by data
or task offloading. While the edge will be processing the data sent
y users. The implement of the procedure of computing and assigning
esources in the edge server will contain the executable code and
he data. The code may be Java code, virtual machine or container
tc. In our manuscript the executable code is generated under the
remise that the algorithms are compiled. Furthermore, the algorithm
s related to the iterations of the deep actor-critic networks. That
s, the dynamic learning procedure has relevance to time slots, the
umber of users, CPU frequency and workload, and so forth, which
ill be further illustrated in Algorithm 1 in Section 4. The codes are
mbedded in the edge server. Its related parameters of the algorithm
re debugged via extensive simulations in Section 5. Consider that these
sers can communicate with the nearest Macro Base Station (MBS)
quipped with an edge cloud server. The edge is responsible for the
ser’s task offloading to alleviate the user’s workload, which is our
ajor concern. As shown in Fig. 1, users can request the service for

ask offloading. The MBS makes the offloading decisions through the
nline tailored algorithm with energy efficiency that is illustrated in
ection 4, and responses to users. Correspondingly, users estimate their
nergy by leveraging the power evolution algorithm, sending messages
oncerning their energy state, and task-offloading information when
hey are connected to the MBS via wireless communication. Due to the
ask’s property, i.e., the encrypted file to be processed and the video
ontaining privacy and so on, these tasks should not be offloaded to
he MEC servers. Nevertheless, whether a task can be offloaded or not
re illustrated in detail in [24], which is beyond our scope. We focus on
he task-processing time for the offloadable and non-offloadable task,
nd on how to assign the offloading percentage for the offloadable task
n dynamics.

We consider a finite time horizon with duration N that is discretized
nto 𝑁 equal time slots. It is denoted by 𝑛 ∈ N, N = [1, 2,… , 𝑁]. Assume
quasi-static scenario where the occupying wireless channels of task 𝑏
s stable in a time slot that may last a few seconds, while the temporal

Computer Networks 193 (2021) 107875L. Yu et al.

p
t
c

𝑒

T
o

𝑒

p

3

o
t
t
s
t
d

r
t

c

d
f
a

and geographical variations probably incur across different time slots
due to the bursty nature of human-generated traffic. Task requested by
the user can be processed by the device itself if it has adequate energy
left and enough computing resources (e.g., CPU, memory, etc.). If the
task can be offloaded to the edge server, it can be processed by the
alternative edge computing in proximity. Since the available computing
capacity (in cycles/second) is determined by the stabilized working
frequency of CPU and the current CPU workload (i.e., the percentage of
the processing capacity occupied by other users) in a time slot [25], the
MBS with edge server decides the allocation of channel communication
capacity according to the corresponding algorithms that return the
provisioning of power and task-offloading percentage. In other words,
the edge decides the proportion of task offloading for different users
based on its network and user’s states involving the channel capacity
and available memory and user’s energy, etc. Correspondingly, the user
performs the specific ratio for tasks offloaded to the edge.

Generally, the MEC server is equipped with high-performance traffic
processing units and has a rich resource pool. Therefore, the queuing
time of the offloaded traffic is much smaller than the transmission time
of workload [18]. For simplification, assume that the offloadable task
can be directly dealt with and fed backed by the nearest MEC server
without the task-forwarding operation between servers since the MEC
server is resource-rich and computation-powered.

3.3. Energy model

In order to shed meaningful insights into our design of the algo-
rithm, a tractable energy model is developed as follows. Each user has
an energy harvesting circuit and a size-constrained battery that can
store energy for its operations.

Unlike [9] and [13], which explored the optimization objective
of economical energy efficiency, we consider a more generic scenario
where IoT devices are equipped with renewable energy by conventional
power grid or new rechargeable energy (e.g., solar, radio signal, and
so on). The finite-size battery can be viewed as a backlog in an energy
queue. Provided that 𝑙(𝑏, 𝑛) (in cycles) stands for the number of cycles
erformed by CPU for task 𝑏 at time slot 𝑛, and it can be acquired by
he CPU monitor in the device. Obviously, the executing time of task
an be calculated by 𝑙(𝑏,𝑛)

𝑐𝑢
. The residual energy 𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛) of processing

the task 𝑏 at slot 𝑛 can be estimated by

𝑙𝑒𝑓 𝑡(𝑏, 𝑛) = 𝑒(𝑛 − 1) + 𝑒ℎ𝑎𝑟(𝑛) − 𝑒𝑐𝑜𝑚(𝑛) − 𝑒𝑠𝑒𝑟(𝑏, 𝑛) (6)

where 𝑒𝑠𝑒𝑟(𝑏, 𝑛) = (𝑙(𝑏,𝑛)𝑐𝑢
) ∗ 𝑒𝑙𝑜𝑠𝑠.

After servicing all tasks, the energy left of the device will follow the
constraint of utilizable energy below.

𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛) ≥ 𝑒𝑡ℎ𝑟𝑒(𝑛) (7)

he queue of energy backlog 𝑒(𝑛) evolves as follows when the constraint
f Eq. (7) is satisfied in each slot.

(𝑏, 𝑛+1)=min{𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛), 𝑒𝑚𝑎𝑥}, ∀𝑏 ∈ B,∀𝑛 ∈ N. (8)

Afterwards, we will elaborate on the procedure of formulating the
roblem.

.4. Problem formulation

Based on the aforementioned system and energy model, we focus
n the task-processing time for the offloadable task and how to assign
he offloading percentage of the offloadable task. Herein, we assume
he generated tasks are independent and identically distributed. As the
ystem model illustrated in Section 3.2, the delay model will exclude
he forwarding and queuing time. Task-processing computation can be
iscussed in different cases as follows.
Binary task-offloading cases: Binary task-offloading cases incorpo-

ate that a task is either processed locally or it is completely offloaded
o MEC server as follows.
4

Case 1-1: Local task-processing case
Assume that a new task 𝑏 produced by user 𝑢 at time slot 𝑛 can be

recorded by packet message, including the size of task 𝑏 denoted as 𝑓𝑏
(in bits). CPU in the device performs the request by transforming 𝑓𝑏 into
the number of CPU cycles required for computing the equivalent task
𝑏. Let ℵ𝑏 denote the executed cycles of CPU for the equivalent task. IoT
device has a constant computing capacity 𝑐𝑢 (in cycles/second) [6,22].
The delay for processing a task locally can be calculated by

𝑡𝑙𝑜𝑐 =
ℵ𝑏
𝑐𝑢

(9)

Case 1-2: Total task-offloading case
According to the system model elaborated on in Section 3.2, the

task-processing time involves two parts in the situation where a re-
quested task is totally offloading to the MEC server. One part is the
round-trip transmission latency between user and edge, which is de-
noted as 2𝑡𝑑𝑒𝑙. The other is the task-processing time in the MBS, which
is denoted as 𝑡𝑚𝑒𝑐 . The expression is

𝑡𝑟𝑒𝑚 = 𝑡𝑚𝑒𝑐 + 2𝑡𝑑𝑒𝑙 =
ℵ𝑏
𝑐𝑚

+ 2
𝑓𝑏
𝑝𝑛𝑢,𝑏

(10)

where 𝑐𝑚 represents the average computing capacity (i.e., the aver-
age number of CPU cycles to process the unit-bit task in unit time),
which is a constant determined by the MEC server’s hardware set-
tings [9] and [12]. 𝑝𝑛𝑢,𝑏 stands for the channel communication capacity
(in bits/second) for task 𝑏 of user 𝑢 at time slot 𝑛, which is variable. Note
that its exact expression is unknown due to the existence of channel
interference among the different tasks for offloading computing.

Partial task-offloading case: The requested task 𝑏 is partially pro-
essed locally, and the remaining part is offloaded to MEC.
Case 2: Partial task-offloading case
The provisioning algorithm of explicitly offloading proportion is

esigned to reduce the task-processing time which is a crucial criterion
or time-sensitive user equipment. The partial task-offloading delay for
task is given by

𝑡𝑝𝑎𝑟= 𝑡𝑙𝑜𝑐 + 𝑡𝑚𝑒𝑐 + 2𝑡𝑑𝑒𝑙

=
ℵ𝑏
𝑐𝑢

∗ 𝑥𝑛𝑢,𝑏+
ℵ′
𝑏

𝑐𝑚
∗ (1−𝑥𝑛𝑢,𝑏) + 2

𝑓 ′
𝑏

𝑝𝑛𝑢,𝑏
∗ (1−𝑥𝑛𝑢,𝑏)

(11)

where 𝑥𝑛𝑢,𝑏 represents the task-offloading ratio for task 𝑏 of user 𝑢 at slot
𝑛, and ℵ′

𝑏 is the required number of cycles of CPU for the offloaded part
of task 𝑏. Likewise, 𝑓 ′

𝑏 denotes the needed number of the offloaded bits
to MEC. That is, it is the remaining size of the task which is processed
by MEC.

Note that the aforementioned three cases merely consider the task-
processing delay for each case separately. Later on, a unifying or-
chestrator that encapsulates the cases of the binary and partial task-
offloading computing will be elaborated on.

A variable 𝑦𝑛𝑢,𝑏(𝑦
𝑛
𝑢,𝑏 ∈ [0, 1]) is introduced, representing whether a

task is offloaded binarily or partially. That is, the total task is processed
locally if 𝑦𝑛𝑢,𝑏 = 0. The total task is offloaded to server if 𝑦𝑛𝑢,𝑏 = 1.
Otherwise, the task is the partially offloading case. Herein, for ease of
description, let ℵ𝑏

𝑐𝑢
= 𝜇1,

ℵ𝑏
𝑐𝑚

= 𝜇2 and ℵ′
𝑏

𝑐𝑚
= 𝜇3. The total task-processing

time of all tasks generated by users is 𝑡𝑎𝑙𝑙, which is formulated as

𝑡𝑎𝑙𝑙 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑𝑈
𝑢=1

∑𝐵
𝑏=1 𝜇1, 𝑖𝑓 𝑦𝑛𝑢,𝑏 = 0;

∑𝑈
𝑢=1

∑𝐵
𝑏=1(𝜇2 + 2 𝑓𝑏

𝑝𝑛𝑢,𝑏
), 𝑖𝑓 𝑦𝑛𝑢,𝑏 = 1;

∑𝑈
𝑢=1

∑𝐵
𝑏=1(𝜇1𝑥

𝑛
𝑢,𝑏+𝜇3(1−𝑥

𝑛
𝑢,𝑏)+2

𝑓 ′
𝑏

𝑝𝑛𝑢,𝑏
(1−𝑥𝑛𝑢,𝑏)),

𝑖𝑓 0 < 𝑦𝑛𝑢,𝑏 < 1.

(12)

where there exist three variables, i.e., 𝑥𝑛𝑢,𝑏, 𝑦
𝑛
𝑢,𝑏 and 𝑝𝑛𝑢,𝑏. Different from

the label of 𝑦𝑛𝑢,𝑏, 𝑥
𝑛
𝑢,𝑏 stands for the specific task-offloading proportion.

The value of 𝑦𝑛𝑢,𝑏 relies on the property of user’s task, which can be
obtained from the interaction with users. The edge is responsible for

Computer Networks 193 (2021) 107875L. Yu et al.

t
t
t

4

n
o

d
P

𝐏

𝑝

the task-offloading and the allocation of communication capacity under
the precondition of the model-free surroundings.

The total task-processing time 𝑡𝑎𝑙𝑙 is expected to be as minimal as
it is, enhancing the quality of user’s experience. The total time model
is abstracted as a comprehensive optimization problem P1 with respect
to 𝑥𝑛𝑢,𝑏, 𝑦

𝑛
𝑢,𝑏 and 𝑝𝑛𝑢,𝑏 at time slot 𝑛.

𝐏𝟏 ∶ min
Y,X,P

𝑡𝑎𝑙𝑙(𝑥𝑛𝑢,𝑏, 𝑦
𝑛
𝑢,𝑏, 𝑝

𝑛
𝑢,𝑏) ∀𝑢∈U,∀𝑏∈B,∀𝑛∈N (13)

𝑠.𝑡. 𝐶1 𝑥𝑛𝑢,𝑏 ∈ [0, 1]
𝐶2 𝑦𝑛𝑢,𝑏 ∈ [0, 1]
𝐶3

∑𝑈
𝑢=1

∑𝐵
𝑏=1 𝑝

𝑛
𝑢,𝑏 ≤ 𝑃𝑚𝑎𝑥(𝑛)

𝐶4 𝑝𝑛𝑢,𝑏 ≥ 0
𝐶5 𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛) ≥ 𝑒𝑡ℎ𝑟𝑒(𝑛)
𝐶6 𝑡𝑢,𝑏(𝑛) ≤ 𝑡𝑑𝑢,𝑏(𝑛)

where the variables of X, Y and P represent the corresponding set
respectively, i.e., X = [𝑥𝑛𝑢,𝑏], Y=[𝑦𝑛𝑢,𝑏] and P = [𝑝𝑛𝑢,𝑏]. The inequation 𝐶3
represents each request 𝑏 is designated to a dedicated communication
capacity (in bits) for task offloading. The overall capacity of all tasks
generated by users is less than the maximal fronthaul capacity 𝑃𝑚𝑎𝑥(𝑛)
of server in practice at the slot 𝑛. The notation of 𝑃𝑚𝑎𝑥(𝑛) is referred to
as the maximally total downlink transmitting capacity that edge server
can support [9]. The inequation 𝐶5 stands for the constraint of energy.

The constraint of inequation 𝐶6 holds since the processed result
of offloading, transmitting and computing should be within a specific
deadline that is an expired time to response to user 𝑢. Note that the
constraint 𝐶6 can efficiently avoid potential safety hazards and low-
efficiency tasks to be processed (e.g., the task with occupying the
shared resource for long time, and the task waiting for entering the
encrypted data, etc.).

4. Decomposition method

In terms of the above optimization problem P1, there have been
many conventional approaches to solve such as the heuristic search
methods [2,5,6,10] (e.g., ant colony search [2], simulated annealing
algorithm [10] etc.), Lagrange duality [1] and non-linear or linear
programming [3,7,8], and so forth. Nevertheless, these schemes just
fitted the low-dimension searching space in an offline fashion, which
are inapplicable to the real-time scenarios (e.g., newly created task to
be allocated via the exact percentage of task offloading), and to the
unknown surroundings with multiple dimensions such as the interfer-
ence among the different users, the time-varying energy left for users
and so on. To resolve P1, we notice that the assignment of offloading
percentage is no longer to perform when 𝑦𝑛𝑢,𝑏 = 0, and that all tasks
are offloading to the edge with 𝑥𝑛𝑢,𝑏 = 1 when 𝑦𝑛𝑢,𝑏 = 1. Based on
he coupling relationship, P1 can be decomposed into the resulting
hree sub-problems that are corresponding to the different approaches
o address.

.1. Equivalent subproblems

Note that the value of 𝑦𝑛𝑢,𝑏 depends on the service’s property (i.e., the
on-encrypted file will be labeled as 𝑦𝑛𝑢,𝑏 ∈ (0, 1], which can be easily
btained in the field of the header of each task.)
Case 1-1: Local Task-Processing Case
Assuming that the task 𝑏 of user 𝑢 is totally be processed by the

evice itself. Namely 𝑦𝑛𝑢,𝑏 = 0. The P1 is transformed into the following
1-1.

𝟏-𝟏 ∶ min 𝑡𝑎𝑙𝑙 = 𝑡𝑙𝑜𝑐 =
𝐵
∑

𝑏=1

ℵ𝑏
𝑐𝑢

= 𝜇1 (14)

𝑠.𝑡. 𝐶7 ∶ 𝑦𝑛𝑢,𝑏 = 0, ∀𝑢 ∈ U, 𝑏 ∈ B, 𝑛 ∈ N
5

Case 1-2: Total Task-Offloading Case
Consider that the task 𝑏 of user 𝑢 is totally be processed by MEC.
Namely 𝑦𝑛𝑢,𝑏 = 1. The P1 is transformed into the following P1-2.

𝐏𝟏-𝟐 ∶ min
P

𝑡𝑎𝑙𝑙(𝑝𝑛𝑢,𝑏) (15)

𝑠.𝑡. 𝐶3 & 𝐶4 & 𝐶5 & 𝐶6

𝐶8 ∶ 𝑦𝑛𝑢,𝑏 = 1, ∀𝑢 ∈ U, 𝑏 ∈ B, 𝑛 ∈ N

Observe that the totally task-processing time 𝑡𝑎𝑙𝑙(⋅) is a function with
respect to the one-dimensional variable of the communication capacity
𝑝𝑛𝑢,𝑏. Since a myriad of users compete for the communication capacity
under a shared wireless channels, without the loss of generality, there
exists the internal interference due to the environmental noise and
inherent interference in the same spectrum band [26]. The expression
of 𝑝𝑛𝑢,𝑏 is more complex than the simple Shannon equation. Concretely,
𝑝𝑛𝑢,𝑏 is an unknown function, which is as opposed to the well-defined
model in the circumstance of interference [27].

Case 2: Partial Task-Offloading Case
As for the partial offloading computation, the problem P1-3 is

formulated as

𝐏𝟏-𝟑 ∶ min
X,P

𝑡𝑎𝑙𝑙(𝑥𝑛𝑢,𝑏, 𝑝
𝑛
𝑢,𝑏) (16)

𝑠.𝑡. 𝐶1 & 𝐶3 & 𝐶4 & 𝐶5 & 𝐶6

𝐶9 ∶ 𝑦𝑛𝑢,𝑏 ∈ (0, 1), ∀𝑢 ∈ U, 𝑏 ∈ B, 𝑛 ∈ N

Observe that the total task-processing time 𝑡𝑎𝑙𝑙(⋅) is a function re-
garding the two-dimensional variables of task-offloading percentage
and communication capacity.

Different from the work [1], we focus on the actor-critic deep
reinforcement learning algorithm with energy efficiency to address the
problems P1 with the continuous space. (See [28]).

4.2. Online tailored solver

As aforementioned, we are mainly to solve the problems of P1-2 and
P1-3 in the cases of the binary and partial task processing respectively.
To kill two birds with one stone, we normalize the variable 𝑝𝑛𝑢,𝑏 to
the range of [0, 1] whose range is the same to 𝑥𝑛𝑢,𝑏. Aiming to cope
with the tricky variables with featuring continuous rather than binary
control variables that can be tackled by the conventional reinforcement
learning (i.e., Deep Q-learning Network (DQN) [1,11,12], and [29]),
an online tailored solver in consideration of the partial and binary task
offloading is elaborately developed to address the model-free problem.

The basic components of agent (device) via defining the Markov
Decision Process (MDP) [30] is outlined before modeling the learning
procedure.

Definition 1 (MDP).: A MDP is a tuple encompassing {𝑆,𝐴,𝑅, 𝑃 },
where 𝑆 is state space; 𝐴 is action space of agent; 𝑅 ∶ 𝑆 × 𝐴 → 𝑅 is a
reward function mapping state–action pairs to rewards; 𝑃 ∶ 𝑆×𝐴×𝑆 →
[0, 1] is transition function.

The agent decides how much percentage of the offloading task for
each user is to be assigned. It hinges on the task-processing cases and its
performed energy consumption. Therefore, the state 𝑠𝑛𝑢,𝑏 of user’s task 𝑏
at decision epoch 𝑛 is defined as 𝑠𝑛𝑢,𝑏(𝑡

𝑑
𝑢,𝑏, 𝑦

𝑛
𝑢,𝑏, 𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛)). The state space

of device is 𝑆 = [𝑠𝑛𝑢,𝑏],∀𝑢 ∈ U, 𝑏 ∈ B, 𝑛 ∈ N.
The action of agent is to perform an appropriate assignment that

specifies how much ratio of task offloading and communication capac-
ity is to be assigned to the corresponding unknown variables in each
slot. Therefore, the action for task 𝑏 of user 𝑢 at the slot 𝑛 is 𝑎𝑛𝑢,𝑏, 𝑎

𝑛
𝑢,𝑏 ∈ 𝐴,

𝐴 = [X,P], where X = [𝑥𝑛𝑢,𝑏] and P = [𝑝𝑛𝑢,𝑏] for ∀𝑢 ∈ U, 𝑏 ∈ B, 𝑛 ∈ N.
Further, 𝑥𝑛𝑢,𝑏 = 𝑚𝑢,𝑏

𝑚𝑢
, ∀𝑏 ∈ B, where 𝑚𝑢,𝑏 represents the number of the

offloaded task 𝑏 at decision epoch 𝑛, and 𝑚𝑢 is the total number of the
offloaded tasks for user 𝑢 in a time slot. Clearly, 𝑥𝑛𝑢,𝑏 ∈ [0, 1]. Similarly,
𝑛 = 𝑞𝑢,𝑏 , ∀𝑏 ∈ B, where 𝑞 denotes the amount of capacity for task
𝑢,𝑏 𝑞𝑢 𝑢,𝑏

Computer Networks 193 (2021) 107875L. Yu et al.

D
a
𝐵

𝜂

w

t
o
t
o
t

𝑅

w
(
s
a

O

1
1
1

d
d

𝑊

w

Algorithm 1: Online Tailored Solver with Energy Efficiency.

Input: Initialize 𝜋(⋅) with 𝜃𝜋 , and 𝑄(⋅) with 𝜃𝑄;
Initialize 𝜋′ (⋅) with 𝜃𝜋

′
≐ 𝜃𝜋 , and 𝑄′ (⋅) with 𝜃𝑄

′
≐ 𝜃𝑄;

Initialize 𝑆,𝐴, 𝛽 and 𝐷.
Output: 𝐴.
1: for 𝑛 = 1 to 𝑁 do
2: Receive the initial observed state 𝑠𝑛𝑢,𝑏
3: 𝑎𝑛𝑢,𝑏 ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝐴) via 𝜖−greedy algorithm [28]
4: Perform 𝑎𝑛𝑢,𝑏 and observe the immediate reward 𝑅𝑛

𝑢,𝑏 and next
state 𝑠𝑛+1𝑢,𝑏

5: if (Constraint 𝐶6 holds && 𝑦𝑛𝑢,𝑏 ∈ (0, 1]) then
6: Put the transition sample (𝑠𝑛𝑢,𝑏, 𝑎

𝑛
𝑢,𝑏, 𝑅

𝑛
𝑢,𝑏, 𝑠

𝑛+1
𝑢,𝑏) into dataset 𝐷

7: while 𝐷 ≠ ∅ do
8: Sample minibatch of 𝐷𝑢 samples from 𝐷
9: Calculate the targeted value 𝜋′ (𝑛) and 𝑄′ (𝑛)∶

𝜋′ (𝑠′𝑛|𝜃
𝜋) = 𝑅(𝑠′𝑛) + 𝛽𝜋(𝑠′𝑛|𝜃

𝜋)
𝑄′ (𝑠′𝑛, 𝑎

′
𝑛|𝜃

𝑄)=𝑅(𝑠′𝑛, 𝑎
′
𝑛)+𝛽𝑄(𝑠′𝑛, 𝜋(𝑠

′
𝑛|𝜃

𝜋)|𝜃𝑄)
10: Calculate gradients of the actor and critic networks by

Eq. (3), respectively∶ ∇𝜃𝜋𝜋 and ∇𝜃𝑄𝑄
11: Calculate TD-error 𝛿𝜃𝜋 and 𝛿𝜃𝑄∶

𝛿𝜃𝜋 (𝑛) = 𝐸[(𝜋′ (𝑠′𝑛|𝜃
𝜋) − 𝜋(𝑠𝑛𝜃𝜋))2]

𝛿𝜃𝑄 (𝑛) = 𝐸[(𝑄′ (𝑠′𝑛, 𝑎
′
𝑛|𝜃

𝑄) −𝑄(𝑠𝑛, 𝑎𝑛|𝜃𝑄))2]
12: Update the parameters of the actor and critic networks,

respectively∶
𝜃𝜋 (𝑛 + 1)←𝜃𝜋 (𝑛) + 𝜉𝜋 ⋅ 𝛿𝜃𝜋 (𝑛) ⋅ ∇𝜃𝜋𝜋; reset ∇𝜃𝜋𝜋←0
𝜃𝑄(𝑛 + 1)←𝜃𝑄(𝑛)+𝜉𝑄 ⋅ 𝛿𝜃𝑄 (𝑛) ⋅ ∇𝜃𝑄𝑄; reset ∇𝜃𝑄𝑄←0

13: Update the parameters of the corresponding target
networks∶
𝜃𝜋

′
(𝑛 + 1) ← 𝜆𝜃𝜋 (𝑛) + (1 − 𝜆)𝜋′ (𝑛)

𝜃𝑄
′
(𝑛 + 1) ← 𝜆𝜃𝑄(𝑛) + (1 − 𝜆)𝑄′ (𝑛)

14: end while
15: else
16: 𝑅𝑛

𝑢,𝑏 ← 0; 𝑎𝑛𝑢,𝑏 ← 0
17: end if
18: Send the push-based services
19: end for

𝑏 at epoch 𝑛, and the total channel capacity for the offloaded tasks of
user 𝑢 in a time slot is denoted as 𝑞𝑢. In addition, 𝑝𝑛𝑢,𝑏 ∈ [0, 1].

efinition 2 (Fairness). The task-offloading fairness for users, denoted
s 𝜂𝑛, is referred to as the maximum fairness of task offloading for the
tasks generated by 𝑈 users at slot 𝑛, which is given by

𝑛 = ‖

𝑎𝑛𝑢,𝑏
∑

𝑏∈𝐵 𝑎𝑛𝑢,𝑏
−

𝐷𝑎𝑣𝑒
𝑏

∑

𝑏∈𝐵 𝐷𝑎𝑣𝑒
𝑏

,∀𝑢 ∈ 𝑈, 𝑏 ∈ 𝐵‖∞ (17)

here 𝑎𝑛𝑢,𝑏 = lim𝑁→∞
1
𝑁

∑𝑁−1
𝜏=0 E[𝑎

𝜏
𝑢,𝑏] denotes the average of time over

𝑁 slots for a random process 𝑎𝑛𝑢,𝑏. ‖ ⋅ ‖∞ stands for ∞ norm. The first
erm at the right of Eq. (17) is the ratio of 𝑎𝑛𝑢,𝑏 between the time-average
f the allocation of task-offloading proportion for task 𝑏 and the overall
ime of allocation for 𝐵 tasks, and the second term represents the task-
ffloading ratio of task 𝑏 between the average of generated dataset for
ask 𝑏 and the overall dataset of edge.

The rewards is devised as

𝑛
𝑢,𝑏 =

𝜂𝑛 ∗
∑𝐵

𝑏=1(𝑎
𝑛
𝑏 − 𝑎𝑛−1𝑏)

∑𝐵
𝑏=1[𝑒(𝑏, 𝑛) − 𝑒(𝑏, 𝑛 − 1)]

(18)

here (𝑎𝑛𝑏 −𝑎𝑛−1𝑏) is the marginal gain (an incremental allocation ratio).
𝑒(𝑏, 𝑛) − 𝑒(𝑏, 𝑛 − 1)) is the incremental cost concerning energy con-
umption. 𝜂𝑛 ∗ (𝑎𝑛𝑏 − 𝑎𝑛−1𝑏) can be regarded as an effective incremental
ssignment by adding a discount to the actual incremental value if the
6

g

Algorithm 2: Power Evolution Algorithm for UE.
Input: Initialize 𝐷𝑢 and 𝐴;
utput: 𝑠𝑛𝑢,𝑏.

1: for 𝑛 ← 1 to 𝑁 do
2: if (receiving push-based service) then
3: Calculate 𝑒𝑙𝑒𝑓 𝑡(𝑏, 𝑛) according to Eq. (6)
4: else
5: if (Eq. (7) holds) then
6: 𝑦𝑛𝑢,𝑏 ← rand (0,1)
7: Generate 𝑡𝑑𝑢,𝑏 of task offloading
8: Update energy 𝑒(𝑏, 𝑛+1) according to Eq. (8)
9: Send user state 𝑠𝑛𝑢,𝑏 to MBS
0: end if
1: end if
2: end for

increment induces unfairness. Overall, the reward can be considered
as energy efficiency. The agent aims to find a policy, making the
cumulative reward maximal. It is equivalent to maximize the average
of energy efficiency.

The Online Tailored Solver with energy efficiency (OTS) is por-
trayed in Algorithm 1. The general framework of the actor-critic re-
inforcement learning was employed [11] and [12]. However, different
from them, we emphasize that the constraints of the task-performing
time should be satisfied. If not, the service will not be performed.
The reward to supervise the selection of the next action is set to 0,
which is the most severe penalty (line 17). Because, according to our
extensive study (i.e., [2,6,11] and [12]), it can hardly make sense to
process a task in an expired time if the task has a completed deadline.
Note that the reward 𝑅𝑛

𝑢,𝑏 is calculated by Eq. (8), Eq. (17) and (23),
which embodies the fairness of task-offloading assignment for all tasks.
Moreover, the reward takes energy and task-processing deadline into
account, customizing the requirements of different users (from line
8 to line 15). Meanwhile, the power evolution of users is illustrated
in Algorithm 2. We consider that the tasks are offloadable to the
edge to alleviate the user’s computing burden, thereby generating a
random number via the function of rand (line 6). Each user calculates
and updates its energy according to the energy model described in
Section 3.3, and communicates with the edge in MBS through sending
the user’s state (line 1 to 10).

4.3. Theoretical analysis

In the procedure of actor-critic learning, the stochastic gradient
descent method [31,32] amd [33] is adopted, minimizing the loss
functions. In order to analyze the rationale of actor-critic learning in
Algorithm 1, we further make the theoretical illustration.

The mechanism of ACRL has two groups of networks, the original
actor-critic networks and the target actor-critic networks. For ease
of notations, let 𝑊𝑜𝑟𝑖 denote the parameter set of the original actor-
critic networks, i.e., 𝑊𝑜𝑟𝑖 = [𝜃𝜋 , 𝜃𝑄]. Let 𝐿𝑜𝑟𝑖 denote the value set
of the original actor-critic networks, i.e., 𝐿𝑜𝑟𝑖 = [𝜋,𝑄]. Likewise, the
parameter set and value set of the target networks are denoted as
𝑊𝑡𝑎𝑟 = [𝜃𝜋′ , 𝜃𝑄′] and 𝐿𝑡𝑎𝑟 = [𝜋′, 𝑄′], respectively.

Let 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) represent the value function of the original actor-critic
networks concerning the weight parameter 𝑊𝑜𝑟𝑖. 𝑊𝑜𝑟𝑖 are initialized
to the same parameters when time slot 𝑛 = 0. Further, when the
slot 𝑛 > 0, 𝑊𝑜𝑟𝑖 evolves according to the typically stochastic gradient
escent performed by the value function 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) over its original
ataset 𝐷𝑢 with user’s request, which is estimated by

𝑜𝑟𝑖(𝑛 + 1) = 𝑊𝑜𝑟𝑖(𝑛) − 𝛾∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) (19)

here 𝛾 is the step-size of gradient descent, and ∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) is the
radient of value function 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) over the dataset 𝐷𝑢.

Computer Networks 193 (2021) 107875L. Yu et al.

d
c

𝜎

B
d
e
s

𝐿
𝜂
s

𝜎

w
a

P
d

w
s
b

f
∇

w
t
E
c

1
c
s
t
e

5

5

o
a
M
u

Let 𝜎𝑢 denote the gradient divergence of user 𝑢 at slot 𝑛. The
difference is calculated by

𝜎𝑢 = ‖∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) − ∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟)‖ (20)

where ∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) is the gradient of the original networks over 𝐷𝑢

with certain user’s request, and ∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) represents the gradient of
the target networks over the edge’s dataset 𝐷.

The edge server collects all gradients of users at 𝑁 slots where
𝑛 = 𝜅𝑁 and 𝜅 = {1, 2,…}. The original actor-critic networks estimate
their gradients over the time window [(𝜅 − 1)𝑁 + 1,… , 𝜅𝑁] for user’s
request, i.e., ∑𝜅𝑁

𝜏=(𝜅−1)𝑁+1 ∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜏)). Whereas the target actor-

critic networks update their parameters using the gradients of the
original networks. The parameter updates of the target networks is

𝑊𝑡𝑎𝑟(𝜅𝑁) = 𝑊𝑡𝑎𝑟((𝜅 − 1)𝑁)−

𝛾

∑

𝑢∈𝑈 |𝐷𝑢|(
∑𝜅𝑁

𝜏=(𝜅−1)𝑁+1 ∇𝐷𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜏)))

|𝐷|

(21)

Similar to [34], we adopt the weighted average of all user’s gradient
ivergences to describe the edge’s gradient divergence 𝜎 at slot 𝑛. 𝜎 is
alculated by

=
∑

𝑢∈𝑈 |𝐷𝑢|𝜎𝑢
|𝐷|

(22)

Herein, 𝜎 is the global gradient divergence for edge server, which can
keep the distributed actor-critic learning method convergent.

Combined with Definition 2, we observe that Eq. (17) measures the
difference between the task-offloading ratio of a user and the average
ratio of the edge over the global dataset. Note that the task-offloading
ratio can be increasingly fair for different users with the decrease of 𝑞𝑛.

ased on ∞ norm, 𝑞𝑛 can help to yield the upper bound of the gradient
ivergence. The fairness can be also derived by the calculation of the
dge server. Given the fairness measure 𝑞𝑛, the gradient divergence is
trictly upper bounded, as stated in the following lemma.
Lemma 1: We consider the value functions of 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) and

𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) are 𝜌-Lipschitz for each user 𝑢. Given the fairness measure
𝑛 in Eq. (17), the gradient divergence 𝛿 is upper bounded at each time
lot 𝑛 such that

≤ 𝐵𝜂𝑛∇𝑚𝑎𝑥,∀𝑛 ∈ N (23)

here ∇𝑚𝑎𝑥 is the maximum gradients based on the 2 norm during the
ctor-critic learning.

roof. Recall that the gradient is a linear operator, the gradient
ivergence 𝜎𝑢 for user 𝑢 in Eq. (20) can be rewritten as

𝜎𝑢=‖

∑

𝑏∈𝐵

|𝐷𝑏
𝑢|

|𝐷𝑢|
∇𝐷𝑏

𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖)−

∑

𝑏∈𝐵

|𝐷𝑏
|

|𝐷|

∇𝐷𝑏𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟)‖

≤
∑

𝑏∈𝐵
‖

|𝐷𝑏
𝑢|

|𝐷𝑢|
∇𝐷𝑏

𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖)−

|𝐷𝑏
|

|𝐷|

∇𝐷𝑏𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟)‖
(24)

where 𝐷𝑏
𝑢 stands for the dataset of offloading task 𝑏 for user 𝑢, and 𝐷𝑏

denotes the dataset of task 𝑏 offloaded to the edge, i.e., 𝐷𝑏 =
⋃

𝑢∈𝑈 𝐷𝑏
𝑢.

The inequation above holds because of the subadditive property of the
norm.

As assumed, the value functions of 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) and 𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) are 𝜌-
Lipschitz and are subjected to ‖𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) −𝐿𝑜𝑟𝑖(𝑊 ′

𝑜𝑟𝑖)‖ ≤ 𝜌‖𝑊𝑜𝑟𝑖 −𝑊 ′
𝑜𝑟𝑖‖

for any 𝑊𝑜𝑟𝑖, 𝑊 ′
𝑜𝑟𝑖. The value functions of the original actor-critic

networks and the target ones are identical in the aspect of the network
structure and model during the training process, i.e., 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) =
𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟(𝑛)) for 𝑛=𝜅𝑁 . For 𝑛=𝜅𝑁+𝜏 with 𝜏={1, 2,… , 𝑁−1}. We have
𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟(𝑛)) = 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜅𝑁))−𝛾

∑𝜏
𝑡0=1

∇𝐷𝐿(𝑊 (𝜅𝑁+ 𝑡0)). 𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) =
∑𝜏
7

𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜅𝑁))−𝛾 𝑡0=1
∇𝐷𝑢

𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜅𝑁+𝑡0)). Hence, the approximated
error is upper bounded by

‖𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝑛)) − 𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟(𝑛))‖

≤ 𝜌‖𝛾
𝜏
∑

𝑡0=1
[∇𝐷𝑢

𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜅𝑁 + 𝑡0))

− ∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟(𝜅𝑁 + 𝑡0))]‖

≤ 𝜌𝛾[‖
𝜏
∑

𝑡0=1
∇𝐷𝑢

𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖(𝜅𝑁 + 𝑡0))‖

+ ‖

𝜏
∑

𝑡0=1
∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟(𝜅𝑁 + 𝑡0))‖]

≤ 𝜌𝜏∇𝑚𝑎𝑥 ≤ 𝜌𝑁∇𝑚𝑎𝑥

(25)

here the first inequation holds due to the 𝜌-Lipschitz property. The
econd is due to the subadditive inequation of the norm. The third holds
ecause of ‖∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟)‖ ≤ ∇𝑚𝑎𝑥.

According toDefinition 2, the gradient aims to confine the value
unction 𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) over the data samples 𝐷 of the edge, denoted as
𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟). The average of the gradients over 𝐷 is denoted by the

equation ∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) = 1
𝐷
∑

𝑤∈𝐷 ∇𝑤𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) where ∇𝑤𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟)
is the gradient of the value function based on a data sample 𝑤 ∈
𝐷 [31]. Provided that there are sufficient data samples for learning,
the gradient only relies on the distribution of data instead of the
number of samples. Thus, the gradient of user’s value function over
𝐷𝑏

𝑢, i.e., ∇𝐷𝑏
𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) =

1
𝐷𝑏
𝑢

∑

𝑤∈𝐷𝑏
𝑢
∇𝑤𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖), is expected to conform

to the gradient over 𝐷𝑏, i.e., ∇𝐷𝑏𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) = 1
𝐷𝑏

∑

𝑤∈𝐷𝑏 ∇𝑤𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖).
Therefore, it is reasonable to assume that the gradient for certain task
𝑏 of user 𝑢 is consistent with the gradient over all tasks of user 𝑢. That is,
∇𝐷𝑏

𝑢
𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖) ≃ ∇𝐷𝑏𝐿𝑜𝑟𝑖(𝑊𝑜𝑟𝑖). Since ∇𝐷𝐿𝑡𝑎𝑟(𝑊𝑡𝑎𝑟) ≤ ∇𝑚𝑎𝑥, the Eq. (20)

can be further estimated by

𝜎𝑢 ≤ ∇𝑚𝑎𝑥
∑

𝑏∈𝐵
|

|𝐷𝑏
𝑢|

|𝐷𝑢|
−

|𝐷𝑏
|

|𝐷|

|

= ∇𝑚𝑎𝑥
∑

𝑏∈𝐵
|

𝑎𝑛𝑢,𝑏
∑

𝑏∈𝐵 𝑎𝑛𝑢,𝑏
−

∑

𝑢∈𝑈 𝑎𝑛𝑢,𝑏
∑

𝑢∈𝑈,𝑢∈𝑈 𝑎𝑛𝑢,𝑏
|

= ∇𝑚𝑎𝑥
∑

𝑏∈𝐵
|

𝑎𝑛𝑢,𝑏
∑

𝑏∈𝐵 𝑎𝑛𝑢,𝑏
−

𝐷𝑎𝑣𝑒
𝑏

∑

𝑏∈𝐵 𝐷𝑎𝑣𝑒
𝑏

|

(26)

here the last equality holds since tasks offloaded to the edge has
he same ratio as the average ratio of the dataset in edge [35]. Given
q. (17), we can yield 𝜎𝑢 ≤ ∇𝑚𝑎𝑥𝐵𝜂𝑛, and substitute it into Eq. (20) to
onclude the proof of Eq. (26). □

From the above theoretical analysis, it is concluded that Algorithm
utilizing the enhanced actor-critic reinforcement learning can be

onverged after the initialization of certain parameters. Next, massive
imulations are carried out to further demonstrate its advantages over
he benchmark approaches, in terms of task-processing delay, power
fficiency, and convergence time.

. Experience-driven and randomized simulations

.1. Evaluation setup

We consider a 300 m × 300 m square area with the different number
f users. Each user can produce different tasks (services) to process in
time slot with 𝑁 = 60. Similar to [36] and [37], the ARM Cortex-
based IoT devices are employed, which are regarded as the ground

sers. The energy consumption for the local tasks processed is 141 mW.
In our implementation, a 5-layer fully-connected neural networks

with the feed-forward function is used to serve as the actor and critic
networks. The neurons of the input layer is the number of dimensions
concerning the environment state. The second and third layer both

contain 64 neurons. The ReLU (Rectified Linear Unit) [38] is acted

Computer Networks 193 (2021) 107875L. Yu et al.
Table 3
Parameter setting in experiments.

Parameters Values Parameters Values

𝑙(𝑏, 𝑛) [5, 10] Cycles 𝛽 0.9
𝑓𝑏 [0.5, 0.7] Gbits 𝜖 0.99
𝑐𝑢 [0.5, 2] GHz 𝜉𝜋 0.001
𝑐𝑚 10 GHz 𝜉𝑄 0.01
𝑒𝑙𝑜𝑠𝑠 10−9 J/cycle 𝜆 0.01

as an activation function before the final output layer which utilizes
the softmax for activation. The activation function of softmax is to
ensure the sum of output values equals one. The empirical settings
obtained by the extensive simulations are outlined in Table 3, where
the parameter of 𝑓𝑏 set to the range of [0.5 0.7] Gbits intends to inspire
the user to offload tasks in order to measure the performance of our
proposed algorithms. Some big applications, in general, need to offload
their tasks to the edge such as online gaming and virtual reality. The
simulation parameters are mostly derived from [39]. The model is
trained on the server with 2.3 GHz 4 cores CPU and 32GB random
access memory. The power consumption of the smart IoT device is
measured by the monitor in the battery.

The OTS with the following other alternatives are compared:

• ACRL: Actor-critic reinforcement learning method is an online
approach to tackle the real-time problems of task processing.
Different from it, our proposed OST method considers energy
efficiency.

• Dynamic programming termed as DP: The main idea of DP is to
divide a problem into sub-problems and address all sub-problems
to acquire the optimal solutions.

• Heuristic search algorithm termed as HSA: It is one of the bench-
mark approaches to search the optimally approximated solution
by the searching space. The approach of HSA is often an offline
method.

• Lagrange duality termed as LD: The method of LD aims to solve
the linear programming problem based on the accurate model.
Whereas it is tricky to cope with the model-free problem.

The following metrics are employed to evaluate the performance of
OST.

• Service response time: It involves the time of processing tasks
locally, the delay of the partial task offloaded to MEC and the
round-trip transmission latency between users and MEC.

• Users’ power efficiency: It is measured by the consumed amount
of energy when the user’s device deals with a unit of its workload.

• Convergence time: It is a quantified metric for measuring the
efficiency of a certain algorithm. It is various in different scenes.
It also weighs the feasibility of the algorithm.

The parameter 𝜆 in our settings is set to 0.01 for controlling the
update rate. The reason is illustrated in Fig. 2. The influence of the task-
processing delay on the number of tasks under different update rates
are shown in Fig. 2(a). Note that, when the update rate is set to 0.01,
the delay of a task is the lowest among the three different values of 𝜆
despite the increase in the number of tasks in a time slot. The reason
is that the update rate impacts the learning procedure of the actor and
critic networks. If it is too small, making the learning process slow,
and rising the time duration of the processing tasks. On the contrary,
it boosts the learning procedure. While it easily suffers from neglecting
the optimal solution. The learning procedure cannot converge until the
optimal solution is obtained. Therefore, the delay of task processing at
𝜆 = 0.1 is still higher than that at 𝜆 = 0.01. Similarly, Fig. 2(b) exhibits
the impact of reward on the number of tasks to be processed under
different update rates in a slot. It is observed that the energy efficiency
of 𝜆 = 0.01, overall, performs the best than that of the other values.
8

Fig. 2. Training results of OST versus iterations during the training.

5.2. Comparisons with other alternatives

There are 4000 task-processing samples for driving the model-free
training so as to derive the solution of the two-dimensional variables.
The training results of OST are described in Fig. 3, where Fig. 3(a)
shows the average delay of the processing tasks for a user versus
epochs, and the loss values of the actor networks and the critic ones
versus iterations are exhibited in Fig. 3(b) and Fig. 3(c), respectively.
We observe that the loss values between the actor networks and the
critic ones are approaching to zero after 1000 epochs. Meanwhile, in
Fig. 3(a), it is noted that the average delay of the processing tasks
is in the long-term optimal state even if there exist some negligible
fluctuations. In other words, before the convergence of the algorithm,
the loss values of the actor and critic networks are in the oscillation that
means the learning procedure is unstable. Because online learning is a
trial-and-error process via the accumulative experience. The average
delay of the processing tasks for a user is reduced by 71.42% after
experiencing 1000 epochs.

The comparison of the different energy efficiency, the average delay
for a user, and the convergence time with the different number of the
processing tasks in a slot under different approaches are sketched as
Fig. 4. In Fig. 4(a), it is clearly found that the curve of the LD method
decreases linearly, suggesting that it is low efficiency to tackle some
real-time tasks and a mass of tasks to be processed in a time slot. The
curves of DP and HSA are first descending and then slowly go up,
showing that the DP and HSA approaches can work well for the small
number of tasks. However, they will become worse when the number of
processing tasks is larger than 15. In contrast, the curve of the learning-
enabled approaches of ACRL and OST are smoothly rising with the
increase of the number of the processing tasks in a slot, which implies
that the learning-enabled methods perform better than the approaches

Computer Networks 193 (2021) 107875L. Yu et al.
Fig. 3. Training results of OST versus iterations during the training.

without the learning algorithm when the number of tasks is larger than
18. Furthermore, the improvement of the overall energy efficiency is
up to 20.5%. Because the proposed OST has taken these factors into
account such as the device’s energy consumption, the fairness of the
assignment of the communication capacity, and the provisioning for
the offloading percentage, which enhances the accuracy of reward. The
sinuous curve of HSA in Fig. 4(a) indicates that the exhaustive search
algorithm is unstable with the growth of the number of the processing
tasks in a slot when compared with the curve of DP. Because its search
space is extended.

The trends of the two curves of OST and ACRL approaches are first
descending and then keeping stable in Fig. 4(b). Compared with them,
the trends of the other approaches are increasing with the growth of
the number of processing tasks in a slot. This phenomenon shows that
the learning-enabled approaches are more applicable to the situations
with a larger number of tasks from the long-term view. In terms of the
small scale of tasks to be processed in a time slot, especially, within the
9

number of around 20 tasks in a slot, the strategies of OST and ACRL are
time-consuming. Because the learning procedure is needed in the initial
phase, and the size of training samples, to some extent, has an influence
on the leaning time. That is, the small size of samples may cause
the unsatisfied training results. The solver of LD to address the linear
programming problem has the advantage when the number of tasks
is small in a slot. Whereas the average delay of LD rapidly becomes
worse than the other approaches in Fig. 4(b). Because it cannot work
out some real-time tasks especially for a large number of the processing
tasks. The methods of HSA and DP perform better than that of OST and
ACRL before the number of processing tasks up to around 20. However,
they become worse with the continuous growth of tasks, which means
HSA and DP cannot obtain the continuously optimal solvers even if they
can cope with the larger number of tasks. On the contrary, OST and
ACRL exhibit well under this circumstance. Compared with ACRL, the
average delay of OST approaches is reduced by 37.5% for one user.

The convergence time of OST and ACRL is first increasing and then
decreasing. Finally, it keeps unchanged with the increase in the number
of tasks in Fig. 4(c). Obviously, the approaches of DP, HSA, and LD
converge faster than that of OST and ACRL when the number of the
processing tasks in a slot is small. It implies that those methods are
suitable for the small size of tasks. Overall, the convergence time of OST
becomes the lowest among the other approaches after the number of
tasks increases to around 17. Further, it keeps 16 ms, which is the lowest
in the other approaches. These results are consistent with the results in
Fig. 3(a) and Fig. 4(b). Therefore, it is concluded that the approach
of the online tailored solver with energy efficiency has significant
advantages over the benchmark approaches, in terms of task-processing
delay, power efficiency, and convergence time.

5.3. Real world application

We have made experiments with 30 users in a building around
300 m × 300 m square area. Each user generates 10 tasks at a fixed
time slot. Other parameters’ settings are referred to Table 3. We first
fixed the variable 𝑝𝑢,𝑏, setting it to be 200 MC/s (MC=106 cycles) [36]
and [37] in some practical scenes (i.e., channel communication capac-
ity is fixed in some commercial application), and then we make it a
block box to flexibly adjust its tailored requirements. Herein, since the
comparison with other alternatives in Section 5.2 has been discussed,
we set about discussing the approaches of OST and ACRL carefully, both
of which utilize the actor-critic reinforcement learning.

The discussions on the comparison of the energy efficiency and the
average delay with iterations under the premise of the respectively
known or unknown variable of 𝑝𝑢,𝑏 are conducted. As shown in Fig. 5
from (a) to (d), it is observed that, compared with the fixed 𝑝𝑢,𝑏 in
Fig. 5(a) and (c), the energy efficiency of OST and ACRL with the
unfixed 𝑝𝑢,𝑏 in Fig. 5(b) is respectively improved by about 25% and
16.7% when they are in convergence. Correspondingly, the average
delay of OST and ACRL with the unfixed 𝑝𝑢,𝑏 in Fig. 5(d) is respectively
reduced by about 56.3% and 40% when they are in convergence. It
Fig. 4. (a) Energy efficiency, (b) average delay for a user, and (c) convergence time versus the number of processing tasks in a slot.

Computer Networks 193 (2021) 107875L. Yu et al.
Fig. 5. Comparison of convergence time and system performance with different
approaches.

suggests that the allocation of the unfixed communication capacity
performs better than that of the fixed value of 𝑝𝑢,𝑏 if the approaches
use the learning-based methods to complete the assignment. Note that
the convergence time is embodied by the iterations of OST and ACRL.
The curves of them stay stable at the iterations of around 300 and 400,
respectively. Overall, the convergence time of OST is faster than that
of ACRL due to the consideration of the tailored energy efficiency for
users.

6. Conclusion

The proliferation of mobile IoT devices and data-intensive comput-
ing is driving up a significant demand for services with low latency
and high energy efficiency. Different from existing works focusing on
some canonical models incorporating the linear programming model,
game-theoretical model, and so forth, we first propose a novel unify-
ing task-processing orchestrator that is an online tailored solver for
learning the model-free model in consideration of the partial and
binary task offloading. Further, the energy efficiency of IoT devices
is elaborately designed in a distributed manner according to the real-
world settings, shifting the research of the conventional architecture
to the user-oriented IoT devices. Besides, the first attempt is made on
an innovative actor-critic reinforcement learning approach taken the
energy efficiency into account, which derives an asymptotically opti-
mal solution. Extensive simulation analysis demonstrates our proposed
approach outperforms the state-of-the-art in terms of the task-processed
delay, energy efficiency, and convergence time.

In future work, since the deep learning models are driven by big
data, the black-box learning approach leveraging some specifically iso-
lated and small data will be further explored to circumvent oscillation.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.comnet.2021.107875.
10
Acknowledgment

All authors have read and contributed to the manuscript.

References

[1] L. Yu, Z. Li, Y. Zhong, Z. Ji, J. Liu, When QoE meets learning: A dis-
tributed traffic-processing framework for elastic resource provisioning in HetNets,
Comput. Netw. 167 (2020) 106904.

[2] Z. Ning, P. Dong, X. Kong, F. Xia, A cooperative partial computation offloading
scheme for mobile edge computing enabled internet of things, IEEE Internet
Things J. 6 (3) (2019) 4804–4814.

[3] L. Pu, X. Chen, G. Mao, Q. Xie, J. Xu, Chimera: An energy-efficient and
deadline-aware hybrid edge computing framework for vehicular crowdsensing
applications, IEEE Internet Things J. 6 (1) (2019) 84–99.

[4] G.S. Park, W. Kim, S.H. Jeong, H. Song, Smart base station-assisted partial-flow
device-to-device offloading system for video streaming services, IEEE Trans. Mob.
Comput. 16 (9) (2017) 2639–2655.

[5] S. Bi, Y.J. Zhang, Computation rate maximization for wireless powered mobile-
edge computing with binary computation offloading, IEEE Trans. Wireless
Commun. 17 (6) (2018) 4177–4190.

[6] M. Chen, Y. Hao, Task offloading for mobile edge computing in software defined
ultra-dense network, IEEE J. Sel. Areas Commun. 36 (3) (2018) 587–597.

[7] F. Zhou, Y. Wu, R.Q. Hu, Y. Qian, Computation rate maximization in UAV-
enabled wireless-powered mobile-edge computing systems, IEEE J. Sel. Areas
Commun. 36 (9) (2018) 1927–1941.

[8] T. Bai, J. Wang, Y. Ren, L. Hanzo, Energy-efficient computation offloading for
secure UAV-edge-computing systems, IEEE Trans. Veh. Technol. 68 (6) (2019)
6074–6087.

[9] Z. Yan, M. Peng, M. Daneshmand, Cost-aware resource allocation for opti-
mization of energy efficiency in fog radio access networks, IEEE J. Sel. Areas
Commun. 36 (11) (2018) 2581–2590.

[10] Y. Geng, Y. Yang, G. Cao, Energy-efficient computation offloading for
multicore-based mobile devices, in: Proc. of IEEE INFOCOM, 2018, pp. 46–54.

[11] Q. Qi, J. Wang, Z. Ma, H. Sun, Y. Cao, L. Zhang, J. Liao, Knowledge-driven
service offloading decision for vehicular edge computing: A deep reinforcement
learning approach, IEEE Trans. Veh. Technol. 68 (5) (2019) 4192–4203.

[12] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, X. Shen, Space/aerial-assisted
computing offloading for IoT applications: A learning-based approach, IEEE J.
Sel. Areas Commun. 37 (5) (2019) 1117–1129.

[13] Z. Yan, M. Peng, C. Wang, Economical energy efficiency: an advanced
performance metric for 5G systems, IEEE Wirel. Commun. 24 (1) (2017) 32–37.

[14] Y. Wu, L.P. Qian, K. Ni, C. Zhang, X. Shen, Delay-minimization nonorthogonal
multiple access enabled multi-user mobile edge computation offloading, IEEE J.
Sel. Top. Sign. Proces. 13 (3) (2019) 392–407.

[15] J. Xu, L. Chen, P. Zhou, Joint service caching and task offloading for mobile edge
computing in dense networks, in: Proc. of IEEE INFOCOM, 2018, pp. 207–215.

[16] Y. Zhou, Z.M. Fadlullah, B. Mao, N. Kato, A deep-learning-based radio resource
assignment technique for 5g ultra dense networks, IEEE Netw. 32 (6) (2018)
28–34.

[17] C. Liu, Z. Chen, J. Tang, J. Xu, C. Piao, Energy-efficient UAV control for effective
and fair communication coverage: A deep reinforcement learning approach, IEEE
J. Sel. Areas Commun. 36 (9) (2018) 2059–2070.

[18] Y. Xiao, M. Krunz, Distributed optimization for energy-efficient fog computing
in the tactile internet, IEEE J. Sel. Areas Commun. 36 (11) (2018) 2390–2400.

[19] I. Grondman, L. Busoniu, G.A.D. Lopes, R. Babuska, A survey of actor-critic
reinforcement learning: Standard and natural policy gradients, IEEE Trans. Syst.
Man Cybern. 42 (6) (2012) 1291–1307.

[20] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous Control with Deep Reinforcement Learning, in: Proc. of
ICLR, 2016.

[21] K.G. Vamvoudakis, F.L. Lewis, Online actor–critic algorithm to solve the
continuous-time infinite horizon optimal control problem, Automatica 46 (5)
(2010) 878–888.

[22] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C.H. Liu, D. Yang, Experience-driven
Networking: A Deep Reinforcement Learning based Approach, in: Proc. of IEEE
INFOCOM, 2018, pp. 1871–1879.

[23] G. Rishwaraj, S.G. Ponnambalam, C.K. Loo, Heuristics-based trust estimation in
multiagent systems using temporal difference learning, IEEE Trans. Cybern. 47
(8, SI) (2017) 1925–1935.

[24] P. Mach, Z. Becvar, Mobile edge computing: A survey on architecture and
computation offloading, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1628–1656.

https://doi.org/10.1016/j.comnet.2021.107875
https://doi.org/10.1016/j.comnet.2021.107875
https://doi.org/10.1016/j.comnet.2021.107875
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb1
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb2
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb3
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb4
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb4
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb4
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb4
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb4
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb5
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb6
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb7
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb8
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb9
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb11
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb12
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb13
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb14
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb14
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb14
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb14
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb14
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb16
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb17
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb18
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb19
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb21
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb23
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb24
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb24

Computer Networks 193 (2021) 107875L. Yu et al.
[25] L. Pu, X. Chen, J. Xu, X. Fu, D2D Fogging: An energy-efficient and incentive-
aware task offloading framework via network-assisted D2D collaboration, IEEE
J. Sel. Areas Commun. 34 (12) (2016) 3887–3901.

[26] T.Z. Oo, N.H. Tran, W. Saad, D. Niyato, Z. Han, C.S. Hong, Offloading in
hetnet: A coordination of interference mitigation, user association, and resource
allocation, IEEE Trans. Mob. Comput. 16 (8) (2016) 2276–2291.

[27] C. Chen, B. Wang, R. Zhang, Interference hypergraph-based resource allocation
(IHG-RA) for NOMA-integrated V2X networks, IEEE Internet Things J. 6 (1)
(2019) 161–170.

[28] J. Zhu, Y. Song, D. Jiang, H. Song, A new deep-Q-learning-based transmission
scheduling mechanism for the cognitive Internet of Things, IEEE Internet Things
J. 5 (4) (2018) 2375–2385.

[29] H.V. Hasselt, A. Guez, D. Silver, Deep Reinforcement Learning with Double
Q-Learning Artificial intelligence, in: Proc. of AAAI, 2016, pp. 2094–2101.

[30] L. Yu, Z. Li, J. Liu, R. Zhou, Resources Sharing in 5G Networks: Learning-Enabled
Incentives and Coalitional Games, 2020, https://doi.org/10.1109/JSYST.2019.
2958890.

[31] L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proc.
of COMPSTAT, Springer, 2010, pp. 177–186.

[32] L. Yu, Z. Li, J. Liu, R. Zhou, Resources sharing in 5G networks: Learning-enabled
incentives and coalitional games, IEEE Syst. J. (2019) https://doi.org/10.1109/
JSYST.2019.2958890.

[33] S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv
preprint arXiv:1609.04747.

[34] S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, When edge
meets learning: Adaptive control for resource-constrained distributed machine
learning, in: Proc. of IEEE INFOCOM, 2018, 63–71.

[35] Q. Mao, F. Hu, Q. Hao, Deep learning for intelligent wireless networks: A
comprehensive survey, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2595–2621.

[36] ARM, ARM Cortex-M for Beginners. [Online]. Available:, 2017,
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-
attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-
for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf.

[37] A. Hussain, Energy consumption of wireless IoT nodes, M.S. Thesis, Dept. Inf.
Secur. Commun. Technol., Norwegian Univ. Sci. Technol., Trondheim, Norway,
NTNU, 2017.

[38] Y.B. I. Goodfellow, A. Courville, Deep Learning, MIT Press, 2016, http://www.
deeplearningbook.org/.

[39] X. Ma, J. Liu, H. Jiang, Resource allocation for heterogeneous applications with
device-to-device communication underlaying cellular networks, IEEE J. Sel. Areas
Commun. 34 (1) (2016) 15–26.

Li Yu received her M.S. degree from Zhengzhou University,
China, in 2016, and since 2019, she has been funded
by China Scholarship Council as a visiting Ph.D. student
at Simon Fraser University, Canada. She is currently a
Ph.D. candidate in the School of Computer Science, Wuhan
University, China. Her current research interests include
machine learning, wireless networks, Internet of Things,
Mobile Edge Computing, mobile network optimization, and
Software Defined Network.
11
Zongpeng Li (SM’12) received his B.E. in Computer Science
from Tsinghua University in 1999, and his Ph.D. from
the University of Toronto in 2005. He has been affiliated
with the University of Calgary and then Wuhan University.
His research interests are in computer networks, network
algorithms, and cloud computing. He received the Out-
standing Young Computer Scientist Prize from the Canadian
Association of Computer Science, and a few Best Paper
Awards from conferences in related fields.

Jiangchuan Liu (F’17) received the B.Eng. degree (cum
laude) in computer science from Tsinghua University, Bei-
jing, China, in 1999, and the Ph.D. degree in computer
science from The Hong Kong University of Science and
Technology, in 2003. He is currently a University Profes-
sor with the School of Computing Science, Simon Fraser
University, BC, Canada. He is the Steering Committee Chair
of the IEEE/ACM IWQoS, from 2015 to 2017, and the TPC
Co-Chair of the IEEE IC2E 2017 and the IEEE/ACM IWQoS
2014. He serves as an Area Chair for the IEEE INFOCOM,
ACM Multimedia, and the IEEE ICME. He has served on the
Editorial Boards of the IEEE Transactions on Big Data, the
IEEE Transactions on Multimedia, the IEEE Communications
Surveys and Tutorials, the IEEE Access, the IEEE Internet
of Things Journal, Computer Communications, and Wireless
Communications and Mobile Computing (Wiley). (Based on
document published on 9 December 2018).

Ruiting Zhou has been an Associate Professor in the School
of Cyber Science and Engineering at Wuhan University since
June 2018. She received a M.S. degree in telecommunica-
tions from Hong Kong University of Science and Technology,
Hong Kong, in 2008, a M.S. degree in computer science
from University of Calgary, Canada, in 2012 and her Ph.D.
degree in 2018 from the Department of Computer Science,
University of Calgary, Canada. Her research interests include
cloud computing, machine learning and mobile network
optimization. She has published research papers in top-tier
computer science conferences and journals, including IEEE
INFOCOM, IEEE/ACM TON, IEEE JSAC, IEEE TMC. She also
serves as a reviewer for journals and international confer-
ences such us IEEE JSAC, IEEE TMC, IEEE TCC, IEEE TWC,
IEEE Transactions on Smart Grid and IEEE/ACM IWQOS.
She held NSERC Canada Graduate Scholarship, Alberta
Innovates Technology Futures (AITF) Doctoral Scholarship,
and Queen Elizabeth ll Graduate Scholarship from 2015 to
2018.

http://refhub.elsevier.com/S1389-1286(21)00044-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb25
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb26
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb27
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb28
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb28
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb28
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb28
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb28
https://doi.org/10.1109/JSYST.2019.2958890
https://doi.org/10.1109/JSYST.2019.2958890
https://doi.org/10.1109/JSYST.2019.2958890
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb31
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb31
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb31
https://doi.org/10.1109/JSYST.2019.2958890
https://doi.org/10.1109/JSYST.2019.2958890
https://doi.org/10.1109/JSYST.2019.2958890
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb35
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb35
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb35
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf
https://community.arm.com/cfs-file/__key/telligent-evolutioncomponents-attachments/01-2142-00-00-00-00-52-96/White-Paper-_2D00_-Cortex_2D00_M-for-Beginners-_2D00_-2016-_2800_finalv3_2900_.pdf
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb37
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb37
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb37
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb37
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb37
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb39
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb39
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb39
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb39
http://refhub.elsevier.com/S1389-1286(21)00044-X/sb39

	Online and energy-efficient task-processing for distributed edge networks
	Introduction
	Related work
	Preliminaries and problem formulation
	Actor-critic reinforcement learning
	System architecture
	Energy model
	Problem formulation

	Decomposition method
	Equivalent subproblems
	Online tailored solver
	Theoretical analysis

	Experience-driven and randomized simulations
	Evaluation setup
	Comparisons with other alternatives
	Real world application

	Conclusion
	Declaration of competing interest
	Acknowledgment
	References

