
170 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

On Energy-Efficient Offloading in Mobile Cloud for
Real-Time Video Applications

Lei Zhang, Student Member, IEEE, Di Fu, Student Member, IEEE, Jiangchuan Liu, Senior Member, IEEE,
Edith Cheuk-Han Ngai, Senior Member, IEEE, and Wenwu Zhu, Fellow, IEEE

Abstract— Batteries of modern mobile devices remain severely
limited in capacity, which makes energy consumption a key
concern for mobile applications, particularly for the computation-
intensive video applications. Mobile devices can save energy
by offloading computation tasks to the cloud, yet the energy
gain must exceed the additional communication cost for cloud
migration to be beneficial. The situation is further complicated
by real-time video applications that have stringent delay and
bandwidth constraints. In this paper, we closely examine the
performance and energy efficiency of representative mobile
cloud applications under dynamic wireless network channels
and state-of-the-art mobile platforms. We identify the unique
challenges of and opportunities for offloading real-time video
applications and develop a generic model for energy-efficient
computation offloading accordingly in this context. We propose
a scheduling algorithm that makes adaptive offloading decisions
in fine granularity in dynamic wireless network conditions
and verify its effectiveness through trace-driven simulations.
We further present case studies with advanced mobile platforms
and practical applications to demonstrate the superiority of our
solution and the substantial gain of our approach over baseline
approaches.

Index Terms— Energy efficiency, mobile cloud, offloading,
video.

I. INTRODUCTION

MOBILE devices, including smartphones and tablets,
have become an essential part of our lives. As one of

the most effective and convenient tools for communication
and entertainment, they are not bound by time and place.
By 2019, there will be 11.5 billion mobile-connected devices,
including machine-to-machine modules, which exceeds the
world’s projected population at that time (7.6 billion). In addi-
tion, the global mobile data traffic is expected to increase

Manuscript received August 15, 2015; revised January 4, 2016; accepted
February 20, 2016. Date of publication March 8, 2016; date of current
version January 5, 2017. This work was supported in part by the Natural
Sciences and Engineering Research Council of Canada (NSERC) Discovery
Grant and in part by the NSERC Strategic Project. The work of E. C.-
H. Ngai was supported in part by the Vinnova GreenIoT Project and in
part by the Swedish Foundation for International Cooperation in Research
and Higher Education international collaboration in Sweden. This paper was
recommended by Associate Editor Y. Wen.

L. Zhang and D. Fu with the School of Computing Science, Simon
Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail: lza70@cs.sfu.ca;
dif@cs.sfu.ca).

J. Liu is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada, and also with South China Agricultural
University, Guangzhou, Guangdong, 510642, China. (e-mail: jcliu@cs.sfu.ca).

E. C.-H. Ngai is with the Department of Information Technology, Uppsala
University, Uppsala 751 05, Sweden (e-mail: edith.ngai@it.uu.se).

W. Zhu is with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China (e-mail:
wwzhu@tsinghua.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2016.2539690

nearly 10-fold between 2014 and 2019, reaching 24.3 EB
per month by 2019, a majority of which will be video
related [1]. Despite the fast development of the technolo-
gies and the effort toward unifying hand-held and desktop
computers (e.g., through Windows 8/10, iOS/MacOS, and
Android/ChromeOS), it remains widely agreed that mobile
terminals will not completely replace laptop and desktop
computers in the near future. Migrating popular PC software
to mobile platforms or developing similar new software is still
confined to the limited computation capability of the mobile
devices, as well as their unique and lightweight operating
systems and hardware architectures. Further, mobile devices
continue to suffer from a limited battery capacity. As the only
power source of most mobile devices, the battery has shown
relatively slow technological improvement in the past decade.
The average capacity has grown only 5% annually [2]. Thus,
even though the hardware and the mobile networks continue
to evolve, energy is still a major impediment to providing
reliable and sophisticated mobile applications that meet the
user demands.

Mobile cloud computing, which combines the strength
of clouds and the convenience of mobile devices, appears
natural and attracts tremendous attention [3]–[5]. We shift
the hardware/software requirements and the necessary com-
puting loads from the mobiles to the cloud proxies. Such
computation offloading prolongs the battery lifetime and
expands their computation capability, network bandwidth, and
storage space. This is particularly attractive for many video-
based applications (e.g., virtual desktop infrastructure and
cloud gaming), which are generally computation intensive.
For instance, Gaikai and OnLive, which execute video games
in the cloud and deliver video streams to end users, have
established multimillion user bases in the past few years [3].
Yet moving computation tasks to remote cloud may incur a
large volume of extra data transfer. Taking the video game
case as an example, our experiment on OnLive shows that the
offloaded execution requires a data transfer rate of 288.89 kB/s
for the gaming video. This introduces a dilemma for real-time
video applications: on the one hand, offloading the compu-
tation to the cloud can significantly mitigate the workload
on mobile devices, and thus the energy cost for intensive
computations can be saved; on the other hand, such real-
time data transmission as video streaming, which needs to
be guaranteed for quality of service, is very vulnerable to
the change in network condition. Naively offloading the tasks
regardless of the network condition may cause intolerable
performance degradation (e.g., frequent interruptions in video
playback). To this end, a smart offloading scheduling scheme

1051-8215 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 171

is needed, in order to: 1) identify whether the offloading can
be beneficial considering the reduced computation and the
introduced communication overhead and 2) adaptively make
offloading decisions based on the current network condition
to ensure the quality of service.

In this paper, we investigate energy-efficient mobile offload-
ing for video-based applications. Different from other types
of applications, real-time video applications have a stringent
delay constraint and dynamic bandwidth requirement. The
playback needs to be continuous and the video quality can
vary to adapt to the changing network conditions. Through
measurements of dynamic wireless network channels in the
state-of-the-art mobile platforms, we examine the performance
and energy efficiency of migrating representative applications
to the cloud. We identify the critical issues in mobile offload-
ing for real-time video applications. We then develop a generic
offloading model accordingly in this context and propose a
scheduling algorithm that adaptively offloads tasks to accom-
modate the dynamics of wireless channels in fine granularity.
Trace-driven simulation results prove the effectiveness of our
solution. We further present two case studies of practical
applications with advanced mobile platforms to demonstrate
the superiority of our solution and the significant gain of our
approach over existing approaches.

II. RELATED WORK

From the computation perspective, cloud computing offers
high availability, high reliability, and virtually infinite
resources, which have made offloading promising for mobile
platforms. MAUI [6] and CloneCloud [4] partition applications
using a framework that combines static program analysis with
dynamic program profiling to optimize execution time or
energy consumption. Using smartphone VM (virtual machine)
image inside the cloud, ThinkAir [7] aims for computation
offloading in a commercial cloud scenario with multiple
mobile users instead of a single user. It considers not only
offloading efficiency and convenience for developers, but also
the elasticity and scalability of the cloud for the dynamic
demands from users. From the communication perspective,
managing energy consumption for networked transactions is
a critical issue for mobile devices. Ra et al. [8] discuss
the trade-off between QoS and delay of data transmission
for mobile platforms and present a stable and adaptive link
selection algorithm. Catnap [9] exploits the bottlenecks of
wireless and wire links and utilizes an application proxy to
decouple data units into segments, which are scheduled as
bursts during transmission for energy saving. An empirical
study of Bartendr [10] demonstrates that a strong signal can
reduce energy cost. It then develops energy-aware scheduling
algorithms for different workloads, including background syn-
chronization traffic and video stream traffic, based on signal
prediction by location and history.

With cloud computing, considerable research efforts have
been dedicated to improve the video streaming services.
CALMS [5] adaptively leases and adjusts resources in the
cloud servers to meet the dynamic demands from users,
offering a generic framework for migrating live streaming

services. In [11], considering the geographical diversity of
cloud resource prices, a Nash bargaining solution is developed
for bandwidth provisioning and video placement strategies.
An emerging mobile cloud computing paradigm that involves
both offloading and video streaming is the mobile remote
desktop access (MRDA) [12]. In MRDA, the entire desktop
environment is hosted in the remote server while the client
is only in charge of receiving and displaying the contents.
Another related application is cloud gaming, which migrates
game execution to the cloud and streams the gaming scenes
back to the end users [13]. However, it demands ultralow
latency, and the video decoding on the client side may result
in excessive use of energy. It has been shown that a naive
offloading can incur even higher energy consumption in a
state-of-the-art mobile platform [14].

Different from the previous studies on computation offload-
ing that have focused on service partitioning and corre-
spondingly the low-level details such as program profiling
and state migration, we target and investigate the energy-
aware scheduling for the offloading requests and the required
data transmission based on the application demands and the
network condition. We then apply the proposed scheduling
algorithm to real-time video streaming applications, particu-
larly those involving rich user interactions and tightened time
constraints, such as MRDA and cloud gaming, to achieve
more efficient mobile device power usage. To the best of our
knowledge, this is the first work that jointly considers mobile
computation offloading and energy efficiency for computation
and transmission in the context of real-time video.

III. WHY IS OFFLOADING OVER WIRELESS

CHALLENGING FOR REAL-TIME VIDEO?

To understand the challenges of offloading from mobile
terminals to the cloud through wireless channels, we have
conducted a series of measurement studies on a 32 GB Google
Nexus 7 tablet. We are interested in both the service quality
and the energy consumption of the tablet. To this end, we
used a digital multimeter to record the current transferred
between the battery and the tablet, since the supply voltage
remains stable for a long period of time. The current is
sampled every second and recorded by a software with an
accuracy of 10 mA. We unplugged the battery from the
device and wired them up with the digital multimeter using
serial connection in the circuit. A desktop computer running
Linux OS is used to bridge the router with access to the
Internet. The tablet is connected to a wireless access point.
Fig. 1 shows a snapshot of the test devices that are used
in our measurement. To emulate different network properties,
we use the netem tool on the desktop PC, which provides
the network emulation functionality and is widely available in
existing Linux systems. Its features include wide area network
delays with different delay distribution, packet loss, packet
duplication, packet corruption, and packet reordering.

Two real-world mobile applications are selected as test
applications in this experiment. The first application is OnLive,
a mature and pioneering commercial cloud gaming platform.
It is also a representative mobile offloading video application.
In OnLive, the gamer’s commands are sent from the thin client

172 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

Fig. 1. Snapshot of the test devices.

to the cloud gaming platform over the Internet. Once the com-
mands reach the cloud gaming platform, they are converted
into appropriate in-game actions, which are interpreted by
the game logic and turned into changes in the game world.
The game world changes are then processed by the graphical
processing unit (GPU) to form a rendered scene. The rendered
scenes are compressed by the video encoder and sent to a video
streaming module, which delivers the video stream back to the
thin client. Finally, the thin client plays the video frames to the
gamer. To test OnLive, we run a cross-platform game through
an OnLive mobile client as well as on our test device locally.
The game is available with a mobile version in Google Play
Store.

The second application is an open source chess game. It is
a delay-tolerant and computation-intensive application, which
acts as a counterpart of real-time video application. In the
chess game, the server is able to configure a network chess
engine to analyze chess positions and make decisions on the
best chess moves. To test this application, we set the chess
game to computer versus computer mode, in which no human
input is required. The program communicates with the chess
engine and uses it to search for the best moves.

A. Impact of Delay

We first measure the impact of delay on energy consumption
and user experience in the experiment. When the network
latency increases, the power consumption does not vary much
in the two test applications. Although the energy efficiency
of computation offloading remains stable, we argue that the
increasing delay can hurt the performance of real-time video
applications that are offloaded to the cloud. Longer delay
means that more time is needed to get the response when
the application interacts with the cloud. For some applications
such as email, the delay can be masked so that it does no
harm to the user experience. In some chess games, each player
has a fixed time interval to think and make the move. If the
network delay increases, the network chess engine has less
time to search for the best move (less thinking time). It does
not hurt the user experience as long as the total delay does
not exceed the permitted time interval.

In contrast, for delay-sensitive applications such as real-
time video applications, a longer network delay can result in

TABLE I

DELAY TOLERANCE IN ONLINE GAMING

TABLE II

AVERAGE NUMBER OF FRAMES UPDATED BEFORE

ARRIVAL OF RESPONSE

significant performance degradation. Studies on traditional
online gaming systems have found that different types
of games have different thresholds of maximum
tolerable delay [15]. Table I summarizes the maximum
delay that an average player can tolerate before the
quality of experience (QoE) begins to degrade. To
measure the actual impact of network delay in OnLive,
we recorded the video on the tablet’s screen. The
frame rate was approximately 15 frames/s in OnLive.
By analyzing the gaming video frame by frame, we were
able to measure the response time of each user’s input action
under different network delays. As shown in Table II, the
average response time increases with the network delay,
which indicates that OnLive has significantly degraded the
user experience.

B. Impact of Packet Loss

We next examine the influence of packet loss rate, which
is another important parameter in network channels. From our
measurements, we find that the instant power consumption of
the two test applications does not change significantly with the
packet loss rate. Nevertheless, it does not mean that the energy
efficiency of computation offloading remains unchanged. The
packet loss may have great negative effects on the quality
of network communication. It may result in higher energy
consumption for transferring the same amount of data. In other
words, the effective throughput on the wireless link drops
when the packet loss rate increases. We captured the number
of transferred packets during computation offloading in the
two test applications.

The chess game’s GUI communicates with the network
chess engine through a transmission control protocol (TCP)
connection. We classify packets that do not appear in success-
ful data transfer as unnecessary packets, including duplicate
ACKs, timeout retransmissions, fast retransmissions, ACKs
of unseen segment, and other special packets. In each run
of the chess game, we counted the total number of packets
and the number of unnecessary packets and calculated the
percentage of unnecessary packets. As shown in Fig. 2(a),
there are only 0.1% unnecessary packets in a lossless
wireless communication. The unnecessary packets take

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 173

Fig. 2. Impact of packet loss. (a) Percentage of unnecessary packets.
(b) Transfer rate of OnLive.

up 2.4% of the total traffic when the packet loss rate increases
to 1.5%. Such a traffic overhead caused by packet loss may be
tolerable for offloading applications with small data transfer
rates [8], such as the chess game. However, in other cases
where real-time video applications are operating, packet loss
can result in significant degradation in user experience. Let us
take OnLive as an example. Different from a traditional client–
server gaming, which is limited to transmitting game engine
data/commands, OnLive streams the gaming scene videos to
the users via UDP. We measured the data transfer rate between
the mobile client and the OnLive’s cloud sever instance under
varying packet loss rates. Fig. 2(b) presents the mobile client’s
average downloading data rate under different packet loss
rates. It shows that the downloading rate drops 24.1% when the
wireless connection loses more packets, even though the data
rate remains higher than 200 kB/s. It is worth noting that the
decreasing data rate implies not only lower energy efficiency
but also poorer user experience. For instance, the quality of
the gaming video can be noticeably degraded with a low data
rate.

IV. ENERGY-EFFICIENT OFFLOADING FOR REAL-TIME

VIDEO: GENERIC MODEL AND SOLUTION

The measurement mentioned earlier suggests that offloading
in the wireless mobile environment has its distinct chal-
lenges, particularly for video applications. First, real-time
video applications have a stringent requirement in terms of
delay. Although our primary goal is to save energy on the
mobile devices, we do need to guarantee continuous video
playback. Besides rate adaptation, the context of offloading in
mobile cloud provides us another option: aborting the trans-
mission and keeping the computation locally. When offloading
is no longer applicable or beneficial, a decision can be made
to keep task execution and video rendering local. Second,
both the uplink and downlink traffic should be taken into
consideration when scheduling offloading in mobile cloud.
There are basically three steps for offloading a task: 1) sending
the data from the client; 2) processing the task and encoding
the video in the cloud; and 3) receiving and decoding the
video at the client side. The schedule of downlink transmission
is therefore cascaded with that of uplink transmission. Given
the playback deadlines, not only the sending and receiving
intervals should be specified, but also the time between them
must be long enough for task execution in the cloud.

We now consider the general mobile offloading scenario for
real-time video applications and develop a generic scheduling

model that adaptively selects the offloaded tasks and energy-
efficiently schedules the offloading transmissions between
mobiles and the cloud.

A. Generic Offloading Problem

Assume that the application has a set of n tasks
J = { j1, j2, . . . , jn}, and m time slots {t1, t2, . . . , tm} in total
to execute them. Each task stands for a possible user input
and the task execution and rendered video corresponding to
this input, which can be executed either locally or in the
cloud. Taking cloud gaming as an example, in a continuous
gaming scene, the rendering of each object/in-game character
can be taken as a separate task, since each in-game character
can have an independent game logic of responding to the
gamer’s input. We denote a task with a tuple of five elements
ji = (ci , ta

i , td
i , ds

i , dr
i), where ci is the computation load

(e.g., the computation for task execution and video rendering),
ta
i is the task’s start time (e.g., when the user input occurs),

td
i is the deadline for the task to be completed and sent back

(e.g., the deadline for the continuous playback), ds
i is the

amount of data to be sent (e.g., the user input and the current
state), and dr

i is the amount of data to be received (e.g., the
execution results and the video fragments). These parameters
can be predicted by some forecast algorithms [16].

Given the knowledge of a wireless channel state for a given
time span, the function R(ti) maps the channel state to the
effective throughput at each slot ti , which denotes the useful
bandwidth considering network delay and packet loss during
data transmission. We will address how to model the wireless
channel states and acquire R(ti) later. We consider that the
energy cost function can be obtained based on network mea-
surements with real hardware. We are then able to calculate the
energy consumption Ec(c) for the computation of c and the
energy consumption Et (d) for the wireless transmission of d .
It is worth noting that, in the current formulation, rather than
specifying a certain wireless access technology, we employ a
generic energy model, which can be further extended based
on various features of different wireless access technologies.

Different network interfaces have different characteristics
in power consumption. Moreover, the rapid development of
multicore multithread processors has significantly changed the
characteristics of energy consumption, not to mention the
countless hardware models and various implementations in
commercial mobile products. As such, we do not rely on a
specific energy model here, but consider a generic energy
cost function, which allows our formulation and solutions to
be easily integrated with different hardware platforms and
wireless interfaces [17], [18]. We will examine its impact in
our case studies later.

Our goal is to find an optimal schedule for the client
to execute (locally) or offload (to the cloud) each task and
minimize the energy consumption with delay constraints. Let
si = (di , [t1i , t2i], [t3i , t4i]) be the schedule for ji , where
di is the offloading decision. di = 0 indicates that the client
decides to execute ji and render the video locally, while di = 1
indicates that the client offloads ji to the cloud and receives the
encoded video. [t1i , t2i] and [t3i , t4i] are the time intervals
for sending and receiving data, respectively. Note that we

174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

only consider the sending and receiving intervals for the tasks
that are chosen to be offloaded. If a task is decided to be
run locally, we do not consider its schedule. Let Fc be the
processing capability of the cloud server that executes the
offloaded tasks. Note that scheduling is performed at the client
side. The problem can be formulated as finding an optimal
schedule S = {s1, s2, . . . , sn} that minimizes the total energy
consumption

Etotal =
n∑

i=1

{
(1− di)Ec(ci)+ di Et

(
ds

i + dr
i

)}
(1)

and the following constraints should be satisfied.
1) Causality constraint:

∀i ∈ [1, n], t1i ≥ ta
i . (2)

2) Playback continuity constraint:

∀i ∈ [1, n], t4i ≤ td
i . (3)

3) Streaming rate constraint:

∀i ∈ [1, n],
t2i∑

tk=t1i

R(tk) ≥ ds
i

and
t4i∑

tk=t3i

R(tk) ≥ dr
i . (4)

4) Time gap constraint:

∀i ∈ [1, n], t3i − t2i ≥ ci/Fc. (5)

The causality constraint (2) implies that a task cannot be
scheduled before its start time (when the corresponding user
input occurs). The playback continuity (3) follows that com-
putation offloading should not cause performance degradation
in terms of user experience even though our goal is to save
energy. In other words, each video fragment must be received
before the playback deadline. Meanwhile, the start times and
the deadlines can be set to meet the playback sequence of
video fragments. For real-time video applications, the required
data rate is affected by both the encoding settings and the video
contents. The streaming rate constraint (4) ensures that the
necessary amounts of data are transferred during the scheduled
intervals given the expected data rate and available bandwidth.
To execute an offloaded task in the cloud, some processing
time is required. Taking cloud gaming as an example, when
the user actions are input to the cloud server, it takes time
to render the corresponding gaming scenes according to the
gaming logic and encode the gaming video. The time gap
constraint (5) guarantees that the cloud server has enough time
to process the offloaded task and generate the encoded video.

Besides the previous constraints, there are also some
implicit constraints. First, a task can only be considered for
offloading if it leads to certain energy savings according to the
computation and transmission cost functions

∀i ∈ [1, n], if di = 1, Et
(
ds

i + dr
i

)
< Ec(ci).

Second, the schedules of different tasks cannot conflict with
each other, which guarantees the feasibility of our sequential

Algorithm 1 Greedy Offloading Scheduling
1: Set the time array T as all available;
2: Sort the current task queue J by descendant order of c/(ds +dr)
3: while true do
4: Select the first task j1 in the sorted queue;
5: Search the interval [ta

1 , td
1] in T for the valid schedules that

satisfy all the constraints (1)-(4)
6: if there is no valid schedule then
7: d1=0
8: else
9: d1=1;

10: Select the schedule with the highest energy saving Ec(c1)−
Et (ds

1 + dr
1) (if there are multiple schedules, select the latest

one);
11: Update T accordingly
12: end if
13: J ← J − { j1}
14: if there is any new task arrived then
15: Add the new task to J ;
16: Sort J by descendant order of c/(ds + dr)
17: end if
18: end while

scheduling

∀i �= j, [t1i , t2i] ∩ [t1 j , t2 j] = ∅
[t1i , t2i] ∩ [t3 j , t4 j] = ∅
[t3i , t4i] ∩ [t1 j , t2 j] = ∅

and [t3i , t4i] ∩ [t3 j , t4 j] = ∅.
This problem is challenging as each task has two intervals,

the sending interval and the receiving interval, to schedule with
the restriction of the start time, the deadline, and the processing
time in between. The criterion for making offloading decision
for a specific task is whether there will be energy saving
if the task is completed before the deadline. This can vary
significantly for different schedules under a dynamic network
environment. Moreover, it is possible for a single task to
appear on more than one schedule, which can save the same
amount of energy. Considering the scheduling of multiple
tasks, this problem becomes even harder, as each scheduled
task directly affects the available time slots for the following
tasks. The decision version of the formulated problem can
be proved to be NP complete, to which the subset sum
problem [19] is reducible.

B. Greedy Offloading Schedule

To practically solve the problem, we propose a greedy
heuristic as shown in Algorithm 1. It sorts the tasks accord-
ing to the computation-to-data ratio and schedules the more
computation-intensive tasks with higher priorities. As dis-
cussed earlier, our goal is to save as much energy as possible
by offloading the computation to cloud. Given the network
throughput, the amount of data that can be transferred in
each time slot and the resulting transmission energy cost are
fixed. A higher computation-to-data ratio implies that more
energy could be saved if the corresponding task is offloaded.
By searching the valid schedule of each task in the order
of computation-to-data ratios, the proposed greedy heuristic
significantly improves the search efficiency. We first sort the

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 175

task queue according to computation-to-data ratios (line 2) and
further schedule each task in the sorted order. For each task,
the algorithm checks every possible offloading schedule that
satisfies all the constraints and computes the corresponding
energy saving (line 5). If none of the examined offloading
schedules can save energy, the current task is scheduled to
be executed locally (lines 6 and 7); otherwise, its offloading
would be scheduled to achieve the maximum energy saving
(line 10). When multiple schedules are found with the same
amount of highest energy saving, our heuristic algorithm
schedules the transmission intervals as late as possible in order
to have the minimum impact on the scheduling of later tasks.
Let M be the number of available time slots in the scheduling
interval (e.g., [ta

i , td
i] for task i). For each of the n tasks, the

heuristic checks O(M2) schedules (O(M2) combinations of
sending and receiving intervals given the scheduling interval),
each of which needs constant time to evaluate. Our greedy
algorithm can quickly find the near-optimal solution with the
running time of O(nM2). For real-time video applications
with tight delay constraints, the size of scheduling interval
is very limited, and thus our algorithm causes negligible
computation overhead on modern devices with considerable
computation capabilities.

To implement our proposed heuristic, there are still several
practical issues to be addressed. On the cloud side, a com-
prehensive mobile offloading system needs to consider var-
ious aspects: existing studies have done extensive work on
user privacy [20], status monitoring [21], service scalabil-
ity [22], and ubiquitous availability [23]. On the mobile side,
although our algorithm introduces only very limited computa-
tion overhead, it requires information on the wireless channel,
e.g., bandwidth, which inevitably causes other overhead
related to network measurement and estimation. To this end,
we propose a lightweight adaptive bandwidth probing and
wireless channel monitoring approach in the next section.

C. Wireless Channel Modeling and Bandwidth Probing

In online scheduling, it is necessary to monitor and adapt
to the highly dynamic wireless channel conditions. There have
been significant studies on modeling wireless channels [24],
particularly the ones based on Markov chain [25]. Consider
a basic and widely used two-state Gilbert–Elliott model [24],
which has two channel states for good and bad conditions,
respectively, capturing the bursty nature of a wireless channel.
Let PG be the probability that the channel will stay in the good
state in the next time slot given that the current state is good
(similarly, we can define PB). Accordingly, the state transition
probability from a good state to a bad state in the next time
slot is 1− PG . The expectation time that the wireless channel
remains in the good and bad states can then be calculated as
TG = (1/1− PG) and TB = (1/1− PB).

It is known that wireless bandwidth depends only partially
on the signal strength. Hence, using received signal strength
indicator directly to identify the states and to infer the available
bandwidth is not necessarily effective [8]. Instead, we use an
adaptive bandwidth probing algorithm to identify the state
of the wireless channel. Our algorithm, inspired by [26],
estimates the bandwidth based on real measurement of the

Algorithm 2 Bandwidth Probing and Wireless Channel State
Monitoring
1: Initialize: set the probing interval Tin = 1, last measurement

RL = 0, current measurement RC = 0, counter i = 1, average
bandwidth in good state channel Rg = 0, average bandwidth in
bad state channel Rb = 0, channel state Status = good , threshold
R′ = 3 MB, parameter α = β = 0.3

2: while true do
3: if i == Tin then
4: i = 0;
5: RL = RC ;
6: RC ← measured bandwidth
7: if |RL − RC | < βRL then
8: Tin ++
9: else

10: Tin = �Tin/2�
11: end if
12: if Status==good then
13: if RL < R′ & RC < R′ then
14: Status=bad;
15: Rb = (1− α)Rb + αRC
16: else
17: Rg = (1− α)Rg + αRC
18: end if
19: else
20: if RL > R′ & RC > R′ then
21: Status=good;
22: Rg = (1− α)Rg + αRC
23: else
24: Rb = (1− α)Rb + αRC
25: end if
26: end if
27: end if
28: i ++
29: end while

transmitted packets. In particular, we use the packets of the
offloaded task as the probe to reduce the energy cost of
transmitting irrelevant data.

As shown in Algorithm 2, once the bandwidth is estimated,
we use a threshold value R′ to decide which state the wireless
channel is in and update the average bandwidth in that
state. If two successive measurements exceed the threshold,
we consider that the state of the wireless channel has changed.
By recording how long the wireless channel stays in each
state, we are able to estimate the state transition probability.
We can then use the average bandwidth in the current channel
state as the prediction for the future (see Algorithm 1). Note
that wireless bandwidth largely depends on the location of the
user and user mobility is usually confined to a certain period.
Our algorithm adjusts the probing interval adaptively, similar
to the congestion control protocol in TCP. The parameters,
such as R′, α, and β, can be tuned under different practical
scenarios. It is worth noting that the algorithm can also be
easily extended to work with higher order channel models with
more states [25] to achieve better accuracy.

V. TRACE-DRIVEN EVALUATION

In this section, we make a comparison between the opti-
mal offloading scheduling and our proposed approach with
two bandwidth probing methods using real-world traces and
synthetic data.

176 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

TABLE III

POWER MODEL

TABLE IV

ENERGY EFFICIENCY OF OPTIMAL OFFLOADING SCHEDULING AND

PROPOSED APPROACH WITH DIFFERENT
BANDWIDTH PROBING METHODS

The real-world bandwidth traces are collected when the
test device is moved toward and away from the wireless
AP periodically, experiencing a varying wireless network
connection. In our later evaluation and case studies, we used
IEEE 802.11n as the wireless access technology, whose power
model is adopted from [18] with proper adjustments according
to our measurements on the Nexus 7 tablet. As we are more
concerned about the power consumption, which is directly
related to computation offloading, our simplified model mainly
considers the power consumption of the CPU and the
Wi-Fi communication, as shown in Table III. Based on pre-
vious studies [27], the probability distribution of applications’
demand can be described by Gamma distribution in certain
cases. In our simulations, we set the task arrival rate to
be approximately 2 tasks per second with an average delay
tolerance of 0.5 s. We generate a small-scale synthetic dataset
based on the collected execution traces of the test applications
in Section III and using the settings described previously.

We evaluate the performance of our greedy scheduling
approach and the effectiveness of our adaptive bandwidth
probing method using a small-scale dataset, where the opti-
mal offloading schedules can be obtained through exhaustive
searching. We also implement a baseline reference scheme:
all tasks are executed locally without offloading (LOC),
which schedules task execution in a first-in first-out manner.
As our algorithm is designed with the minimal performance
guarantee (constrained by playback deadlines), we focus on
evaluating its energy efficiency. The energy consumption of
our proposed approach and the optimal offloading scheduling
is normalized by the baseline result of LOC. We further
compare our adaptive bandwidth probing method with the
regular periodic probing method (sampling bandwidth: every
50 time slots). Table IV presents the normalized energy con-
sumption of optimal offloading scheduling and our proposed
approach with two bandwidth probing methods. It proves
that, compared with the baseline LOC scheme, our proposed
approach can save around 15% of the energy consumption
even under a varying wireless channel. The result also shows
that our greedy scheduling approach can achieve near-optimal
performance, which only consumes 2% more energy than

TABLE V

COMPARISON OF VIDEO PLATFORMS AND OUR
GENERIC MODEL (EA-MRDA)

optimal offloading scheduling, and our adaptive bandwidth
probing method outperforms the regular periodic bandwidth
probing method.

VI. REAL-WORLD CASE STUDIES

So far we have considered the generic model that tries to
cover different application demands. Based on this model,
we propose a practical framework called energy-aware
MRDA (EA-MRDA), the basic idea of which is to adaptively
switch among the more energy-efficient offloading schemes
while meeting quality and deadline constraints. A comparison
between the proposed framework and other representative
remote desktop access platforms is presented in Table V.
As the energy consumption characteristics are strongly hard-
ware and platform-dependent, to understand the performance
of our solution in practice and corroborate its superiority, we
provide two case studies on advanced real-world mobile plat-
forms for cloud gaming and MRDA, respectively. We further
evaluate our proposed solution based on the collected real-
world experiment traces.

A. Case 1: Video Benchmark on Cloud Gaming

In the first case study, we focus on cloud gaming and
evaluate our model using the real-world execution traces of
the selected video benchmarks.

1) Data Trace Collection: We collected the data traces on
a 7-inch EVGA Tegra NOTE 7 tablet, which is one of the
most powerful and highly optimized tablets for video appli-
cations. To measure the system’s overall power consumption,
we measure the dc intensity in the tablet’s circuit and compute
the instantaneous power as the product of current and voltage
(almost constantly at 3.7 V).

We used a digital clamp meter (Mastech MS2115B) to
measure the dc amperage (precision of ±2.5%) and chose
an advanced 3D benchmark for mainstream tablets, namely,
3DMark Ice Storm Benchmark. We installed and utilized
the Rhizome cloud gaming platform [14] to deliver and display
the gaming scenes. For the local rendering tests, we ran the
benchmark and began to record readings of the clamp meter
using the data logger PCLink with a sampling rate of
two times per second. Likewise, for the remote rendering tests,
we selected the network video stream and started recording the
measurements. For all the experiments, the screen brightness,
sound volume, and other settings remained unchanged.

2) Energy Improvement: With the collected execution
traces (e.g., CPU load, network traffic, and instant current),
we compare the power consumption of our approach with
those of local rendering and mobile cloud offloading.

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 177

Fig. 3. Comparison of power consumption.

We let the available bandwidth follow a normal distribution
with the mean equivalent to the video encoding bit rate and
the standard deviation of 100 kB. Fig. 3 shows that our solu-
tion can outperform any of the baselines by smartly making
offloading decisions. Normally, ours selects the more energy-
saving approach between local rendering and offloading to
cloud. Yet there are still some cases where we choose the more
power-hungry local rendering, when the network condition is
too poor to maintain a continuous video playback. It is worth
mentioning that, as shown in Fig. 3, there are quite some time
periods in which local rendering consumes less power than
offloading. A possible explanation is that video decoding itself
at these periods is a highly computation-intensive task, which
thus can be more energy consuming than directly rendering
the corresponding video scenes. As the power consumption
of offloading is affected by many factors, such as encoding
codec, network condition, and even the objects in video,
it reaffirms that the energy model is better kept generic in
our previous modeling.

B. Case 2: Mobile Remote Desktop Access

In this case study, we examine our offloading algorithm
for MRDA, a computing paradigm that allows mobile device
users to enjoy full desktop experience as with traditional PCs.
In MRDA, user’s inputs are casted to a remote server hosting
the actual desktop environment, which in turn handles the
resulting state changes and streams back display updates to
the client [12]. State-of-the-art MRDA implementations can be
categorized into two types: video based and primitive based.
The video-based approach is illustrated in Fig. 4, in which
screen updates are rendered at the server side and sent back to
the client in the form of a compressed live video stream. In the
primitive-based approach, updates are expressed as drawing
primitives sent back to the client, where those visual objects
are rendered locally and composited with other updates.
There have been pioneer studies on energy efficiency for
MRDA implementations [29], [30]. Different from the existing
work, our offloading model offers more design space. For
video-based MRDA, it facilitates adaptive switching between

Fig. 4. Workflow of video-based MRDA.

different decoding complexities. For instance, in x264 [31],
the coding tools are encapsulated in the form of option presets
and profiles, where each preset contains predefined encoding
settings to achieve different speed-to-compression ratios, and a
profile specifies the techniques used for encoding. Depending
on the profile used, the client side can spend different amounts
of computing resources to decode, leading to distinct energy
cost. Our model can then be tuned to choose the encoding
profile in an energy-efficient manner. Beyond this, we can even
explore the best of both approaches, i.e., adaptive switching
between primitive- and video-based MRDA.

It is worth noting that offloading scheduling is not
only hardware- and platform-dependent, but also highly
application-dependent. Different applications may have dif-
ferent computation-to-data ratios, and thus some of them are
more suitable for offloading execution. To comprehensively
study the two different decisions (offloading and switching
decisions) concurrently, the target application must have a
wide range of computation-to-data ratios. However, in prac-
tice, we can hardly find such an application. Therefore, to
demonstrate the applicability of our algorithm and make the
selection choice more clear, we next select two different
target applications that are suitable for the two studying cases,
respectively, and investigate adaptive switching and offloading
separately.

1) Adaptive Switching Between Profiles: We first focus
on the video-based MRDA with adaptive switching between
profiles. We employ two h.264 encoding profiles with different
compression complexities, namely, the baseline and the high
profiles, under different network conditions. The baseline
profile is compatible with most low-end mobile devices,
though it can lead to low compression ratio and excessive
bandwidth utilization. On the contrary, the high profile enables
the encoder to achieve a given quality level with reduced bit
rate and bandwidth requirement at the cost of greater encoding
and decoding complexity. Besides, we leverage the x264
presets to prevent the encoder from generating intolerable
latency, where each preset specifies the parameters used by
various encoding techniques, such as the number of B frames
used per group of pictures. Particularly, we use the veryfast

178 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

Fig. 5. Video-based MRDA with baseline and high profiles and adaptive profile switching. (a) Baseline profile. (b) High profile. (c) Energy comparison.

preset in the high profile experiment, resulting in an average
increased streaming latency of ≈30 ms compared with the
baseline profile counterpart. Finally, we enforce constant bit
rate encoding in base profile and high profile experiments
with the maximum bit rate at 3 and 1.8 Mb/s, respectively,
achieving close video quality on our samples in terms of peak
signal-to-noise ratio (within ±2 db).

We consider that there are n different video encod-
ing/compression settings. Let the decision variable be
di ∈ [0, n] (d = 0 indicates local rendering), and the
corresponding computation and transmission energy cost func-
tions be Edi and Edi

t , respectively. The previously mentioned
implicit energy saving constraint in the generic model can be
instantiated as

∀i ∈ [1, n], di = argmin
(
Edi

t

(
ds

i + dr
i

)+ Edi
c (ci)

)
. (6)

The remote server is configured to run on an Amazon EC2
GPU instance (G2). For the control module, user commands
are intercepted by the mobile client and forwarded directly
to the remote OS through USB over IP client module and
its server counterpart, triggering GPU rendering calls on
the updated display (see Fig. 4). Our implementation copies
the rendered frames from the GPU display buffer to the
main memory by leveraging hardware utilities and completing
the screen capture efficiently. Next, the captured frames are
encoded by the video encoder and delivered to the streaming
server, which supplies the live streams to the client device
using the real-time messaging protocol.

Our profiling tool is the latest Trepn 6.1 profiler
(published by Qualcomm on August 3, 2015) with the ability
to read on-chip sensors and report accurate power consumption
and CPU and GPU loads, with a sampling interval of 100 ms,
which provides a higher accuracy in power measurements than
our previous hardware profiling approach. However, it can only
run on the devices that have Qualcomm processors, such as
Nexus 6, the test device in this experiment. As both of the
previously used devices, Nexus 7 and EVGA Tegra NOTE 7,
are equipped with NVIDIA processors, they cannot be profiled
by Trepn 6.1.

Fig. 5 plots the results when running the Unigine
Valley 3D GPU Benchmark, a pure video application on
the server with customized high quality and full-screen set-
tings, which contains intensive computations and suits the

Fig. 6. Remote accessing CAD 2D and 3D tasks in a video-based approach.

purpose of studying adaptive switching between multiple
profiles. We vary the packet loss rate in different tests. In
particular, we show the execution traces (e.g., CPU load, GPU
load, and power consumption) of the fixed high/baseline pro-
file approach in Fig. 5(a) and (b), respectively, to examine the
influences of the varying network condition. We further com-
pare our proposed adaptive switching approach with the fixed
profile approach and present the performance gain in Fig. 5(c).
We observe that video compression with high profile consumes
more power than that consumed with baseline profile, which
implies that the increasing decoding complexity causes a sig-
nificant power rise. Another interesting observation is shown
in Fig. 5(a) and (b). When the packet loss rate increases from
0 to 2%, the average power consumption of the two profile
settings goes up to 1.82% and 4.97%, respectively. When the
packet loss rate reaches 5%, the average power consumption
for the two profile settings, however, suddenly drops 19.1%
and 17.6%. As the packet loss rate increases from 0 to 2%,
as shown in Fig. 5(a) and (b), the CPU and GPU utiliza-
tion remain almost stable (with only slight drop in some
cases). On the other hand, the average power consumption

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 179

Fig. 7. Video-based versus primitive-based approaches, and adaptive switching between them. (a) Video-based approach. (b) Primitive-based (RDP) approach.
(c) Energy comparison.

increases, which implies that more unnecessary packets are
transferred (as described in Section III) and consume more
energy.

Given each video frame is carried by multiple network
packets, when the packet loss rate reaches a threshold
(between 2% and 5% in our case), the amount of time taken
to receive a complete frame would easily exceed the playback
deadline. Those incomplete frames will be dropped by the
client without being decoded, resulting in reduced decoding
workload. Unfortunately, these frame drops can cause frequent
screen freeze, which is undesirable. Fig. 5(c) shows that our
adaptive approach outperforms the two fixed compression
settings in all the network conditions. It saves 7.52% of energy
in the no loss case and 19.3% of energy in the 5% loss
case compared with the baseline profile. Our approach is
able to select the compression setting with lower transmission
cost. In high loss rate cases, our approach avoids unnecessary
transmission cost and lowers the computation cost by properly
adjusting the compression setting.

2) Switching Between Video- and Primitive-Based MRDA:
We now examine a hybrid solution that switches between
video- and primitive-based MRDA adaptively. We use cloud-
based computer-aided design (CAD) as the test application,
which includes both desktop objects (2D) and 3D object ren-
dering. We install AutoCAD 2015 on the server and configure
the latest version of Cadalyst benchmark to run CAD tasks
with both 2D and 3D graphics, as shown in Fig. 6. Since
our focus is on the decision between video- and primitive-
based approaches, we use the high profile at 1.5 Mb/s as the
default and set the maximum allowed bandwidth as 2 MB/s
for the video-based approach. The primitive-based approach
is implemented by the remote desktop protocol (RDP) in
Microsoft Windows.

In Fig. 7, we depict the results of the experiments with
the hybrid approach as well as the video-based and the
primitive-based approaches. From Fig. 7(a) and (b), we can
see that the primitive-based approach normally consumes less
power than the video-based approach. Although requiring a
certain amount of transmission, the primitive-based approach
locally renders the video and thus introduces no additional
computation cost on video decoding. It is worth noting that
the bandwidth required by the RDP in the primitive-based
approach is directly affected by the video content, which in

turn influences its power consumption. For dynamic contents
such as the 3D part of the CAD test, RDP needs to send a large
amount of data to instruct local rendering. On the contrary,
for static contents such as the 2D part of the CAD test,
RDP sends only a small amount of data to compensate for the
difference between the successive images and the previously
rendered image. Fig. 7(b) also shows that the average power
consumption of the RDP approach decreases by 16.9% when
the packet loss rate grows up to 5%. Similar to the OnLive
test in Section III, the transmission rate of RDP decreases as
the packet loss rate increases, which lowers the transmission
cost of RDP. Note that our hybrid approach does not always
perform the best in terms of the average energy consumption,
as shown in Fig. 7(c). In certain low loss rate cases, the average
power consumption of our approach is slightly higher than
that of RDP. The reason is that RDP sometimes needs higher
bandwidth than the maximum bandwidth (set as 2 MB/s)
allowed by us in the hybrid approach. Our approach instead
chooses to compress the video, which incurs higher cost but
controls the bandwidth within the limit.

VII. CONCLUSION

In this paper, we investigated performance and energy
efficiency of migrating representative video applications to the
cloud under dynamic wireless network channels on state-of-
the-art mobile platforms. Based on the identified challenges
and opportunities for offloading real-time video applications,
we formulated a generic energy-efficient offloading schedul-
ing problem and proposed an adaptive scheduling algorithm
that makes fine-grained offloading decisions according to the
dynamic wireless network conditions. We further evaluated
the effectiveness of our solution through trace-driven sim-
ulations and extensive experiments. Finally, we presented
two case studies on video cloud gaming and MRDA to
evaluate the performance of our solution in real-world video
applications.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2014-2019 white paper,” Cisco, San Jose, CA, USA, Tech. Rep.,
2015.

[2] S. Robinson, “Cellphone energy gap: Desperately seeking solutions,”
Strategy Analytics, Boston, MA, USA, Tech. Rep., 2009.

[3] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Archi-
tecture and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21,
Jul./Aug. 2013.

180 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2017

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th ACM
EuroSys, 2011, pp. 301–314.

[5] F. Wang, J. Liu, and M. Chen, “CALMS: Cloud-assisted live media
streaming for globalized demands with time/region diversities,” in Proc.
IEEE INFOCOM, Mar. 2012, pp. 199–207.

[6] E. Cuervo et al., “MAUI: Making smartphones last longer with code
offload,” in Proc. 8th ACM MobiSys, 2010, pp. 49–62.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 945–953.

[8] M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and
M. J. Neely, “Energy-delay tradeoffs in smartphone applications,” in
Proc. 8th ACM MobiSys, 2010, pp. 255–270.

[9] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: Exploiting
high bandwidth wireless interfaces to save energy for mobile devices,”
in Proc. 8th ACM MobiSys, 2010, pp. 107–122.

[10] A. Schulman et al., “Bartendr: A practical approach to energy-aware cel-
lular data scheduling,” in Proc. 16th ACM MobiCom, 2010, pp. 85–96.

[11] J. He, D. Wu, Y. Zeng, X. Hei, and Y. Wen, “Toward optimal deployment
of cloud-assisted video distribution services,” IEEE Trans. Circuits Syst.
Video Technol., vol. 23, no. 10, pp. 1717–1728, Oct. 2013.

[12] C.-L. Tsao, S. Kakumanu, and R. Sivakumar, “SmartVNC: An effec-
tive remote computing solution for smartphones,” in Proc. 17th ACM
MobiCom, 2011, pp. 13–24.

[13] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“GamingAnywhere: The first open source cloud gaming system,”
ACM Trans. Multimedia Comput., Commun. Appl., vol. 10, no. 1,
pp. 10:1–10:25, Jan. 2014.

[14] R. Shea, D. Fu, and J. Liu, “Rhizome: Utilizing the public cloud to
provide 3D gaming infrastructure,” in Proc. 6th ACM MMSys, 2015,
pp. 97–100.

[15] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and C.-L. Lei,
“Measuring the latency of cloud gaming systems,” in Proc. 19th ACM
Int. Conf. Multimedia, 2011, pp. 1269–1272.

[16] S. Gurun, C. Krintz, and R. Wolski, “NWSLite: A light-weight pre-
diction utility for mobile devices,” in Proc. 2nd ACM MobiSys, 2004,
pp. 2–11.

[17] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu, “NAPman: Network-
assisted power management for WiFi devices,” in Proc. 8th ACM
MobiSys, 2010, pp. 91–106.

[18] L. Zhang et al., “Accurate online power estimation and automatic
battery behavior based power model generation for smartphones,” in
Proc. IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.,
Oct. 2010, pp. 105–114.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009, pp. 951–953.

[20] A. Gember, C. Dragga, and A. Akella, “ECOS: Practical mobile applica-
tion offloading for enterprises,” in Proc. 2nd USENIX Conf. Hot Topics
Manage. Internet, Cloud, Enterprise Netw. Services, 2012, p. 4.

[21] J. Park, H. Yu, K. Chung, and E. Lee, “Markov chain based monitor-
ing service for fault tolerance in mobile cloud computing,” in Proc.
IEEE Workshops Int. Conf. Adv. Inf. Netw. Appl. (WAINA), Mar. 2011,
pp. 520–525.

[22] M. Dong, H. Li, K. Ota, L. T. Yang, and H. Zhu, “Multicloud-based
evacuation services for emergency management,” IEEE Cloud Comput.,
vol. 1, no. 4, pp. 50–59, Nov. 2014.

[23] D. Fesehaye, Y. Gao, K. Nahrstedt, and G. Wang, “Impact of
cloudlets on interactive mobile cloud applications,” in Proc. IEEE 16th
Int. Enterprise Distrib. Object Comput. Conf. (EDOC), Sep. 2012,
pp. 123–132.

[24] E. N. Gilbert, “Capacity of a burst-noise channel,” Bell Syst. Tech. J.,
vol. 39, no. 5, pp. 1253–1265, 1960.

[25] H. Yang and M.-S. Alouini, “A hierarchical Markov model for wireless
shadowed fading channels,” in Proc. IEEE 55th Veh. Technol. Conf.,
May 2002, pp. 640–644.

[26] F. Liu, P. Shu, and J. C. S. Lui, “AppATP: An energy conserving adaptive
mobile-cloud transmission protocol,” IEEE Trans. Comput., vol. 64,
no. 11, pp. 3051–3063, Nov. 2015.

[27] J. R. Lorch and A. J. Smith, “Improving dynamic voltage scal-
ing algorithms with PACE,” in Proc. ACM SIGMETRICS, 2001,
pp. 50–61.

[28] (2015). Windows Remote Desktop Protocol, accessed on Jun. 2015.
[Online]. Available: https://goo.gl/Y9LHyF

[29] S.-P. Chuah, Z. Chen, and Y.-P. Tan, “Energy minimization for wireless
video transmissions with deadline and reliability constraints,” IEEE
Trans. Circuits Syst. for Video Technol., vol. 23, no. 3, pp. 467–481,
Mar. 2013.

[30] C. Li, D. Wu, and H. Xiong, “Delay—Power-rate-distortion model for
wireless video communication under delay and energy constraints,”
IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 7, pp. 1170–1183,
Jul. 2014.

[31] (2015). x264 Video Encoding Library. [Online]. Available:
http://www.videolan.org/developers/x264.html

Lei Zhang (S’12) received the B.Eng. degree from
the Advanced Class of Electronics and Informa-
tion Engineering, Huazhong University of Science
and Technology, Wuhan, China, in 2011, and the
M.S. degree from Simon Fraser University, Burnaby,
BC, Canada, in 2013, where he is currently pursuing
the Ph.D. degree with the School of Computing
Science.

His current research interests include mobile cloud
computing, social media, wireless networks, and
multimedia systems and networks.

Mr. Zhang was a recipient of the C. D. Nelson Memorial Graduate
Scholarship in 2013.

Di (Silvery) Fu (S’15) received the B.Sc. (First
Class with Distinction) degree in computer science
from Simon Fraser University, Burnaby, Canada and
B.Eng. degree in computer science from Zhejiang
University, Hangzhou, China, both in 2016. He is
currently pursuing the M.Sc. degree with the School
of Computing Science at Simon Fraser University.

His research interests include cloud computing
topics surrounding virtualization, networking, and
online gaming.

Jiangchuan Liu (S’01–M’03–SM’08) received the
B.Eng. (cum laude) degree in computer science from
Tsinghua University, Beijing, China, in 1999, and
the Ph.D. degree in computer science from The
Hong Kong University of Science and Technology,
Hong Kong, in 2003.

He was an Assistant Professor with The Chinese
University of Hong Kong, Hong Kong, from 2003
to 2004. He is currently a University Professor with
the School of Computing Science, Simon Fraser
University, Burnaby, BC, Canada, and an NSERC

E. W. R. Steacie Memorial Fellow. He is an EMC-Endowed Visiting Chair
Professor with Tsinghua University from 2013 to 2016. His current research
interests include multimedia systems and networks, cloud computing, social
networking, online gaming, big data computing, wireless sensor networks, and
peer-to-peer networks.

Dr. Liu was a co-recipient of the Inaugural Test of Time Paper Award of the
IEEE INFOCOM in 2015, the ACM TOMCCAP Nicolas D. Georganas Best
Paper Award in 2013, the ACM Multimedia Best Paper Award in 2012, the
IEEE Globecom Best Paper Award in 2011, and the IEEE Communications
Society Best Paper Award on Multimedia Communications in 2009. His stu-
dents received the Best Student Paper Award of the IEEE/ACM International
Symposium on Quality of Service (IWQoS) twice in 2008 and 2012. He has
served on the Editorial Boards of the IEEE TRANSACTIONS ON BIG DATA,
the IEEE TRANSACTIONS ON MULTIMEDIA, the IEEE COMMUNICATIONS

SURVEYS AND TUTORIALS, the IEEE ACCESS, the IEEE INTERNET OF
THINGS JOURNAL, Computer Communications, and Wireless Communica-
tions and Mobile Computing (Wiley). He is the Steering Committee Chair of
the IEEE/ACM IWQoS from 2015 to 2017.

ZHANG et al.: ON ENERGY-EFFICIENT OFFLOADING IN MOBILE CLOUD 181

Edith Cheuk-Han Ngai (S’01–M’08–SM’15)
received the Ph.D. degree from The Chinese Uni-
versity of Hong Kong, Hong Kong, in 2007.

She held a post-doctoral position with Imperial
College London, London, U.K., from 2007 to 2008.
She has conducted research with the University of
California at Los Angeles, Los Angeles, CA, USA,
Simon Fraser University, Burnaby, BC, Canada, and
Tsinghua University, Beijing, China. She is currently
an Associate Professor with the Department of Infor-
mation Technology, Uppsala University, Uppsala,

Sweden. She is a Visiting Researcher with Ericsson Research, Stockholm,
Sweden, from 2015 to 2016. Her current research interests include Internet-
of-Things, mobile cloud computing, network security and privacy, smart city,
and e-health applications.

Dr. Ngai was a VINNMER Fellow of VINNOVA, Sweden, in 2009. She is a
member of the Association for Computing Machinery (ACM). She has served
as a TPC Member in networking conferences, including the IEEE International
Conference on Distributed Computing Systems, the IEEE INFOCOM, the
IEEE International Conference on Communications, the IEEE Globecom,
the IEEE/ACM IWQoS, and the IEEE CloudCom. Her co-authored papers
have received best paper runner-up awards in the IEEE IWQoS 2010 and
ACM/IEEE International Conference on Information Processing in Sensor
Networks 2013. She was a TPC Co-Chair of the Swedish National Computer
Networking Workshop in 2012 and QShine in 2014. She was a Program Chair
of ACM womENcourage 2015, and the TPC Co-Chair of the IEEE SmartCity
2015 and the IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing 2015. She has served as a Guest Editor
on the special issue of the IEEE INTERNET-OF-THINGS JOURNAL, the IEEE
TRANSACTIONS OF INDUSTRIAL INFORMATICS, and Mobile Networks and
Applications.

Wenwu Zhu (M’97–SM’01–F’10) received the
Ph.D. degree in electrical and computer engineering
from the New York University Polytechnic School
of Engineering, New York, NY, USA, in 1996.

He was with Bell Laboratories, Murray Hill, NJ,
USA, as a member of the Technical Staff from 1996
to 1999. He was the Chief Scientist and Director of
Intel Research, Beijing, China, from 2004 to 2008.
He was a Senior Researcher and Research Manager
with Microsoft Research Asia, Beijing. He is cur-
rently a Professor and the Deputy Head of the Com-

puter Science Department with Tsinghua University, Beijing. He has authored
over 200 refereed papers in multimedia computing, communications, and
networking. He holds over 50 patents. His current research interests include
multimedia big data computing, cyber-physical-human big data computing,
and multimedia communications and networking.

Dr. Zhu is an International Society for Optics and Photonics Fellow and
ACM Distinguished Scientist. He received six best paper awards, including
ACM Multimedia in 2012 and the IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY in 2001. He served/serves on
various editorial boards, such as a Guest Editor of the PROCEEDINGS OF
THE IEEE, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY, and the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS, and an Associate Editor of the IEEE TRANSACTIONS
ON MOBILE COMPUTING, the IEEE TRANSACTIONS ON MULTIMEDIA, the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOL-
OGY, and the IEEE TRANSACTIONS ON BIG DATA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

