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Abstract—The deeply penetrated WiFi signals not only provide
fundamental communications for the massive Internet of Things
devices but also enable cognitive sensing ability in many other
applications, such as human activity recognition. State-of-the-art
WiFi-based device-free systems leverage the correlations between
signal changes and body movements for human activity recogni-
tion. They have demonstrated reasonably good recognition results
with a properly placed transceiver pair, or, in other words, when
the human body is within a certain sweet zone. Unfortunately,
the sweet zone is not ubiquitous. When the person moves out
of the area and enters a dead zone, or even just the orienta-
tion changes, the recognition accuracy can quickly decay. In
this paper, we closely examine such spatial diversity in WiFi-
based human activity recognition. We identify the dead zones and
their key influential factors, and accordingly present WiSDAR,
a WiFi-based spatial diversity-aware device-free activity recogni-
tion system. WiSDAR overshadows the dead zones yet with only
one physical WiFi sender and receiver. The key innovation is
extending the multiple antennas of modern WiFi devices to con-
struct multiple separated antenna pairs for activity observing.
Profiling activity features from multiple spatial dimensions can
be more complicated and offer much richer information for fur-
ther recognition. To this end, we propose a deep learning-based
framework that integrates the hidden features from both tempo-
ral and spatial dimensions, achieving highly accurate and reliable
recognition results. WiSDAR is fully compatible with commer-
cial off-the-shelf WiFi devices, and we have implemented it on
the commonly available Intel WiFi 5300 cards. Our real-world
experiments demonstrate that it recognizes human activities with
a stable accuracy of around 96%.

Index Terms—Deep learning, human activity recognition, spa-
tial diversity.

I. INTRODUCTION

AS A cornerstone service in such important Internet of
Things applications as smart home, health diagnosis, and

intrusion detection, human activity recognition has attracted
great attention in both academia and industry. Among many
forms of sensing technologies, e.g., camera [1], wearable sen-
sor [2], [3], and RFID [4], WiFi-based activity recognition is
of particular interest given its ubiquity, low cost, device-free
experience, and low dependence [5].
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Fig. 1. Three Tx–Rx pairs observe different patterns in CSI amplitude for
the same walking activity due to the spatial diversity. The dashed ellipses are
their IAs, respectively.

Intuitively, when a person resides in the surrounding area
of a WiFi transceiver pair, his/her body movement will affect
the travel-through WiFi signals. Through analyzing such signal
characteristics as coarse-grained received signal strength indi-
cator (RSSI) and fine-grained channel state information (CSI),
different activities can be recognized [5]–[10]. Existing solu-
tions have demonstrated reasonably good recognition results
with a properly placed transceiver pair [8], [10], or, in other
words, when the human body is within a certain sweet zone.
Unfortunately, our observations show that the sweet zone
[which we refer to as the effective area (EA) of a recogni-
tion algorithm] is not ubiquitous. When the person moves out
of the area, or even just the orientation changes, the accuracy
of recognition can quickly decay.

To understand the impact of such spatial diversity, we con-
sider a simple case of the walking activity in Fig. 1, which
is observed by three different transceiver pairs. The Tx1–
Rx1 pair is from a vertical angle, observing a fast waving
shape in the CSI amplitude based on the state-of-the-art solu-
tions [8], [11], whereas the Tx2–Rx2 pair is from a horizontal
angle, observing a much slower waving shape. Clearly, the
different patterns of changes in wireless channel metrics may
lead to different recognition results, even though they are
observing the same activity of the same person. The third pair,
Tx3–Rx3, which is largely blocked by the target, sees an even
worse result: a significant drop in the CSI amplitude. Such
faded power is hardly useful for recognition; in other words,
the person is in the dead zone of the Tx3–Rx3 pair. In fact,
our observations suggest that any transceiver pair has a non-
negligible dead zone [refer to as an ineffective area (IA), as
outlined by a dashed ellipse in Fig. 1].

In this paper, through extensive field experiments and anal-
ysis, we closely examine the spatial diversity in WiFi-based
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human activity recognition. We identify the IAs and their key
influential factors. Motivated by the shadowless lamp design
in surgery, we develop a WiFi-based spatial diversity-aware
device-free activity recognition (WiSDAR) system, which
overshadows the IAs yet with only one physical WiFi sender
and receiver. The key innovation is extending the multiple
antennas of modern WiFi devices to construct multiple sep-
arated antenna (SA) pairs and obtain features from multiple
spatial dimensions. A target area determination scheme is also
applied to select those ineffective pairs (referring to those
affected pairs due to the existence of the target in their IAs)
and filter out the corresponding dirty features. Different from
existing solutions [9], [11] that use multiple WiFi links to
obtain extra features, WiSDAR is cost-effective since it only
requires two transceivers and one-time initial deployment. For
example, if we want to construct three senders and three
receivers for observing, traditional approaches like [9] and [11]
require six WiFi devices while WiSDAR only requires two
devices.

Profiling activity features from multiple spatial dimensions
is more complicated and also offers much richer informa-
tion for further activity recognition. Conventional classification
tools used in existing systems, e.g., hidden Markov model
(HMM) [8] and k-nearest neighbors (kNNs) [11], however, are
not powerful enough to mine the hidden temporal and spatial
relationships from such data. WiSDAR employs an advanced
deep learning model to analyze their patterns through super-
vised learning. In particular, both convolutional neural network
(CNN) [12] and long short term memory (LSTM) [13] network
are applied to integrate the features from both temporal and
spatial dimensions, and achieves highly accurate and reliable
activity recognition results.

WiSDAR is fully compatible with commercial off-the-shelf
(COTS) WiFi devices. We have implemented WiSDAR on
the commonly available Intel WiFi Link 5300 cards. Our
real-world experiment results demonstrate that it recognizes
human activities with a stable accuracy of around 96%. This
greatly surpasses the state-of-the-art solutions [8] (around
75% when not carefully considered the spatial diversity,
especially the IA).

The rest of this paper is organized as follows. Section II
introduces the reflection model and the impact of the spa-
tial diversity. Section III outlines the system overview. We
describe the preprocessing scheme and the deep learning-based
recognition approach in Sections IV and V, respectively. The
implementation and evaluation are presented in Section VI. We
review the related works in Section VII, with the discussion
and conclusion in Sections VIII and IX.

II. UNDERSTANDING SPATIAL DIVERSITY IN
REFLECTION MODEL

We start from some necessary background information,
followed by examining the existence and impact of the spatial
diversity in WiFi reflection models.

A. Reflection Model for Activity Recognition

As shown in Fig. 2, in an indoor environment, radial signals
can be reflected by many objects, e.g., walls and human bodies,
and thus arrive at a receiver through multiple paths. CSI is
commonly used to characterize the channel frequency response
(CFR) of a communication link in WiFi systems. Let H(f , t)
represent the CFR measured for frequency f at time t, we

Fig. 2. Illustration of the reflection model as well as the IA and EA of a
transceiver pair.

have

H(f , t) =
K∑

k=1

αk(t)e
−j2π f τk(t) (1)

where K is the total number of multipaths, αk(t) and τk(t) are
the complex channel attenuation and the time of flight for path
k, respectively.

The relative movement between transceivers and a reflec-
tor (human body in our context) will change the frequency
observed at the receiver, i.e., the Doppler effect. Given
λ, the wavelength, and d(t), the change of reflected path
length, the frequency shift of signals bounced off is fD =
−(1/λ)(d/dt)d(t) [14], and the total CFR then can be repre-
sented as

H(f , t) = e−j2π�ft

⎛

⎝Hs(f ) +
∑

k∈Pd

αk(t)e
j2π

∫ t
−∞ fDk (u)du

⎞

⎠ (2)

where �f is the carrier frequency offset (CFO), Hs(f , t) is the
sum of static paths, and Pd is the set of dynamic paths.

The magnitude of the combined CFR changes with the
dynamic component, which can be explored for human activ-
ity recognition. The relationship however is obscured by the
unknown CFO. Earlier works [8], [11] make use of the CFR
power [i.e., multiplication of H(f , t)] to eliminate the impact
of unknown CFO, building up the correlation between the
wave frequencies of CFR power and the dynamic path length
changes. The reflection model approximates the velocity of the
body movement as a fixed function of the path length change
rate, and utilizes the extracted features in the time-frequency
domain for human activity recognition.

B. Spatial Diversity of the Observed Target Area

Observation 1: The CFR power can be largely attenu-
ated when the target is located in a certain area (the IA) of
a transceiver pair, thereby affecting the activity recognition
accuracy.

Fig. 3(a) plots the CSI amplitude of 30 subcarriers from a
pair for an observed target. From 1 to 3.2 s, the CSI exhibits a
high amplitude when the target is moving. Yet the amplitude
attenuates significantly from 3.2 s, which is hardly reliable for
activity recognition. Fig. 3(b) shows the CSI amplitude change
when the target passes through the IA. The CSI amplitude drop
lasts about 0.26 s, which coincides with the time of passing
through the area.

The power fading can be caused by many effects, such
as absorption, diffraction, and interference, not just directly
blocking the line-of-sight (LOS) path [15]. The Fresnel zones
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(a) (b)

Fig. 3. Amplitude of 30 CSI subcarriers of a transceiver pair. When the target is in the IA, the amplitude attenuates obviously. (a) Person walks to IA and
stays inside. (b) Person passes through IA.

are a series of concentric ellipsoidal regions whose foci are
the pair of transceivers [15]. The first Fresnel zone (FFZ) is
the innermost ellipsoid where the difference between major
axis length and the foci length is half of the wavelength. It is
known that most of the RF energy is transmitted through the
FFZ, instead of through the LOS path only [16]. Obstruction
in the FFZ will negatively affect the power of signal trans-
mission. Our experiment shows that the recognition accuracy
for activities in the FFZ is only 50% on average (see more
details in Section VI). That said, the FFZ outlines an IA for
activity recognition, and otherwise the EA, as illustrated in
Fig. 2. In this paper, we refer to the area inside the FFZ
as an IA. The size of the FFZ depends on the distance
between the transceivers and the frequency of the radios.
The maximum diameter of the FFZ can be calculated as
F1 = √

(cD/f ) [15], where c is the light speed, D is the dis-
tance between the transceivers, and f is the radio frequency.
For example, when we use 5 GHz frequency and set the dis-
tance to 3 m, the maximum diameter of the FFZ is 0.42 m.
The impact of the FFZ has been examined in such applications
as localization, tracking, and respiration detection [17]–[20].
We, however, mainly focus on investigating the impact of
the FFZ on activity recognition and how to eliminate such
impact.

Note that the energy is not equally distributed among all the
subcarriers due to the frequency selective fading [21], which is
a normal phenomenon. Also, some subcarriers may be affected
by multipath effect and experience an amplitude rise when
the target is in the IA; see, for example, from the 20th to the
27th subcarrier in Fig. 4. Nevertheless, we observe that most
subcarriers are normally affected by power fading, so that the
overall amplitude still attenuates dramatically (e.g., from the
1st to the 18th subcarrier).

C. Spatial Diversity of the Observing Transceivers

Besides the spatial diversity of the observed target in differ-
ent areas, the spatial diversity of observing transceivers also
affects observations and hence recognition results.

Observation 2: For the same activity, a pair of transceivers
can observe quite different CFR power characteristics when
they are placed at different locations.

Fig. 5 compares the spectrograms of the CFR power for
a body falling activity that is observed from three different
transceiver pairs. The three pairs are of different locations and
orientations. Given the correlation between the wave frequency
and the reflected path length change rate, we can use short-
time Fourier transform (STFT) or discrete wavelet transform

Fig. 4. CSI comparison when the target is in IA and in EA.

(DWT) to separate the frequency components across the time
domain.

The Tx1–Rx1 pair observes a high energy rising from 10 Hz
to about 60 Hz from time 4.5 to 5 s, and an energy drop
to very low frequency (near static) [Fig. 5(a)]. According to
the reflection model, this spectrogram implies that the target
accelerates from a low speed to high speed in a short time
and then suddenly stops. Such characteristics match the falling
activity well, i.e., the target falls very fast and then keeps
stationary on the floor.

This falling activity however is not well captured by the
Tx2–Rx2 pair, which shows very different spectrogram [in
Fig. 5(b)]. This spectrogram has a very small crest at about
4.7 s, only achieving at 25 Hz in the frequency domain. It is
likely to be classified as some other activities due to the low
frequency. The observation from Tx3–Rx3 pair is even worse,
since the spectrogram keeps at a low frequency, as if there is
nothing happened.

In short, the relative locations and orientations between
the observing transceivers and the target matter for activity
recognition. There has been efforts toward estimating the loca-
tion and orientation [10]. Yet given the existence of the IA,
using a single pair of transceivers will simply fail if the target
unluckily moves there.

III. SYSTEM OVERVIEW

Our observations in the previous section reveal that the
spatial diversity in the reflection model seriously under-
mines activity recognition. Our WiSDAR, a spatial diversity-
aware device-free human activity recognition system, seeks
to address this issue yet with little extra hardware over-
head. The key innovation is utilizing the MIMO feature and
multiple extended antennas of existing WiFi devices to con-
struct multiple separated observing pairs. As such, WiSDAR
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(a) (b) (c)

Fig. 5. Comparison of spectrograms of the same falling activity from different observing pairs. (a) Observation from Tx1–Rx1. (b) Observation from
Tx2–Rx2. (c) Observation from Tx3–Rx3.

Fig. 6. WiSDAR system framework.

obtains more diverse features from multiple spatial dimen-
sions, which not only minimizes the impact of IAs like a
shadowless lamp does in surgery but also offers richer spa-
tial and temporal information that works for the advanced
learning tools. As our later experiments show, three anten-
nas are generally good enough to construct separated pairs
for activity recognition, which are readily available in today’s
WiFi devices. We emphasize that WiSDAR still uses only one
pair of physical WiFi devices with no extra NICs or APs
needed. It is fully compatible with the current WiFi standards
and we have implemented it with the commonly available
Intel 5300 NICs.

The WiSDAR system framework is illustrated in Fig. 6,
which consists of three modules as follows.

A. CSI Measurement

Our system collects CSI as input from COTS wireless
devices. The background CSI is first collected as baseline data.
When there is a person performing an activity, the CSI of
such activity is then collected for further processing. Different
from the state-of-the-art solution that only has one effec-
tive transceiver pair for monitoring, we extend the multiple
antennas and collect CSI from every observing pair.

B. Data Preprocessing

WiSDAR denoises the collected raw signal by low-pass fil-
tering and principal component analysis (PCA). Through a
target area determination scheme, WiSDAR detects whether
the target is located in the IA of a pair or not. We accordingly
discard the features of such ineffective pairs and remain the
effective features for further processing. WiSDAR detects the
existence of an activity based on the CSI changes compared
to the baseline data.

C. Activity Recognition

WiSDAR uses STFT to extract features on both the time
domain and the frequency domain to generate the spectrogram.
We stack all the generated spectrograms of each observing
antenna pairs as the initial input for further training and learn-
ing. We then use a deep learning model consisting of CNN and
LSTM to integrate the multidimensional features and classify
different activities.

IV. DATA COLLECTION AND PREPROCESSING

A. CSI Collection and Denoising

We separate the antennas of WiFi devices for CSI collection.
With NTx transmitting antennas, NRx receiving antennas, and
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Fig. 7. CSI amplitude before and after our denoising scheme.

Nsc CSI subcarriers (e.g., Intel 5300 NIC driver reports 30
subcarriers), we can obtain a total of Nsc ∗ NTx ∗ NRx CSI
streams1 for each measurement. We call the Nsc streams for
every transceiver pair as a stream group.

The raw CSI provided by COTS WiFi devices is very noisy
and cannot be directly used for recognition. Hence, WiSDAR
denoises the collected raw CSI data and then extracts effec-
tive features. Since the CFR power changes caused by human
movement are mostly low-frequency components, we first
let all CSI streams pass a low-pass filter (e.g., the Butterworth
filter) to remove any high-frequency noise. Due to the corre-
lations in CSI streams among one stream group [8], we also
apply PCA on a stream group to capture such correlations and
abstract multiple principal components. Given the first princi-
pal component captures too much noise, we use the average
of the second and third principal components for further pro-
cessing, which we refer to as p-stream in the remaining part
of this paper.

Fig. 7 shows the comparison between a randomly selected
raw CSI stream from a stream group of a Tx–Rx pair and
the denoised p-stream of this pair. We can see that the raw
CSI stream contains a lot of high-frequency components, such
as impulse and burst noises. After the denoising process, the
p-stream contains little high-frequency noise and conserves the
activity features effectively.

B. Target Area Determination

Since the collected signals of activities in the IA of a Tx–Rx
pair are largely affected by power fading, we need to filter
out these related pairs in case the abnormal features affect the
recognition. There are two criteria to determine that a target is
located in the IA. First, the amplitude of most subcarriers will
have an obvious drop. Even frequency selective fading [21]
and multipath effect may cause an amplitude increase of some
subcarriers, the amplitude drop dominates and we can use the
average amplitude of all subcarriers as an indicator. Second,
the amplitude drop lasts for a relatively long duration. This is
intuitive because a person is impossible to pass through the
IA in a moment. Note that human activities can also cause the
CSI amplitude to fluctuate to a low value, whereas the duration
of such amplitude drop is quite short and the amplitude should
keep fluctuating up and down.

Based on these two criteria, we develop a target area deter-
mination scheme to judge whether a target is located in the IA
of a pair. We first need to collect the baseline CSI data when

1A CSI stream is the time-series CFR value of an OFDM subcarrier of a
particular antenna pair.

Fig. 8. Case of target area determination. We indicate R1 as an period of IA
due to its big attenuation with enough duration, while we ignore R2 because
its duration is too short.

no obstruction is located in the IA and no target is moving.
Using the data denoising method introduced before, we obtain
the p-stream of baseline data as Cb. We intercept this base-
line data for a time period and calculate the mean value as
Cb. When a person is performing activities, we then obtain
the p-stream value of a Tx–Rx pair as Ca. WiSDAR empir-
ically selects a power threshold δP and a time threshold δT .
We judge that a target is located in the IA if the following
conditions are both satisfied:

∀ ti ∈ [tp, tq], s.t.

Cb − Ca(ti) ≥ δP (3)

tq − tp ≥ δT . (4)

According to this method, we can find out those large ampli-
tude drops with long durations and consider them as ineffective
parts. We discard the CSI features of the corresponding
antenna pair during the time rage [tp, tq].

Fig. 8 illustrates a case that a person is walking around a
pair of transceivers and passing through the IA. In region R1,
the CSI amplitude experiences a large drop with enough time
duration. Since it satisfies the two conditions, we can infer that
the target is located in the IA. Yet in region R2, even the ampli-
tude value falls below the power threshold δP, the short time
duration indicates that this drop is more likely a normal fluctu-
ation rather than caused by the power fading. According to our
extensive measurement, WiSDAR can achieve a high determi-
nation rate when we set the power threshold δP as 2.5 dB and
the time threshold δT as 300 ms. We use this setting throughout
the rest of this paper.

C. Activity Detection

Before we begin to recognize human activities, an impor-
tant step is to detect in which period an activity exists. To
detect the start and the end of an activity, we consider the
wave patterns of the p-stream for each pair. We have two key
observations here. First, during an activity, the CSI amplitude
has a large variance according to the reflection model, whereas
the amplitude keeps steady or has only very small variance in
the absence of an activity. Second, an activity usually lasts
a relatively long time duration instead of a short burst (e.g.,
walking and standing up even falling activities last at least
0.2 s). Then a short wave burst can be viewed as noise.

Based on these two observations, we develop an effective
approach to determine the start and the end of an activity auto-
matically. We first collect the CSI and obtain the denoised
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Fig. 9. Learning architecture of WiSDAR.

p-stream Cb and Ca when a person is stationary and is per-
forming an activity, respectively. Then we take the mean value
of 3 highest peak values from |Cb| and |Ca|, denoted as Pb and
Pa, respectively. We can easily find all the peaks since a wave
peak has to satisfy two criteria, i.e., its value is larger than the
mean value and its neighbors’ values. Our WiSDAR system
sets the activity amplitude threshold as θP = (Pb + Pa)/2.
Besides the activity amplitude threshold, WiSDAR also sets
an activity duration threshold θL, representing the monitoring
time duration. We determine the start and end of an activity
according to the following method.

• Claim 1: When current state is no activity, we consider
the peak point t whose value exceed θP. If during the
following time duration θL there is still other peak values
larger than θP, then t is the start of an activity and we
change current state to in activity.

• Claim 2: When current state is in activity, we consider
the peak point t whose value exceed θP. If during the
following time duration θL there is no other peak values
larger than θP, then t is the end of an activity and we
change current state to no activity.

Since we have separated multiple Tx–Rx pairs monitoring
from different location and orientation, we coherently com-
bine these observations together. We determine the start of an
activity if Any one pair satisfy the claim 1, whereas we deter-
mine the end of an activity only if All pairs satisfy claim
2 (except those ineffective pairs affected by the target in
their IAs).

From an empirical study of our dataset, we set the θL as
200 ms. And the detection result in our dataset shows that
WiSDAR is able to detect 97% of the start and end of activities
with no false positive result. Note that our detection approach
is able to automatically adjust according to the environment
change. WiSDAR continuously collects the baseline data Cb
when there is no activity and the activity data Ca in presence of
activities. In our experiment, we collect the new radio signals
for no activity every 60 s and update the Pb accordingly in
case of the environment change. Once we detect an activity,
we set a new Pa based on the collected radio signals of the
current activity, and update the amplitude threshold θP using

the new Pa. In this way, the threshold θP can be iteratively
updated to better fit the environment change.

V. DEEP LEARNING FOR ACTIVITY RECOGNITION

In this section, we describe the main components of the
WiSDAR design. Fig. 9 illustrates the learning architecture of
WiSDAR, which consists four main layers, including an input
layer, CNN layers, LSTM layers, and an output layer. These
layers stack together to form a deep neural network for activity
recognition. We describe this architecture as follows.

A. Feature Extraction

We first consider to feeding the learning engine with a rich
set of distinguishable and representative features. Although the
p-stream of each antenna pair extracts the inner wave patterns
from the correlated CSI streams, it is not a good feature rep-
resentation since it only reflects the time and amplitude of a
waveform, not revealing the frequency domain characteristics
explicitly. Two activities may exhibit similar waveform shapes
but have different frequencies (e.g., running and walking). As
such, p-streams are not good choices to be directly used in
activity recognition.

WiSDAR applies STFT on the p-stream of each pair to
extract frequency component. As one of the most popular time-
frequency analysis tool, STFT divides a long-time signal into
shorter segments of equal length and then compute the Fourier
transform separately on each shorter segment. Compared to
DWT that uses different resolution on different frequency
level, STFT can achieve more fine-grained resolution on all
frequencies. This allows detailed exhibition of CFR frequency
when it changes over time (as illustrated in previous Fig. 5).

In our system, the sampling rate for each antenna pair is
500 Hz so that we can extract frequency range up to 250 Hz.
The STFT algorithm extracts a total of 125 frequency com-
ponents. Then the frequency granularity is 2 Hz. Such a
frequency range and granularity are sufficient to cover all
common activities.
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Fig. 10. Architecture of an LSTM cell.

B. Deep Learning Architecture

We first describe how we design the input to feed the deep
neural network. The feature extraction stage has output the
spectrogram of received signals for each Tx–Rx pair. Each
spectrogram is a matrix and each element can be represented as
mij, where i is the time scale index and j indicates a frequency
component. Recall that we have N = NTx ∗ NRx observing
antenna pairs. Here, we extract the spectrogram of one time
slot and all the observing pairs to form an input matrix, which
we refer to as an input frame. In our settings, the size of
an input frame is 125 ∗ N, where 125 is the total frequency
components extracted by STFT. The input layer then takes all
the input frames x = {x1, x2, . . . , xT} of each time slot and
further serves for the hidden layer.

The hidden layer in our deep learning architecture includes
a CNN structure and an LSTM structure for activity identi-
fication. CNN is powerful in extracting the implicit spatial
patterns, e.g., object location relationships and textures, and
thus has been extensively used in the field of computer vision
for activity recognition [22], [23]. We first use CNN to pro-
cess each input frame since the CNN structure can effectively
consider the spatial features from different antenna pairs. In
our system, the input features of multiple antenna pairs in a
time slot is a 2-D data frame, where a window filter in the
CNN layer is applied to slide over the data frame to reduce
the data frame into a 1-D vector. This can effectively inte-
grate the observed features from multiple antenna pairs and
reduce the data dimensions. For example, a falling activity
may cause obvious frequency changes in some antenna pairs
while leading to implicit frequency changes in the other pairs,
where CNN can keep these changes for future processing. In
our system, we use a one-layer CNN structure.

We stacked the outputs of the CNN layer across time as
the input of the following LSTM layers [13]. LSTM is a vari-
ant of recurrent neural networks and is specifically designed
for sequence processing of temporal data. Fig. 10 shows the
structure of an LSTM cell. The input it and output gate ot
incorporate the incoming and outgoing signals to the memory
cell, and the forget gate ft controls whether to forget the
previous state of the memory cell. Each LSTM cell main-
tains a floating point value ct, which may be diminished or
erased through a multiplicative interaction with forget gate ft
or be additively updated by the current input multiplied by the
activation of input gate it. The final emission of the memory
value from the LSTM cell is determined by output gate ot.

The calculation process can be represented as follows:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (5)

ft = σ
(
Wxf xt + Whf ht−1 + Wcf ct−1 + bf

)
(6)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (7)

ct = ftct−1 + it tanh(Wxcxt + Whcht−1 + bc) (8)

ht = ot tanh(ct) (9)

where the b terms denote the bias vector, the W terms denote
weight matrices, σ is the sigmoid function, and tanh is the
hyperbolic tangent function. The cell output ht is used to
predict the label of the current training instance.

The LSTM architecture reveals many unique advantages
compared to conventional prediction methods used in activity
recognition, such as HMM [8] and kNNs [10]. First, LSTM
is capable of mining the hidden relationships of time series. It
can combine the current inputs and the past states stored in the
memory cell to exploit the time scale relationships and achieve
a comprehensive classification. Specially, it is able to learn
long-term dependencies, which aligns well with our activity
recognition context since some activities may last several sec-
onds. Besides, LSTM’s sophisticated network structure enable
itself with strong representation ability from raw data input,
thus requires little efforts on feature extraction. Conventional
models [8] rely on manually selected features, such as speed,
acceleration, etc., which not only exerts extra overhead but also
can cause low accuracy due to incomprehensive extraction.
Moreover, LSTM can easily support the input with various
length, which is important since different activities can have
different time durations.

The extracted features from the LSTM layers are then fed
to a fully connected layer, which is widely used to avoid
overfitting [24]. Besides, we also use dropout mechanism in
our network to further avoid overfitting. The last layer of our
deep learning architecture is an output layer, which receives
the outputs from the last LSTM layer and normalizes them
with a softmax function. This function computes the distribu-
tion probabilities of each activity and the one with the highest
probability is finally labeled as the predicted activity.

In this learning process, we mainly use a CNN+LSTM
architecture. CNN can effectively integrate the spatial features
of different antenna pairs together. LSTM is capable of inte-
grating the temporal features together for recognition. With
sufficient data support, such learning architecture applies well
in our context for activity recognition.

VI. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented the WiSDAR system with COTS
hardware that is readily available. We use two Dell Latitude
D820 laptops both equipped with an Intel 5300 WiFi card as
the transmitter and receiver. Since each WiFi card has three
antennas, we can construct at most nine SA pairs. Note that
we use the SIMO mode (1 antenna sends and 3 antennas
receive) instead of using the MIMO mode (3 antennas send
and 3 antennas receive) in our experiment. This is because we
find that different antenna pairs have very strong coherence in
MIMO mode, while in the SIMO mode the features of dif-
ferent antennas are independent. Therefore, to fully utilize the
three antennas in the transmitter, we develop a time division
transmitting mechanism that every antenna sends a packet and
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(a) (b) (c) (d)

Fig. 11. Different antenna placement topologies. Stars are the testing locations. (a) Random shape, 3 × 3 pairs. (b) Hexagon shape, 3 × 3 pairs. (c) Square
shape, 2 × 2 pairs. (d) Line shape, 1 × 1 pair.

TABLE I
ACTIVITY DATASET AND THE COLLECTED SAMPLES

then switch to the next antenna. When the last antenna fin-
ishes sending, the system jumps to the first antenna to begin
a new cycle. The time division mechanism is equivalent to
the MIMO mode and allows us to construct Tx × Rx pairs.
Both the transmitter NIC and receiver NIC are working in the
monitor mode so that we can distinguish different transmitting
antennas by sending self-defined packets.

Our measurement shows that the switching antenna time is
less than 1 ms, which is of little overhead to our 500 Hz sam-
pling rate. At the receiver, we use the CSI tool [21] to collect
CSI values from WiFi frames. We use 5 GHz WiFi channels
with 20 MHz bandwidth carriers throughout our experiment.

B. Evaluation Setup

We collect 5760 training samples for eight activities (in
Table I) in our laboratory (8.2 m × 5.4 m) under different
antenna topologies as illustrated in Fig. 11. In our experi-
ment, we selected eight representative activities, which can
be divided into two categories, i.e., torso-based activities
and gesture-based activities. The torso-based activities mostly
reflect the radio signals using the human torso, which is a
relatively large area. Yet the gesture-based activities mostly
reflect the radio signals using hands and arms, which are rel-
atively small areas. Our settings comprehensively considered
all the two categories. Besides, these activities are common
and representative activities in our daily life, e.g., walking,
sitting down, and waving hands. We select such representative
activities also following those state-of-the-art works [8], [11].

The topology includes a line shape, a hexagon shape, a
square shape, and a random shape. The line shape confines
all transceiver pairs to a single line, which essentially reduces
to the case with only one effective transceiver pair. It there-
fore serves as a baseline for comparison between our WiSDAR
and state-of-the-art solutions, in particular, CARM [8]. The
hexagon shape and the square shape are regular topologies,
which can completely eliminate IAs with strategically placed
transceivers in our system. The random shape is likely to
eliminate the impact of IAs, and can be the most conve-
nient deployment in practice. The random deployment distance

are 4.2 m for Tx1–Rx1, 4.8 m for Tx2–Rx2, and 2.7 m for
Tx3–Rx3, respectively.

Typically, it is assumed that, in free space radio propagation,
there is no obstruction or reflection in the first 8–12 Fresnel
zones [18], [25]. To reduce the impact of the radio reflec-
tion by the ground, we keep the first 12 Fresnel zones clear
and set the height of antenna as 0.8 m above the ground. The
data collection spots are randomly distributed in the laboratory
and we ask the target to perform activities toward different
orientations. For walking and running, the target moves for
a short distance (about 2 m) in a straight line, where the
starting locations are randomly selected in the experiment
environment.

Note that a large amount of data is helpful to improve the
classification accuracy. Hence, we utilize data augmentation to
expand our effective dataset. For example, since the walking
and running activities are continuous, we can divide a long
data sequence into multiple sequences with different length.
Most activities are symmetric so that we can also reverse fea-
tures in the time domain for augmentation. For example, the
walking and running activities are conducted along a straight
line so that the reversed features of an activity toward one
direction is similar to the features of an activity toward the
reversed direction. Similarly, picking, waving, and boxing are
all reciprocating movement, e.g., a person will first stretch out
the arm and then retract the arm for boxing, which can be
treated as a symmetric activity.

Once the model is trained, we test it for six volunteers (both
male and female students varying in height, weight, and age)
in four locations under these topologies. We train our model in
the laboratory, while we test the accuracy in three other envi-
ronments besides the laboratory, including a 40 m × 10 m big
hall, an apartment with an area of 35 m2 and a small office
with an area of 18 m2, respectively. The testing spots of the
activities are marked as stars in Fig. 11 considering both the
IA and the EAs. In our evaluation, the default parameter set-
tings are using hexagon shape with deep learning methods, and
LSTM cell number is 128. We train our deep neural network
model using a testbed equipped with an NVIDIA Geforce
GTX 1060 GPU card. The training time is about 10 min (the
detailed time for different setting can be found in Table III)
and the inference time is only 0.1 s for an activity, which do
not incur much system overhead.

C. Evaluation on Target Area Determination and Activity
Detection

We first evaluate the target area determination mechanism
described in Section IV-B. We vary the power threshold δP and
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TABLE II
ACCURACY AND FPR OF DIFFERENT SETTINGS ON POWER

THRESHOLD δP AND TIME THRESHOLD δT

Fig. 12. Activity detection accuracy and FPR in different amplitude threshold
settings.

Fig. 13. Activity detection accuracy and FPR in different duration threshold
settings.

time threshold δT to evaluate the impact on target area deter-
mination accuracy and false positive rate (FPR). As illustrated
in Table II, we can find that the best setting is δP = 2.5 dB
and δT = 0.3 s, where our system can detect all the activities
in the IA and keep the FPR in a low level. When δP is set as
2 dB and δT is 0.35 s, the accuracy still achieves 100%, while
the FPR is quite large. This is because low-frequency activi-
ties can also cause the amplitude falling below the threshold
for a low time.

We then consider the impact of the activity amplitude
threshold θP and activity duration threshold θL on the activity
detection described in Section IV-C. We set θP = αPa + βPb,
where α+β = 1. Fig. 12 shows the activity detection accuracy
with a range of α values when θL = 0.2 s. We can observe that
when α = 0.5, the detection accuracy achieves 97% with no
false positive result. If α is set as a large value (e.g., 0.9), the
system will miss many activities since the amplitude thresh-
old can be too large. Similarly, Fig. 13 varies θT when setting
α = 0.5. We can find that the detection accuracy increases
as the threshold becomes more relaxed. Yet if we set a large
θT , the FPR also rises a lot. Thus in our experiment, we set
α = 0.5 and θT = 0.2 s.

As to the EA outside the FFZ, not all the activities therein
can be detected and recognized. The detection range is deter-
mined by the distance between the target person and the
transceivers as well as the radio signal strength. Since the
radio signals will attenuate in air, the received reflected radio

Fig. 14. Detection distance of different activities.

Fig. 15. Confusion matrix of activity recognition.

signal can be too weak for recognition when the person is far
away from the antenna pairs. Obviously, antenna pairs with
higher power can have a longer detection range. In this paper,
we mainly focus on using COTS WiFi devices. We consider
the activity detection accuracy of our scheme, i.e., SAs and the
baseline scheme, i.e., combined antenna (CA), in different dis-
tances to the center of the transceivers as illustrated in Fig. 14.
We can find that the walking activity has an obvious longer
detection distance than the waving hand activity, no matter
using what kind of antenna settings. This is because walking
is a torso-based activity with a large reflection area, while wav-
ing is a gesture-based activity with relatively small reflection
area. For both the torso-based activity and the gesture-based
activity, our SA scheme outperforms the CA scheme. When
the detection distance is 6 m, SA can still achieve about 80%
accuracy for waving activity detection, while CA only has
30% accuracy. For the walking activity, our SA scheme has
more than 82% detection accuracy when the distance is as
large as 15 m, while the accuracy of CA scheme falls below
50%. From these comparisons, we can observe that the SA
scheme has a much longer effective detection distance than
CA scheme.

D. Evaluation on Activity Recognition

1) Overall Evaluation: To comprehensively evaluate the
classification result, the following metrics have been widely
used: 1) false positive rate (FP) indicates the ratio of falsely
selected activities as another activity; 2) precision (PR) is
defined as [TP/(TP + FP)], where TP is the ratio of a cor-
rectly labeled activity; 3) recall (RE) is [TP/(TP+FN)], where
FN is the false negative rate; and 4) F1-score (F1) is another
evaluation metric, defined as [(2 ∗ PR ∗ RE)/(PR + RE)].

Fig. 15 lists the confusion matrix of the eight activities under
the hexagon topology in the laboratory with the target area
detection scheme, where each row represents the actual activity
and each column indicates the predicted activity. We find that
the walking and falling activities can achieve 100% accuracy
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Fig. 16. Precision, recall, and FPR of all activities.

TABLE III
DIFFERENT STATISTICS METRICS AND TRAINING TIME WHEN

USING DIFFERENT LSTM CELL NUMBER

because these two activities have obvious unique features. The
average recognition accuracy is 96% with a 2.3% standard
deviation. The result shows that WiSDAR system achieves a
high recognition accuracy among all activities.

To further understand the recognition result from a statistical
view, we examine the FPR, precision, and recall as illustrated
in Fig. 16. The FPR of all activities are below 10% with a
mean value of 3%, and the precision and recall are all above
90% with both mean values of 96%. The result indicates that
our WiSDAR can not only accurately but also comprehensively
classify these different activities with low miss and error rates.

We next conduct fine-grained evaluations to examine the
impact of different LSTM cell numbers, different topologies,
the area detection scheme, different environments, different
people, and different antenna distances, respectively.

2) Impact of Different LSTM Cell Numbers: Table III shows
some statistics metrics of average activity recognition and the
network training time when we set different LSTM cell num-
bers. We can find that when the total LSTM cell number is
relatively low (less than 128), the value of precision, recall and
F1-score all improve as the number of LSTM cells increase.
When the LSTM cell number is 1024, the average statistics
metrics achieve the highest value. This result indicates that
with more LSTM cells, the deep learning model can better
extract the inner features and achieve a high accuracy. Yet
when the LSTM cell number keeps increasing, the precision,
recall, and F1-score begin to drop (e.g., the precision drops
from 0.962 to 0.943 when the LSTM cell number increases
from 128 to 512). This is because too many nodes in the
hidden layer can easily cause overfitting, which degrades the
accuracy of activity recognition. In our training process, we
set the epoch as 20. The total training time for the collected
activity when using different LSTM cells does not show sig-
nificant difference. The 10-min training time is not a high
computational overhead given it is a one-time preparation.

3) Impact of Different Recognition Methods: We further
examine the contribution of the SA scheme and the deep learn-
ing method, respectively. Fig. 17 considers four combinations,
i.e., deep learning with SAs (DL+SA), deep learning with CAs

Fig. 17. Recognition accuracy using different recognition methods.

Fig. 18. Recognition accuracy under different antenna placement topologies.

Fig. 19. Recognition accuracy in different environments.

(DL+CA), HMM with SAs (HMM+SA), and HMM with CAs
(HMM+CA). The last one is essentially the state-of-the-art
CARM solution. CARM can achieve an accuracy of 96% [8],
however, only when the activities were measured in the EA. In
this paper, we argue that the activity recognition accuracy can
be largely affected when the target person is in the IA, while
CARM did not consider this situation. We can observe that
the HMM+CA has the lowest recognition accuracy among
all the activities, and both SA scheme and the deep learning
method can improve the accuracy. Our WiSDAR approach,
i.e., DL+SA, has the highest recognition accuracy, achiev-
ing more than 92% accuracy for every activity. In contrast,
HMM+CA only has a recognition accuracy of around 75%
without considering the impact of spatial diversity.

4) Impact of Different Antenna Topologies: Fig. 18 shows
the recognition results under different antenna topologies in
the laboratory. The hexagon shape outperforms other topolo-
gies with fewer antenna pairs, which indicates that multiple
observing pairs can better mitigate the impact of spatial diver-
sity and obtain more useful features. Compared to the random
shape with the same antenna pairs, the hexagon shape also has
a higher accuracy. This is probably because the random shape
has some spots that cannot be well observed by all pairs. The
line shape has the worst performance with only 82% average
accuracy over all activities. This is because its single effective
feature fails in the IA and is largely affected by the spatial
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(a) (b)

Fig. 20. Accuracy when with or without target area determination mechanism. (a) Accuracy relevant to all activities. (b) Accuracy relevant to activities in IA.

diversity, as described in Section II. From this comparison,
we can know that deploying more observing pairs is help-
ful to improve the recognition accuracy. Besides, the antenna
pairs should be distributed as evenly as possible to avoid the
common IA and expend the EA.

5) Impact of Different Environments: Fig. 19 shows the
recognition accuracy of activities under the hexagon topol-
ogy in different environments. Among these locations, only
the laboratory is trained while other locations are not trained.
From this comparison, we can find that our WiSDAR system
achieves an average accuracy of 96% in the laboratory and
hall, which indicates that our approach has quite good recog-
nition performance in the environment with weak multipath
effects. For the environment with rich multipath effects, such
as the apartment and the office, the general recognition accu-
racy is lower than that of the other two locations. Specifically,
the recognition results are relatively good for most of the
activities (e.g., Wa, Fa, Rn, St, and Bx), with an accuracy
of around 90%, while for Pk, Ps, and Wv, the accuracy is
around 80% in the apartment and laboratory. This is because
in the very narrow indoor environment, the strong multipath
effect can affect the received signal and further undermine the
recognition accuracy. Furthermore, the activities with similar
frequency features will be more noticeably affected. For exam-
ple, pushing and waving are both gesture-based activities with
similar frequency features, which can be easily misidentified
as each other, leading to a relatively low accuracy.

6) Impact of Target Area Determination: Fig. 20 compares
the different recognition accuracy under the hexagon topology.
Fig. 20(a) shows the accuracy rate of recognized activities to
all the performed activities. We can see that WiSDAR achieves
an average of 96% accuracy with the target area detection
scheme, while this accuracy falls to only an average of 82%
when the IAs are neglected. Fig. 20(b) further explains this
result by plotting the fraction rate of recognized activities to
activities performed in IAs. From this figure, we know that in
the IA of one antenna pair the recognition accuracy is only
about 50% on average without target area detection, whereas
it achieves 97% on average with target area detection. These
results demonstrate that our target area detection scheme is
necessary and effective.

7) Impact of Different People: We also examine the impact
of human diversity on activity recognition in our experiment.
We have six volunteers for testing and they vary in gender,
height, and weight. Fig. 21 shows the recognition accuracy
under hexagon topology in the laboratory for these people.
We find that the recognition result does not show notice-
able diversity among different people. WiSDAR achieves over

Fig. 21. Recognition accuracy of different people.

Fig. 22. Recognition accuracy with different antenna deployment distance.

85% of average recognition accuracy for strange people, which
indicates that WiSDAR is resilient to different people.

8) Impact of Different Antenna Distances: We next con-
sider the impact of the distance between the transmit antenna
and the receive antenna on the activity recognition accuracy.
Fig. 22 shows the recognition accuracy of three different
topologies with a range of antenna distances. We can find
that as the antenna distance increases from 1 m to 2.5 m,
there is no obvious accuracy change for these settings. This
result indicates that the antenna distance does not affect the
accuracy much when the distance is not too long. Yet when
the antenna distance becomes very long (e.g., more than 3 m),
the recognition begins to decrease. This is because a very long
antenna extended cable can cause the power attenuation during
the transmission, which undermines the recognition accuracy.

VII. RELATED WORK

State-of-the-art device-free WiFi-based human activity
recognition systems can be broadly classified into two cat-
egories according to their hardware demands, i.e., the special-
ized hardware-based systems and the COTS-based systems.
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A. Specialized Hardware-Based

Many systems use dedicated hardware with software defined
radios to capture more fine-grained wireless signal metrics for
activity recognition and other related applications. WiSee [5]
uses USRP to measure the Doppler effects of WiFi sig-
nals caused by body movement to classify different motions
and achieves an average accuracy of around 95% using
two wireless sources. AllSee [26] uses an analog envelope-
detection for gesture recognition by profiling the different
pattern changes. With specialized hardware, micro-Doppler
information can also be measured [27], [28], achieving very
high recognizing resolution. The cost of such hardware in
these systems however can be high, and their availability
and compatibility are generally not good, either. Different
from these specialized hardware-based systems, WiSDAR uses
COTS devices for activity recognition.

B. COTS-Based

The other systems mainly use commodity laptops and WiFi
NICs to measure the changes of CSI. Since these COTS
devices are readily available in the market, their costs and
compatibility are quite good, though the captured CSI can be
limited and coarse-grained. WiGest [6] leverages the change
of patterns in RSSI to sense in-air gestures. WiFall [7]
uses fine-grained CSI changes to detect a single activity of
falling. E-eye [9] profiles the CSI changes across multiple
subcarriers to recognize both in-home activities and walk-
ing movements. CARM [8] builds up the correlation between
movement velocity and CSI dynamics to recognize activities.
Virmani and Shahzad [10] explored the relationship between
CSI features and target location and orientation, and translates
CSI measurements to other virtual samples for recognition.
Besides the activity recognition, COTS-based WiFi sensing
has also been widely used in other aspects, such as localiza-
tion [29], tracking [14], [20], in-air drawing [30], vital sign
monitoring [31], and recognizing typing [32], speaking [33],
and dancing steps [34].

These COTS-based activity recognition systems neglect the
impact of the spatial diversity, especially in the IAs where
recognition can fail. Different from existing systems, WiSDAR
proposes to extend the WiFi antennas to capture features from
multiple spatial dimensions, and leverage an advanced deep
learning tool to integrate features from both temporal and
spatial dimensions to achieve highly accurate and reliable
recognition.

VIII. DISCUSSION

A. Benefits of Using Separated Antennas

Compared with using multiple transceiver pairs, using SAs
within one physical sender and receiver reveals two key
advantages. First, using a single transceiver pair can reduce
the equipment cost effectively. It is not cost-effective and
convenient to deploy too many WiFi APs in a small indoor
environment. Moreover, our approach provides easy synchro-
nization among the transceivers, where the received signals
from different antennas are automatically synchronized. It not
only provides great convenience for subsequent signal pro-
cessing and further real-time online activity prediction but
also is easy to manage. Yet using multiple transceivers for
observation inevitably incurs much overhead on the synchro-
nization among all the receivers. A small synchronization error

can have a dramatic impact on signal processing and further
undermine the activity recognition accuracy.

B. Attenuation With Extended Antennas

Since WiSDAR separates the WiFi antennas by extended
cables, the signal power can have an attenuation. In our
deployment, we use low loss coaxial cable such as LMR400
cable. Even we use 3 m extended cable for each antenna, the
total power attenuation is only 2.2 dB [35], which has little
impact on the CSI measurement as well as the recognition
results.

C. Scalability and Multiperson Recognition

WiSDAR can be easily extended to support using multiple
WiFi devices for activity recognition. For the transmitters, we
just need to combine each transmitter and schedule each trans-
mitting antenna to send packets one after another repeatedly.
For the receivers, since each antenna receives wireless sig-
nal independently, we just need to collect all the features
and integrate them together for recognition. WiSDAR now
only supports activity recognition for one person. We leave
multiperson activity recognition as the future work.

IX. CONCLUSION

In this paper, we proposed WiSDAR, a WiFi-based spatial
diversity-aware device-free activity recognition system. Due
to the spatial diversity of the target areas and the observing
transceivers, the CSI characteristics can be largely affected
and lead to inaccurate activity recognition results. The time
domain and the frequency domain features have been con-
sidered individually in the literature of WiFi-based activity
recognition; in this paper, we considered them jointly and
examined their specific impacts on human activity recogni-
tion. Our key innovation is extending the multiple antennas
of modern WiFi devices to construct multiple SA pairs and
obtain features from multiple spatial dimensions. We have also
proposed a deep learning-based architecture to effectively pro-
cess the derived rich information. We implemented our system
with commercial WiFi cards and conducted real-world eval-
uation to examine the performance. The result demonstrated
that WiSDAR achieved an average of 96% activity recognition
accuracy.
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