
42 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

On Efficient Tree-Based Tag Search in
Large-Scale RFID Systems

Jihong Yu , Wei Gong, Member, IEEE, Jiangchuan Liu , Fellow, IEEE,

Lin Chen, Member, IEEE, and Kehao Wang

Abstract— Tag search, which is to find a particular set of tags in
a radio frequency identification (RFID) system, is a key service
in such important Internet-of-Things applications as inventory
management. When the system scale is large with a massive num-
ber of tags, deterministic search can be prohibitively expensive,
and probabilistic search has been advocated, seeking a balance
between reliability and time efficiency. Given a failure probability

1
O(K)

, where K is the number of tags, state-of-the-art solutions
have achieved a time cost of O(K log K) through multi-round
hashing and verification. Further improvement, however, faces
a critical bottleneck of repetitively verifying each individual
target tag in each round. In this paper, we present an efficient
tree-based tag search (TTS) that approaches O(K) through
batched verification. The key novelty of TTS is to smartly hash
multiple tags into each internal tree node and adaptively control
the node degrees. It conducts bottom–up search to verify tags
group by group with the number of groups decreasing rapidly.
Furthermore, we design an enhanced tag search scheme, referred
to as TTS+, to overcome the negative impact of asymmetric
tag set sizes on time efficiency of TTS. TTS+ first rules out
partial ineligible tags with a filtering vector and feeds the shrunk
tag sets into TTS. We derive the optimal hash code length and
node degrees in TTS to accommodate hash collisions and the
optimal filtering vector size to minimize the time cost of TTS+.
The superiority of TTS and TTS+ over the state-of-the-art
solution is demonstrated through both theoretical analysis and
extensive simulations. Specifically, as reliability demand on scales,
the time efficiency of TTS+ reaches nearly 2 times at most that
of TTS.

Manuscript received February 1, 2018; revised August 6, 2018; accepted
October 22, 2018; approved by the IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor Y. Guan. Date of publication December 3, 2018; date of
current version February 14, 2019. This work was supported in part by the
Beijing Institute of Technology Research Fund Program for Young Scholars,
in part by the Canada NSERC Discovery Grant, and in part by the NSERC
E.W.R. Steacie Memorial Fellowship. The work of K. Wang and L. Chen was
supported in part by NSF of China under Grant 61672395 and in part by the
CNRS PEPS Project MIRFID. (Corresponding author: Jiangchuan Liu.)

J. Yu was with the School of Computer Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada. He is now with the School of Information and
Electronics, Beijing Institute of Technology, Beijing 100081, China (e-mail:
jihong-yu@hotmail.com).

W. Gong was with the School of Computer Science, Simon Fraser Univer-
sity, Burnaby, BC V5A 1S6, Canada. He is now with the School of Computer
Science and Technology, University of Science and Technology, Hefei 230026,
China (e-mail: weigong@ustc.edu.cn).

J. Liu is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada (e-mail: jcliu@sfu.ca).

L. Chen is with the Laboratoire de Recherche en Informatique, Université
Paris-Sud, 91400 Orsay, France, and also with the Institut Universitaire de
France, 75231 Paris, France (e-mail: chen@lri.fr).

K. Wang is with the Key Laboratory of Fiber Optic Sensing Tech-
nology and Information Processing, School of Information Engineer-
ing, Wuhan University of Technology, Wuhan 430070, China (e-mail:
kehao.wang@whut.edu.cn).

Digital Object Identifier 10.1109/TNET.2018.2879979

Index Terms— RFID, IoT, tag search, time efficiency.

I. INTRODUCTION

RECENT years have witnessed an unprecedented devel-
opment of the radio frequency identification (RFID)

technology [13]. In RFID systems, an attachable tag that stores
information of a physical object does not expend its own
energy on data communication while it is able to capture the
energy in the RF signal of a nearby RFID reader and modulate
this signal by adjusting the impedance match on its antenna
such that a message of zeros and ones can be sent back to
the reader. In addition to simple tags, programmable tags are
produced and armed with abilities of sensing and computing,
e.g., WISP tag [1]. The distinct advantages of RFID, such as
low manufacture cost, wireless non-line-of-sight communica-
tion and parallel tag identification, make it widely deployed
in various applications ranging from inventory control [2] and
supply chain management [15], to object localization [9] and
human-computer interaction [27].

In this paper, we study the fundamental tag search problem
in a large-scale RFID system which is formally defined as:
given a set of wanted tags, the target is to search in the system
to confirm which wanted tags are currently present within
interrogation areas of the readers. For example, suppose some
defective products from a manufacturer have been delivered to
multiple warehouses, the manufacturer wants to know which
defective products exist in which warehouse to further recall
and fix them in time. To this end, the manufacturer provides
the IDs of the tags attached to these products to warehouse
administrators and asks for tag search service [5]. Obviously,
efficient tag search is desirable in this scenario to reduce
financial loss and even avoid potential safety problems.

While deterministic schemes [5] can exactly pinpoint the
wanted tags that are covered by the current RFID system, they
are time-consuming for transmitting a large number of tag IDs.
Instead, finding a set of wanted tags that locate within the cov-
erage range with desired accuracy and probability is adequate
in many RFID applications, where it is impossible for deter-
ministic schemes to achieve the acceptable efficiency due to
the overwhelming large volume of objects, e.g., RFID-enabled
ports [4], [21]. For example, when searching for 20, 000 tags
from the present tag set of 50, 000 tags, they require 19.4s
and 130s, which are 4.4 and 29.6 times the searching time of
the probabilistic scheme with the failure probability 0.001 [5].
Hence, it is necessary to improve the search efficiency to

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-9843-8104

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 43

facilitate management of large-scale RFID systems, especially
those with stringent time requirements.

To this end, several probabilistic search schemes [5], [19],
[30], [32] are proposed to accelerate tag search with a guar-
anteed failure probability. Although these schemes employing
Bloom filter [5], [30] or filtering vectors [19], [32] can filter
out non-wanted tags effectively without transmission of tag
IDs, they waste a large amount of time verifying the found
wanted tags individually. For instance, suppose 5, 000 tags of
a wanted tag set exist in a system of 20, 000 tags, to achieve
a failure probability 10−4, E-STEP [19] needs to execute
21 rounds. In fact, after the first 7 rounds, there are only
69 ineligible tags, indicating that the main purpose of the
remaining 14 rounds is to verify the correctness of each
individual target tag rather than further filter out ineligible
tags. In this context, the existing schemes that cannot verify
target tags in a batch are not efficient anymore. Moreover,
PLAT [32] cannot work in the scenario with unknown tags
in [5], [19], and [30] because it requires that the reader must
have all IDs of tags present in the system besides those of
wanted tags.

In this paper, we fundamentally shift from the traditional
design paradigm to a new route. Specifically, we propose a fast
and reliable Tree-based Tag Search (TTS) that enables batched
verification. TTS builds a tree of adaptive depth and node
degrees by smartly hashing multiple tags into each internal
tree node. It then executes two hashing-based functions on
top of the tree, namely verification and refinement functions.
More specifically, TTS first verifies tags group by group from
the bottom of the tree to the up with the number of groups
decreasing rapidly. Only when the verification function finds
the existence of ineligible tags is the refinement function
executed to refine this group. We perform theoretical analysis
for determining optimal hash code length as well as depth
and node degrees of the tree in TTS. Importantly, we prove
that given a required failure probability 1

O(K) where K is
relative to the number of tags, TTS achieves a time cost
of O(K log(d) K)1 with tree depth d, providing a significant
improvement over prior work O(K log K). Note that a small
d can reduce log(d) K to a constant quickly, e.g., for a large
K=296, with d = 4 we have log(4) K=1.4. That is to say,
the time cost of TTS approaches O(K).

We further improve the performance of TTS in the case that
the wanted and the present tag sets have significantly different
sizes with a two-step tag search scheme, named TTS+. Since
the search efficiency is dominated by the bigger set size,
the key idea of TTS+ is to shrink the size asymmetry first
and use the reduced size to build a search tree. Specifically,
we employ a filtering vector built from the smaller set to
rule out partial ineligible tags of the bigger set in the first
step. In the second step, we start accurate search among the
remaining tags by executing TTS with the shrunk set size used
in the tree construction. We derive the optimum parameters
for TTS+ which are able to guarantee reliability demand and

1Throughout the paper, we use log to denote the logarithm to the base 2 and
define an iterated logarithm function log(i) k with the following properties:
1) log(0) k = k; 2) for an integer i ≥ 1, log(i) k =
max{1, log(log(i−1) k)}.

minimize time cost. Its superiority is confirmed by extensive
simulations. In particular, as reliability demand scales, the time
efficiency of TTS+ reaches nearly 2 times at most that of TTS.

II. BACKGROUND AND MOTIVATION

A. System Model

A typical RFID system consists of three parts: tags, a back-
end server and one/multiple readers. The tags, each having
a unique ID, can be either read-only or read/written by
the reader wirelessly and implement the commands with
lightweight hash functions [1]. The back-end server that has
powerful computing and storage capability coordinates the
readers and is responsible for the data storage and information
processing. The readers, connected via high-speed channels
with the back-end server, transmit commands to the tags and
report their responses to the server. When the back-end server
synchronizes the readers, we can logically consider them as a
whole [5], [19], [30]. We will denote the back-end server and
the readers by the reader for simplicity.

The reader communicates with tags in a Listen-before-
talk way [7]: the reader first queries tags with a command
containing the parameters, such as frame size and random
seed, to initiate communication. Each tag uses a hash function
and the received seed to map its ID to one slot in the frame
and replies to the reader in this slot. Consider an arbitrary time
slot, if at least one tag responds in this slot, it is called a busy
slot; otherwise, it is called an empty slot.

B. The Tag Search Problem

Suppose that we have a known wanted tag set
X={x1, x2, · · · , xn}, and an unknown to-be-queried tag set
Y ={y1, y2, · · · , ym} containing m tags attached on the prod-
ucts currently within the coverage area of the RFID system.
The tags of X and Y are referred to as wanted tags and present
tags, respectively. Due to the dynamics of the RFID system,
e.g., unknown (i.e., new) tags/products move in and/or known
ones leave from the warehouse, the reader does not know the
tags covered by the system, i.e., without IDs of the present
tags in Y . While it is a common assumption [5], [19], [30]
that the reader knows the cardinality of Y from the estimation
through the tag counting schemes analyzed in [31].

Given the wanted tag set X , this paper intends to find
which wanted tags in X are currently present in the coverage
area of the RFID system, i.e., finding the intersection tag set
Z=X∩Y . For clearness, the tags in X∩Y are referred to as
target tags, and the others are called ineligible tags containing
X − Y (non-target tags) and Y − X (non-wanted tags). It
is of great importance for a tag search scheme to have high
reliability, which is required in realistic applications. In this
case, a question arises naturally: how to achieve high reliability
while keeping time cost as small as possible? This paper is
devoted to answering this question.

Denote by Z∗ the set of tags in the final search result and let
Pfail be the probability that the final search result is unequal to
the ground truth, the tag search problem is defined as follows.

Definition 1 (Tag search problem): Given X and Y , the tag
search problem is to find Z = X ∩ Y with the success

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

44 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

probability Pr{Z∗ = Z} ≥ 1 − Pfail within minimum time.
In this problem, Pfail should be relative to the number of
tags [5], so we set Pfail= 1

O(Ka) , where K=max{m, n} and
a constant a≥1, so that the expected number of failure events
K·Pfail among K runs could approach 0 for a large K .

C. Prior Art and Limitations

In this section, we briefly summarize the existing work
related to the tag search problem in RFID systems. Various
schemes have been proposed to collect tag IDs in RFID
systems. In ALOHA-based identification schemes [14], [26],
each tag randomly selects one slot to transmit its ID. If there is
collision, the tag will continue participating in the next frame
until its ID is received successfully. In tree-based identification
schemes [10], [25], the reader encodes all tag IDs as leaves
of a tree and requires tags with matching masks to transmit
their IDs. Although these schemes can be borrowed to search
for tags, they spend too much time sending tag IDs and are
thus inefficient in large-scale systems [5].

Many research efforts have also been devoted to monitoring
missing tag and unknown tag event. Missing tag monitoring
aims at probabilistically [6], [20] or exactly [16], [17], [29]
finding out the tags that should exist in the system but actually
are absent. Unknown tag detection [8] and identification [18]
are to probabilistically detect and deterministically identify the
tags whose IDs have not been recorded. Opposite to missing
and unknown tag monitoring, the tag search problem focuses
on finding a particular set of tags in interrogation areas.

There are several probabilistic schemes designed to deal
with the tag search problem. The works [5], [30] employ
Bloom filter to encode tag IDs, accelerating the tag search
task. The former [30], named CATS, works on the hypothesis
that the cardinality of the wanted tag set is smaller than that
of the present tag set in the system. It thus may not work
when the assumption fails [5]. Instead of transmitting a long
Bloom filter in CATS, ITSP [5] decomposes it into multiple
short filtering vectors and uses them to filter out ineligible tags
iteratively, which reduces time cost. Two most recent works
called E-STEP [19] and PLAT [32] exploit testing slots and
non-testing slots to filter out ineligible tags. While PLAT [32]
assumes that the reader knows IDs of all tags in the system
besides those of wanted tags; therefore, it cannot work in the
scenario in the presence of unknown tags in [5], [19], [30],
and this paper.

In these works, the reader either receives a filtering vector
from tags in Y or sends one to them, and detects ineligible tags
by observing differences between the received vector and the
supposed responses of the tags in X . They essentially execute
multiple rounds each with a constant failure probability to
satisfy a required failure probability. As a result, they must
operate for O(log K) rounds (or O(log K) hash functions
should be used in [30]) each consuming time O(K) in
order to achieve the required failure probability O(1

Ka) with
K=max{m, n} and a constant a, which results in the overall
time cost O(K log K). These works set the cardinality of the
set Z to λ ·min{|X |, |Y |} where λ called intersection ratio is

a constant. In the analysis, we assume that |X | and |Y | and
|Z| are of the same order of magnitude, i.e., O(K).

D. Motivation

It is desirable for a tag search scheme to have high reliability
and time efficiency. The existing probabilistic tag search
schemes, however, experience a significant degradation of time
efficiency as the reliability demand increases. Specifically, we
observe from these works that a large amount of time is
wasted verifying each individual tag repetitively. Take [19]
as an example. Suppose |X | = 10, 000, |Y | = 20, 000,
|Z| = 1, 000 : 2, 000 : 9, 000 and Pfail = 10−4, the number
of rounds is equal to 21 [19]. As shown in Fig. 1, after the first
7 rounds, there are 79 non-target tags when |Z| = 1, 000, and
only 14 non-target tags left when |Z| = 9, 000, indicating that
the remaining 14 rounds in nature are repeated to verify the
correctness of search result. For clearness, look at Fig. 2 where
almost the whole filtering vector consists of responses from
target tags. As only one ineligible tag exists, all slots here are
in fact used to check target tags individually. Moreover, after
this round, all target tags have been found, but the existing
schemes still run round after round until the required failure
probability is achieved, leading to the waste of a large amount
of time. Therefore, if we can design a compact structure to
verify tags in batches with a low failure probability, the overall
time cost will be reduced significantly.

This motivates us to wonder: can we design a scheme
that achieves a failure probability O(1

Ka) while reducing the
prior time cost O(K log K) towards O(K)? Motivated by the
observations, our design follows the guidelines below:

• First, we should verify tags in batches instead of individ-
ual verification in previous work, and refine search result
only when the verification result is false.

• Second, the number of runs should be reduced signif-
icantly compared to O(log K) in the previous work,
suggesting a better scalability to reliability requirement.

Following these guidelines, we propose a fast and reliable
Tree-based Tag Search (TTS) that exploits an adaptive tree
to map tags into multiple groups. TTS operates in multiple
rounds each consisting of two phases: 1. Batched verification:
the reader verifies correctness of tags group by group. 2.
Refinement: if the verification result is false, we further
refine this group by examining tags individually. As we will
demonstrate in Sec. III-D, our scheme is able to achieve the
failure probability 1

O(Ka) with a time cost of O(K log(d) K),
which is significantly superior to the previous O(K log K).

III. TTS: TREE-BASED TAG SEARCH

In this section, we show the basic idea of TTS with a simple
example, and then detail its design and performance analysis.

A. TTS: Basic Idea

In this subsection, we introduce the basic idea of TTS with
Example 1. Note that a non-leaf node and a leaf node are
referred to as node and leaf, respectively for clearness. The
height of a node means its distance from leaves, and the level
i is the layer where nodes with the hight i locate.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 45

Fig. 1. Exemplify [19]: Pfail = 10−4 , |X| = 10, 000, |Y | = 20, 000.

Fig. 2. Filtering vector in prior work. 0 and 1 mean zero and at least one
response in the slot. Ineligible tags can be found in a slot of which the state
is different between supposed and received filtering vectors.

Example 1. Given n = 4 wanted tags: X={x0, x1, x2, x3}
and there are m=4 present tags: Y ={y0, y1, y2, y3} in the
RFID system. Suppose x1 = y1 and x2 = y2, we have the
target tag set Z = {x1, x2}.

Before executing TTS, we first build a tree of the depth 2,
as shown in Fig. 3. Specifically, we use a hash function h to
hash the tags in X and Y into K = 4 values in {0, 1, 2, 3}.
Suppose h(x0)=h(x1)=h(y1)=0, h(y0)=1, h(x2)=h(y2)=2,
and h(x3)=h(y3)= 3. Then we use these 4 values as the leaves
of the tree, i.e., leaves 0 to 3. Each leaf can be interpreted as
a set of tags assigned to it from X and Y . Let each node at
the level 1 have log K=2 children (i.e., leaves), and let the
node at the level 2, i.e., root, have K

log K =2 children, we can
obtain the tree shown in Fig. 3.2 By the tree, we divide the
tag sets X and Y into different groups, i.e., tags are assigned
to different leaves and nodes.

Obviously, two same tags, i.e., target tags, will be assigned
to the same leaf, e.g., x1 and y1, x2 and y2, due to the fact that
h(x)=h(y) if the tag ID x=y. While two different tags may
also map to the same leaf, e.g., x0 and y1, x3 and y3, because
of hash collisions. Two questions thus arise: 1. How to know
whether only the same tags map to a leaf? 2. If different tags
from X and Y map to the same leaf, how to filter out ineligible
tags, e.g., non-target tags x0 and x3 and non-wanted tags y0

and y3? To address the challenges above, TTS proceeds in 2
rounds from the bottom of the tree to the up.

The first round: TTS operates at the level 0, as shown
in Fig. 4(a), where each leaf can be interpreted as a slot. The
reader first requests present tags assigned to the leaf (slot) 0
to reply and a new hash function is used by tags here. Since
only the tag y1 qualifies, it sends a 1-bit hash code at this slot,
assumed to be 1. With the same hash function, the reader has

2The tree here is binary, but is multiway generally as presented later.

Fig. 3. Tree for Example 1.

Fig. 4. Illustrate TTS on top of the tree in Example 1. (a) 1st round at the
level 0. (b) 2nd round at the level 1.

the hash codes for the tags x0, x1, assumed to be 0 and 1.
As only the codes of x1 and y1 are equal, the reader considers
x0 to be non-target definitely, and temporarily regards x1 as
a target tag while keeping y1 active for further verification.

The reader repeats these operations for the leaves (slots)
1 to 3. As no tag of X maps to the slot 1, y0 is found
non-wanted and will keep silent until TTS finishes. Moreover,
as x2 = y2, the reader regards x2 as a target tag temporarily.
While for the leaf 3, though different, x3 and y3 still have the
same code 0 due to the hash collision, and will keep active
for further verification. After this round, the reader holds an
updated candidate target tag set {x1, x2, x3}, and y1, y2, y3

are still active in the system.
The second round: TTS operates at the level 1, as shown

in Fig. 4(b), where each node can be regarded as a slot and
new hash functions are used. The reader executes Phase 1:
batched verification function. It first requires each of active
tags mapped to the leaves in the subtree of the node 0,
i.e., leaves 0 and 1, to reply with its new 2-bit hash code
together. As only y1 qualifies and x1=y1, their codes are
equal, x1 is regarded as a target tag with a higher probability
than the first round. Subsequently, the tags y2, y3 assigned
to the leaves 2, 3 of the node 1 reply with their new hash
codes, 00 and 11. For the concurrent transmission, the reader
receives an aggregation of two physical-layer signals, assumed
to be 11. From the hash codes of x2 and x3, i.e., 00 and 01,
the reader calculates their combination, supposed to be 01.
As the received value is different from the calculated one,
there is at least one ineligible tag in X and Y mapped to the
leaves 2 or 3.

To filter out ineligible tags, the reader further queries y2

and y3, and the one with the smaller leaf number responds
first with a 3-bit hash code. The reader first receives 011 from
y2, which is the same as x2, and regards x2 as a target tag.
Similarly, as the codes of y3 and x3 are unequal, the reader

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

46 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

finds x3 ineligible. After this round, the reader has the final
result Z∗={x1, x2} that is equal to the ground truth Z .

Note that we will formally present how to configure the
hash code sizes used in TTS in Sec. III-D so that the required
failure probability and time cost can be guaranteed.

B. Tree Architecture

As mentioned in Sec. II-D, an efficient tag search should be
able to verify tags in batches as well as should have limited
rounds. In this subsection, we show how to group tags by a
tree of depth d, where d is the number of rounds in TTS.
The challenge lies in that we need to carefully design the
relationship between the tree depth and node degrees, which
decides the performance of TTS.

Given the wanted tag set X and the present tag set Y ,
the reader has K=max{m, n}. Then, the reader constructs a
tree following the rules [3] below: First, it maps each wanted
tag ID into one of values in [K]={0, 1, 2, · · · , K−1}, referred
to as buckets, by a uniform hash function. Second, it builds a
tree with these K buckets as its leaves.

Step one: hash tags into buckets. Since a tag ID is 96-bit,
there would be 296 RFID tags at most. Suppose the universe is
U , we define h: U→[K] as a hash function that can uniformly
map each tag into [K]. We present a hash value in decimal and
the hash code length is log K . For each j ∈ [K], we define
a set Xj = {x ∈ X |h(x) = j} representing the tags of X
that are mapped to the bucket j. With h, each tag of Y is
also hashed to [K], which, however, is unknown to the reader.
We define Yj = {y ∈ Y |h(y) = j} for Y .

Step two: build the tree. Let T denote the tree of the depth d.
Define the set of nodes with the height 0 ≤ i ≤ d as Li.
We build T , as depicted in Fig. 5 following the rules below:

1) We make the K buckets obtained in the step one as the
K leaves. That is, each leaf j stands for a set of the tags
that are mapped to its corresponding hash value, i.e., j.
We denote by A(j) and B(j) the set of tags of X and
Y assigned to the leave j, respectively.

2) Denote by δi the degree of each node with the height
i, i.e., each node v at the level i has δi children. For
i = 1, let δ1 = log(d−1) K; and let δi = log(d−i) K

log(d−i+1) K
for

2 ≤ i ≤ d.

We can extract two pieces of information from the tree.
First, tags are assigned to different groups. Each leaf j stands
for tags mapped to it. For each node v at the level 0<i<d, tags
of all leaves in its subtree can be regarded as those assigned
to it, forming a bigger group than leaves, e.g., blue and red
rectangles in Fig 5. As a result, the reader can query at a
leaf or a node a group of tags, enabling batched verification.

Second, A(j) at each leaf j is actually a candidate target
tag set because if there exists at least one target tag in A(j),
i.e., A(j)∩Z �=∅, then at least one tag of Y is also mapped to
the leaf j, i.e., A(j)∩B(j)�=∅. These candidate tag sets can
be regarded as initial input of TTS. Define A(j)−1=A(j) and
B(j)−1=B(j) as the initial input for leaf j.

For a node v∈T , let Θ(v) be the set of all leaves in the
subtree of v. We further denote the initial candidate target tag
set for every node v by A−1

v =∪j∈Θ(v)A(j)−1 and B−1
v =

Fig. 5. Exemplify the built tree. Each leaf is assigned a group of tags, and
each internal node contains tags of all leaves in its subtree, which can be
interpreted as a bigger group, e.g., blue rectangles for nodes at the level 1,
and red rectangles for nodes at the level d − 1.

∪j∈Θ(v)B(j)−1, and for the tree by A−1=(A(j)−1)0≤j≤K−1

and B−1=(B(j)−1)0≤j≤K−1.

C. General Search Process

Having described the tree design, we start formally present-
ing our tag search scheme TTS that operates on the tree for
d rounds. The execution of d rounds starts from the level 0
where the leaves locate and terminates after the level d−1.
Each round i for 1≤i≤d−1 consists of two phases where
two hashing-based functions are executed: 1) verifying the
correctness of the candidate tag set for each node v; 2) refining
candidate tag sets that are proven incorrect in the first phase.
In the round i = 0, the reader can verify and refine candidate
sets in one phase. Specifically, TTS works as follows:

In the first round i = 0, the reader first queries the tags of Y
in the system with the command containing the frame size K ,
the hash code size r0, and a random seed. On receiving the
query, each tag uses the hash function h to map its ID to one
slot of the frame, i.e., a leaf in the tree, and then transmits in its
chosen slot an r0-bit hash code generated by a hash function
h1. Here the existing techniques [12], [24], [28] are used to
decode collisions when multiple tags respond in the same slot,
which will be discussed later. In each slot, after obtaining hash
codes from tags, the reader compares them with those of the
wanted tags in X selecting this slot. If they match, the reader
tentatively believes them to be the same tags, i.e., the target
tags. Otherwise, they are ineligible tags, i.e, non-target tags
in X and non-wanted tags in Y . Then the reader ACKs the
found ineligible tags to silence them until TTS ends, while the
others will keep active. Therefore, after this round, for each
0 ≤ j < K , the reader deducts the non-target tags from the
initial input A−1(j) = A(j) and gets an updated candidate
set, denoted by A0(j).

Each of the remaining d−1 rounds, i.e., the levels 1 to d−1
of the tree, has two phases. Consider an arbitrary round i for
1≤i≤d− 1, with the candidate set Ai−1(j) of the leaf j from
the round i−1, TTS proceeds as follows:

Phase 1: batched verification. The reader further queries
tags in Y with the parameters: the frame size K , the node
degree δi at the level i, the hash code size ri and �i, and a
random seed. Each tag still picks the same slot as the round
0 by h such that the structure of the tree does not change.
While in the slot v, i.e., node v at the level i, a tag whose
chosen slot number is between v·δi and (v + 1)·δi − 1 replies
with a ri-bit hash code outputted from h1. That is to say, tags

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 47

assigned to the node v can be verified together. Moreover,
executing Li slots in this frame, i.e., the number of nodes at
the level i, is enough to cover all K leaves. As more tags are
scheduled to respond in one slot, the methods [12], [24], [28]
separating the collided transmission may not work effectively,
but fortunately, in this phase, we just need to check whether the
tags in Y selecting this slot, accordingly those of Y mapped
to the leaves v·δi to (v + 1)·δi−1, are target tags. To this
end, the reader measures the channel and aggregates physical-
layer symbols from multiple tags, as implemented in [6], [28],
and [29]. If the hash codes of the responsive tags and the
wanted tags are the same, their aggregated values should be
the same. In this case, all responsive tags in this slot are
temporarily regarded as target tags and will keep active, and
the reader will start the next slot; otherwise, Phase 2 will be
executed.

Phase 2: refinement. Because Phase 1 finds unequal hash
codes in the node v (slot v), TTS refines candidate tag sets
of all leaves in the subtree of the node v one by one. To this
end, each of the tags mapped under h to the leaves between
v·δi and (v + 1)·δi−1, sends an �i-bit hash code by hash
function h2 in the order of their leaf numbers, e.g., from leaf
2 to 3 in Fig. 4 in Example 1. TTS then proceeds similarly
as the round 0. After Phase 2, TTS starts to search in a new
slot.

After the current round, for each leaf j, the reader deducts
the found ineligible tags from the candidate set Ai−1(j) and
obtains an updated set Ai(j) that will be used as the input
for the next round. TTS then starts the new round, which
is identical except that the founded non-wanted tags in Y
will keep silent and the used parameters are different. The
above process repeats round after round until the number of
the executed rounds exceeds d when the reader is able to
obtain the final candidate sets for all leaves such that their
union set induced by the reader at the root of T is exactly
Z∗ = X ∩ Y = Z with a high probability.

D. Performance Analysis

Since tree structure and success probability of two hashing-
based operations, namely the verification and refinement
functions, play important roles in the performance of TTS,
we next study how to design the parameters such that TTS
achieves 1

O(Ka) failure probability and O(K log(d) K) time
cost.

1) The failure probability of TTS. We first analyze success
probability of verification function. As ri-bit hash codes are
used at each node v in each round 1≤i≤d−1 to compare
aggregated hash values of its candidate tags, i.e., tags in
the set Aj−1

v =∪j∈Θ(v)A(j)j−1 and Bj−1
v =∪j∈Θ(v)B(j)j−1.

As stated in Lemma 2 in Appendix, if two sets are noniden-
tical, the verification function can output Ai−1

v �=Bi−1
v with

a probability at least 1− 1
2ri

. For the refinement function, its
outputs in each round 0≤i≤d−1 are the updated candidate
tag sets A(j)i and B(j)i for a leaf j with the input of
A(j)i−1 and B(j)i−1. As described in Sec. III-C, there are
A(j)i−1 + B(j)i−1 tags at the leaf j each generating �i-bit
(r0-bit in the round 0) hash code. According to Lemma 3 in

Appendix, we set such �i = O(b log(|A(j)i−1|+ |B(j)i−1|)),
similarly for r0, that the refinement function can succeed for
each leaf with a probability as least 1− 1

(|A(j)i−1|+|B(j)i−1|)b .
We make the failure probability of the verification function

and the refinement function equal to the same value pi:
1

2ri
=

1
(|A(j)i−1| + |B(j)i−1|)b

= pi (1)

such that after the round i for every leaf j it holds that A(j)i =
B(j)i with the probability at least 1 − pi if A(j)i ∩ B(j)i �=
∅. The rationale lies in that in each round i, if j is in the
subtree of a node v that passes verification at level i, we know
Ai−1

v =Bi−1
v and thus A(j)i = B(j)i with success probability

at least 1− pi. Otherwise, j is in the subtree of a failed node
v at level i. In this case, the refinement function is executed
for j with success probability at least 1 − pi.

Note that as TTS operates, it needs to achieve the increasing
success probability. To this end, in this paper, we configure pi

for round 0 ≤ i ≤ d − 1 as

pi =
1

(log(d−i+α) K)β
, (2)

where α and β are two constants and we will investigate how
to configure them shortly. It is easy to check that the success
probability 1 − pi is proportional to the round number i. In
order to achieve pi, recall (1), we have the hash code sizes as

ri =

{
β log(d−i+α+1) K if 1 ≤ i ≤ d − 1
β log(d+α+1) K if i = 0,

(3)

�i = β log(d−i+α+1) K for 1 ≤ i ≤ d − 1. (4)

Given pi, as each node v at level i>0 has Θ(v)=log(d−i) K
leaves in its subtree (c.f. (27) in Appendix) each succeeding
with probability 1−pi, after round i the success (i.e., Ai

v=Bi
v)

probability for each node v, denoted by qv , can be derived as

qv ≥ 1 − Θ(v)pi ≥ 1 − log(d−i) K(
log(d−i+α) K

)β

from the union bound over all its leaves.
Iteratively, after round i=d−1, TTS reaches the top of the

tree, i.e., the root, and its success probability (Ad−1=Bd−1)
is thus at least 1− log K

(log(1+α) K)β . That is, the achieved failure

probability by TTS, denoted by P ∗
fail, satisfies

P ∗
fail ≤

log K(
log(1+α) K

)β
. (5)

2) Time cost of TTS. The overall expected time cost of TTS
consists of two parts: one for the verification and the other for
the refinement. Next, we start to study the first part.

As TTS executes the verification function from round i=1
to the round d−1 at each node of level i with hash code size
ri, the overhead for the verification, denoted by T1, is

T1 =
d−1∑
i=1

|Li| · ri =
d−1∑
i=1

βK log(d−i+α+1) K

log(d−i) K
,

where |Li| is formulated in (26) in Appendix.
For the second part, TTS conducts the refinement function

once in the round 0 but probabilistically in the other d−1
rounds. Specifically, at level i, i.e., the round i, the reader will
carry out the refinement function on each leaf of node v if this
node fails to pass verification. This would happen as long as
node v has one incorrect child. For a leaf j let Vi(j) denote

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

48 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

its unique predecessor node at the level i and v is a child of
Vi(j). The probability of executing the refinement function on
the leaf j in the round i can be calculated as

Pr{Vi(j) does not pass the verification} ≤ δi · (1 − qv),
where the inequality holds by a union bound. As there are d
rounds, the expected number of times the refinement function
is run at each leaf is smaller than

1+
d−1∑
i=1

δi · (1 − qv) = 1+
d−1∑
i=1

(log(d−i) K)2

log(d−i+1) K
(

log(d−i+α) K
)β

which is O(1) when α = −1 and β = 2. Moreover, as there
exist K leaves, we can compute the expected time cost for the
refinement function, denoted by T2, as

T2 ≤
K∑

j=1

(
r0 +

∑d−1
i=1 δi · (1 − qv) · ri

)
.

Denote by T the overall time cost of TTS, we thus have

T ≤
d−1∑
i=1

βK log(d−i+α+1) K
log(d−i) K

+ βK log(d+α+1) K

+
K∑

j=1

d−1∑
i=1

βδi(log
(d−i) K) log(d−i+α+1) K(

log(d−i+α) K
)β . (6)

With the general formulations of P ∗
fail and T , we now

configure α and β and d such that the failure probability is at
most 1

O(Ka) and the overhead is at most O(K log(d) K).
Recall (2), we can observe that d− i+α cannot be smaller

than zero for all i ∈ [0, d − 1], requiring that α ≥ −1. Now,
let α = −1 and β ≥ 2 and substitute them into (5), we have

P ∗
fail ≤

log K

Kβ
≤ 1

Kβ−1
, (7)

for a large K . Furthermore, substitute them into (6) yields

T = O(K log(d) K),
which confirms our claim on the performance of TTS. Besides,
in this setting, we have the hash code size ri and �i used in
round 1 ≤ i < d are in the same order of magnitude as the
number Θ(v) of leaves of a node v, i.e., O(log(d−i) K).

We would like to show that TTS can also meet the user-
defined requirement on the failure probability. Recall (5), given
the required failure probability Pfail, it is enough to have

P ∗
fail = Pfail ⇒ β =

log(2) K − log(Pfail)

log(2+α) K
. (8)

In this case, we should study how to set α, β and d such
that the overall time cost of TTS is minimized. Having known
α≥−1 from the previous analysis, we now determine the upper
bound for α. From the definition of the arithmetic operation
log, we know that the allowed maximum value of α is bounded
by the constraint that log(α+2) K≥1. For d, its minimum
value is 2 and its maximum value is the one satisfying
log(d+α+1) K≥1. Therefore, the optimal parameter collection,
denoted by {α∗, β∗, d∗}, can be obtained by solving min

α,β,d
T

subjected to the constraints above. Note that given a large
K=296, then log(2) K=6.6 and log(4) K=1.4. As the feasible
solution space is small, we could directly search for the
optimum with which the tree structure will be fixed.

Discussion on the assumption. In this paper, the existing
techniques [12], [24], [28] are used to decode the collision
when multiple tags respond in the same slot. It has been proven

in their implementations that the reader is able to decode
the signals from concurrent transmission of up to 16 tags.
Theoretically, at most O(log K

log log K) tags [22] select the same
slot when the number of tags is equal to the frame size K ,
so even K = 232, there will be at most 7 tags in a slot and
just one tag in a slot on average. We thus assume that these
methods operate successfully.

IV. TTS+: SEARCH WITH ASYMMETRIC TAG SETS

With TTS we have achieved the failure probability O(1
Ka)

at the time cost of O(K log(d) K) instead of O(K log K) in
prior work. On top of this result, we propose TTS+ to further
enhance the time efficiency of TTS when the sizes of X and Y
are remarkably different with two-step operations: asymmetry
shrinkage and accurate tag search.

A. Motivation

1) Observations. From the analysis in Sec. III, we know
that the time cost of TTS is T = O(K log(d) K), which is
proportional to K = max{|X |, |Y |}. That is to say, the bigger
one between X and Y dominates the time cost of TTS. This
makes sense when the set size of X and Y are close to each
other. Yet it is unreasonable in the case that the two sets have
remarkably asymmetric sizes. Look at a toy example: |X | =
100, 000 and |Y | = 10, 000. In this case TTS builds a search
tree with K = |X |, i.e., it maps the tags of Y to K leaves,
making (1 − 1

K)|Y | ≈ 90.5% of K leaves empty for Y . It is
worth noting that the reader can distinguish the ineligibility
of the tags of X which are mapped to these empty leaves but
cannot verify the tags of Y from these empty leaves. That is to
say, TTS spends most of time combating with the interference
of the non-target tags of X , which limits its time efficiency.

If we can first reduce the asymmetry between |X | and |Y |,
e.g., shrinking |X | to 20, 000, even to 10, 000, and use the
shrunk set size to build the tree, the rate of empty leaves for
Y will decrease to 60.7% and 36.8%, and the time efficiency
of TTS can thus be improved significantly.

2) Design guideline. According to the observations,
a promising scheme should work in two-step pattern: First,
we should screen out and suppress ineligible tags of the bigger
set to relieve their interference while keeping eligible tags
active for further accurate search. Second, the remaining tags
after the first step will be fed into TTS to conduct the accurate
tag search. Following this guideline, we design an extended
tag search scheme on the top of TTS for higher time efficiency,
named TTS+, which consists of two steps:

1) Asymmetry shrinkage: we build a filtering vector from
the smaller tag set and use it to rule out the ineligible
tags of the bigger set in this step.

2) Accurate tag search: we input the tags passing filtering
test which comprise all target tags and partial ineligible
tags into TTS for the further tag search.

The key challenge of TTS+ lies in configuring the para-
meters to guarantee the required failure probability while
optimizing time efficiency. On one hand, a natural problem we
need to tackle is how to determine the execution time of the
first step, i.e., the filtering vector length, as a bigger filtering

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 49

vector can rule out more ineligible tags but leads to a higher
time cost. On the other hand, we need to tune parameters in
the second step so that TTS+ using the shrunk set size in
the second step outputs the same failure probability as TTS
using the original size K . In what follows, we first describe the
TTS+ design and then show how we address the challenge.

B. TTS+ Description

In this subsection, we start to formally introduce TTS+ that
consists of two steps: asymmetry shrinkage and accurate tag
search. Without loss of generality, we assume here |X | ≥ |Y |
for clearness and will discuss the case of |X | < |Y | shortly.

Step 1: asymmetry shrinkage. In the first step, we use a fil-
tering vector to rule out the non-target tags in X . Specifically,
the reader first issues a query command containing a random
seed, the frame size f , the number of reply slots of a tag J .
The parameter configuration will be studied in Sec.IV-C. Upon
receiving the command, each tag in Y employs hash functions
and the seed to map its ID to J slots, and replies to the reader
in the corresponding slots. In each slot, the reader sends a slot
start command and wait for responses. For each tag, if one of
its reply slot numbers is equal to the current slot number, it will
respond immediately. Otherwise, it will keep silent. There are
thus two types of slots: empty slots and busy slots.

After the execution of f slots, i.e., one frame, the reader
obtains all responses and can encode an f -bit filtering vector
from these responses as follows: Initially, the filtering vector
is null until the reader starts feeding it with the responses. For
a position w in the filtering vector, i.e., the slot w in the frame,
if this slot is busy, the reader sets the element in the position
w of the filtering vector to ‘1’, otherwise ‘0’. Repeating the
operations for all positions, the reader obtains a filtering vector
and can use it to prune non-target tags in X .

To test the tags in X , the reader maps each of them to J
positions as the tags in Y , and checks these J positions in
the filtering vector. If the elements in these J positions are all
‘1’s, this tag is eligible. Otherwise, this tag is ineligible and
will not participate into the subsequent operations.

Step 2: accurate tag search. Let X ′ define the set of the tags
in X which pass the filtering vector test. In the second step,
we execute TTS for the tag search with K ′ = max{|X ′|, |Y |}.
Note that K ′ plays the same role as K in Sec.III-B. We will
investigatet the parameter configuration in Sec.IV-C.

We would like to explain that TTS+ can be directly
extended to the case of |X | < |Y |: the reader builds a filtering
vector from X and broadcasts it to the tags in Y in the first
step instead of constructing one from responses of the tags in
Y . We here focus on the case of |X | ≥ |Y | in the analysis,
but we consider both cases in the simulation.

C. Performance Analysis

In this subsection, we study how the parameters in TTS+
are configured to ensure the same failure probability while
reducing time cost in comparison with TTS.

1) Parameters tuning in Step 1: the objective is to maximize
the filtering success probability and formulate the execution
time of this step. Since the reader and the tags in Y use
the same hash functions and the seed, the target tags in X

that belong to the intersection Z = X ∩ Y will only map to
‘1’ positions in the filtering vector and deterministically pass
the test. Yet there exist false positives, that is to say, some
non-target tags in X may also pass the test. We now compute
the false positive probability that is denoted by Pfp.

Recalling Step 1, we know that each tag in Y selects J
slots in a frame, so the probability that a slot is still empty,
i.e., the element in the corresponding position of the filtering
vector is ‘0’, after the responses of all tags in Y is equal to
(1 − 1

f)J|Y | ≈ e−
J|Y |

f .
Meanwhile, during the test, if all J positions a non-target tag

in X maps to are ‘1’s, it can pass the test and the reader cannot
know its ineligibility. Hence, the false positive probability is
related to the probability that an element in the filtering vector

is ‘1’, which can be calculated as Pfp =
(
1 − e−

J|Y |
f

)J

.
In order to maximize the filtering efficiency, we need to

minimize the false positive probability with respect to J with
f fixed. To this end, we compute the derivative of Pfp:

dPfp

dJ
=

[
ln (1 − e−

J|Y |
f) +

J|Y |
f

e
J|Y |

f − 1

]
·
(
1 − e−

J|Y |
f

)J

.

If let this derivative equal zero, we get J = f ln 2
|Y | when the

false positive probability is minimum, which is

P ∗
fp =

(
1
2

)J

. (9)

This is because dPfp

dJ ≥ 0 for J ≥ f ln 2
|Y | while dPfp

dJ < 0 for

J < f ln 2
|Y | . We thus know the frame size

f =
|Y |J
ln 2

, (10)

which stands for the execution time of Step 1 and can be
determined once the value of J is fixed. We will show how
to configure J later.

Since X ′ represents the tags in X which pass the test,
it consists of two parts: the tags in X belong to X∩Y and the
mistaken non-target tags in X . Its size can be computed as

|X ′| ≈ (|X | − |X ∩ Y |) · P ∗
fp + |X ∩ Y |

≤ |Y | + (|X | − |Y |) · P ∗
fp (11)

≥ (|X | − |Y |) · P ∗
fp (12)

for 0 ≤ |X ∩ Y | ≤ |Y |.
2) Parameters tuning in Step 2: the objective is to formulate

the execution time of this step and the failure probability.
Recall that we input Y and X ′ to TTS in the second step of
TTS+. Since the intersection size |X ∩ Y | cannot be known
a prior, we use the upper bound of |X ′| in the computation of
the execution time: K ′ = |Y |+(|X |− |Y |) ·P ∗

fp, while using
the lower bound of |X ′| in the computation of the failure
probability: K ′ = max{|Y |, (|X | − |Y |) · P ∗

fp}, which can
guarantee all properties of TTS with the exact |X ′|. Therefore,
referring to (6), the execution time of Step 2, defined as TS2,
can be expressed as

TS2 ≤
d−1∑
i=1

βK′ log(d−i+α+1) K′

log(d−i) K′ + βK ′ log(d+α+1) K ′

+
K′∑
j=1

d−1∑
i=1

βδi(log
(d−i) K′) log(d−i+α+1) K′(

log(d−i+α) K′
)β . (13)

We use TS2 to express the right side of the inequality.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

50 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 6. Different numbers of reply slots vs. execution time under diverse |Y |: d = 2, |X| = 10000, Pfail = 10−4, transmission rate 100kbps.
(a) |Y | = 1000. (b) |Y | = 2000. (c) |Y | = 4000. (d) |Y | = 8000.

We proceed to prove that TTS+ can achieve the same
failure probability 1

Ka as TTS in Sec.III. Recalling (5),
we know that the failure probability is inversely proportional
to K ′, so setting K ′ to K ′ yields

P ∗
fail ≤

log K ′(
log(1+α) K ′)β

≤ 1
(K ′)β−1

, (14)

where the second inequality holds for α = −1 and β > 1. For
the required failure probability 1

Ka , we have
1

(K ′)β−1
=

1
Ka

⇒ β = 1 +
a log K

log K ′ . (15)

Similarly, given an arbitrary requirement on the failure
probability Pfail, it is enough to have

P ∗
fail = Pfail ⇒ β =

log(2) K ′ − log(Pfail)

log(2+α) K ′ . (16)

β is a function of J for K ′ = max{|Y |, (|X | − |Y |) · (1
2)J}.

3) Overall time cost optimization for TTS+. From the
analysis above, we can obtain the overall time cost of TTS+,
denoted by TI , as follows:3

TI = f + TS2. (17)

The results shown in (10) and (13) implies that a bigger J
enlarges f but lessens TS2, suggesting the existence of an
optimum of J . Specifically, the frame size increases with J
leading to a longer Step 1, but as a result, the set X ′ of the
tags that pass Step 1 will become smaller and thus the time
cost of Step 2 will be reduced. Note that if the optimum of
J is equal to zero, it means that TTS+ will not run the first
step and degrade to the original TTS.

Let us look at an illustrative example showing the impact
of different J on the time cost TI . The settings are: d =
2; |X | = 10, 000; Pfail = 10−4; α = −1 and 0; and the
symmetric transmission rate 100 kbps. By varying |Y | from
1, 000 to 8, 000, we intend to illustrate how the optimum of J
changes across diverse |Y |

|X| . As shown in Fig. 6, the optimum
of J decreases from 5 to 0 as |Y | closes to |X |, and TI is
convex with respect to J . The numerical results confirm our
judgement on the relationship between TI and J .

Searching for the exactly minimum TI . Since TI is
too complicated to directly derive its exact minimum value,
we plan to solve this problem by searching in the feasible
region. We have obtained the constrains on d, α in Sec.III-
D and β in (16), so the key here is to fix the range of J .

3We provide the exact formula of TI in (17), but we set TS2 = TS2 by
default in the subsequent analysis. That is to say, we try to optimize the upper
bound of TI .

To this end, we prove in Lemma 4 in Appendix that TI

does not decrease with J after J is over a threshold Jth.
Therefore, minimizing the time cost TI can be formulated
as the following optimization problem that can be solved via
direct searching:

obj.: min TI (18)

s.t.: α ≥ −1 and log(α+2) K ′ ≥ 1 (19)

d ≥ 2 and log(d+α+1) K ′ ≥ 1 (20)

J ∈ [0, Jth] and (16) (21)

The analysis above shows that we can search the feasible
region for the optimum J that minimizes TI , the theoretical
characterizes of TI with respect to J has yet to be studied.
To understand better behavior of TI , in what follows, we pro-
ceed to derive the relationship between TI and J theoretically.

Theoretical analysis on TI .4 We require the failure prob-
ability Pfail = 1

Ka where a ≥ 1, as stated in Definition 1.
To make the analysis feasible, we will further amplify TS2

and study this loosened upper bound of TI .
To guarantee Pfail = 1

Ka , α should be −1 when we have

TS2 < 2β(d − 1)K ′ + βK ′ log(d) K ′

<
(
2(d − 1) + log(d) K ′

)(
1 +

a logK

log K ′

)
K ′ (22)

following from (15). We will proceed in two cases for K ′ =
max{|Y |, (|X | − |Y |) · (1

2)J}.
Case 1: K ′ = (|X | − |Y |) · (1

2)J when J ≤ log |X|−|Y |
|Y | .

Substituting this K ′ and (22) to (17) yields

TI =
|Y |J
ln 2

+
(
2(d − 1) + log(d) K ′

)
K ′

·
(

1 +
a log K

log(|X | − |Y |) · (1
2)J

)
. (23)

We observe by studying the derivative of TI that its derivative
is negative, meaning the decrease in the value of TI with
J when J ≤ log |X|−|Y |

|Y | . The technical proof is detailed in
Lemma 5 in Appendix.

Case 2: K ′ = |Y | when J ≥ log |X|−|Y |
|Y | . In this case,

we can obtain (24) from (22). Since log(d)(·) will converge to
a small number, the amplification here is compact:

TS2 <
(
2(d − 1) + log(d) (2|Y |)

)(
1 +

a log K

log |Y |

)
K ′. (24)

4TI here is greater than that in (17) as we loosen TS2 in order to obtain
the closed-form optimum J .

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 51

Fig. 7. TTS: Relationship between theoretical and simulation results under different Pfail. Parameter setting: |X| = 5, 000, |Y | = 10, 000, λ = 0.5.
(a) Pfail = 10−2 , # of runs: 100. (b) Pfail = 10−3, # of runs: 1, 000. (c) Pfail = 10−4, # of runs: 10, 000.

Similarly, we can express TI in this case as

TI =
|Y |J
ln 2

+
(
2(d − 1) + log(d) 2|Y |

) (
1 +

a log K

log |Y |

)

·
(
|Y | + (|X | − |Y |)

(
1
2

)J
)

. (25)

We analyze the derivative of TI in this case and prove
in Lemma 6 in Appendix that TI is convex with
respect to J and reaches its optimal value when J =

log
[
2d−2+log(d) (2|Y |)

]
(1+ a log K

log |Y |)
|Y |/[(|X|−|Y |)(ln 2)2] � Ĵ .

From the analysis in Case 1 and Case 2, we know: Because
log |X|−|Y |

|Y | < Ĵ , TI decreases with J when J ≤ Ĵ . Otherwise,

it increases with J . Therefore, Ĵ is the optimum of J that
minimizes TI . Since Ĵ is derived from the upper bound of time
cost and must be an integer, we can set Ĵ=�Ĵ in practice.

Given the system and the other parameters, we can obtain
the value of Ĵ . For example, recall the optimum of J for
α = −1 are 5, 4, 2, 0 in Fig. 6, we can drive that Ĵ= 5.8, 4.6,
3.1, 0.5 in the same settings. By rounding down Ĵ , we have
5, 4, 3, 0, most of which are equal to the searched optimal
value except 3 > 2. To reduce this probability, we can search
around Ĵ , e.g., comparing the time cost at Ĵ − 1 to that at Ĵ
and finally using the one that minimizes the time cost.

V. PERFORMANCE EVALUATION

In the simulation, we use the communication parameters
specified in the EPC global C1G2 standard [7]. In our experi-
ments, we set tag-to-reader transmission rate and reader-to-tag
transmission rate to 100kbps as in [5], accordingly, the time
cost for one-bit transmission is 10−5 sec.. The ratio of the
target tags is defined as λ= |X∩Y |

min{|X|,|Y |} where X is the set of
wanted tags and Y is the set of tags currently present in the
system. Moreover, the parameters used in TTS and TTS+ are
set according to our theoretical analysis. Besides, we also set
up E-STEP with its optimal parameter configuration [19].

The reliability is the paramount metric. In the simulation,
it is required to find all target tags with the success probability:
Pr{Z∗ = Z} ≥ 1−Pfail. As a result, to show the reliability
of TTS and TTS+, they run N times if the required failure
probability is Pfail= 1

N in Sec.V-A. Another important metric
is the time it takes to meet a particular reliability requirement,
which reflects the tag search efficiency. This is regarded as the
primary metric in Sec.V-B.

TABLE I

PERFORMANCE INVESTIGATION OF TTS+ AND TTS:
|X| = 5, 000, |Y | = 10, 000, λ = 0.5

A. Performance Verification

We demonstrate that TTS and TTS+ provides reliable tag
search within bounded average time theoretically established
in our analysis. To this end, we conduct a series of three
experiments varying failure probability Pfail from 10−2 to
10−3 to 10−4, respectively, while fixing the other parameters
as follows: |X |=5, 000, |Y |=10, 000, and the target tag ratio
λ=0.5. Moreover, TTS and TTS+ are executed for 100 times,
1, 000 times and 10, 000 times in the three experiments,
respectively. After each experiment, we record the number of
times of Z∗ �=Z , and report the failure of the tag search task
if this number exceeds one.

Table I lists the failure probability achieved by TTS and
TTS+ and their optimal parameters, where the two elements
in (·, ·) represent the value in TTS+ and TTS respectively
and “−” means not applicable. It can be observed that TTS+
and TTS achieve the zero failure probability in all three
experiments, that is to say, they are able to find all target
tags with the required failure probability. Moreover, with the
increase of the required Pfail, α becomes from 0 to −1. This
verifies our theoretical analysis in (8) and (16) that TTS and
TTS+ are able to achieve the failure probability at most 1

K
when α = −1. In addition, when Pfail changes from 10−2 to
10−3, β increases by one while α keeps constant, and J in
TTS+ rises to 2 reducing the increment in the time cost of
the second step resulted from the higher requirement. These
results suggest the ability of TTS and TTS+ of adjusting the
parameters to the user-defined requirement.

We also record the execution time of TTS and TTS+ in
each run and obtain the average value over all runs, which are
depicted in Fig. 7 and Fig. 8, respectively. One thing worth
noting is that the theoretical T and TI are the upper bound
of the expected execution time. In the figures, the average
execution time calculated from the simulation, referred to as
average T and TI , is upper bounded by the theoretical T

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

52 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

Fig. 8. TTS+: Relationship between theoretical and simulation results under different Pfail. Parameter setting: |X| = 5, 000, |Y | = 10, 000, λ = 0.5.
(a) Pfail = 10−2 , # of runs: 100. (b) Pfail = 10−3, # of runs: 1, 000. (c) Pfail = 10−4 , # of runs: 10, 000.

Fig. 9. Performance comparison with different |X|: Pfail = 10−5 ,
|Y | = 20, 000, λ = 0.5.

and TI derived from our analysis. The results indicate that
the execution time varies slowly compared to the significant
change of the required failure probability. Specifically, TTS
and TTS+ just consume extra 20% and 24% time to reduce
the failure probability from 0.01 to 0.0001.

B. Performance Comparison

We here start comparing performance of TTS and TTS+
with the state-of-the-art probabilistic tag search E-STEP [19].

First, we compare the time efficiency of three approaches
under different wanted tag population |X |. Given the particular
failure probability Pfail = 10−5, we set the number of the
present tags |Y | = 20, 000 and the target tag ratio λ = 0.5
while changing |X | from 5, 000 to 60, 000. Fig. 9 depicts their
execution time to fulfill the tag search task.

As shown in the figure, TTS+ is the most time-efficient and
TTS performs better than E-STEP. Specifically, with the same
Pfail, the execution time of E-STEP is up to two and three
times as much as that of TTS and TTS+. From a different
point of view, this result also suggests that given a certain
amount of searching time, the failure probability of TTS and
TTS+ will be much smaller than E-STEP.

Second, we compare the time efficiency of three approaches
under different present tag population |Y |. Given the particular
Pfail = 10−5, we set the number of the wanted tags |X | =
20, 000 and the target tag ratio λ = 0.5 while changing |Y |
from 5, 000 to 60, 000. From Fig. 10, we can observe the
similar results that the time efficiency of TTS and TTS+ is

Fig. 10. Performance comparison with different |Y |: Pfail = 10−5,
|X| = 20, 000, λ = 0.5.

Fig. 11. Performance comparison with different λ: Pfail = 10−5,
|X| = 100, 000, |Y | = 50, 000.

significantly superior to E-STEP, and TTS+ can save time up
to 40% compared with TTS.

Third, we compare the time efficiency of three approaches
under different target tag ratios λ. Given the particular Pfail =
10−5, we use the following setting: |X | = 100, 000, |Y | =
50, 000, and λ = 0.3 : 0.1 : 0.7. The simulation results
are exhibited in Fig. 11. As shown in the figure, TTS and
TTS+ still remarkably outperform E-STEP, specifically, with
the performance gain of up to 100% and 176%. Moreover, E-
STEP experiences a significant increase in the execution time
with the increase of the target tag ratio. In contrast, TTS and
TTS+ perform more stably.

After evaluating the impact of |X |, |Y | and λ, we further
compare the performance of three approaches with diverse
failure probabilities Pfail. To this end, we fix |X | = 20, 000,
|Y | = 50, 000 and λ = 0.5 while varying Pfail from
10−4 to 10−12. Table II summarizes the execution time of

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 53

TABLE II

PERFORMANCE COMPARISON OF TTS+, TTS, AND E-STEP:
|X| = 20, 000, |Y | = 50, 000, λ = 0.5

TABLE III

PERFORMANCE COMPARISON OF TTS+, TTS, AND E-STEP:
|X| = 100, 000, |Y | = 50, 000, λ = 0.5

the three approaches. As listed in Table II, TTS and TTS+
spend less time achieving the required failure probability
than E-STEP, especially under the smaller Pfail. Specifically,
when Pfail=10−16, TTS consumes less than the half of the
execution time of E-STEP while TTS+ just needs one quarter.

For a comprehensive comparison, we conduct another set
of experiments where we keep the settings in Table II and
just set |X | to 100, 000. From the results listed in Table III,
we can draw the similar conclusion that TTS+ is of the
greatest scalability to reliability requirement. For example,
the execution time of TTS+ that is half of E-STEP when
Pfail=10−4 becomes to one sixth when Pfail=10−16. In fact,
given the required failure probability 1

O(Ka) , TTS and TTS+
consume O(K log(d) K) time compared to O(K log K) of
E-STEP, their performance gain over E-STEP will be rather
larger when the requirement on the reliability scales up.
Besides, we observe that TTS spends nearly 2× time achieving
the failure probability of 10−16 in comparison with TTS+.

VI. PRACTICAL ISSUES IN IMPLEMENTATION

In this section, we discuss some practical issues arising in
the parallel decoding techniques and scheme implementation.

Parallel decoding: overhead and reliability. In our work,
we assume that r-bit sequences can be decoded, while the
existing methods [11], [12], [24], [28] usually decode RN16 by
default which is a random 16-bit sequence. To more accurately
evaluate time cost of our schemes, we set the hash values sent
by tags to be 16-bit long at least. Consider a pair of settings:
|X |=5, 000, |Y |=10, 000; |X |=10, 000, |Y |=5, 000; we set
λ = 0.5, and change Pfail from 10−4 to 10−8. The results
are depicted in Fig. 12 where TTS-16 and TTS+-16 are their
individual original schemes with 16-bit configuration. It can
be observed that TTS-16 and TTS+-16 need another 46.5%
and 46.7% time at most compared with their original schemes,
yet they are still more time-efficient than E-STEP.

To further evaluate the impact of parallel decoding tech-
nologies on our schemes, given the same settings as above,
we fix Pfail = 10−4 and vary decoding reliability with which
the decoding is successful. As shown in Fig. 13, the number
of found target tags reduces with decrease of the decoding
reliability. Moreover, TTS+ outperforms TTS when |X | < |Y |
but performs worse in the other case. This can be interpreted
as: TTS+ shrinks the asymmetry of |X | and |Y | to nearly 1 :

Fig. 12. Execution time under diverse required failure probability Pfail.
(a) |X| = 5, 000, |Y | = 10, 000. (b) |X| = 10, 000, |Y | = 5, 000.

Fig. 13. The number of found target tags under diverse decoding reliability.
(a) |X| = 5, 000, |Y | = 10, 000. (b) |X| = 10, 000, |Y | = 5, 000.

1.1. Then the number of leaves is set to the shrunk size when
the probability of multiple tags mapped to one leaf is 0.23.
In contrast, TTS sets the number of leaves to max{|X |, |Y |},
i.e., 10, 000 here, so that the collision probabilities in two
cases are 0.26 and 0.09, respectively. Thus, TTS depends on
the decoding reliability stronger than TTS+ in the first case
but weaklier in the second case.

Potential implementation. Consider the implementation
of the proposed schemes, programmable tags, such as those
based on WISP hardware, and a USRP-based Software-
Defined RFID reader are needed. In order to achieve hashing
functionality, a 128-bit (or 256-bit) hash value that is long
enough is pre-stored in each tag, which is supported by
WISP 4.1. In the scheme implementation, three commands
need to be added: 1) TRANSIV that is used to transmit a
filtering vector; 2) DECORES that is used to initiate a slot
and measure and decode responses from tags. The reader
broadcasts DECORES command along with other parameters,
e.g., the hash value size ri and li, random seeds, the number of
response slots J ; 3) REPLHV that can guide tags to reply with
specified hash value at specified slots. When a programmable
tag receives DECORES, it replies with ri-bit (or li-bit) hash
value randomly selected from the pre-stored 128-bit hash value
at the slots corresponding to the J positions in the stored
128-bit hash value which are indicated by random seeds.

VII. CONCLUSION

In this paper, we have studied the tag search problem in
large-scale RFID systems. With the observation that prior
work wastes much time verifying each individual target tag
repeatedly, we have designed an efficient Tree-based Tag
Search (TTS) that exploits an adaptive tree to map tags into its
internal nodes. TTS enables batched verification by verifying
tags at each node from the bottom to the up with the number of
groups decreasing rapidly. We have theoretically demonstrated

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

54 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 1, FEBRUARY 2019

that TTS can achieve the failure probability 1
O(Ka) at the time

cost of O(K log(d) K), providing a significant improvement
over prior O(K log K). Furthermore, on the top of TTS,
an extended two-step tag search scheme, namely TTS+,
has been proposed to combat asymmetric tag sets in order
to improve time efficiency of TTS. TTS+ exploits filtering
technique to shrink set asymmetry first and then feeds the
remaining tags into TTS. The simulation results have shown
that the time efficiency of TTS+ could reach about two times
that of TTS.

APPENDIX

Lemma 1: Given T , let Li denote the set of nodes of the
height 0 ≤ i ≤ d. For an arbitrary node v ∈ T , let Θ(v)
denote the set of all leaves in the subtree of v. It holds for
i-level Li and Θ(v) that:

|Li| =

{
K, if i = 0

K
log(d−i) K

, if 1 ≤ i ≤ d,
(26)

|Θ(v)| =

{
1, if i = 0
log(d−i) K, if 1 ≤ i ≤ d.

(27)

Proof: For Li it holds when i=0 and d since T has one
root and K leaves. As the node degree at the level 1≤i≤d−1
equals δi, the number of the nodes with height i can be
computed from the top down as

∏d
i′=i+1δi= K

log(d−i) K
. For

Θ(v), v is a leaf when i = 0, so |Θ(v)| = 1. When 1 ≤ i ≤ d,
as a node has δi children, |Θ(v)| is got from

∏i
i′=1 δi.

Lemma 2: [3], [22], [23] Given a hash function into r
bits, if two sets A and B are identical, their aggregated
hash values are equal with probability 1. Otherwise, their
aggregated values are unequal with a probability at least 1− 1

2r .
Lemma 3: [22] For any set of u elements, a hash function

into O(b log u) bits for any b > 0 has no hash code collision
for all u elements in this set with a probability at least 1− 1

ub .
Lemma 4: Given d, α, to find the minimum TI , it is enough

to probe every integer J in the range [0, Jth] where Jth = 2 J∗

and J∗ is the solution to the following equation:

J∗ =
TS2(J∗) ln 2

|Y | . (28)

Proof: Given d and α, since β is relative to J , TS2 and TI

are functions of J , which can be expressed as TS2 and TI(J),
respectively. To prove the lemma, it is enough to show that
for any J>2J∗ it holds that TI(J)>TI(J∗). The constant J∗

will be studied below. Recalling (13) and (17), we have

TI(J) >
|Y |J
ln 2

(29)

TI(J) ≤ |Y |J
ln 2

+ TS2(J) (30)

Setting J∗ to the solution to |Y |J
ln 2 = TS2(J), we can have

TI(J) > |Y |2J∗

ln 2 ≥ TI(J∗) for any J > 2J∗. Thus, TI(J)
does not decrease with J once its value is over 2J∗.

Lemma 5: TI is a monotonously decreasing function with
respect to J for J ≤ log

(
|X|−|Y |

|Y |
)

.
Proof: We derive the derivative of TI with respect

to J . We use u=(|X | − |Y |)(1
2)J and u∗=u+|Y | for

simplification.

dTI

dJ
=

|Y |
ln 2

− ua ln 2 · log K

(log u)2

[
2(d − 1) + log(d) u∗

+
d−1∏
c=1

1

log(c) u∗

]
·
(

log u +
(log u)2

a log K

)

+
ua ln 2 · log K

(log u)2
[
2(d − 1) + log(d) u∗

](
1 +

Y

u

)

<
ln 2 · log K

(log u)2/(ua)

[
3(log u)2

a log K
−

[
log(d) u∗+2(d− 1)

]

·
(

log u +
(log u)2

a logK

)
+ 4(d − 1) + 2 log(d) u∗

]
< 0.

Hence, the lemma follows from the negative derivative.
Lemma 6: For J ≥ log |X|−|Y |

|Y | , TI is convex and its

minimum exists when J = log
[
2d−2+log(d) (2|Y |)

]
(1+ a log K

log |Y |)
|Y |/[(|X|−|Y |)(ln 2)2] .

Proof: We first calculate the derivative of TI :
dTI

dJ
=

|Y |
ln 2

−
(
2(d − 1) + log(d) 2|Y |

)(
1 +

a log K

log |Y |

)

·(|X | − |Y |)
(

1
2

)J

ln 2.

We then derive the second order derivative and have
d2 TI

dJ2
=

(
2(d − 1) + log(d) 2|Y |

)(
1 +

a log K

log |Y |

)

·(|X | − |Y |)
(

1
2

)J

(ln 2)2 ≥ 0.

Hence, TI is a convex function of J . Let dTI

dJ = 0, we have

J = log

[
2d − 2 + log(d) (2|Y |)

] (
1 + a log K

log |Y |
)

|Y |/[(|X | − |Y |)(ln 2)2]
(31)

which minimizes TI .

REFERENCES

[1] WISP Platform. [Online]. Available: http://wisp.wikispaces.com/
[2] Barcoding Inc. How RFID Works for Inventory Control in the Ware-

house. [Online]. Available: http://www.barcoding.com/rfid/inventory-
control.shtml

[3] J. Brody, A. Chakrabarti, R. Kondapally, D. P. Woodruff, and
G. Yaroslavtsev, “Beyond set disjointness: The communication complex-
ity of finding the intersection,” in Proc. ACM PODC, 2014, pp. 106–113.

[4] M. Cash. Third Business Mission Focuses on Cargo-Tracking Technol-
ogy. [Online]. Available: https://www.winnipegfreepress.com/business/
centreportheading-back-to-china-147708545.html

[5] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag
search protocol in large-scale RFID systems,” in Proc. IEEE INFOCOM,
Apr. 2013, pp. 899–907.

[6] M. Chen, J. Liu, S. Chen, Y. Qiao, and Y. Zheng, “DBF: A general
framework for anomaly detection in RFID systems,” in Proc. IEEE
INFOCOM, May 2017, pp. 1–9.

[7] EPCglobal Inc. (2005). Class-1 Generation-2 UHF RFID Protocol
for Communications at 860 MHz–960 MHz. [Online]. Available:
http://www.gs1.org

[8] W. Gong, J. Liu, and Z. Yang, “Efficient unknown tag detection in large-
scale RFID systems with unreliable channels,” IEEE/ACM Trans. Netw.,
vol. 25, no. 4, pp. 2528–2539, Aug. 2017.

[9] J. Han et al., “Twins: Device-free object tracking using passive tags,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1605–1617, Jun. 2016.

[10] Y. Hou and Y. Zheng, “PHY assisted tree-based RFID identification,”
in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[11] M. Jin, Y. He, X. Meng, Y. Zheng, D. Fang, and X. Chen, “Fliptracer:
Practical parallel decoding for backscatter communication,” in Proc.
ACM MobiCom, 2017, pp. 275–287.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

YU et al.: ON EFFICIENT TREE-BASED TAG SEARCH IN LARGE-SCALE RFID SYSTEMS 55

[12] J. Kaitovic and M. Rupp, “Improved physical layer collision recov-
ery receivers for RFID readers,” in Proc. IEEE RFID, Apr. 2014,
pp. 103–109.

[13] F. Klaus, RFID Handbook: Radio-frecuency Identification: Fundamen-
tals and Applications. Hoboken, NJ, USA: Wiley, 1999.

[14] L. Kong, L. He, Y. Gu, M.-Y. Wu, and T. He, “A parallel identification
protocol for RFID systems,” in Proc. IEEE INFOCOM, Apr./May 2014,
pp. 154–162.

[15] C.-H. Lee and C-W. Chung, “Efficient storage scheme and query
processing for supply chain management using RFID,” in Proc. ACM
SIGMOD, 2008, pp. 291–302.

[16] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. ACM MobiHoc, 2010, pp. 1–10.

[17] X. Liu, K. Li, G. Min, Y. Shen, A. X. Liu, and W. Qu, “Completely
pinpointing the missing RFID tags in a time-efficient way,” IEEE Trans.
Comput., vol. 64, no. 1, pp. 87–96, Jan. 2015.

[18] X. Liu et al., “Efficient unknown tag identification protocols in large-
scale RFID systems,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 12,
pp. 3145–3155, Dec. 2014.

[19] X. Liu, B. Xiao, S. Zhang, K. Bu, and A. Chan, “STEP: A time-efficient
tag searching protocol in large RFID systems,” IEEE Trans. Comput.,
vol. 64, no. 11, pp. 3265–3277, Nov. 2015.

[20] W. Luo, S. Chen, Y. Qiao, and T. Li, “Missing-tag detection and energy–
time tradeoff in large-scale RFID systems with unreliable channels,”
IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1079–1091, Aug. 2014.

[21] M. McNeill. Officials Hope Tags Help Future Sales. [Online].
Available: https://www.winnipegfreepress.com/business/manitoba-fish-
off-tochina-180669521.html

[22] M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ization and Probabilistic Techniques in Algorithms and Data Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2017.

[23] M. Mitzenmacher and S. Vadhan, “Why simple hash functions work:
Exploiting the entropy in a data stream,” in Proc. ACM SODA, 2008,
pp. 746–755.

[24] J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding
for cots RFID tags,” in Proc. ACM MobiCom, 2015, pp. 500–511.

[25] M. Shahzad and A. X. Liu, “Probabilistic optimal tree hopping for RFID
identification,” ACM SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1,
pp. 293–304, 2013.

[26] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in RFID
systems,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[27] J. Wang, D. Vasisht, and D. Katabi, “RF-IDraw: Virtual touch screen in
the air using RF signals,” in Proc. ACM SIGCOMM, 2014, pp. 235–246.

[28] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable
low-power backscatter networks,” in Proc. ACM SIGCOMM, 2012,
pp. 61–72.

[29] Y. Zheng and M. Li, “P-MTI: Physical-layer missing tag identification
via compressive sensing,” IEEE/ACM Trans. Netw., vol. 23, no. 4,
pp. 1356–1366, Aug. 2015.

[30] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale
RFID systems,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 924–934,
Jun. 2013.

[31] Z. Zhou, B. Chen, and H. Yu, “Understanding RFID counting protocols,”
IEEE/ACM Trans. Netw., vol. 24, no. 1, pp. 312–327, Feb. 2016.

[32] F. Zhu, B. Xiao, J. Liu, X. Liu, and L.-J. Chen, “PLAT: A physical-layer
tag searching protocol in large RFID systems,” in Proc. IEEE SECON,
Jun. 2016, pp. 1–9.

Jihong Yu received the B.E. degree in com-
munication engineering and the M.E. degree in
communication and information systems from the
Chongqing University of Posts and Telecommunica-
tions, Chongqing, China, in 2010 and 2013, respec-
tively, and the Ph.D. degree in computer science
from the University of Paris-Sud, Orsay, France,
in 2016. He was a Research Fellow with the School
of Computing Science, Simon Fraser University. He
is currently an Associate Professor with the School
of Information and Electronics, Beijing Institute of

Technology. His research interests include radio frequency identification
technologies, wireless communications, and Internet of Things.

Wei Gong (M’14) received the B.S. degree from the
Department of Computer Science and Technology,
Huazhong University of Science and Technology,
Wuhan, China, in 2003, the M.S. degree from the
School of Software, Tsinghua University, Beijing,
China, in 2007, and the Ph.D. degree from the
Department of Computer Science and Technology,
Tsinghua University, in 2012. He was a Research
Fellow with the School of Computing Science,
Simon Fraser University. He is currently a Professor
with the School of Computer Science and Technol-

ogy, University of Science and Technology. His research interests include
backscatter networks, mobile computing, and Internet of Things.

Jiangchuan Liu (S’01–M’03–SM’08–F’17)
received B.Eng. degree (cum laude) from Tsinghua
University, Beijing, China, in 1999, and the Ph.D.
degree from The Hong Kong University of Science
and Technology in 2003. He is currently a Full
Professor (with University Professorship) with
the School of Computing Science, Simon Fraser
University, BC, Canada. He is an IEEE Fellow and
an NSERC E.W.R. Steacie Memorial Fellow.

Prof. Liu is a Steering Committee Member of the
IEEE TRANSACTIONS ON MOBILE COMPUTING.

He was a co-recipient of the Test of Time Paper Award of IEEE INFOCOM
in 2015, the ACM TOMCCAP Nicolas D. Georganas Best Paper Award
in 2013, and the ACM Multimedia Best Paper Award in 2012. He is an
Associate Editor of the IEEE/ACM TRANSACTIONS ON NETWORKING and
the IEEE TRANSACTIONS ON MULTIMEDIA.

Lin Chen (S’07–M’10) received the B.E. degree
in radio engineering from Southeast University,
China, in 2002, the Dipl.-Ing. degree from Telecom
ParisTech, Paris, in 2005, and the M.S. degree in
networking from the University of Paris 6. He is cur-
rently an Associate Professor with the Department
of Computer Science, University of Paris-Sud. His
main research interests include modeling and control
for wireless networks, distributed algorithm design,
and game theory. He serves as the Chair for the IEEE
Special Interest Group on Green and Sustainable

Networking and Computing with Cognition and Cooperation, IEEE Technical
Committee on Green Communications and Computing.

Kehao Wang received the B.S. degree in electrical
engineering and the M.S. degree in communication
and information system from the Wuhan University
of Technology, China, in 2003 and 2006, respec-
tively, and Ph.D. degree from the Department of
Computer Science, University of Paris-Sud, France,
in 2012. He is currently an Associate Professor with
the Department of Information Engineering, Wuhan
University of Technology. His research interests are
cognitive radio networks and resource management.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:38:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

