
Multipath TCP for Datacenters: From Energy
Efficiency Perspective

Jia Zhao†, Jiangchuan Liu†, Haiyang Wang∗ and Chi Xu†
†School of Computing Science, Simon Fraser University, Canada

∗Department of Computer Science, University of Minnesota at Duluth, USA
Email: zhaojiaz@sfu.ca, jcliu@cs.sfu.ca, haiyang@d.umn.edu, chix@sfu.ca

Abstract—Nearly 50% of the energy overhead in today’s
datacenters comes from host-to-host data transfers, which largely
depend on the transport layer performance. Multipath TCP
(MPTCP) has recently been suggested as a promising transport
protocol to improve datacenter network throughput, yet it also
increases the host CPU power consumption. It remains unclear
whether datacenters can indeed benefit from using MPTCP from
the perspective of energy efficiency.

By analyzing the performance of MPTCP, we show that (1)
despite consuming higher host CPU power than TCP, MPTCP
can largely reduce the long flow completion time and thus save
the aggregated energy; (2) link-sharing subflows in MPTCP not
only has negative impact on both throughput-sensitive long flows
and latency-sensitive short flows, but also noticeably increases the
host CPU power, especially for short flows. We present MPTCP-
D, an energy-efficient variant of multipath TCP for datacenters.
MPTCP-D incorporates a novel congestion control algorithm that
can provide energy efficiency by minimizing the flow completion
time, and an extra subflow elimination mechanism that can
preclude link-sharing subflows from increasing the host CPU
power. We implement MPTCP-D in the Linux kernel and study
its performance by experiments on Amazon EC2. Our results
show that, without degrading the performance of the long flow
throughput and short flow completion time, MPTCP-D reduces
the long flow energy consumption by up to 72% compared to
DCTCP for data transfers, and reduces the short flow power
consumption by up to 46% compared to MPTCP with link-
sharing subflows.

I. INTRODUCTION

Tremendous carbon footprint has been produced by the
energy-hungry mega datacenters. For example, the datacenters
of the United States consumed 91 billion kilowatt-hours of
electricity in 2013, which is predicted to increase to 140 billion
kilowatt-hours by 2020, equivalent to 51 power plants (at the
scale of 500 megawatts) [1]. As such, the new generation of
datacenters is experiencing an evolution towards both high-
performance and green computing.

It is known that the servers in today’s datacenters consume
most of the energy because of their high density in deployment
and massive job-processing workload. The servers at full
utilization can take up to 90% of a datacenter’s power [2], and
a great portion of their running time has been for transmitting
or receiving data (for instance, data transfers account for
more than 50% of job completion time in Facebook’s Hadoop
cluster [3]). That said, nearly half of the datacenter energy
consumption is network communication related.

The energy consumption of host-to-host data flows depends

on both host CPU power1 and flow completion time. A host’s
instantaneous CPU power during data transfers noticeably
increases compared to that in the idle state, and it increases
with such factors as the sending rate, the number of net-
work interfaces, and the number of simultaneously-used TCP
sockets. The flow completion time is closely related to the
traffic pattern. In today’s datacenters, most (90%) of the data
are delivered by long flows (of sizes from 1MB to about
1GB); yet a majority (90%) of the flows are indeed short
flows (of size smaller than 1MB) [4, 5]. The completion
time of the long flows decreases with throughput, and that of
the short flows, however, largely depends on the instant path
quality. These short flows often have completion deadlines,
too, ranging from tens to hundreds of milliseconds. As such,
energy optimization for data transfer has to jointly consider
all these factors. Simply upgrading the inside network may
not necessarily improve energy efficiency. In fact, even the
common 1Gbps/10Gbps networks are still not well utilized,
and TCP remains the bottleneck there for throughput and
for energy efficiency. Although such customized datacenter
transport protocols as DCTCP [6] and TIMELY [7] have
attempted to serve latency-sensitive short flows better, they
are not optimized for long flows and the overall energy.

Multipath transport protocols (e.g., Multipath TCP
(MPTCP) [8]) explore multiple routes between each pair
of hosts to increase throughput, thereby reducing the flow
completion time, particularly for long flows [9]. There
has been significant research on improving datacenter’s
performance with MPTCP [9–15], mostly from throughput
and latency perspectives. Throughput improvement brought
by using multiple interfaces however would also increase the
instantaneous host CPU power. It remains unclear whether
datacenter can indeed benefit from using MPTCP from the
energy efficiency perspective. In fact, it has been shown
that short MPTCP flows’ completion time may increase
when a large number of subflows are used [14]. This
would severely delay latency-sensitive short flows, and the
consequent expirations and retransmissions would increase
power consumption.

This paper takes a first step towards understanding
MPTCP’s energy efficiency in datacenter networks. By an-

1In this paper, the term power (in Watt) denotes the electrical energy
consumed per second, and the term energy (in Joule) denotes the integral
of power over time. Energy depends on both power and time.

alyzing the performance of standard MPTCP over a realworld
testbed, we show that, compared to the single path TCP, the
reduced completion time (and hence energy) of long flows
by using MPTCP is enough to overshadow the increased
host CPU power. When multiple subflows are generated on
overlapped paths2, MPTCP however can hurt both long flows’
throughput and short flows’ completion time, and consequently
consumes significantly more energy.

Motivated by these findings, we design MPTCP-D, an
energy-efficient Multipath TCP for Datacenters. MPTCP-D
can save energy for both long and short flows without sacrific-
ing the long flows’ throughput and the short flows’ completion
time. A fluid model is developed for multipath congestion
control in MPTCP-D. The model ensures energy efficiency
by minimizing the flow completion time for long flows and
introduces the Round Trip Time (RTT) based traffic shifting
for short flows. To reduce power consumption of link-sharing
sublfows, an Extra Subflow Elimination (ESE) mechanism is
further developed to close the congestion windows (cwnds)
of extra subflows, ensuring that only one single subflow exists
on overlapped paths.

We have implemented MPTCP-D on Linux and evaluated
it on Amazon’s Elastic Compute Cloud (EC2). We show that
MPTCP-D reduces the long flow energy consumption by up
to 72% compared to DCTCP, and achieves better latency for
short flows. It is able to maintain as good throughput as
the basic MPTCP for long flows; yet for multiple subflows
on overlapped paths, the ESE mechanism in MPTCP-D is
highly effective, which reduces up to 20% and 46% of power
consumption for long and short flows, respectively.

The remainder of this paper is organized as follows. Section
II introduces related work. Section III analyzes the energy effi-
ciency of long and short MPTCP flows. We present the design
of MPTCP-D in section IV. We evaluate the performance of
MPTCP-D in section V. Section VI concludes the paper.

II. RELATED WORK

There have been significant studies to investigate the trans-
port layer design in datacenter networks. TCP shows inef-
ficiency for both long and short flows in datacenters. Ad-
vanced single-path transport protocols, such as DCTCP [6] and
TIMELY [7], have been developed to improve the performance
of short flows in datacenter networks. Multipath transmission
has also been suggested, and Raiciu et al. [9] validated
that MPTCP can improve datacenter network utilization on
different network scales over different topologies. Khalili et
al. [10] further investigated the optimized resource allocation
among a large number of simultaneous MPTCP flows. Follow-
ing these pioneer studies, various traffic scheduling methods
are proposed to explore disjoint multiple paths in datacenter

2In this paper, overlapped paths denote the routes that have common links
for a host-to-host MPTCP connection. We do not use the term bottleneck,
because conventionally a bottleneck in [8, 16, 17] is defined to study the
fairness between competing flows, e.g., an MPTCP flow and a TCP flow
coexisting on a shared link. Instead, we focus on overlapped paths to study
the mutual interference between link-sharing subflows of MPTCP and how it
impacts MPTCP’s energy overhead, rather than repeat the fairness issues.

networks [12, 13], aiming to make full utilization of their high
aggregation bandwidth.

Besides bandwidth efficiency, latency has long been a
critical issue for the datacenter networks. The optimization of
latency-sensitive short flows is attracting increased attention in
recent years. Cao et al. [11] proposed a multipath congestion
control scheme for datacenters to explore path diversity and
better link utilization. This scheme uses link queue buffer
control and traffic shifting to balance throughput and latency.
Kheirkhah et al. [14] proposed a random packet scheduler to
exploit good-quality paths for short multipath flows and reduce
their completion time. Chen et al. [15] further designed a fast
loss recovery approach for multipath transmission. This design
uses good-quality paths to retransmit the loss packets rather
than wait for timeout on the lossy path.

The energy efficiency of MPTCP for datacenters, how-
ever, remains largely unclear to the research community. We
evaluate the performance of MPTCP over realworld exper-
iments and find that MPTCP has severe energy issues. In
particular, when the subflows are sharing one/many common
links, MPTCP has poor energy consumption, especially for
short flows. To deal with the issue, we incorporate the ESE
module in MPTCP-D. In order to close the cwnds of the
extra subflows, ESE first finds whether multiple subflows
are sharing a common link. There have been methods for
bottleneck link detection with multipath congestion control
in the literature [16, 17]. They however are mostly designed
to provide fairness among competing flows (e.g., MPTCP
and TCP flows) on their coexisting link, while we focus on
the mutual interference of MPTCP subflows on their shared
link. Such a mutual interference increases the overhead of
flow management, elevating the energy consumption. These
methods also need to wait for packet losses [16] or take 10-
20 seconds to make a decision [17], which is inefficient for
the latency-sensitive short flows.

III. MEASUREMENT OF MPTCP ENERGY CONSUMPTION

In this section, we will examine the energy consumption
of MPTCP. Our experiments first investigate long flow energy
consumption in our local cluster and EC2, and then dive into
a more realistic case in datacenter networks with shared links.

A. Long Flow Energy Consumption

We first study the long flow energy consumption of host-to-
host connection with MPTCP and TCP, respectively. The long
flow energy consumption depends on both the CPU power
and the transfer completion time. We examine the CPU power
increase and flow completion time decrease of using MPTCP,
compared to the baseline of using TCP.

We measure the host CPU power during host-to-host data
transfers in our server cluster and over Amazon EC2. Our
cluster has 10 machines, each with double NICs and a Quad-
core Intel Core i7-3770 CPU. We also rent server instances
on EC2 and configure them with different types of CPUs.
These include Quad-core Intel Xeon E5-2680 v2, Octa-core

0 50 100 150 200 250 300 350
0

300

600

900

1200

1500

Time (sec)

C
P

U
 E

n
e
rg

y
 (

J
)

0

2

4

6

8

10

C
P

U
 P

o
w

e
r

(W
)

0

30

60

90

120

150

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

MPTCP

TCP

transfer completes

transfer completes

transfer completes

transfer completes

Fig. 1. Performance of long flows (500 MB data transfer).

!"#$%&

!"#$%&

!#$%&

'()*+,-./01*&

233)*34/.(5+

,-./01*&

6(%+(7+8409+

,-./01*&

:(&/&

!#$%&

!#$%&

!#$%&

;4<+=4/1+(>*)?4%+4/+1(&/ ;$<+=4/1+(>*)?4%+4/+0()*

Fig. 2. MPTCP with multiple subflows on overlapped paths: (a) VL2
topology, path overlap at host; (b) multihomed topology, path overlap at core.

cores Intel Xeon E5-2670 v2, and Octa-core Intel Xeon E5-
2680 v2. We install the MPTCP Linux kernel of version 0.90
[18] on our local servers and EC2 instances. We use iperf
to generate host-to-host long flows (500MB data). We record
instant host CPU power from Intel’s Running Average Power
Limit (RAPL) driver [19, 20]. Each classic TCP connection
uses one interface with the capacity ranging from 20Mbps to
210Mbps. An MPTCP connection uses two interfaces, each
of them with the capacity ranging from 20Mbps to 512Mbps.
Note that our measurements are in the circumstance under
which MPTCP is several times the available bandwidth of
TCP. There is no concern with the fairness issue. This is
just for the premise that MPTCP can achieve high aggregated
bandwidth in multihomed datacenter networks.

Fig. 1 shows the results from a server with Quad-core CPU
Intel Core i7-3770. It is easy to see that MPTCP is more en-
ergy efficient because it can significantly reduce the flow com-
pletion time (FCT). The FCT of classic TCP flow is around
200s. MPTCP, on the other hand, only uses 50s to complete
the downloading. Although MPTCP has higher instantaneous
power, its short FCT increases the CPU’s idle duration and
hence successfully reduces the total energy consumption. As
can be seen in the subfigure for CPU energy consumption,
such a gap will also increase when we have longer flows
or larger files. To avoid possible bias, we also validate this
observation under different throughput with different types of
CPUs. TABLE I validates that MPTCP consumes less energy

TABLE I
MPTCP vs. TCP: throughput’s impact on both host CPU power and long

flow completion time.

CPU type Config.
Mean
rate:
Mbps

CPU
power
increase

Transfer
time
decrease

CPU
energy
saving

Core i7-3770,
3.4GHz, 4
cores

TCP 19 baseline baseline baseline

MPTCP

37 6.4% 50.1% 46.9%
58 14.7% 68.3% 63.6%
77 26.2% 75.8% 69.5%
96 33.5% 80.6% 74.1%

XeonE5-2680
v2, 2.8GHz,
4 cores

TCP 205 baseline baseline baseline

MPTCP 408 6.8% 49.8% 46.4%
610 8.4% 66.4% 63.6%

Xeon
E5-2670 v2,
2.5GHz, 8
cores

TCP 205 baseline baseline baseline

MPTCP

408 5.8% 49.8% 46.9%
611 8.1% 66.4% 63.7%
819 10.9% 75.0% 72.3%

1020 12.6% 79.9% 77.4%

Xeon
E5-2680 v2,
2.8GHz, 8
cores

TCP 205 baseline baseline baseline

MPTCP

408 8.3% 49.8% 45.6%
611 11.3% 66.4% 62.6%
819 14.1% 75.0% 71.5%

1016 14.2% 79.8% 76.9%

 !"#$%&'%&#

()$*+),%#-(*.#

/01!0#

2()34#5%&)%6#

0&('+*%#$37)%*#8#

98:;<;8;:=">?

@A1

8:;<;8;<"

8:;<;8;<>
8:;<;8;<<8:;<;8;<8

8:;<;";<8

8:;<;8;8

 !"#B)$*+),%$

0&('+*%#$37)%*#"#

98:;<;";:=">?

8:;<;";<"
8:;<;";<<

0376(,#$37)%*#

98:;<;:;:=">?

0376(,#B0

8:;<;:;8

8:;<;";8

B)
*%
&)
%*

.
**
C
D=
=E
3
6*
(C
+*
.
F*
,C
;G
&H

AE+IG)#J(&*3+6#0&('+*%#!6G3K#9J0!?

8:;<;:;:=8L

M37N6G-
#8

M
37
N6
G-
#"

 !"#B)$*+),%$

OG3*%&

OG3*%&

OG3*%&

8P7C$

8P7C$

8P7C$

Fig. 3. MPTCP with multiple subflows on overlapped paths in a VPC of
Amazon EC2.

in all the test cases.

B. Mutual Interference between Subflows on shared links

As shown in Fig.2, typical datacenter networks can hardly
avoid path overlap for MPTCP’s subflows. This path overlap
may be either the links between hosts and Top of Rack
(ToR) switches, or the core switches with limited capacity
[9]. As shown in Fig. 3, on such cloud computing platforms
as Amazon EC2, the use of MPTCP may also have overlapped
paths for multiple subflows. Fig. 3 shows an example of
MPTCP in Amazon’s Virtual Private Cloud (VPC). The VPC
builds a public subnet and uses NAT to access the Internet.
The VPC expands its network by connecting two private
subnets to the public subnet. All traffic exchanges between
the Internet and the VPC are with a public IP address. When
an EC2 instance with MPTCP Linux kernel uses two paths
to transmit data towards an MPTCP-enabled destination (e.g.,
http://multipath-tcp.org) in the Internet, the two subflows of
MPTCP share the link between the VPC’s public IP address
and the Internet gateway.

To understand the mutual interference between subflows
of MPTCP on a shared link, we deploy MPTCP on our
local testbed (Fig. 4). We use the MPTCP Linux kernel of
version 0.90, in which an MPTCP connection consists of

!"#$%&'("#)

(#+"&

,-.!-)

+/'/)

&%$0%#')

&12%+34%5

-/'2)

0/#/$%5

63784"*

63784"*

63784"*

63784"*

-/'2)

0/#/$%5

-/'2)9

-/'2):

;(#3<)=%5#%4>?5"'"1"4)&'/1=

@-)/++5%&&

6%#+%5)
0/12(#%

!-AB)@#'%4)!"5%)(CDECCFG)E HIJK

 !"#$%&'(")*+%

*#,$$(&%

-")"#,*.#

/012"#%.$%

302$'.43%$.#%

",&5%!,*5

6789

A&%5)(#?3'& -%58"50/#1%)"3'?3'&

L%1%(M%)

(#+"&

 !"#$%3"#:"#

L%1%(M%5)
0/12(#%

C

C

!"#$$%&"'(()*

!"#$$%&"'(()*

+,-!,%

#../&)#.

Fig. 4. Testbed setups for the experiments that emulate the path overlap
scenarios: MPTCP connection is set up between sender and receiver machines,
each one is configured with two interfaces (path 1 has capacity C1 and path
2 has capacity C2), Intel Core i7-3770 CPU, and the MPTCP Linux kernel
v0.90. iperf is used to generate flows. CPU power is read from RAPL.
The ‘num subflows’ parameter in MPTCP path manager module is used to
control the number of subflows for each path. The setups can have disjoint
paths (‘num subflows’=1) or n subflows for each path (‘num subflows’=n).

0 50 100 150 200 250 300
0

2

4

6

8

Time (sec)

C
P

U
 P

o
w

e
r

(W
)

0

50

100

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

0

2

4

R
T

T
 (

m
s
)

Two subflows (one subflow for each path)

Four subflows (two subflows for each path)

Fig. 5. Performance comparison of the two cases: the MPTCP connection
with four subflows sharing two paths consumes more CPU power than the
connection using two disjoint paths, and it also degrades throughput and has
higher latency.

multiple paths. Each path can have one or more subflows with
independent congestion windows.

Fig. 5 compares the results of two cases: (i) two subflows
over two disjoint paths; and (ii) four subflows with two
of them sharing each link. We set C1 = 100Mbps and
C2 = 20Mbps, respectively. It is easy to see that the second
case consumes more energy, with decreased aggregated
throughput and increased latency. To pinpoint the root cause,
we take a closer look at these link-sharing subflows. We
use iperf to generate 200 parallel MPTCP connections
between the two servers (with bandwidth C1 = 100Mbps
and C2 = 20Mbps). To avoid possible bias, we also consider
both long (100 MB data) and short flows (0.5 MB data).
Each connection can use the two paths simultaneously to
transmit data. On each path, we change the number of
subflows from 1 to 8 (increased by powers of 2). This is done
by modify Linux kernel’s MPTCP path-manager module
in ‘/sys/module/mptcp fullmesh/parameters/num subflows’
(note that this option is not included in the MPTCP Linux
kernel of version less than 0.90).

Fig. 6(a) shows the short flow throughput of individual

0 50 100 150 200
0

0.2

0.4

0.6

0.8

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Rank of MPTCP connections

(a) Short flow throughputs

1 2 4 8
0

2

4

6

8

10

12

A
v
e
ra

g
e
 C

P
U

 p
o
w

e
r

(W
)

Number of subflows for each path

(b) Short flow power consumption

0 50 100 150 200
0

0.2

0.4

0.6

0.8

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Rank of MPTCP connections

(c) Long flow throughput

1 2 4 8
0

1

2

3

4

5

6

7

A
v
e
ra

g
e
 C

P
U

 p
o
w

e
r

(W
)

Number of subflows for each path

(d) Long flow power consumption

1 subflow

2 subflows

4 subflows

8 subflows

1 subflow

2 subflows

4 subflows

8 subflows

Fig. 6. Performance of 200 MPTCP flows: each flow uses different number
of subflows sharing each path. Each long MPTCP flow transmits 100MB data,
and each short MPTCP flow transmits 0.5MB data.

MPTCP connections, ranked in ascending order of their
throughputs, with different number of subflows for each path
of MPTCP. Clearly, using multiple subflows for each path fails
to achieve higher average throughput. Although approximately
half of connections with 4 or 8 subflows for each path get
higher throughputs, they affect the throughputs of the other
half of connections, and thus nearly 50% of short flows are
severely delayed. Fig. 6(b) shows how the sender’s average
CPU power consumption from the short flows changes with
different number of subflows for each path. We see that
using multiple subflows consumes far more power than using
only one subflow. For the long flow throughput of individual
MPTCP connections, as shown in Fig. 6(c), using multiple
subflows for each path also cannot improve throughput, either,
and some connections with 4 and 8 subflows experience severe
throughput degradation. Fig. 6(d) shows that the sender’s
average CPU power consumption from the long flows also
increases with the number of subflows. The power consump-
tion of using 8 subflows is nearly 50% more than that of using
one subflow. Fig. 6 indicates that the existence of link-sharing
subflows in MPTCP hurts the throughput and hence the energy
consumption. Our results in Fig. 5 and Fig. 6 indicate that the
link-sharing subflows can degrade the performance of both
long and short flows. This can be ascribed to the sharply
increased operations to control too many subflow congestion
windows (each corresponds to a TCP socket) simultaneously,
the increase of loss and retransmission on each path, and the
highly fluctuating windows causing slow convergence to the
stable equilibrium.

C. Discussions

Our experiment results indicate that transport layer energy
efficiency is correlated with multiple factors including the

 !"#$%&'$%(("#(%)*!&$+%,#"-

.!/$-0*)12#-

3!-)-

 34 344 345 35535435

67. 7$8+!0$0*)2$9:+)*;+#$

-:<8+!0-$8!"$#%12$;%)2

N !"#$

M !"#$%

&'()*+'$*,

-&&

&./012)3 4/&./012)3

/)35(

675(+8

Fig. 7. A summary: transport layer energy efficiency is correlated with the
factors including number of paths, number of subflows for a path, throughput
and RTT. (1) TCP vs. MPTCP: low energy can be achieved by using more
paths and increasing aggregated throughput. (2) MPTCP vs. MPTCP with
link-sharing subflows: MPTCP should have one subflow for each path to save
energy when it cannot further improve throughput and RTT.

number of concurrently used paths, the number of subflows
for each path, aggregated throughput and RTT. Fig. 7 briefly
summarizes our observations in the subsections above. It
compares three different cases: classic TCP flow, MPTCP flow
without link-sharing subflows, and MPTCP flow with link-
sharing subflows (these cases are just illustrative examples;
as shown in Fig. 2 and Fig. 3, there can be various situations
under which MPTCP has link-sharing subflows). Among them,
MPTCP without link-sharing subflows has the best overall
performance. Compared with TCP, it saves energy by reducing
the flow completion time (due to concurrent usage of mul-
tiple paths and high aggregated throughput). Such benefits
disappear however in the presence of link-sharing subflows.
In short, MPTCP should have only one subflow for each path,
so that energy efficiency can be achieved by minimizing the
flow completion time.

IV. THE DESIGN OF MPTCP-D

In this section, we present the design of MPTCP-D for
energy-efficient data transfer in datacenter networks. It seeks
to minimize the flow completion time and to preclude link-
sharing subflows through detecting overlapped paths, thereby
reducing the power consumption for both long and short flows.

A. Congestion Control

MPTCP-D does not directly use the existing multipath
congestion control algorithms, e.g., LIA [8] and OLIA [10].
It has been shown in [10] that a large number of coexisting
MPTCP flows using LIA may downgrade the throughput of
each other. MPTCP-D however needs as high throughput as
possible to achieve good energy efficiency for long flows.
While OLIA can avoid the mentioned problem of LIA, it does
not have any delay-based traffic shifting strategy and hence can
be inefficient for latency-sensitive short flows.

We first describe the network model which is similar to [10].
Consider a network that consists of a link set L. A link l ∈ L
has finite capacity cl. There is a set S of MPTCP users (i.e.
connections) in the network. For any user s ∈ S, let s represent
the set of available paths between s and its destination. A route
r ∈ s consists of multiple links. If route r uses a link l, then
we denote l ∈ r. For each route r, RTTr(t) and wr(t) denote
the round trip time and congestion window, respectively, and
xr(t) = wr(t)/RTTr(t) represents the send rate at time t. For
each user s ∈ S, let xs(t) = (xr(t), r ∈ s).

Let [Rlsr] be the routing matrix where Rlsr = 1 if
link l is on the route r of user s and 0 otherwise, and
yl =

∑
s∈S

∑
r∈sR

l
srxr be the aggregate traffic on link

l. Let pl(yl) be the packet loss probability at link l. pl is
an increasing function of yl with the constraint yl ≤ cl.
The packet loss probability on route r can be expressed as
λr = 1 −

∏
l∈r(1 − pl) ≈

∑
l∈r pl. For simplicity, we omit

the time t in the functions wr, RTTr, xr and xs.
To provide high throughput for long flows, MPTCP-D

should have aggressive but fair enough send rate increase. To
fit latency-sensitive short flows, MPTCP-D should be able to
use low-delay good-quality paths for transmission. These goals
lead to the following fluid model design:

dxr
dt

=
ψrx

2
r

RTT 2
r (
∑
k∈s xk)

2
− 1

2
λrx

2
r (1)

where the traffic-shifting parameter

ψr =
mink∈sRTTk

RTTr
. (2)

We now illustrate how the fluid model serves our design goals.
According to the design goal of TCP-friendliness in [8] and

RFC 6356, multipath TCP should not take up more capacity
than if it was regular TCP using the best path. The equilibrium
of the fluid model as Equation (1) is a vector of send rates
x∗s(t) = (x∗r(t), r ∈ s) that makes the right side of Equation
(1) equal to zero for any route r. Our analysis, with the
theoretical methodology similar to [10], also focuses only on
the properties of the equilibrium.

Theorem 1. The congestion control algorithm of MPTCP-
D, derived from Equations (1) and (2), satisfies the fairness
design goal suggested by the RFC 6356, and the aggregate
send rate of an MPTCP-D user s at the equilibrium of
Equation (1) is no more than the send rate that a regular
TCP user would achieve on the best path of s:∑

k∈s

x∗k ≤
√

2/λh/RTTh (3)

where h = argmax
k∈s

x∗k.

Proof: The traffic parameter ψr in Equation (2) satisfies
ψr ≤ 1 for any path r ∈ s. Hence we have ψh ≤ 1. At the
equilibrium of Equation (1), we have dxr

dt = 0 and on the
best path h we have ψhx

2
h

RTT 2
h(

∑
k∈s x

∗
k)

2 = 1
2 (x
∗
s)λhx

2
h. MPTCP-

D has an aggregate throughput of
√

2ψh

λh
/RTTh, which is no

more than the throughput
√

2
λh
/RTTh achieved on the best

path if it is a regular TCP.
Besides TCP-friendliness, MPTCP-D also has to accom-

modate the many coexisting flows in datacenter networks,
where the the number of active flows at a switch in any given
second could be as high as 10,000 [4]. That said, Pareto-
optimality should be maintained here. Suppose there are |S|
users using the same multipath congestion control algorithm
in the network. Each user s ∈ S has a utility Us(xs), which
is an increasing function of xk for all k ∈ s. The aggregate
utility of all the users is as follow

∑
s∈S

Us(xs)−
1

2

∑
l∈L

∫ ∑
k∈l xk

0

pl(y)dy (4)

where pl(y) is the link price or congestion cost of link l, and
it is an increasing function with pl(0) = 0 for all links l ∈ L.
We have the following theorem.

Theorem 2. A multipath congestion control algorithm is
Pareto-optimal if for all routes r ∈ s it has a concave
utility function Us(xs) that satisfies θr(x′s)

∂Us(xs)
∂xr

∣∣∣
xs=x′s

=

Ir(x
′
s), where θr(xs) is a positive function related to step size

of differential equation for the algorithm, x′s = (x′r(t), r ∈ s)
is the maximizer of Equation (4) and Ir(xs) is the function
that decides the send rate increase of the algorithm.

Proof: In Equation (4), the utility Us(xs) is an increasing
function of xk for all k ∈ s, and the path price (conges-
tion) term 1

2

∑
l∈L
∫∑

k∈l xk

0
pl(y)dy also increases with xs.

At the maximizer x′s of Equation (4), it is impossible to
increase xs for user s without decreasing the throughput of
other users or increasing congestion. Therefore, the maximizer
x′s is at Pareto-optimality, and if its utility increasing rate
θr(x

′
s)

∂Us(xs)
∂xr

∣∣∣
xs=x′s

is equal to the the send rate increase

I(xs) of the multipath congestion control algorithm, then the
algorithm has the best aggressiveness of throughput increase.
It is known that Coupled [21, 22], EWTCP [23], DWC [16]
and OLIA [10] all have θr(xs) = x2r , and wVegas [24] has
θr(xs) = xr/λr. Therefore, they all satisfy Pareto-optimality
in Theorem 2.

Theorem 3. The congestion control algorithm of MPTCP-D
satisfies Pareto-optimality.

Proof: According to Equations (1) and (2), θr(xs) =
x2r , the send rate increase of MPTCP-D is Ir(xs) =

ψrx
2
r

RTT 2
r (

∑
k∈s xk)2

, and dψr

dxr
= 0 for any r ∈ s. Let the utility

function be Us(xs) = − (
∑

r∈s ψrx
′
r/RTT

2
r)

2

(
∑

r∈s x
′
r)

2(
∑

r∈s ψrxr/RTT 2
r)

, where
x′s = (x′r(t), r ∈ s) is the maximizer of Equation (4).
We have θr(x

′
s)

∂Us(xs)
∂xr

∣∣∣
xs=x′s

= Ir(x
′
s). According to

Theorem 2, Ir(xs) is Pareto-optimal based on Us(xs).
Theorems 1 and 3 guarantee that MPTCP-D uses a fair

and Pareto-optimal window evolution to achieve good energy
efficiency for long flows.

For short flows in datacenters, we should choose proper
variables to estimate the path quality and shift the traffic to
good-quality paths. This avoids frequent window decrease due
to severe packet loss, thereby reducing energy consumed by
retransmission or recovery operations.

Equations (1) and (2) show that the traffic shifting parameter
ψr affects the aggressiveness of send rate increase. Among
all the available paths, only the path with the best RTT
maintains high aggressiveness of send rate increase. The send
rate increase of other paths decreases with their RTT values.
This will shift traffic to the path with the best RTT. Short flows
are usually latency-sensitive, and thus it is very intuitive to use
RTT to estimate path delay. As shown in [7], in datacenter
networks, RTT is an effective congestion signal without the
need for switch feedback, and it can accurately reflect the host-
to-host path delay. Moreover, a datacenter network usually
consists of highly homogeneous hosts, links and intermediate
devices. Hence, for intra-datacenter traffic, path delays depend
mainly on two factors: link congestion level and number of
hops between source and destination hosts. Large datacenters
(scale of tens of thousands of servers) typically have round trip
delays around 200-500µs, where congestion can cause delay
spikes up to tens of milliseconds, and switches can increase
delay by tens of microseconds for each hop [25]. This means
that path delays can sensitively reflect the quality difference
among multiple available paths.

B. Extra Subflow Elimination

As shown in Fig. 6, the link-sharing subflows consume
more CPU power and cause increased latency. Link-sharing
subflows degrade the performance of MPTCP for both long
and short flows, especially for short flows which usually have
strict completion deadlines ranging from tens of milliseconds
to hundreds of milliseconds. We design an Extra Subflow
Elimination (ESE), which can identify and eliminate the extra
link-sharing subflows, so that only one subflow stays on a
shared link and the other subflows on the link set their
congestion windows to be zero.

Datacenters have many latency-sensitive short flows. Hence
ESE must detect overlapped paths and close extra cwnds
very quickly. As mentioned, RTT is an effective signal and
we use it for ESE to detect link-sharing subflows. To make
full utilization of the first several RTTs within the flow
completion time, ESE uses the first significantly changed RTT
to trigger the detection, and then uses both the RTT change
and the RTT difference between subflows to decide whether
a subflow shares a link with the subflow that triggers the
detection. The design of ESE refers to the observations in
section III. When MPTCP has multiple subflows sharing a
common link, its instant RTTs always start from the first
several low values and then gradually increase to the high
values. After that, the following RTTs are maintained at the
high values, without large difference between each other. Yet
there would be large difference between a high value and the
lowest value. For example, in the experiments of link-sharing
subflows over our testbed, the RTTs of two subflows on a

Algorithm 1: Extra subflow elimination
Input: RTTr, r corresponds to a subflow, and r ∈ s
Output: wr
if RTTr > α · baseRTTr then

if TRIG(s) = 0 then
set TRIG(s) = 1;
set rtt(s) = RTTr;

if
(TRIG(s) = 1) ∧ (|RTTr − rtt(s)| < β · baseRTTr)
then

set wr = 0;

for each ACK on path r do
wr ← wr +

ψrwr/RTT
2
r

(
∑

k∈s wk/RTTk)2
; //derived from Eq. (1)

for each loss on path r do
wr ← 1

2wr;
return wr

link at the stable state can be 30% higher than that at the
starting state. Such a difference can be used to trigger the
detection of overlapped paths. In addition, the link-sharing
subflows experience the same link condition, and hence they
have the RTT values similar to each other. This can be used
to exclude the interference from cross traffic. Suppose that, a
link l is used by a subflow of MPTCP without link-sharing
subflows, and there is cross traffic on l. Although the cross
traffic can increase the RTT on l, it does not affect the other
subflows, which do not use the link l. That said, the other
subflows do not have the RTTs similar to the RTT on l, and
their cwnds should not be closed in this case.

We use flag TRIG(s) to indicate whether a subflow of user
s with significant RTT change has triggered the detection. If
TRIG(s) is off, the subflow whose instant RTT is larger than
a threshold (α · baseRTT , where baseRTT is the minimum
RTT experienced by the subflow) will turn on TRIG(s) and
trigger the detection, and its RTT value will be used as a
reference rtt(s) to be compared with the changed RTTs of
other subflows. If TRIG(s) is on, the subflow, who has a
significantly changed RTT and the current RTT similar to the
reference rtt(s), will be identified as the extra subflows on the
shared link. The identified subflows will close their cwnds
immediately. Otherwise, the subflow’s cwnds will adapt
following Equations (1) and (2). The link-sharing subflow
detection and window evolution algorithm are summarized in
Algorithm 1. The selection of parameters α and β will be
discussed in Section V.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MPTCP-
D through realworld experiments. We rent virtual machine
instances on Amazon EC2, which is a large-scale commercial
datacenter. We measure energy consumption, throughput and
latency of long and short flows that use MPTCP-D. Most
of our measurements are performed on EC2. But we do not

TABLE II
EC2 instance configuration

Configuration Parameter
Instance type c4.xlarge

CPU type Intel Xeon E5-2666 v3
Number of vCPU cores 4

Memory 7.5GB
Storage 40GB

Availability zone us-west-2c
Operating system Ubuntu Server 14.04 LTS

Kernel version Linux 3.18.34 and MPTCP v0.90

know the physical network topology under our VM instances,
and we cannot control the background traffic. Hence, some
measurements and evaluation are performed on our testbed
and by packet-level simulations.

We build up our virtual private cloud and four private
subnets on EC2. In the cloud, we create 40 instances as hosts.
Each host is attached with four Elastic Network Interfaces
(ENIs), and each ENI has the capacity of 256Mbps. Each ENI
uses a private IP address to connect to a subnet. Accordingly,
there are four available routes between each pair of hosts. We
implement MPTCP-D in the MPTCP Linux kernel of version
0.90 [18] and run the kernel on the instances. The instance
configuration is shown in TABLE II.

We use iperf to set up connections between each pair
of hosts and record their throughputs. We use tcpdump and
tcptrace to analyze the RTTs of a connection. We read host
CPU’s instant power consumption from Intel’s RAPL driver.
The experiments take 18 hours in total. The location is EC2’s
US West datacenter, and the samples in the measurement are
cross both time and topology.

We perform the measurement and compare the results of
MPTCP-D with other transport protocols, including regular
TCP, DCTCP [6], MPTCP [8]. We aim to validate that
MPTCP-D can achieve energy efficiency for both long and
short flows, together with comparable throughput as MPTCP
and comparable latency as DCTCP.

A. Energy Efficiency

We first measure the long flow energy consumption for
different transport protocols on EC2. We generate different
loads (one connection per host and 10 connections per host)
of data transfers for the hosts in the datacenter network. Each
connection transmits 10GB data. As shown in Fig. 8, MPTCP-
D with two subflows saves up to 50% of aggregated energy of
DCTCP, and MPTCP-D with four subflows saves up to 72%
of aggregated energy of DCTCP.

To measure the power consumption of both long and short
flows using overlapped paths, we still use our testbed in Fig.
4 (note that this experiment cannot be directly conducted over
EC2 as its underlying physical network topology is unknown
to us). For the testbed in Fig. 4, we set C1 = 100Mbps,
C2 = 20Mbps and use iperf to generate 200 parallel
MPTCP connections between the two machines. Each short
flow transmits 0.5MB data and each long flow transmits
100MB data. From TABLE III we see that MPTCP-D has

TABLE III
Success rate of closing extra subflows cwnds

Parameter α = 1.1 α = 1.3 α = 2.3 α = 3.4
num subflows = 2 0.433 0.904 0.531 0.377
num subflows = 4 0.352 0.736 0.680 0.621
num subflows = 8 0.272 0.815 0.693 0.575

0

500

1000

1500

2000

TC
P

D
C
TC

P

M
PTC

P,

2 subflow
s

M
PTC

P−D
,

2 subflow
s

M
PTC

P,

4 subflow
s

M
PTC

P−D
,

4 subflow
s

H
o

s
t

C
P

U
 e

n
e

rg
y
 (

J
o

u
le

s
) One connection per host

0

5,000

10,000

15,000

20,000

TC
P

D
C
TC

P

M
PTC

P,

2 subflow
s

M
PTC

P−D
,

2 subflow
s

M
PTC

P,

4 subflow
s

M
PTC

P−D
,

4 subflow
s

H
o

s
t

C
P

U
 e

n
e

rg
y
 (

J
o

u
le

s
) Ten connections per host

Fig. 8. Energy consumption for long flows (10GB data transfer) on EC2

2 4 8
0

2

4

6

8

10

12

Number of subflows for each path

A
v
e

ra
g

e
 C

P
U

 p
o

w
e

r
(W

)

(a) Short flow power consumption

2 4 8
0

2

4

6

8

10

Number of subflows for each path

A
v
e

ra
g

e
 C

P
U

 p
o

w
e

r
(W

)

(b) Long flow power consumption

MPTCP

MPTCP−D

MPTCP

MPTCP−D

Fig. 9. Power for both long and short flows over testbed in Fig. 4.

high success rate of closing the extra subflow cwnds with the
parameter α = 1.3. Fig. 9 shows the average host CPU power
consumption of MPTCP and MPTCP-D with the parameters
α = 1.3 and β = 0.1. For short flows, MPTCP-D reduces
power consumption by up to 46% compared to MPTCP in the
scenario of two subflows per path. For long flows, MPTCP-D
saves more than 20% of power consumption of MPTCP.

B. Throughput and Latency

We next measure the long flow throughput on EC2. Fig. 10
shows the throughput of individual connections for different
number of coexisting flows (one connection per host and ten
connections per host) and different number of subflows. Our
results indicate that, for long flows, MPTCP-D has similar
throughput as compared with MPTCP.

To evaluate the long flow throughput in different datacenter
topologies, we use htsim [26], a packet-level simulator that
works well for large scale network traffic and has been used
to evaluate the performance of MPTCP in datacenters [9].
Various datacenter topologies have been proposed to address
traffic concentration on a small number of bottleneck links
in datacenter networks. We study the network utilization of
MPTCP-D in three representative topologies, namely, FatTree
[27], VL2 [5] and BCube [28]. FatTree and VL2 follow the hi-
erarchical topology to organize switches in access, aggregate,
and core layers. VL2 uses 10Gbps links between switches.
BCube employs the generalized hypercube topology rather
than hierarchical organization of switches, and it makes use
of some hosts to relay traffic. We set the parameters of the

0 200 400 600 800 1000
0

200

400

600

800

1000

Rank of connections

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

One connection per host

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

Rank of connections

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Ten connections per host

TCP

DCTCP

MPTCP, 2 subflows

MPTCP−D, 2 subflows

MPTCP, 4 subflows

MPTCP−D, 4 subflows

Fig. 10. Distribution of throughput in the EC2 experiments. MPTCP-D gets
as good utilization as MPTCP (the throughput of MPTCP-D with 2 subflows
is similar to that of MPTCP with 2 subflows; the throughput of MPTCP-D
with 4 subflows is similar to that of MPTCP with 4 subflows).

Number of subflows

T
h

ro
u

g
h

p
u

t
(%

 o
f

o
p

ti
m

a
l)

FatTree, 128 Hosts

TCP 2 3 4 5 6 7 8
0

20

40

60

80

100

Number of subflows

VL2, 128 Hosts

TCP 2 3 4 5 6 7 8
Number of subflows

BCube, 128 Hosts

TCP 2 3 4 5 6 7 8

TCP

MPTCP

MPTCP−D

Fig. 11. Aggregated throughput in the three datacenter topologies. MPTCP-D
gets as good utilization as MPTCP.

0 50 100
0

20

40

60

80

100

Rank of flows

T
h

ro
u

g
h

p
u

t
(%

 o
f

o
p

ti
m

a
l)

FatTree, 128 Hosts

0 50 100
Rank of flows

VL2, 128 Hosts

0 50 100
Rank of flows

BCube, 128 Hosts

MPTCP, 8 subflows

MPTCP−D, 8 subflows

TCP

Fig. 12. Distribution of throughput in the three types of datacenter topology.
MPTCP-D and MPTCP, both with 8 subflows, have high network utilization.

three topologies (FatTree: 128 hosts, 80 switches, 100Mbps
100ms links; VL2: 128 hosts, 80 switches, 1Gbps 100ms
links; BCube: 128 host, 64 switches, 100Mbps 100ms links) in
our simulations. Each host sends a long-lived (1000 seconds)
MPTCP flow to another host, which is chosen at random.
In each configuration, we specify the protocol, the topology
and the number of subflows. For each configuration, we
simulate 10 times and calculate the average of the aggregated
throughputs. Fig. 11 and Fig. 12 show that, for the long flows,
the throughput of MPTCP-D is similar to that of MPTCP in
different datacenter topologies.

For short flows, we examine the latency of using different
protocols by both EC2 and testbed experiments. Fig. 13
compares the RTTs for MPTCP-D, MPTCP and DCTCP in
our experiments on EC2. The results show that MPTCP-D
outperforms the other two protocols. In Equation (2), the
parameter ψr is used to shift traffic to low latency paths.
Experiment results indicate that our design of the RTT-based
traffic-shifting parameter works effectively in realworld dat-

0 1 2 3 4 5 6 7 8
0

0.2
0.4
0.6
0.8

1

RTT (ms)

C
D

F
MPTCP−D

MPTCP

DCTCP

Fig. 13. RTTs measured in the experiments on EC2.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8
1

RTT (ms)

C
D

F

MPTCP

MPTCP−D

Fig. 14. RTTs measured in the testbed experiments.

acenter environments. Short flows may also be delayed by
the overlapped paths in multipath transmission. Fig. 14 shows
that, in our testbed experiment for extra subflow elimination,
MPTCP-D largely reduces latency compared to MPTCP with
multiple subflows sharing a common link. This indicates that
the ESE of MPTCP-D can close the cwnds of extra subflow
on overlapped paths and hence improves the path quality.

VI. CONCLUSION

In this paper, we have presented a systematic study on
energy efficiency of MPTCP for datacenters and proposed a
variant of MPTCP to reduce power consumption for both long
and short flows. Although MPTCP can increase host CPU
power by about 14%-36% compared to TCP, it can fully utilize
datacenter network bandwidth to achieve high aggregated
throughput and thus largely saves energy for long flows. Yet
in the scenarios where multiple subflows share a common
link, MPTCP has poor performance in power consumption and
latency, especially for short flows. The ESE of MPTCP-D can
detect link-sharing subflows and eliminate the extra subflows
on the shared link, thereby reducing the power consumption.
Our experiment results have shown that MPTCP-D achieves
good energy efficiency and has the throughput similar to
MTPCP and the latency better than both DCTCP and MPTCP.
MPTCP has great potential to evolve in different network
scenarios and support a variety of high-quality services. The
future work will be concerned with performance evaluation of
MPTCP in virtualized cloud environments.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for valu-
able and insightful comments. This research is supported in
part by an NSERC Discovery Grant, a Strategic Project Grant,
an E.W.R. Steacie Memorial Fellowship, and an Industrial
Canada Technology Demonstration Program (TDP) grant, and
partly supported by a EVCAA R&S grant from the University
of Minnesota, Duluth.

REFERENCES

[1] https://www.nrdc.org/resources/americas-data-centers-consuming-and-
wasting-growing-amounts-energy

[2] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy
Proportional Datacenter Networks,” in Proc. ACM ISCA, 2010.

[3] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing Data Transfers in Computer Clusters with Orchestra,” in
Proc. ACM SIGCOMM, 2011.

[4] T. Benson, A. Akella, and D. A. Maltz, “Network Traffic Characteristics
of Data Centers in the Wild,” in Proc. ACM IMC, 2010.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A Scalable and Flexible
Data Center Network,” in Proc. ACM SIGCOMM, 2009.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and Sridharan, “Data Center TCP (DCTCP),”
in Proc. ACM SIGCOMM, 2010.

[7] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “TIMELY: RTT-based
Congestion Control for the Datacenter,” in Proc. ACM SIGCOMM,
2015.

[8] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in Proc. Usenix NSDI, 2011.

[9] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M.
Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in Proc. ACM SIGCOMM, 2011.

[10] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J. L. Boudec,
“MPTCP is Not Pareto-optimal: Performance Issues and A Possible
Solution,” in Proc. ACM CoNEXT, 2012.

[11] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit Multipath Congestion
Control for Data Center Networks,” in Proc. ACM CoNEXT, 2013.

[12] Y. Cao and M. Xu, “Dual-NAT: Dynamic Multipath Flow Scheduling
for Data Center Networks,” in Proc. IEEE ICNP, 2013.

[13] A. Agache, R. Deaconescu, and C. Raiciu, “Increasing Datacenter
Network Utilisation with GRIN,” in Proc. Usenix NSDI, 2015.

[14] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A Multipath
Transport Protocol for Data Centers,” in Proc. IEEE INFOCOM, 2016.

[15] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. L. Luo, Y.
Xiong, X. Wang, and Y. Zhao, “Fast and Cautious: Leveraging Multi-
path Diversity for Transport Loss Recovery in Data Centers,” in Proc.
USENIX ATC, 2016.

[16] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic Window Coupling for
Multipath Congestion Control,” in Proc. IEEE ICNP, 2011.

[17] S. Ferlin, O. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revis-
iting Congestion Control for Multipath TCP with Shared Bottleneck
Detection,” in Proc. IEEE INFOCOM, 2016.

[18] http://multipath-tcp.org
[19] Intel 64 and IA-32 Architectures Software Developers Manual. vol-

umes: 1, 2A, 2B, 2C, 3A, 3B and 3C, 2014.
[20] D. Abdurachmanov, P. Elmer, G. Eulisse, R. Knight, T. Niemi, J. K.

Nurminen, F. Nyback, G. Pestana, Z. Ou, and K. Khan, “Techniques
and Tools for Measuring Energy Efficiency of Scientific Software
Applications,” Journal of Physics: Conference Series, vol. 608, no. 1,
2015.

[21] F. Kelly and T. Voice, “Stability of End-to-end Algorithms for Joint
Routing and Rate Control.” ACM SIGCOMM Computer Communica-
tion Review, vol. 35, no. 2, pp. 5-12, 2005.

[22] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and Don Towsley,
“Multi-path TCP: A Joint Congestion Control and Routing Scheme to
Exploit Path Diversity in the Internet,” IEEE/ACM Trans. Networking,
vol. 14, no. 6, 2006.

[23] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Mul-
tipath Congestion Control for Shared Bottleneck,” in Proc. PFLDNeT
workshop, 2009.

[24] Y. Cao, M. Xu, and X. Fu, “Delay-based Congestion Control for
Multipath TCP,” in Proc. IEEE ICNP, 2012.

[25] S.M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and J. K.
Ousterhout, “It’s Time for Low Latency,” HotOS, vol. 13, 2011.

[26] http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
[27] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture,” in Proc. ACM SIGCOMM, 2008.
[28] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang,

and S. Lu, “BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers,” in Proc. ACM SIGCOMM,
2009.

