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Multi-Seed Group Labeling in RFID Systems
Jihong Yu, Jiangchuan Liu, Rongrong Zhang, Lin Chen, Wei Gong, Shurong Zhang

Abstract—Ever-increasing research efforts have been dedicated
to radio frequency identification (RFID) systems, such as finding
top-k, elephant groups, and missing-tag detection. While group
labeling, which is how to tell tags their associated group data,
is the common prerequisite in many RFID applications, its
efficiency is not well optimized due to the transmission of useless
data with only one seed used. In this paper, we introduce a
unified protocol called GLMS which employs multiple seeds
to construct a composite indicator vector (CIV), reducing the
useless transmission. Technically, to address Seed Assignment
Problem (SAP) arising during building CIV, we develop an
approximation algorithm (AA) with a competitive ratio 0.632 by
globally searching for the seed contributing to the most useful
slot. We then further design two simplified algorithms through
local searching, namely c-search-I and its enhanced version c-
search-II, reducing the complexity by one order of magnitude
while achieving comparable performance. We conduct extensive
simulations to demonstrate the superiority of our approaches.

Index Terms—RFID, group labeling, seed assignment.

I. INTRODUCTION

Recent years have witnessed an unprecedented development
of the radio frequency identification (RFID) technology in
various applications ranging from inventory control [2] and
supply chain management [28] [15], to object tracking [18]
and localization [5]. An RFID system typically consists of
RFID readers and tags wherein a reader can query tags and
collect information from tags, and a tag works in mode of
backscatter communications [23], which captures energy in RF
signal from its nearby reader and use the energy to send mes-
sage to this reader. With the development of RFID technology,
new generations of tags, referred to as computational tags, are
armed with abilities of sensing and computing, and become
programmable, e.g., WISP tag [1], UMASS Moo tag [27].

In these applications, categorizing the objects (tags) to be
monitored into groups is a common practice for efficient

This work is supported in part by Beijing Institute of Technology Research
Fund Program for Young Scholars and Young Elite Scientist Sponsorship
Program of China and Chongqing Key Laboratory of Mobile Communications
Technology, and was supported in part by a Canada NSERC Discovery
Grant and an NSERC E.W.R. Steacie Memorial Fellowship. Part of the
work of R. Zhang, S. Zhang and L. Chen is supported by the NSF of
China (no. 61801064, no. 61502330), and the CNRS PEPS project MIRFID.
Corresponding author: Jihong Yu.

J. Yu is with School of Information and Electronics, Beijing Institute of
Technology, Beijing, China (jihong.yu@bit.edu.cn).

J. Liu are with School of Computing Science, Simon Fraser University,
Burnaby, British Columbia, Canada (jcliu@sfu.ca).

R. Zhang is with Information Engineering College, Capital Normal Uni-
versity, Beijing, China (zhangrr@cnu.edu.cn).

L. Chen is with Laboratoire de Recherche en Informatique, Université Paris-
Sud and Institut Universitaire de France, Orsay, France (chen@lri.fr).

W. Gong is with School of Computer Science and Technology, University
of Science and Technology, Hefei, China, and with School of Computing
Science, Simon Fraser University, Burnaby, Canada (weigong@ustc.edu.cn).

S. Zhang is with College of Mathematics, Taiyuan University of Technol-
ogy, Taiyuan, China (zhangshurong@tyut.edu.cn).

management, especially when the system scales (e.g., libraries,
supermarkets). A bootstrapping functionality to enable group-
wise object management is to inform each object its group
data (e.g. group ID, other related group information), which
is named group labeling. For example:

• Over-the-air reprogramming on computational RFID
tags [21] [22]. These tags work in the same region on
a variety of sensing tasks, e.g., temperature, humidity
monitoring, and intrusion detection. We regard the tags
carrying out the same mission as belonging to the same
group. In such scenario, it is necessary to maintain and
upgrade firmware of tags wirelessly. Since the firmware
for tags in different groups is usually different, the system
administrator must reprogram categorized tags correctly.
That is to say, data for one group should not be received
by tags in the other groups.

• Group ID-enabled applications. When the administrator
needs to frequently check the status of the expiry-date-
sensitive objects, grouping the objects (tags) with the
similar expiry date is necessary, wherein group IDs play
a important role. Specifically, if the tags with the similar
expiry date share the same group ID, the reader can send
the required data together with the group ID once to
all group members, which not only sharply reduces the
communication cost in comparison with the traditional
unicast transmission, but also is prerequisite of diverse
queries in RFID systems, such as tag estimation [3] [11],
top-k query [13] [19] and missing tag detection [25].

While due to the nature of RFID, a tag has neither infor-
mation of the other tags nor its group, it thus does not know
which data is only for its group. In this context, the group
labeling is called for to correctly tell each tag the data for its
group and facilitate the tag management illustrated above.

The RFID group labeling problem is to inform all tags
of their associated group data in an RFID system correctly
and time-efficiently. Despite its importance, this cornerstone
service is largely under-investigated. The work [16] can solve
this problem by polling each tag. BIC [26] can label tags by
exploiting the singleton slots. While they spend too much time
sending either many tag IDs or same group data repetitively,
as only one tag is labeled per slot. The single-seed protocol
CCG [10] leverages the slots which multiple tags of the same
group are mapped to label multiple tags with one slot. It,
however, wastes much time on the transmission of empty slots
and slots mapped by multiple tags from different groups, and
is inefficient for the low useful slot probability in a single
indicator vector. For example, consider 103 tags are evenly
partitioned into 4, 8, 10 groups, the probability that a slot
cannot be used to label tags in CCG exceeds 0.6, which leaves
huge space for improvement.
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This paper presents a multi-seed-based protocol enabling
multiple mappings from tags to slots so that the reader can
pick up the most informative slots among all mappings for the
data transmission and the efficiency is thus improved. The key
challenge lies in how to find these slots while achieving seed
assignment with low complexity. The superiority and novelty
of our method compared with the existing ones is four-fold:

1) Empty slots and those mapped by multiple tags from
different groups under one seed which are wasted in [10],
can be used to label tags with another seed in our method.

2) The impact of multiple mappings on tag collisions of
different groups is weaken. With different seeds a tag
mapped to multiple slots actually receives its group data
only in one slot and will keep silent, reducing collision
probability of different groups in the subsequent slots.

3) Collision slots with tags from same groups instead of only
singleton slots or empty slots in the existing work [4] [14]
are exploited in our method, improving time efficiency.
Moreover, a k-good slot that can label k tags of the same
group, can become k+-good where k and k+ are constant
and k+>k, significantly reducing the labeling delay.

4) This paper is the first work formally proving NP-hardness
of the formulated problem arising from the application
of multiple seeds and designing the approximation algo-
rithms to for the group labeling problem, which makes
the mathematical nature of our work completely different
from the existing ones and more challenging.

Our contributions are articulated as follows: 1) We use
a multi-seed approach to achieve efficient group labeling
wherein we find NP-hardness of the Seed Assignment Problem
(SAP) arising from the employment of multiple seeds to the
group labeling. This result reveals the underlying difficulty
of the group labeling problem, which has not been found
before. 2) Due to the NP-hardness of the problem, we first
design an approximate seed assignment algorithm, with a
competitive ratio 0.632, which selects the slot with the most
tags from the same group each time among all slots and assigns
the corresponding seed to this slot. Then by leveraging the
characteristic that a tag only receives its associated group data
in one slot, we develop another two simplified algorithms,
namely c-search-I and c-search-II. By exploiting to a greater
extent that the slots are originally useless but will become
useful, they achieve the comparable performance with less
complexity. 3) We develop a unified group labeling protocol,
named GLMS, to consolidate each of AA, c-search-I, c-search-
II with concrete communication mechanism for the reader and
tags. We also investigate the optimal parameter configuration.

Our multi-seed protocol generalizes the existing single-seed
protocols with remarkably better performance. Our test results
show that GLMS achieves a gain of up to 34.2% in terms of
the group labeling time.

II. PROBLEM FORMULATION AND MOTIVATION

We study an RFID system of one or multiple readers and a
number of tags, wherein the tags are partitioned into multiple
groups and the readers are connected via high-speed channels
with a back-end server of powerful computing capability.

TABLE I
MAIN NOTATIONS

Symbols Descriptions
k-good Useful slot with k tags
N The number of tags in the system
G The number of groups

g, dg Group index, data for group g
Ng The number of tags of group g
f , l Frame size, the number of seeds
si The i-th seed
Cij The set of tags mapped to j-th slot under si
m The number of labeled tags in the current round
z The number of chosen useful slots in the current round
u Time efficiency
N ′ Unlabeled tags in current round
N ′

g Unlabeled tags of group g in the current round
G′ The number of groups with unlabeled tags
f Upper bound of f
l Upper bound of l

We regard the server and the reader(s) as a single entity
called the reader for simplicity [14] [7]. Generally, the tags
have user-defined memory to achieve the writing and storage
of the user-defined data [8]. Moreover, we assume that the
reader has the IDs of all tags in the system, commonly
in designing application-oriented protocols, e.g., missing tag
event detection [14] [29] and information collection [16] [4].
To streamline the presentation, we first consider the single-
reader case and discuss the multi-reader case later.

Consider a set X={x1, x2, · · · , xN} of N tags whose IDs
are recorded in the reader divided into G disjoint groups.
Suppose the size of group g (1 ≤ g ≤ G) is Ng and we
have

∑G
g=1Ng=N . We denote by dg the data for group g

(1 ≤ g ≤ G). In this paper, we are interested in addressing the
following problem: The group labeling problem is to devise a
protocol to send each group data correctly to all its members
(tags) within the minimum time. By correctly, we mean that
the data for one group should not be received by tags of the
other groups. The performance metric is the communication
cost between the reader and the tags. Table I summaries main
notations used in the paper.

A. Single-Seed vs. Multi-Seed

The communication between the reader and tags follows
the frame slotted Aloha protocol [6]: the reader initiates
communication first by broadcasting commands containing the
parameters, such as frame size f , l random seed(s) si with i≤l.
In the existing single-seed protocols where l=1, each tag uses
its ID and the received seed to generate one pseudo random
number via hash function H(ID, s1) and then maps itself to
the slot (H(ID, s1) mod f) in the frame. On the contrary, in
our multi-seed protocol where l≥1, each tag holds multiple
pseudo random numbers with l different seeds and is mapped
to l slots in the frame and the most useful slot will be chosen
by the reader to send data as introduced shortly.

In this paper, we make the following definitions on slot
states: 1. Empty slot: Consider an arbitrary slot, if no tag is
mapped to this slot; 2. Heterogeneous slot: if multiple tags
from different groups are mapped to this slot. 3. Useless slot:
if this slot is either empty or heterogeneous. If the reader sends
data in such a slot, either no tag receives data or tags from one
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Fig. 1. Exemplifying the motivation: the shaded rectangles typify useful slots.

group receive data of another group, which should be avoided
in the group labeling problem; 4. Useful slot: if one or multiple
tags from the same group are mapped to this slot. In such a
slot, the reader can send data to one or multiple tags from the
same group. 5. Reparable slot: A slot is reparable if it becomes
useful from a heterogeneous slot as the protocol runs, which
will happen when tag(s) blent with the others from another
group stays silent after being assigned useful slots.

B. Motivation

As an indicator vector constructed from a single mapping
generates limited useful slots, much time is wasted on the
transmission in the useless slots. If multiple seeds are used to
generate multiple mappings, the reader can pick up the most
informative slots from them to build a composite indicator vec-
tor (CIV), reducing the number of the useless slots. Intuitively,
assume a slot in a single indicator vector is useful with the
probability of 0.5, then with l seeds used to map the tags this
probability is 1−(1 − 0.5)l, which quickly approaches 100%
with the increase of l.

In addition to increase the number of useful slots, using
multiple seeds can also contribute to more labeled tags. Let
k-good define a useful slot with k tags. A slot may be k-good
under one seed but k+-good under other seeds where k+>k,
which can be interpreted from the following toy example.

Example 1. Consider an RFID system with two tag groups
G1={x1, x2} and G2={x3, x4, x5} and suppose a frame of
four slots and two seeds s1, s2. From Fig. 1 where the shaded
rectangles stand for the useful slots, we find just partial slots
useful after either mapping, but a CIV of all slots being useful
can be built by selecting the most informative slots from two
mappings. Specifically, designating s1 for the first and third
slots, and s2 for the second and fourth slots, we can build a
CIV indicating the seed assignment for each slot so that all
slots to be executed become from useless ones (e.g., the 2nd
slot under s1) to useful ones (e.g., the 2nd slot under s2) and
from 1-good one (e.g., the 3rd slot under s2) to 2-good one
(e.g., the 3rd slot under s1).

Motivated by the above observation, we design a series of
seed assignment algorithms to build the CIV, and develop a
unified group labeling protocol, named GLMS, to consolidate
each algorithm with the concrete communication mechanism
for the reader and tags, respectively. Note that the designed
seed assignment algorithms are used in the first phase of the
group labeling protocol GLMS. In the following, we first
introduce the group labeling protocol and elaborate how to
build the CIV, subsequently.

Initialization Phase Screening Phase Labeling Phase

Build CIV through:
AA, 
or c-search-I,
or c-search-II

Silence unqualified tags; 
Specify slots for 
qualified  tags

Send group ID to the 
qualified tags at the 

specified slots

Fig. 2. The process of GLMS: Initialization Phase, Screening Phase, and
Labeling Phase in sequence.

III. GROUP LABELING PROTOCOL WITH
MULTIPLE SEEDS (GLMS)

The execution of the protocol GLMS consists of multiple
rounds, each having three phases referred to as initialization
phase, screening phase and labeling phase, respectively. The
reader first uses one of the seed assignment algorithms, namely
AA, c-search-I, and c-search-II, to be introduced in Sec. IV to
build a CIV that determines a unique tag-seed-slot relationship.
In the screening phase, the reader sends the CIV to inform
each active tag of whether and when it is scheduled to receive
its associated group data. In the labeling phase, the reader
transmits group data in the designated slots to the eligible
tags. If a tag receives its associated group data, it will keep
silent in the subsequent rounds. The process of GLMS and the
core function of each phase are illustrated in Fig. 2.

Protocol Description. Consider an arbitrary round in the
execution of the protocol GLMS. Let N ′, N ′g denote the
number of the remaining overall unlabeled tags and that of
unlabeled tags of group g in the beginning of this round,
respectively. And denote by G′ the number of the groups with
unlabeled tags. If it is the first round, it holds that N = N ′

and G = G′. The l seeds denoted as si, 1 ≤ i ≤ l, are used
in this round to generate the CIV of f slots. Our multi-seed
protocol GLMS is shown in Algorithm 1 and Algorithm 2.

1) Initialization Phase: Given l seeds and the frame size f ,
the CIV can be compounded from l mappings, each involving
a different seed. How the values of f and l are chosen will be
analysed in Sec. V on the parameter optimisation. Specifically,
in the i-th mapping, we employ seed si to map each active
tag to one of f slots in the frame. With all l seeds used, the
reader records l vectors, each consisting of f cells storing
tags mapped to the corresponding slots. Using one of the seed
assignment algorithms introduced in Sec. IV, the reader can
designate one seed for each slot in the CIV maximizing the
time efficiency in this round.

More specifically, based on the seed assignment, the reader
builds a CIV of f slots each of which corresponds to a slot
in the frame at the same position and stores the index of the
assigned seed. If designating seed si for a slot j, the reader
stores i that is the index of si in the j-th slot of the CIV. If a
slot is still useless after l mappings, the reader sets its value in
the CIV to zero. Consequently, the positions of non-zero value
in the CIV stands for the useful slots of the frame. As there
are l seeds, we need dlog2(l + 1)e bits to record one seed’s
index, that is to say, the length of the CIV is f · dlog2(l + 1)e.

Note that if a tag is mapped to a useful slot as specified in
the CIV, we refer to this slot as the useful slot for this tag.

2) Screening Phase: The reader broadcasts a message
containing the built CIV, the frame size f and l seeds
s1, s2, · · · , sl. Upon receiving the message, each tag can
extract two pieces of information from the CIV: One is whether
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Fig. 3. Interpreting indicator vector: s1, s2, s3 are the used seeds.

Algorithm 1: GLMS for the reader

1 // Phase one - the CIV construction
2 Generate l seeds s1, s2,..., sl randomly
3 Map the unlabeled tags into l slots and generate f × l

cells each recording a set of the tags mapped to the
corresponding slot

4 Build CIV via AA or c−search-I or c−search-II;
record the number of non-zero slots in the CIV z

5 // Phase two - CIV transmission
6 Issue a frame start command, transmit CIV and the

corresponding frame size f and l seeds
7 // Phase three - tags labeling
8 for i = 1 to z do
9 Issue slot-start command

10 Broadcast the corresponding group ID to the tags
mapped to the i-th homogeneous slot

11 end
12 Update the set of the unlabeled tags and initiate the

next round

the tag is eligible to receive its group data in this round.
Specifically, each tag can employ the received l seeds to select
l slots in the frame and knows the corresponding l positions it
is mapped to in the CIV. Based on the rule of generating the
CIV, if a tag is mapped to the j-th position in the CIV under
seed si and the value in that position is i, then the tag regards
slot j as the useful slot for it. In case that the conditions can
be satisfied under multiple seeds, the tag only selects the slot
with the smallest value of j. While if a tag fails under all
seeds, it does not participate in any activity until next round.

The other one is which slot a qualified tag should actually
wait for its group data. Because the CIV may contain zero
elements which stand for the useless slots, the reader needs
to remove the corresponding slots before starting the frame to
transmit group data for saving time. The key here is that the
tag must know which slots are removed. To that end, we use
the ordering approach [16]. Assume slot j is the useful one for
the tag, the tag first checks every position before the position
j in the CIV. If there exist ĵ non-zero elements, the tag will
select (ĵ + 1)-th slot to receive its group data and ĵ<j.

Let us see an example shown in Fig. 3. Consider an arbitrary
tag x9. With seeds s1, s2, s3, x9 is mapped to the 2nd, 1st and
4th slots. After checking the corresponding positions in the
CIV, x9 finds only the 4th element equal to 3 that is the index
of s3, so it regards slot 4 as its useful slot. Furthermore, as
there exist two non-zero elements before the 4th position in
the CIV, x9 will wait for its group data at slot 3 in the labeling
phase. Therefore, only the three useful slots will be executed
in the labeling phase instead of four in the original frame.

3) Labeling Phase: After the qualification test in the
screening phase, only the eligible tags partake in this phase.
As knowing all tag IDs and the CIV, the reader knows the

Algorithm 2: GLMS for tags

1 Receive the CIV and the corresponding frame size f
and l random seeds

2 Compute l mapped slot number sn[i] = H(f, ID, si)
3 Initialize the current slot number csn← 1 and current

random seed index ci← 0
4 while TRUE do
5 Wait-for-slot-start().
6 j ← the number of zeros in the first csn positions

in CIV
7 ci← CIV [csn+ j]
8 if (csn+ j) == sn[ci] then
9 Store the received Group ID.

10 end
11 csn← csn+ 1
12 end

order of the slots actually selected by the eligible tags. Assume
there are z non-zero positions in the CIV, the reader initiates
a labeling frame of z slots and sends the corresponding group
data at each slot to the eligible tag(s) for which this slot is
useful. As the tag(s) in each slot comes from the same group,
they can be labeled simultaneously. On the other hand, each
tag learns from the CIV at which slot the reader will transmit
its group data and can thus receive the data at that slot.

For instance, recall the example in Fig. 3, the reader actually
initiates a frame containing three useful slots in Fig. 3. It can
label tags x1, x2, x3 by sending ID of group 1 in the slot 1, and
label tags x5, x6 and x9, x10 in the slots 2 and 3, respectively.

After the current round, the reader moves to the next round,
which is identical except that the labeled tags will keep silent.
That is, only the unlabeled tags attend the next round. The
above process repeats round after round until all tags receive
their associated group data.

In what follows, we start formally presenting the seed
assignment algorithms used to build the CIV.

IV. SEED ASSIGNMENT ALGORITHMS

The key of our multi-seed method lies in the seed assign-
ment arising in building the CIV. Specifically, given l seeds si
(1≤i≤l) and the frame size f , the reader needs to designate
one seed for each slot in the CIV and inform each tag of the
seed assignment through sending the CIV. Therefore, if the
CIV is built the tags mapped to each slot are deterministic.

More specifically, recall that the CIV of f slots is com-
pounded from l mappings, there are l×f cells in total each of
which records a set of the tags mapped to the corresponding
slot, as shown in Fig. 4. Cij stands for the set of the tags
mapped to slot j under seed si for 1≤i≤l and 1≤j≤f , and
1≤Ij≤l denotes the index of the seed finally assigned for slot
j in the CIV, and Cj is the set of tags that will be mapped to
slot j under seed sIj following the built CIV. Note that since
l seeds are used and zero represents useless slots, we need
dlog(l + 1)e bits to stand for each seed index Ij . Moreover,
it may happen that Ij=Ij′ for j 6=j′ because a seed may be
assigned to multiple slots in the CIV.
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Fig. 4. Exemplifying the seed assignment problem: Cij is the set of the tags
mapped to slot j under seed si; Ij denotes the index of the seed assigned for
slot j in the CIV; Cj is the set of the tags mapped to slot j under seed sIj .

As a tag can be mapped to l positions under l different seeds,
slots from multiple mappings may share the same tags, that
is, Cij∩Ci′j′ 6=∅ for i′ 6=i and j′ 6=j. Define a set comprising
tags from the same group as pure set which is equivalent to a
useful slot. Define the time efficiency u as the number of tags
labeled per unit time. Recall that if a seed is designated for
a slot, then the tags mapped to this slot under this seed are
deterministic. In this sense, we should carefully assign seeds
such that the time efficiency u can be maximized.

Given a seed assignment, let z be the number of yielded
useful slots and let m=| ∪j Cj | be the size of the union of
the tags mapped to the useful slots. Let t0 and tg denote the
time for the reader to transmit one bit and data for group g,
respectively. Without loss of generality, we assume data size
for each group is identical. With (2), we formally define the
following seed assignment problem.

Problem 1 (Seed assignment problem). Given l × f sets of
the tags Cij for 1 ≤ i ≤ l and 1 ≤ j ≤ f , and define S as
the collection of the seeds assigned to each slot in the CIV,
the seed assignment problem is to seek S satisfying

S = argmax
sIj

| ∪j Cj |
tg(a+ z)

,

where a=fdlog2(l + 1)et0/tg . That is to say, given the seeds
and the frame size, the reader seeks an optimum collection S
of the seeds which will maximize the time efficiency u.

Problem 1 performs combinatorially, which is usually NP-
hard. The challenge here lies in how to prove its NP-hardness.
In the following, we formally state the NP-hard observation
and its proof.

Theorem 1. Problem 1 is NP-hard.

Proof. For clarity, we just outline the proof here and the
complete proof is provided in Appendix A. To study the
hardness of Problem 1, we prove it polynomially reducible
from the Maximum coverage problem [20] which is a classic
NP-hard problem. Given h sets and an integer k≤h with
which we need to solve the Maximum coverage problem, the
polynomial reduction comprises three steps: First, we replicate
each set k times and obtain h×k sets. Second, we introduce k
dummy sets to guarantee that each slot in the CIV is assigned
only one seed. Third, we prove that u reaches its maximum
only when k sets are chosen in Problem 1.

Due to the NP-hardness of SAP, in what follows, we design
a series of algorithms to approach the optimal time efficiency.
Specifically, we first design an approximation algorithm (AA)
and develop two simplified algorithms with the less complexity
but good performance on the top of AA.

Algorithm 3: Approximation algorithm for Problem 1
Input : si, f
Output: umax, tags in picked slots C, seed

assignment S
1 Initialisation:

C, S ← ∅;R, z, umax ← 0;H ← (Cij)l×f
2 while j1 ≤ f do
3 // Search the most useful slot
4 for j = 1 to f do
5 for i = 1 to l do
6 if Cij is useful and |Cij | > R then
7 R← |Cij |, I ← i, J ← j
8 end
9 end

10 end
11 // Select the seed contributing to the most useful

slot
12 if |C∪CIJ |

tg(a+z+1) ≥ umax then
13 S ← S ∪ (sI , J) /* Assign seed sI to slot J */

C ← C ∪ CIJ , and z ← z + 1
14 umax ← |C∪Cij |

tg(a+z)

15 else
16 Stop
17 end
18 // Clear the slots at J-th column in Fig. 4 and

deduct the tags in the picked slot from the
remaining slots

19 for j = 1 to f do
20 for i = 1 to l do
21 if j == J then
22 H ← H/Cij , Cij ← ∅
23 else
24 Cij ← Cij − CIJ
25 end
26 end
27 end
28 if H == ∅ then
29 Stop
30 end
31 end
32 Return umax, C, S

A. Approximation Algorithm

1) Motivation: Recall the Problem 1 that seeks the seed
assignment to maximize time efficiency u, we can achieve
this objective from two directions. On the one hand, we want
to use fewer useful slots, i.e., minimizing z, while maximizing
the number of the tags m involved in these used useful slots.
Observing the waste of heterogeneous slots (c.f. Sec. II-B)
in the prior work, we, on the other hand, hope to design an
algorithm that is able to exploit the heterogeneous slots that
can become useful as the algorithm runs.

2) Overview: Define the most useful slot as the useful slot
with the most tags from the same group. The core idea of AA
lies in that each time the reader selects the seed contributing
to the most useful slot to maximize the time efficiency u. Note
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Fig. 5. AA: the streak represents the unselected most useful slot.

that there is a unique seed-tag-slot mapping, that is, given any
two of them, we can fix the third one. Since a set of the
tags (c.f. Fig. 4) is indexed by the used seed and the mapped
slot, once a most useful slot is found the reader assigns the
corresponding seed to this slot and knows the tags mapped to
this slot, which are referred to as covered tags here.

Moreover, to enable the utility of heterogeneous slots, the
reader first deducts the covered tags from the remaining
nonempty slots including both heterogeneous and useful slots,
and then checks their states and picks the most useful one
among them. The rationale behind this is that each covered
tag will stay silent after its corresponding most useful slot so
that actually it will not be blent with tags in the subsequent
slots under all mappings, which enables the conversion of a
subsequent heterogeneous slot into a useful one. Note that we
refer to such a heterogeneous slot as reparable slot.

3) Algorithm Description: Formally, we illustrate the AA
in Algorithm 3 with the input of l seeds and the frame size f .
It is easy to check that the computation complexity of AA is
O(l · f2). The main procedures of AA are summarized below.

• Each time the reader
– picks the most useful slot which the most uncovered

tags are mapped to and brings the most gain in time
efficiency u. (Line 4-12 in Algorithm 3)

– records the subscripts of the chosen slot standing for
which seed will be assigned to this slot. (Line 13)

– records the tags in the chosen slot and marks them as
covered, and removes them from the remaining slots.
Since only one seed should be assigned to each slot in
the CIV, the slots under the other mappings but in the
same column (c.f. Fig. 4) as the chosen most useful
slot would be emptied. (Line 19-27)

• The algorithm stops if there is no useful slot or no useful
slot contributing to the greater time efficiency.

• The algorithm outputs the seed allocation for each slot in
the CIV and a collection of the covered tags, with which
the time efficiency u is maximized under the given input.

After executing Algorithm 3, the reader builds a CIV and
knows which tags can be labeled in which slots. Specifically, if
a set Cij in the useful slot is chosen, then the reader designates
seed si for the slot j and sets the value of the slot j in the
CIV to i. In case that all sets in the column j in Fig. 4 are not
chosen, the reader sets the slot j’s value to zero in the CIV.

Next, we illustrate AA in Fig. 5 with 2 seeds and a frame
of 3 slots. First, the reader finds C12 the most useful, then
it assigns s1 to slot 2 in the CIV and empties Ci2 while
removing the tags in the intersections between C12 and the
others, yielding C ′ij . Repeating the operations, the reader finds
C ′23 the most useful via searching from the columns 1 and
3, and then C∗21 from the columns 1 in sequence. Finally, the

Algorithm 4: c-search-I for Problem 1
Input : si, f , c
Output: umax, tags in picked slots C, seed

assignment S
1 Initialisation:

C, S ← ∅;R, z, umax ← 0;H ← (Cij)l×f
2 while j1 ≤ f do
3 Choose c columns out of unselected ones randomly
4 // Search the most useful slot from the c columns:

define jj′ as the j′-th chosen column
5 for j′ = 1 to c do
6 for i = 1 to l do
7 Cijj′ ← Cijj′ − CIJ , H ← H/CiJ
8 if Cijj′ is useful and |Cijj′ | > R then
9 R← |Cijj′ |, I ← i, J ← jj′

10 end
11 end
12 end
13 Conduct the operations as lines 12− 14 in Alg. 3
14 end
15 Return umax, C, S

reader builds the CIV as shown in Fig. 5. To evaluate algorithm
performance, we derive the competitive ratio of the algorithm.

Lemma 1 (Competitive ratio of Algorithm 3). Let uopt denote
the optimal time efficiency of Problem 1, it holds for the time
efficiency umax of Algorithm 3 that umax ≥ 0.632uopt.

Proof. The proof is detailed in Appendix B.

B. Simplified Algorithms

For better scalability to the system scale, we here present
two simplified algorithms, namely c-search-I and its improved
version: c-search-II, to reduce the complexity of AA while
achieving the comparable performance.

1) c-search-I: The key difference of c-search-I from AA
consists in locally searching the most useful slot among the
c columns in Fig. 4 chosen randomly each time instead of
global searching among all f columns in AA. At first glance,
this simplified operation would degrade the performance sig-
nificantly, but besides the less complexity, another advantage
by this is curing more heterogeneous slots, which benefits to
the increase in time efficiency. Look at an example with the
frame size f and c ≤ f . Assume that the first most useful
slot in AA occurs at one of the mappings in f -th column of
Fig. 4, then none of heterogeneous slots can become useful.
This is because a tag mapped to a heterogeneous slot can be
eliminated from this slot only when this heterogeneous slot is
later than the most useful slot for this tag. While in c-search-
I, if we find the first most useful slot in f/2-th column by
locally searching among c randomly chosen columns, then we
can exploit the subsequent reparable slots.

We list c-search-I in Algorithm 4 with a new input c and
summarize the main procedures as below: Each time the reader
• chooses c columns from unselected ones randomly, con-

taining c · l slots.
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Fig. 8. Difference among three algorithms: s1 and s2 are two seeds.

Algorithm 5: c-search-II at c = 1 for Problem 1

1 while j1 ≤ f do
2 // Search the most useful slot from the j1-th column
3 for i = 1 to l do
4 Ci,j1 ← Ci,j1 − CIJ , H ← H/CiJ
5 if Ci,j1 is useless then
6 Ci,j1 ← ∅
7 else if |Ci,j1 | > R then
8 R← |Ci,j1 |, I ← i, J ← j1
9 end

10 end
11 The remaining steps are the same as c-search-I
12 end

• removes the covered tags from these chosen slots.
• picks the most useful slot among the slimmed-down c · l

slots, which achieves the most gain in time efficiency u.
• records the subscripts of the chosen slot standing for

which seed will be assigned to which slot.
• records the tags in the most useful slot picked and marks

them as covered.
Next, we illustrate the influence of c on the performance.

Example 2. In the experiment, we partition 1000 tags evenly
into G=2, 4, 8, 10 groups, and vary c from 1 to 40. Fig. 6
shows that the time overhead at c=40 is the least, which is
very close to AA. For the tradeoff between the complexity and
performance, we will set c=40 in the simulation in Sec. VI.

2) c-search-II: As described above, c-search-I achieves the
comparable performance with the less complexity, but it may
fail to exploit the reparable heterogeneous slots furthest. For
example, if the first most useful slot in c-search-I arises in f/2-
th column among c randomly chosen columns, then we cannot
exploit the potential reparable slots in the first ( f2−1) columns.
To address the issue in c-search-I, we propose an improved
algorithm, named c-search-II, pursuing less complexity but
better performance than c-search-I.

The main difference from c-search-I is that c-search-II
chooses c columns among the unselected columns in the
ascending order of the column number instead of randomly.
For instance, assume c=10, we choose the columns 1—10 as
the candidates (c.f. Fig. 4). In the case that columns 1, 3 and
4 have been chosen previously, we will select columns 2 and
5—13. Next, we would like to take an example to explain the
main differences among AA, c-search-I and c-search-II.

Example 3. We show the first round operation of the three
algorithms in Fig. 8 where we suppose c=2 in two simplified
algorithms. Specifically, AA finds C24 the most useful slot

Algorithm 6: Seeking the optimal f and l
Input : N ′, G′, step, t1 and tgid
Output: u∗, f∗, l∗

1 Initialisation: f =∞, l =∞, u∗ = 0, Q = 0

2 while f ≤ f and l ≤ l do
3 Execute Algorithms 3 or 4 or c-search-II
4 u = umax returned from the executed algorithm
5 Q = Q+ 1, find fq∗ , lq∗ with argmax

1≤q≤Q
u(fq, lq)

6 f∗ = fq∗ , l∗ = lq∗ , u∗ = u(fq∗ , lq∗)

7 Update f with (3) and update l with (4)
8 f = f + step, l = l + 1

9 if f > f then
10 if l ≤ l then
11 f = 1 : step : f
12 else
13 Stop
14 end
15 else if l > l then
16 l = 1 : l
17 end
18 end
19 Return optimum efficiency u∗ and the optimum (f∗, l∗)

by globally searching among 2∗4 cells, while c-search-I first
selects two columns randomly (assume that columns 2 and 4
are chosen), and searches for the most useful slot among 2∗2
cells. Differently, c-search-II chooses the first two columns
and then searches among the corresponding 2∗2 cells. As C11

is found the most useful in c-search-II, the reparable slots in
the columns 2—4 can be exploited later.

In this paper, we will set c to 1 in c-search-II and state
the seed assignment process in Algorithm 5. The rationale
behind the setting is that with c=1 we can employ the potential
reparable slots to the greatest extent, namely those in the
columns 2—f . Besides, the yielded complexity is O(l · f)
which is less than O(c · l · f) in c-search-I and O(l · f2) in
AA, which are listed in Table II. Under the settings as in
Example 2, we show in Fig. 7 that c-search-II achieves good
performance at c=1. We will further evaluate the performance
of c-search-II at c=1 in Sec. VI.

V. PARAMETER CONFIGURATION

In this section, we investigate how to tune the used param-
eters in the protocol to maximize the time efficiency which is
defined as the ratio of the labeled tag population size to the
execution time in each round. The reason for optimizing time
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TABLE II
ALGORITHM COMPLEXITY WITH l SEEDS AND THE FRAME SIZE f .

Algorithm AA c-search-I c-search-II
Complexity O(l · f2) O(c · l · f) O(l · f)
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efficiency lies in that the higher time efficiency means that the
more tags will be labeled per unit time.

The execution time of the current round, defined as T ,
comprises the time to transmit the CIV and group data. Denote
by z the frame size in the labeling phase, for f slots are
executed in the screening phase, T can be calculated as

T = dlog2(l + 1)e · f · t0 + z · tg, (1)
where t0 and tg denote the time for the reader to transmit one
bit and group data, respectively.

Let m be the number of tags labeled in the considered
round, then the time efficiency in this round, denoted by u, is

u =
m

T
=

m

dlog2(l + 1)e · f · t0 + z · tg
. (2)

Given (2) on u, we next need to find such a pair of f
and l that u achieves the maximum. Note that we use u and
u(f, l) interchangeably in the rest of the paper. As m and z
and their relationship in the protocol cannot be formulated, it
is necessary to search the optimal parameter pair of f and l.
For this purpose, we propose a dynamic searching algorithm.

Before introducing the searching algorithm, we first es-
tablish an upper bound for f and l, denoted by f and l
respectively, in the following lemma.

Lemma 2. For ∀f>f and/or l>l, it holds that û(f, l)<û(f, l)
and û(f, l)<û(f, l) where û(f, l) = N ′

dlog2(l+1)e·f ·t0+G′·tg .

Proof. The proof is provided in Appendix C.

Having derived the upper-bounds of f and l, we get the
searching region [1, f ]×[1, l]. To speed up the searching pro-
cess, we propose a dynamic searching algorithm updating the
value of f and l for the (Q+1)-th search from the observations
of the Q leading searches. Let fq, lq with 1≤q≤Q denote each
pair of f and l in the first Q searches, we can find the optimal
pair (fq∗ , lq∗) contributing to the greatest u in the first Q
searches. Given f and l, executing any of AA, c-search-I and
c-search-II will return u. With observations above, we update
f and l by solving the following equations:

Update f : u(fq∗ , lq∗) = û(f, lq∗), (3)

Update l : u(fq∗ , lq∗) = û(fq∗ , l). (4)
Formally, IV the searching process is illustrated in Algo-

rithm 6. With the input of the number N ′ of the unlabeled
tags, the number G′ of groups with unlabeled tags as well as
the step size for f , t1 and tg , Algorithm 6 will output the
optimal pair (f∗,l∗) and the maximum time efficiency u∗.

Considering the memory of commercial tags ranges from
32 bits to 8192 bits [8], one cannot use an arbitrary number
of seeds, so we denote by lact the maximum seeds a tag can
store in its memory. Consequently, we need to update l in
Algorithm 6 by choosing the minimum one between lact and
the solution of (4). Note that we set lact to 10 in the simulation.

Moreover, we investigate how the frame size f influences
the time efficiency u via the experiment where lact=10 and
N=103 tags are evenly partitioned into G=4, 8, 10 groups.
Specifically, we snapshot the first round of GLMS with c-
search-I and c-search-II. Fig. 9 and 10 show that the time
efficiency u can be regarded as convex approximately with
respective to f . It is thus feasible to employ the gradient
method to speed up the searching for the optimum f∗.

Discussion on Multi-reader case. In large-scale RFID sys-
tems deployed in a large area, multiple readers are required
to ensure the full coverage for a larger number of tags. To
work with multiple readers, we leverage the same approach
as [9] [17] [25] that the back-end server synchronizes and
schedules all readers such that a multi-reader RFID system
operates as the single-reader one. Specifically, the back-end
server calculates all the parameters and constructs the CIV
involved in the group labeling protocol and sends them to all
readers such that the readers broadcast the same parameters
and CIV to the tags.

Explanation on NP-hardness. When lact=1 or the optimum
l∗=1, our protocol is degraded to the single-seed protocol
which does not need to assign seeds and is not NP-hard. The
NP-hard seed assignment problem arises from the employment
of multiple seeds. Albeit NP-hardness brings new challenges,
we design a series of algorithms running in polynomial time
to approximate the optimum and confirm their performance
theoretically and experimentally. Moreover, the computation
is done in the back-end server which is usually of the high
computational capacity.

Potential implementation. Consider the implementation of
the proposed protocol, programmable tags, such as those
based on WISP hardware, and a USRP-based Software-
Defined RFID reader are needed. In order to achieve hashing
functionality, hash values are pre-stored in each tag, which
is supported by WISP 4, WISP 5, and MSP430. In the
scheme implementation, two commands need to be added: 1)
TRANSIV that is used to transmit the CIV; 2) QUERPAR that
contains the parameters used in the protocol and starts the slot.

Specifically, the reader first sends TRANSIV commend to
broadcast the CIV, and then sends QUERPAR commend. Con-
sider an arbitrary slot j. When a tag receives this commend,
it starts computing the number by selecting the blog fc-bit
string starting from the i-th bit in the pre-stored hash value
like in [4], where i is the seed value of the j-th position in
the CIV. If the number equals to the current slot number, then
the tag waits and receives the data sent from the reader.

VI. PERFORMANCE EVALUATION

A. Simulation Settings

We evaluate the performance of proposed approaches in
comparison with the state-of-the-art solution CCG [10]. We
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TABLE III
EXECUTION TIME UNDER DIVERSE N,G, lact : STUDYING THE IMPACT OF lact

Protocol Vary the number of groups G and lact: (G, lact)
(4,10) (4,15) (4,20) (8,10) (8,15) (8,20) (10,10) (10,15) (10,20)

c-search-I

N = 100 0.025 0.025 0.025 0.039 0.037 0.036 0.042 0.041 0.039
N = 1000 0.333 0.311 0.31 0.444 0.426 0.424 0.473 0.456 0.449
N = 2000 0.680 0.636 0.623 0.935 0.877 0.871 0.982 0.928 0.917
N = 5000 1.700 1.647 1.622 2.260 2.240 2.204 2.385 2.287 2.282

c-search-II

N = 100 0.024 0.024 0.024 0.037 0.035 0.035 0.041 0.038 0.037
N = 1000 0.32 0.285 0.282 0.431 0.407 0.391 0.455 0.425 0.421
N = 2000 0.629 0.572 0.562 0.890 0.813 0.801 0.946 0.880 0.860
N = 5000 1.581 1.459 1.433 2.209 2.001 1.978 2.331 2.127 2.204

conduct the experiments under both symmetric and asymmet-
ric scenarios with various number of groups and group sizes.
By symmetric/asymmetric, we mean that tag population size
in each group is identical/different. We use the communication
parameters specified in the EPCglobal C1G2 standard [6].
Specifically, the data rate from the reader to tags is 26.7
kbps, meaning it takes 37.45 µs for the reader to transmit one
bit, so we have t1=37.45 µs. We take group ID of dlog2Ge
bits as group data, so we have tg=37.45∗dlog2Ge. Besides,
we consider the time interval of 302 µs between any two
consecutive communications between the reader and tags in
the computation of the execution time.

Due to the complexity of AA, we will focus on evaluating
the GLMS running the simplified algorithms, namely GLMS
with c-search-I and GLMS with c-search-II, but we can
measure the performance of AA from Fig. 6 in the RFID
system of 1000 tags. As discussed in Sec. IV-B1, IV-B2
and V, we set c=40 for c-search-I, and set c=1 and lact=10
for c-search-II. Albeit using lact=10, we also evaluate its
impact on the performance. For simplification, we will use
c-search-I and c-search-II in the figures in the below to stand
for GLMS with c-search-I and c-search-II, respectively.

B. Simulation Results
The performance metric is the communication cost in terms

of execution time. We first show the influence of lact with
diverse number of groups G and tags N in the system, and
simulate symmetric scenarios with G and the group size varied
and proceed to its asymmetric counterparts, subsequently.

1) Performance evaluation under different lact: Here, we
conduct experiments to investigate the impact of lact on GLMS
with c-search-I and GLMS with c-search-II. To that end, we
simulate scenarios with N = 100, 1000, 2000, 5000 tags in the
system where the tags are evenly partitioned into G = 4, 8, 10
groups, respectively. And the value of lact are set to 10, 15, 20.
The simulation results are listed in Table III.

As shown in Table III, the increase in the value of lact
reduces the execution time under all settings. Specifically, the
performance difference between lact = 10 and lact = 20 is
bigger than that between lact = 15 and lact = 20 which is
less than 3%. More specifically, we observe from the results
that the most significant performance difference is about 11%
arising between lact = 10 and lact=20 for GLMS with c-
search-II when G=4 and N=2000. Considering the constraint
on memory capacity of commercial tags as discussed in Sec. V
and the tradeoff between the computational complexity and the
execution time, we set lact=10 in the subsequent simulations.

2) Performance comparison under symmetric scenario:
This scenario consists of two cases: one is varying the number
of the groups and the other is varying the group size.

Case 1. Here we set the total number of the tags N=12000
and G=2:2:10 with the identical group size. From the results
shown in Fig. 11(a), we can observe that GLMS with c-search-
II and GLMS with c-search-I perform better than CCG, with
the performance gain of up to 26.8% and 15.9%, respectively.
This is because we employ multiple seeds to reduce the
transmission of useless slots and c-search-II can furthest ex-
ploit the heterogeneous slots that will become useful. Besides,
increasing the number of groups renders more execution time,
as more groups reduce the useful slot probability.

Case 2. Here we set G=3, 6 while varying the group size
from 500 to 2000, and show the results in Fig. 11(b) and 11(c),
respectively. As shown in the pictures, GLMS with c-search-I
and GLMS with c-search-II can still finish the group labeling
task within the less time than CCG. Especially, with c-search-
II, GLMS can save time, under all group size settings, at least
22.5% when G=3, and at least 14.8% when G = 6.

3) Performance comparison under asymmetric scenario:
This scenario consists of there cases: the first two cases
are the asymmetric counterparts of the symmetric scenarios,
i.e., varying the number of the groups and the group size,
respectively, and we increase the asymmetry in the third case.

Case 1. In this case, we choose each group size randomly
from [100, 2000] while varying G from 2 to 10, and depict
the results in Fig. 12(a). It can be drawn from Fig. 12(a) that
c-search-II achieves the best time efficiency and c-search-I
performs better than CCG, which results from the ability of
our approaches of exploiting more useful slots. Specifically,
c-search-II and c-search-I reduce the time up to 34.2% and
24.3%, respectively, in comparison with CCG.

Case 2. In this case, we set the number of the groups to
G=3, 6, and choose the group size randomly from [a, 5000]
with a=125, 625, 1250, 2500. Fig. 12(b) and 12(c) depict the
simulation results, from which we observe that c-search-
II performs best and c-search-I is also better than CCG.
Specifically, c-search-II and c-search-I reduce the time cost
up to 23.5% and 18.3% when G=3, and up to 17.2% and
12.1% when G=6, respectively, in comparison with CCG.

Case 3. In this case, we also set G=3, 6, but we synthesize
the following four subcases by choosing the group size from
different ranges: Subcase 1: G=3, we choose the group
size randomly for the first group from [100, 500], and from
[2000, 3000] for the others. Subcase 2: G=6, we choose the
group size randomly for the three groups from [100, 500], and
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Fig. 11. Performance comparison in symmetric scenario with the various number of groups and group sizes: smaller execution time means better performance.
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Fig. 12. Performance comparison in asymmetric scenario with the various number of groups and group sizes: smaller execution time means better performance.

2 4 6 8 100

1

2

3

4

5

Number of groups

E
xe

cu
tio

n 
tim

e 
(s

)

CCG
c−search−I
c−search−II

(a) Case 1: G = 2 : 2 : 10 and δ = 200
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(b) Case 2: G = 2 : 2 : 10 and δ = 400
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Fig. 13. Performance comparison in asymmetric scenario with the normally distributed group size: smaller execution time means better performance.

TABLE IV
PERFORMANCE EVALUATION IN CASE 3

Protocol Subcase 1 Subcase 2 Subcase 3 Subcase 4
CCG 1.1971 2.9932 1.429 3.1914
c-search-I 0.9567 2.5905 1.1704 2.7825
c-search-II 0.8719 2.3832 1.0496 2.6052

from [2000, 3000] for the others. Subcase 3: G=3, we choose
group size randomly for the three groups from [100, 500],
[1000, 2000], and [2000, 3000], respectively. Subcase 4: G=6,
we choose the group size randomly for the first two groups
from [100, 500], from [2000, 3000] for the last two groups,
and [1000, 2000] for the others, respectively. As shown in
Table IV, c-search-II and c-search-I always outperform CCG.
Specifically, CCG spends up to 27.6% and 20.1% time more
than ours, respectively, for the transmission of useless slots.

4) Performance comparison under asymmetric scenario
with other distributions: Normal distribution: We consider
three cases, each of which has the same number of the
groups but has the different group sizes. Specifically, we set
G=2:2:10 in all cases, and each group size follows the normal
distribution N(1000, δ2) with the standard deviation δ varied

from 200 in Case 1 to 400 in Case 2 and to 800 in Case 3.
As shown in Fig. 13, GLMS with c-search-II is the fastest
with the less complexity than c-search-I, and saves time of up
to 27%, 23%, 28% in the three cases, respectively, compared
with CCG. Zipfian distribution: Each group size is sampled
from [1, 1000] following the Zipfian distribution Z(1000, 1, G)
with the number of groups G set to {10, 20, 50, 100}. The
performance gain of c-search-II over CCG is 31%, 27%, 20%,
and 8%, respectively.

VII. RELATED WORK

Group labeling is a common functionality for many RFID
applications. This section presents the prior works on group
labeling and the existing multi-seed/hash RFID protocols.

The feasible solutions to the group labeling problem. One
straightforward solution is to use the basic polling protocol
(BP) [16] where each tag is polled with its group data by the
reader one by one. And BIC [26] can label each tag with its
group data by informing each tag of the singleton slot when
the tag should wait for its group data. These methods only
employ singleton slots such that only one tag can be labeled

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 20:40:43 UTC from IEEE Xplore.  Restrictions apply. 



11

per slot, as a result, they spend too much time either sending
many tag IDs or group data and are thus time-consuming.

To improve time efficiency, the authors in [10] devise three
protocols, namely EPG, FIG and CCG. In EPG, the reader first
polls all tags in the same group and sends the group data once.
EPG is better than BP for less transmission of group data,
however, it still wastes time sending many tag IDs. In FIG,
the reader builds a Bloom filter for each group from its tags
to filter out tags of the other groups. Although outperforming
EPG, FIG suffers from the false positives of Bloom filter and
has to deactivate the wrong tags by polling, which increases
the time cost. To address this problem, CCG allows the reader
send different group data to tags of multiple groups in one
round. The reader sends a single indicator vector to inform tags
of each slot state such that only the tags in the useful slots will
receive their respective group data. Instead of using one seed in
CCG, this paper employs multiple seeds to build a composite
indicator vector to further improve the time efficiency.

Multi-seed/hash based protocols in RFID systems. The
multi-seed/hash methods are used to address the informa-
tion collection and tag monitoring tasks in RFID systems.
Chen et al [4] employ multiple hashes to enable the fast
information collection. Then, the multi-seed/hash method is
used in monitoring the missing tag event and unknown tag
event. Specifically, Luo et al [14] introduce the multi-seed
method to detect missing tags in an RFID system. The
works [12] [24] [25] address the missing tag detection and
identification with multiple hashes. Recently, Gong et al [7]
combine the Bloom filter with multi-seed method in order to
detect the unknown tags fast and reliably. The main novelty of
our work is exploiting collision slots instead of only singleton
or empty slots in these works. Moreover, we address a differ-
ent group labeling problem, making the theoretical analysis
completely new. We would like to emphasize that this paper
is the first work proving NP-hardness of SAP arising from the
application of multiple seeds and designing the approximation
algorithms, which makes our work more challenging.

VIII. CONCLUSION

This paper studied how to achieve efficient group labeling.
To this target, we proposed a new multi-seed group labeling
protocol GLMS. We found the NP-hard seed assignment
problem arising from the employment of multiple seeds. To
address this problem, we first introduced an approximation
algorithm with the proved competitive ratio and then designed
two simplified algorithms with the less complexity and com-
parable performance. The simulation results demonstrate the
superiority of the proposed approaches.
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