
1

Multimedia Content Delivery with NFV: From the
Energy Perspective
Silvery Fu, Jiangchuan Liu and Wenwu Zhu

Abstract—In today’s Internet, multimedia traffic accounts for the largest share of all traffic, highlighted by its volume, variety, multicast
nature, and QoS constraints. Downstream towards consumers, multimedia traffic may traverse through middleboxes, undergoing
additional data processing imposed by content providers and/or distributors. With the advent of Network Function Virtualization (NFV),
middleboxes are progressively embedded in off-the-shelf, general-purpose servers. Despite the benefits, NFV may incur an undue
amount of energy consumption when carrying out high packet forwarding performance. In this article, we investigate how switching to
state-of-the-art NFV products for multimedia content delivery can result in significant energy costs. We identify the energy inefficiency
issue in the NFV dataplane which can be exacerbated if not handle properly. We outline a power management framework that considers
characteristics of multimedia traffic and exploits CPU frequency scaling to save energy.

F

Multimedia traffic, in particular video traffic, accounts
for the largest share of all traffic in today’s Internet.

By 2020, an estimation of 82% of consumer Internet traffic
will be attributed to video streaming according to Cisco [1].
Multimedia traffic is highlighted by its volume, variety,
multicast nature and additional QoS constraints. Down-
stream towards consumers, multimedia traffic often traverse
through middleboxes (i.e., network functions; in this article,
we use terms middlebox, network function, and network
appliance interchangeably), such as WAN (Wide Area Net-
work) optimizers, transcoders, content caches, NATs (Net-
work Address Translator) and traffic shapers, undergoing
additional data processing imposed by content providers
and/or distributors.

Traditionally, middleboxes are implemented as dedi-
cated, vendor-specific hardware, an approach that leads to
escalated management costs and an inefficient use of in-
frastructural resources [2]. Network Function Virtualization
(NFV) is an on-going movement led by global network oper-
ators that aims to migrate network functions from dedicated
hardware to off-the-shelf, general-purpose servers. Potential
NFV operators include cloud providers, network providers,
and Telco CDNs (Content Distribution Network); transition-
ing to NFV can help them alleviate the capital expenditures
(CAPEX) and operating expenses (OPEX). For instance, an
attractive deployment target for NFV is carrier network
edge or their Central Offices (see: http://opencord.org/).

While there are comprehensive works surrounding
NFV’s performance and architectural design [2] [3] [4], its
energy cost has rarely been studied. Given the extensive
presence of middleboxes, energy cost (as a major contributor
of OPEX) is likely to become one of the deciding factors in
the operators’ adoption of NFV. In this article, we show that
NFV powered middleboxes are prone to high energy over-
head when delivering multimedia content. In particular, we
find there exists energy inefficiency in the data forwarding
component of major NFV platforms. We demonstrated this
inefficiency is inherent to its design that excessively uses
CPU cycles to attain high performance. Since multimedia

Fig. 1: A holistic view of middlebox traversal of a video stream.

0

5

10

15

20

25

30

 0 100 200 300 400 500

P
o
w

e
r

c
o
n
s
u
m

p
ti

o
n
 (

W
)

Throughput (Mbps)

H/W-NAT
In-kernel

OvS-DPDK

Fig. 2: Throughput and power consumption of a NAT box
when multimedia traffic is passing through. Three middlebox
deployments in comparison: hardware NAT, virtual NAT with
Linux in-kernel bridge, and virtual NAT with Open vSwitch
and DPDK forwarding engine.

traffic is persistent throughout the streaming session and
usually impose additional QoS constraints, existing energy
saving methods may not function well. Based on these ob-
servations, we propose an outline of a power management
framework for NFV-based multimedia content delivery. We
show that CPU frequency scaling can achieve promising
energy savings without compromising the performance of
multimedia applications.

2

Fig. 3: The NFV testbed consists of three dataplane setups: off-
the-box in-kernel bridge, Open vSwitch with native and DPDK
forwarding engines, and two servers to inject traffic. Each
virtual machine (VM) emulates a physical machine, providing
functionalities to run an OS and hence network functions.

1 THE ENERGY COST OF TRANSITIONING TO
NFV-BASED MULTIMEDIA CONTENT DELIVERY

NFV is often considered as an extension of cloud comput-
ing to the networking domain. As a multimedia content
provider or distributor, however, transitioning to NFV may
not be as easy as deploying a cloud application on its dat-
acenter. Multimedia traffic often traverses through a series
of middleboxes, as described in Figure 1. This simplified
example captures how popular live broadcasting service
providers, e.g., Twitch.tv, collect content (video broadcast-
ers send streams to the ingest server), process content
(video transcoding) and deliver content (via CDN) [5]. Two
observations can be made here: first, there are different
types of middleboxes [6] along the path, and they may
possess various runtime characteristics such as resource
usage and energy cost. Second, middleboxes are likely to be
owned by different operators. When transitioning to NFV,
the operators need to reevaluate their power budgets with
the knowledge of energy costs for different middleboxes
deployed from place to place.

To better understand the energy cost, we measured the
power and bandwidth consumption of a NAT box with
multimedia traffic is passing through. A typical NAT box
modifies the IP header of in-transit packets to remap one
IP address space into another. We chose the NAT box for
its prevalence in today’s Internet as well as its simplicity:
being a network function with little application-layer pro-
cessing, which provides a cleaner baseline for our future
measurements. We set up an ASUS RT-AC68U router with
NAT acceleration turned on for the hardware NAT, and
the Linux iptables utility for the virtual NAT. We used
the ffserver (https://trac.ffmpeg.org/wiki/ffserver) to
set up a multimedia broadcasting server and ffplay
(https://ffmpeg.org/ffplay.html) as the client. The sample
multimedia traffic consists of a 1080p video stream (H.264
encoded, 3 Mbps bitrate), two audio streams (320 kbps and
160 kbps bitrate) and meta data. We devised a script that
consecutively creates 300 sessions (starting from 0 session
and every 10 seconds 10 more sessions are added) in 5 min-

utes. More details on the testbed setup and data collection
can be found in Section 2.

We plot the results in Figure 2. As shown, the hardware
NAT, sitting at the bottom, sustains the power consumption
of around 7.2 watts regardless of the network load. Sitting
in the middle is the virtual NAT implemented with Linux
in-kernel bridge, whose power consumption is roughly in
proportion to the load. Although the virtual NAT achieves
lower power consumption than the hardware NAT when
idle (6.16 W vs. 7.18 W), its power consumption is consid-
erably higher (average 9.84 W vs. 7.20 W) with the highest
readings doubling the power cost. Finally, the virtual NAT
implemented with Open vSwitch and Intel DPDK forward-
ing engine, a popular module used in NFV platforms [3]
[4], consumes significantly more energy than the other two
setups (average 23.24 W), tripling the cost of hardware NAT.
Moreover, it consumes around 22 watts even when there is
no traffic passing through. The results indicate that energy
cost may indeed become a concern for multimedia content
provider and distributors when they transition to NFV.

2 BACKGROUND AND TESTBED

By drawing a comparison with the hardware middlebox,
one can see that the NFV products may greatly raise the
energy costs when delivering multimedia content. To track
the cause, we built a single-host NFV testbed as summarized
in Figure 3. We use the following terms to refer to each
component of the testbed:

• Virtual Network Function (VNF) A network function
implemented by software and embedded in commodity
server.

• Virtualization Layer An isolated runtime environment
for VNFs, e.g., virtual machines (VM) or application
containers; we chose the former and used Linux qemu-
kvm utilities to create VMs.

• Dataplane The term originates from Software-defined
Networking (SDN), which addresses the separation
of network control plane (deciding how packets are
routed) and the data plane (forwarding and/or process-
ing packets). In some literature a dataplane may refer
to any network component that operates on the traffic,
including a VNF. In this article, we find it convenient
use the term to describe the combined module of a
vSwitch and its forwarding engine only.

• Virtual Switch (vSwitch) A software program that fa-
cilitates network communications among VMs. Virtual
switches often support SDN flow rule interface (e.g.,
OpenFlow), and can be thereby more versatile than a
software bridge (e.g., Linux bridge).

• Forwarding Engine A set of drivers and libraries that
perform packet transmission between a physical NIC
and the virtual NIC (and thus to the VNF).

We set up a midrange server with a 3.4GHz Intel i7
quad-core CPU and an Intel I350 Gigabit Ethernet Network
Interface Card (NIC) as the host machine. We installed an
additional Ethernet card to have an “out-of-band” control
of the server, as in some of our configurations, the access
of NIC will bypass the host’s kernel entirely and cause the
host to loss its IP stack functionality. We set up two physical

3

servers as the traffic generator and receiver. The three physi-
cal machines are connected via a Netgear GS116NA Gigabit
switch. Finally, we created the following dataplane setups
(as shown in Figure 3):

Linux in-kernel Bridge The bridge is available in most
of mainline Linux distributions, making it an ideal out-of-
the-box solution for setting up an NFV platform.

Open vSwitch Open vSwitch (OvS) is one of the most
widely deployed software switch in the market. It features
advanced flow caching, fast packet classification supports,
and compatibility with OpenFlow. In addition to its native
kernel forwarding engine, OvS also supports third-party
forwarding engines such as Intel DPDK (http://dpdk.org/),
targeting to better line-rate performance. We built two
versions of OvS from the source (https://github.com/
openvswitch/ovs), one with the native forwarding engine
(OvS-native) and the other with DPDK (OvS-DPDK).

Having two OvS versions with different allows us to
track down the energy consumption in vSwitch and for-
warding engine separately. Across all setups, we configured
virtio (http://www.linux-kvm.org/page/Virtio) as the
datapath between the host and VM.

3 TRACKING THE ENERGY INEFFICIENCY

To begin with, we consider the following characteristics of
multimedia traffic:

• Continuous Multimedia traffic are persistent, continu-
ous and sizable flows that occupy the link bandwidth
during a time period.

• QoS constraints Multimedia applications are user-
facing. They impose additional and possibly time-
varying QoS requirements such as end-to-end delay,
bandwidth, and packet loss rate.

These characteristics are likely to contribute to the raised
NFV power consumption and affect the efficacy of power
management methods. For instance, due to the continuity
of multimedia traffic, it is difficult to spot an idle time
of the traversed middleboxes. Hence it may become pro-
hibitive to use sleep modes and deprovisioning unused
middleboxes to achieve energy savings. Due to the QoS
constraints, power management frameworks must also take
into account the application performance when making
power tuning decisions, a problem that is unfortunately
non-trivial [7]; whereas, for those background, non-user
facing applications, the middleboxes and network traffic
can be better scheduled to achieve energy savings with
fewer concerns. In addition, multimedia traffic can trigger
intensive computations at the middleboxes and lead to
high energy consumption. In the previous experiment we
evaluated the NAT box, a network function that does not
touch the traffic payload (i.e. the content) and involves little
application-level processing; while there exist middleboxes
that are computational-intensive and pervasive such as the
transcoding boxes and content distribution boxes [5] [6].

In Figure 4, we depict the experiment of multimedia
traffic traversing a transcoding box. We turned on the Linux
on-demand power governor, a power saving module
available and used in mainline Linux distributions. It tunes
the CPU frequency based on the CPU utilization to conserve
energy. As compared to the NAT box traversal, the energy

 0

 1.2

 2.4

 3.6

 0 50 100
 150

 200
 250

 300

F
re

q
u

en
cy

 (
G

H
z)

Time (second)

 0

 10

 20

 30

P
o

w
er

 (
W

)

 0

 1.2

 2.4

 3.6

 0 50 100
 150

 200
 250

 300

F
re

q
u

en
cy

 (
G

H
z)

Time (second)

 0

 10

 20

 30

P
o

w
er

 (
W

)
Fig. 4: Power consumption and CPU frequency measurements
when multimedia traffic traverse transcoding box on in-kernel
bridge (top) and OvS-DPDK (bottom), with the common power
manager of OS turned on. The baseline power consumption
(6.22 W) is the host server running without any VNF or dat-
aplane; the baseline CPU frequency is the lowest supported
P-state frequency.

cost is raised considerably: when the in-kernel bridge is
used, the average power consumption is now close to 20
watts, doubled from the previous case (≈ 10 W); for OvS-
DPDK, it is now close to a staggering 30 watts. Besides,
the majority of frequency is set to the maximum frequency
(3.6 GHz) for both cases, indicating that the power manager
may have limited influence on the overall energy savings
(we offer discussion over this issue in Section 4.2). More-
over, we can see that the combined effect of dataplane
and application-level processing on frequency and power
consumption. The CPU frequency with OvS-DPDK stays
above 2.4 GHz, hovering around 3.0 GHz and close to the
maximum frequency. As a result, the consumed power is
consistently higher than 20 watts, more than four times of
the baseline.

3.1 Benchmarking the Dataplane

The experiment with real-world multimedia traffic indi-
cates that NFV may introduce high energy overhead for
content providers and distributors. They also hint us on
potential energy inefficiency: the dataplane. Supporting the
same VNF, the OvS-DPDK dataplane consumes much more
power than the in-kernel counterpart (Figure 2). Yet it is not
clear whether the vSwitch or forwarding engine is to blame.

We ran the following experiments to investigate these
issues. We used iperf (iperf: https://iperf.fr/) network
benchmark to generate traffic between the source and the

4

 800

 850

 900

 950

 1000

In-kernel
OvS-native

OvS-DPDK

T
h

ro
u

g
h

p
u

t
(M

b
p

s)
Recv
Send

 0

 200

 400

 600

 800

 1000

In-kernel
OvS-native

OvS-DPDK

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Recv
Send

Fig. 5: Performance comparison of three dataplane setups under
different packet rates: MTU 1500 (Left) and MTU 500 (Right).
Note the difference in the Y-axis scale.

 0

 5

 10

 15

 20

 25

Host OS
KVM In-kernel

OvS-native

OvS-DPDK

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

W
)

6.22

8.12 6.56
7.45

21.79

(a) Standby

 0

 5

 10

 15

 20

 25

 30

 35

In-kernel
OvS-native

OvS-DPDK

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

W
) Recv: total

Send: total
core
core

(b) Busy

Fig. 6: Power consumption comparisons of three dataplane
setups in standby (without traffic) and busy (with traffic) sce-
narios and baseline measurements for host OS and VM. MTU
is set to 500.

sink. Using the network benchmark allows the traffic gen-
erator to conveniently saturate the link capacity and put the
dataplane under heavy load. It also allows us to evaluate
the send and receive behavior separately. Besides, we were
interested in the effect of different packet rates. We adjusted
the packet rate by changing the MTU at the traffic generator.

We used Intel RAPL (Running Average Power Limit)
(https://01.org/rapl-power-meter) to measure power con-
sumption. RAPL provides both the holistic power readings
(cores, caches, and memory controller) as well as core-
only power readings, allowing us to determine the energy
contributions of core and non-core components.

We present the network performance results with three
dataplane setups in Figure 5. At the default 1500-byte MTU,
both OvS-native and OvS-DPDK achieve higher throughput
in TCP sending and receiving than the out-of-the-box in-
kernel bridge, although the performance difference is only
marginal (< 5%). When the MTU is 500, with roughly three
times more packets to process, the performance of three se-
tups now differs prominently. The TCP send throughput of
in-kernel bridge plummets to 441 Mbps, less than half of the
original performance. Although the other two switches also
suffer from performance loss, they are able to attain much
higher throughput. In particular, OvS-DPDK performs 2x
better on TCP send and 1.5x better on receive than the
in-kernel switch. Moreover, comparing the results of OvS-
native and OvS-DPDK reals that the choice of forwarding
engine has considerable impact over packet receiving per-
formance, where OvS-DPDK increases the throughput by
about 30% from OvS-native.

The power consumption results are depicted in Figure 6.
The baseline power performance of our NFV testbed is
about 6.22 watts when running the host OS alone; running
a virtual machine in it will add about extra 2 watts. In terms
of the standby power, the in-kernel bridge adds a negligible

amount of energy and the OvS-native about 1 watt. The
staggering number appears in the case of OvS-DPDK. Even
when no traffic is in transit, OvS-DPDK consumes about 3
times more energy than the other two dataplanes, adding
250% energy overhead (15.57 W) on top of the host OS.

When they are used to forward traffic, the discrepancy
between OvS-DPDK and the other two dataplanes shrinks,
despite the fact that OvS-DPDK still draws about 25% more
energy than the in-kernel bridge (400% of the idle host
OS). From the core-only power readings (the total accounts
for other subsystems such as memory controller, last-level
cache, and graphic processor) we found that the CPU cores
are the major contributor to the energy discrepancy. OvS-
DPDK brings in about 5 watts more consumption in its
use of the core. In fact, without using DPDK, OvS-based
dataplane achieves similar power consumption at standby
and even less when running as compared to the in-kernel
bridge.

3.2 Forwarding Engine is the Energy Hog

Multimedia applications are often throughput demanding;
using the advanced forwarding engines such as DPDK
can benefit the application performance. We confirmed this
performance speed-up in the experiments, yet we also
showed that high-speed forwarding engine leads to an
undue amount of energy consumption. To better understand
this issue, we conducted a profiling analysis of OvS-DPDK
using Intel VTune Amplifier (https://software.intel.
com/en-us/intel-vtune-amplifier-xe), a binary instrumen-
tation toolset. Thanks to the open-source nature of DPDK,
we are able to conduct detailed, code-level analysis.

To put the dataplane under full load, we launched
hping3 (hping3: https://linux.die.net/man/8/hping3) on
both the guest VM and the traffic generator to inject bidirec-
tional traffic at the maximum link speed. First, we found that
there is a pmd thread main accounts for around 99.7% CPU
occupancy (i.e., a full core utilization). By cross referencing
to the source code, we found the hot-spots of this thread
reside in the dpif−netdev.c:

2 , 8 5 0 : e r r o r = netdev rxq recv (rxq , &batch) ;

This function call accounts for 51.6% of the CPU usage.
There are also other hot-spots in the same function which
we will omit here. By tracing back to the function’s caller in
pmd thread main(void ∗f):

3 ,113 f o r (; ;) {
3 ,114 f o r (i = 0 ; i < p o l l c n t ; i ++) {
3 ,115 dp netdev process rxq port (pmd,

l i s t [i] . port , p o l l l i s t [i] . rx) ;
3 ,116 }
3 ,135 }

We found that the thread keeps spinning on this code
block, indicating it is continuously monitoring and execut-
ing the receiving data path. When we repeat the exper-
iment with OvS-native, we did not find such high CPU
utilization and thread spinning. We then collected other
statistics including the CPI value (cycles per instructions) and
branch mis-prediction rate for both OvS-native and OvS-
DPDK. We found that OvS-DPDK spends more CPU cycles

5

in fetching and decoding the instructions than actually
doing computations (CPI value: 0.693). And the majority of
instructions are a result of bad speculation with a lot of mis-
predicted branches (i.e., the “if” statements). On the other
hand, OvS-native gives lower mis-prediction rate and yields
much higher CPI value (1.364). The results demonstrate
that OvS-native, as compared to OvS-DPDK, uses CPU
more efficiently by spending cycles on useful computations,
although on average it spends more time to complete an
instruction (due to the use of interrupts).

As a conclusion, we confirm that OvS-DPDK improves
its performance by running a spinning thread that keeps
polling for any newly received packets in the device buffer
to attain better performance. This approach yields higher
performance than the traditional, CPU-efficient interrupt
based approach. On the other hand, the polling model also
leads to an inefficient use of CPU cycles that causes the
significantly higher power consumption than the interrupt
based approach.

4 HOW TO MANAGE POWER FOR NFV-BASED
MULTIMEDIA CONTENT DISTRIBUTION?
Our single-host experiments reveal energy inefficiency is-
sues that lie in current NFV dataplane implementations. In
reality, dataplanes are often deployed in a multi-host, multi-
hop fashion, e.g., multimedia distribution (Figure 1), where
energy inefficiency is likely to be amplified or even propa-
gated, making it a network-wide problem. We summarize
the following challenges in designing power management
frameworks for NFV-based multimedia content delivery:

• At the single-host level, the framework should exploit
the commonly available power tuning interfaces on
the host machines. Since dataplanes and VNFs are
real-time, data-intensive applications, the power tuning
must be done carefully without risking performance.

• At the multi-host level, the framework should preserve
the Quality of Service (QoS) of multimedia applications,
which demands a global view of all transit VNFs per-
formance when applying power tuning.

In this section, we provide the outline of a performance-
aware power management framework. We then examined
the energy and performance impact of CPU frequency scal-
ing as the power tuning method.

4.1 Overview of a Power Management Framework
In Figure 7, we depict the outline of a proposed power man-
agement framework. The framework consists of an agent
program deployed on each host server and a centralized
power manager. The power manager can be viewed as a
control plane service. It should query the NFV manager
for the most updated VNF and the host server information.
The manager should take charge of generating a global policy
for network-wide power saving, based on the performance
requirements of multimedia applications, stream character-
istics, and the current NF status.

4.2 Energy Savings Through CPU Frequency Scaling
Given multimedia traffic are continuous and multimedia
middleboxes usually shared by multiple streaming sessions,

Fig. 7: The proposed power management framework. It com-
plies with the control and data plane separation of SDN. The
power agent is deployed on each VNF host server at the data
plane and a centralized manager that makes global power-
performance tuning decision based on application-supplied
policies. Despite sitting at the control plane, the power manager
may as well leverage the APIs of other controllers.

it can be rare to spot an idle time for the middlebox and its
underlying dataplane. As such, power tuning methods that
rely on OS sleep modes may not function well since they
squeeze energy savings from the application idle time. To
incorporate the QoS requirements, power tuning methods
should also enable fine-grained power-performance trade-
off and avoid QoS violations.

We decided that CPU frequency scaling could be a
promising power tuning method for NFV host server energy
saving. First, the interface has long been supported by
modern CPUs and OSes, including most of the server-class
machines. Second, it allows frequency tuning at per-core
granularity and permits access in the userspace [7] [8]. Al-
though there exist some OS-level power management tools
that exploit this interface (e.g., Linux power governors), they
cannot be directly used in our case because computation-
intensive applications such as DPDK’s polling driver may
run on a spinning thread and the OS will not be able to
distinguish whether it is under heavy load or not.

We repeated the iperf experiments in Section 3 with CPU
frequency scaling. We devised a script to provide simple
frequency control. As a sample power agent, the script
probes the target frequency setting by gradually reducing
the frequency until it sees the target throughput drops for
more than a given threshold, i.e., finding the Pareto frontier
of the power consumption and throughput. We leave the
detailed design and implementation of the full-fledge power
agent and manager in our future work.

To illustrate the effect of frequency scaling, we config-
ured the script to iterate through the frequency range and
collect the intermediate results. As shown in Figure 8, at the
default 1500 MTU, we see a power reduction from 23 watts
at 3.4 GHz to under 20 watts at 2.6 GHz and 13 watts at 1.7
GHz with over 43% energy saving. As for the performance,
the throughput for both sending and receiving stay the
highest across the frequency range. When we change the
MTU to 200, the power saving becomes more prominent
with the total power consumption halved at 2.6 GHz. On the
other hand, the frequency tuning starts to have an impact on
the performance on the packet receiving. The throughput
drops from around 534 Mbps at the maximum frequency
to 320 Mbps at the lowest. We conjecture the performance
penalty is caused by the overloaded PMD thread on the
packet receiving path. The sending performance remains

6

unaffected. During the experiment, the frequency control
loop consumed less than 1% of CPU and negligible power
consumption.

 0

 5

 10

 15

 20

 25

3.4 3.0 2.6 2.2 1.7

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

W
)

CPU Frequency (GHz)

Total
Core

 850

 900

 950

 1000

3.4 3.0 2.6 2.2 1.7

T
h

ro
u

g
h

p
u

t
(M

b
p

s)
CPU Frequency (GHz)

Recv
Send

(a) MTU 1500

 0

 5

 10

 15

 20

 25

 30

 35

3.4 3.0 2.6 2.2 1.7

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

W
)

CPU Frequency (GHz)

Total
Core

 0

 200

 400

 600

 800

 1000

3.4 3.0 2.6 2.2 1.7

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

CPU Frequency (GHz)

Recv
Send

(b) MTU 200

Fig. 8: Impact of CPU frequency scaling over power consump-
tion and application performance at low packet rate (top, MTU
1500) and high packet rate (bottom, MTU 200).

Based on these preliminary results, we conclude that
when the network load on dataplane is moderate or send-
bound, it is performance-friendly to lower the CPU fre-
quency to conserve energy; when network load becomes
high and receive-bound, the frequency should be raised
accordingly to avoid performance penalty. This leads to the
idea of energy proportionality, the desired property stating
that the power consumed in computer systems should be
in proportion to how much useful work they complete [8].
To incorporate this property in our framework, the power
manager needs to extract the multimedia stream informa-
tion and forward it to the power agents. A power agent will
then exploit this information to estimate the workload in the
next time frame and adjust the CPU frequency accordingly.

5 MORE DISCUSSION ON THE PERFORMANCE,
FLEXIBILITY, AND ENERGY EFFICIENCY TRADE-OFF

Traditional middleboxes rely on hardware specialization,
e.g., Application-Specific Integrated Circuit (ASIC), to at-
tain high performance. At the computer architecture level,
ASICs differ from general purpose processors in their use
of dataflow model. It minimizes the overhead of instruction
loading, where the program execution solely depends on the
availability of input data at the logic gates. Dataflow model
is thus well-suited for real-time, data-intensive applications
such as packet forwarding and signal processing. On the
other hand, hardware specialization often imposes a lacking
of flexibility. It has longer time-to-market, higher (one-off)
provisioning costs, and inconvenient patches and updates,
whereas its virtualized counterpart, run on general purpose
processors, excel in addressing those issues.

A main focus of the current NFV research is how to
make reasonable trade-offs between performance and flexi-
bility [3]. Based on our measurement study, we found energy

efficiency an equally important dimension in the design
space of NFV, particularly when NFV is integrated into
Internet-scale services such as multimedia content delivery.
Our experiments have shown that performance optimiza-
tions in the dataplane could result in substantial energy
costs. NFV vendors and customers need to consider these
three dimensions together transitioning to NFV.

6 RELATED WORK

Multimedia content delivery has attracted many research
interests in recent years. Studies have shown that multime-
dia broadcasting providers such as Twitch.tv place content
processing and distribution servers along the traffic flow
path [5], and a majority of them can be in fact categorized
as middleboxes [6]. The rise of NFV will make it easier to
deploy and manage these middleboxes. It allows network
functions to be provisioned as part of the consolidated in-
frastructure in modern datacenter [2] [4]. For instance, E2 [4]
is one of the first frameworks that provide common NFV-
related mechanisms for creating and managing network
functions in compute clusters.

Performance and flexibility remain the central topic of
current NFV research. For example, NetVM [3] allows net-
work functions to be implemented on commodity servers
while preserving their line-rate performance. It employs
several software-level optimizations such as zero-copy data
transmission between VMs to achieve efficient packet pro-
cessing. Energy efficiency has not drawn full attention in
NFV research so far, particularly in the context of multi-
media distribution. Among the existing works, Prekas et
al. [8] designed OS-level mechanisms to achieve energy
proportionality for latency-sensitive, data-processing work-
loads. Song et al. [7] proposed a CPU frequency scaling
based scheme to conserve energy for video transcoding
workloads in the non-NFV context. This article takes the
first step towards addressing the energy efficiency in NFV-
based multimedia content distribution.

7 CONCLUSION AND FUTURE WORK

We investigated the energy cost of advanced NFV platforms
for multimedia content delivery. The upsurge of energy con-
sumption is due to the characteristics of multimedia traffic,
expensive computations of multimedia network functions
and the dataplane energy inefficiency. We proposed a power
management framework that leverages CPU frequency scal-
ing to achieve energy saving and meet end-to-end QoS
requirements of multimedia applications. For future work,
we are going to implement a prototype of the framework
and explore the integration with other control plane services
including SDN and NFV controllers.

We believe our findings apply to other major NFV plat-
forms. The software components of our testbed are the com-
monly used building blocks for NFV platforms (e.g., DPDK,
KVM), and we have identified the energy issues arise from
the software stack as opposed to the specific hardware con-
figuration. Our measurement tools and methodology can be
reused on other hardware setups for obtaining quantitative
results.

7

To set up the testbed and reproduce the experiments
covered in this article, visit our code repository: https:
//github.com/sfu-nml/nfv-mm-testbed.

REFERENCES
[1] White paper: Cisco vni forecast and methodology, 2015-2020.

[Online]. Available: http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html

[2] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in
Proc. USENIX Networked Systems Design and Implementation (NSDI),
2012, pp. 323–336.

[3] J. Hwang, K. Ramakrishnan, and T. Wood, “Netvm: high perfor-
mance and flexible networking using virtualization on commodity
platforms,” in Proc. USENIX Networked Systems Design and Imple-
mentation (NSDI), 2014, pp. 445–458.

[4] S. Palkar et al., “E2: a framework for nfv applications,” in Proc.
ACM Symposium on Operating Systems Principles (SOSP), 2015, pp.
121–136.

[5] C. Zhang and J. Liu, “On crowdsourced interactive live streaming:
A twitch.tv-based measurement study,” in Proc. ACM NOSSDAV,
2015, pp. 55–60.

[6] B. Carpenter and S. Brim, “Rfc 3234-middleboxes: Taxonomy and
issues,” Network Working Group. Ietf, 2002.

[7] M. Song, Y. Lee, and J. Park, “Scheduling a video transcoding
server to save energy,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 11, no. 2s, p. 45,
2015.

[8] G. Prekas, M. Primorac, A. Belay, C. Kozyrakis, and E. Bugnion,
“Energy proportionality and workload consolidation for latency-
critical applications,” in Proc. ACM Symposium on Cloud Computing
(SoCC), 2015, pp. 342–355.

Silvery Fu Silvery Fu is a master student (2015-) in Computing Science
at Simon Fraser University, under the supervision of Prof. Jiangchuan
Liu. In 2016, he received the B.Sc. degree (First Class with Distinction)
from SFU and B.Eng. (Dual Degree Program) from Zhejiang University,
both in Computer Science. His contact info: dif@sfu.ca

Jiangchuan Liu Jiangchuan Liu (S’01-M’03-SM’08-F’17) is a University
Professor in Computing Science at Simon Fraser University, and an
EMC-Endowed Visiting Chair Professor of Tsinghua University. He is an
IEEE Fellow and an NSERC Steacie Fellow. He received the inaugural
Test of Time Paper Award of IEEE INFOCOM (2015). His contact info:
jcliu@sfu.ca

Wenwu Zhu Wenwu Zhu is a Professor and Deputy Head of Computer
Science Department at Tsinghua University. He was Research Manager
at Microsoft Research Asia before. He was Chief Scientist and Director
at Intel Research China from 2004 to 2008. He worked at Bell Labs
during 1996-1999. He is an IEEE Fellow, AAAS Fellow, SPIE Fellow, and
ACM Distinguished Scientist. His contact info: wwzhu@tsinghua.edu.cn

