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Abstract—In-car human activity recognition opens a new opportunity toward intelligent driving behavior detection and touchless

human-car interaction. Among the many sensing technologies (e.g., using cameras and wearable sensors), radio frequency

identification (RFID) exhibits unique advantages given its low cost, easy deployment, and less privacy concerns. Existing RFID-based

solutions for activity recognition are mostly confined to working in stable indoor spaces. The inside space of a car however is much

more compact and complex, not to mention the fast-changing driving conditions. All these introduce non-negligible noises that pollute

the activity-related information, and the existence of various car models in the market further complicates the problem. In this article,

we for the first time closely examine the distinct factors that affect the RFID-based in-car activity recognition. We present RF-CAR, a

novel RFID-based tag-free solution that well adapts to different in-car environments. RF-CAR smartly filters the domain-specific

features in RF signals and retains activity-related features to the maximum extent. It then integrates a deep learning architecture and

an advanced multi-adversarial domain adaptation network for training and prediction. With only one-time pre-training, RF-CAR can

adapt to new data domains such as new driving conditions, car models, and human subjects for robust activity recognition. We also

demonstrate that it is readily deployable in cars with commercial off-the-shelf (COTS) RFID devices. Our extensive experiments

suggest that RF-CAR achieves an overall recognition accuracy of around 95 percent, which significantly outperforms the state-of-the-

art solutions.

Index Terms—Activity recognition, RFID based sensing, domain adversarial network, deep learning

Ç

1 INTRODUCTION

HUMAN activity recognition in cars plays a key role
towards safe driving [1] and human-car interaction [2].

It can effectively remind drivers of distracting behaviors,
such as forgetting shoulder check; it is also an essential
building block for in-car entertainment, especially in the
emerging autonomous driving scenarios where people can
enjoy convenient gesture-based control. Existing works on
in-car activity recognition are mostly camera-based [3].
They not only require line-of-sight visual sensing but also
have high risks of user privacy leakage. Other sensor-based
approaches rely on wearable devices or smartphones, which
is inconvenient for practical usage. Recently, there have
been significant studies on activity recognition with wire-
less sensing, given the observation that different activities
can affect the surrounding wireless signals in different
ways [4], [5]. Radio Frequency Identification (RFID) [6], [7],
[8], [9] is of particular interest for its low tag costs and the
batteryless nature of the tags. Using multiple tags also facili-
tates the creation of multiple observation paths, so as to
achieve higher reliability.

RFID-based activity recognition in the literature has
concentrated on the indoor environment, with both tag-

based [6], [8] and tag-free solutions [10], [11], [12]. In-car rec-
ognition however incurs a series of new challenges, as illus-
trated in Fig. 1. First, different from a stationary indoor
space, the external driving conditions change fast. The
reflected RF signals from external moving objects such as
cars and pedestrians can cause unexpected signal fluctua-
tions, affecting the recognition accuracy. Second, the facili-
ties, items, and interior space of different car models are
highly heterogeneous and can incur quite distinct multipath
effects [13], [14] in RF signals, degrading the recognition
accuracy differently. Third, people of different genders,
heights, shapesmay perform the same activity with different
frequencies and amplitudes, which contributes to additional
recognition error. As a result, a well-trained model in one
domain-specific situation (e.g., one specific driving condi-
tion, car model and human subject) may not work effectively
in another domain. This renders the traditional RFID-based
recognition system infeasible for in-car scenarios given the
innumerable domain-specific situations.

To address these challenges, we for the first time closely
examine the impact of different driving conditions, car mod-
els, and human subjects on RFID-based in-car activity recog-
nition. In this paper, we present RF-CAR, an RFID-based tag-
free in-car activity recognition framework that can filter the
domain-specific features in RF signals while retaining the
activity-related features to the maximum extent. Our frame-
work can apply to new driving conditions, car models, and
human subjects after just one-time pre-training.

Given the complex raw data from RFID, we first carefully
extract the time and frequency features from the original
signals with a preprocessing step. Such features are next fed
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into a deep learning model, which mainly consists of three
components: a feature encoder, an activity classifier, and a set
of domain discriminators. The feature encoder employs a
stacked convolutional neural network (CNN) to capture the
dynamics in both frequency and time dimensions from mul-
tiple RF links. It plays a cooperative game with the activity
classifier to achieve high activity recognition and simulta-
neously plays a minimax game to prevent the domain dis-
criminators from classifying different domains. Pioneer
works [15], [16] only consider single domain discriminator
in indoor scenarios. Yet for the in-car scenario, the complex
discriminative structures of different domains can be easily
mixed up using such solutions [17], leading to false domain
discrimination. RF-CAR tackles the problem through a
multi-adversarial domain adaptation that is optimized for
the car context.

We have prototyped RF-CAR using a commercial off-the-
shelf (COTS) RFID reader with multiple tags in vehicles. We
have conducted real-world experiments on 8 common in-
car activities, involving 6 different driving conditions, 6 dif-
ferent car models, and 8 volunteers. The evaluation results
report an average in-car activity recognition accuracy of
around 95 percent for RF-CAR, which is much higher than
that of state-of-the-art solutions with no adversarial net-
work (67 percent) or with single-adversarial domain adap-
tation (86 percent).

The rest of this paper is organized as follows. We con-
duct experiments to examine the impact factors in Section 2.
We present the system overview in Section 3. Preprocessing
steps are introduced in Section 4. We describe the domain
adversarial model in Section 5, followed by an evaluation in
Section 6. We introduce the related work in Section 7. We
discuss our work in Section 8 and conclude it in Section 9.

2 MOTIVATION

A typical RFID sensing system consists of a UHF RFID
reader and one or more tags, where tags are powered by the
received RF signals and then backscatter the signals to the
reader. Existing COTS readers, such as Impinj Speedway
R4201 and Thingmagic M6e,2 can report such raw data as

received signal strength indicator (RSSI) and phase angle
through their APIs. The RSSI has been explored earlier as
an indicator to distinguish different activities [18], while the
phase information has been more widely used in recent
studies given its higher reliability and robustness [10], [12].
In the in-car activity recognition scenario, we fix multiple
tags to the in-car surfaces (e.g., doors and seats) to construct
multiple sensing links with the reader. The received phase
readings of each link will be affected by the activities
around, in particular, the in-car activities of the driver or
passengers,3 which can then be recognized through analyz-
ing the changing signal metrics.

The captured phase patterns however can be extremely
noisy in in-car environments compared to indoor environ-
ments since the in-car space is naturally much more com-
pact, incurring serious multipath effects. We use a state-of-
the-art activity recognition approach, RFree-ID [10], to
examine the overall recognition accuracy in the in-car envi-
ronment and indoor environment, respectively. Unless
specified, we RFree-ID to study the performance of tradi-
tional RFID-based approaches. Fig. 2 illustrates the general
recognition performance for three typical activities (e.g.,
pushing forward, pushing right, and answering phone)
using Rfree-ID. We can find that the overall recognition
accuracy is about 92 percent in the indoor environment,
while it drops to below 80 percent in the in-car environ-
ment. This result indicates that existing solutions can render
reasonably good performance in the indoor environment,
while they are not so effective in the in-car environment.

Besides the impact of rich multipaths in in-car scenarios,
there also exist other impact factors that can affect RF sig-
nals and hence the activity recognition performance. We
mainly consider three most important impact factors, i.e.,
different driving conditions, human subjects and car mod-
els, each of which is referred to as a class. A certain combina-
tion of such classes (i.e., impact factors) forms a domain [19],
where domain-specific information is included, affecting
the activity recognition. We next conduct real-world experi-
ments to study the impact of these impact factors.

We first consider the impact of the driving conditions,
particularly the outside pedestrians and other cars, which
are also reflectors of RFID signals. Although the outside
impact is weaker than the inside objects, it is not negligible,
especially in a congested environment. To demonstrate this,
we select several typical driving conditions (different from

Fig. 1. The illustration of multiple impacts on RFID-based in-car activity
recognition.

Fig. 2. Recognition performance within the indoor environment and the
in-car environment using traditional RFree-ID approach.

1. https://support.impinj.com/
2. https://www.jadaktech.com/

3. We mainly focus on the single driver activity recognition in this
paper. The multi-person recognition scenario is discussed in Section 8.
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the training conditions) with different congestion levels to
test the recognition performance on some common in-car
activities using RFree-ID [10]. As illustrated in Fig. 3, we
can see that the overall accuracy in the rural area is only
72 percent, while the accuracy in downtown further drops to
below 45 percent. Intuitively, downtown is more crowded
with people and cars, and hence with stronger interference
from the environment, which overwhelms the useful data
features for activity recognition. Such external interference
unfortunately has not been well studied in the literature,
which typically assumes a stationary indoor environment
with internal interference only.

We next examine the impact of human subjects, which is
probably the most important factor. The people in a car can
vary in ages, heights, genders, and weights. As such, the
same activity performed by different people can have differ-
ent frequencies, durations, angles, and ranges, yielding
diverse phase patterns and even opposite recognition
results. We ask different volunteers to perform the same
activity multiple times while keeping other configurations
consistent and collect the RF signals. As in Fig. 4, the col-
lected phase shift patterns are similar for samples of the
same volunteer. However, those patterns are quite different
for samples of different volunteers. Since the driver for a car
is unknown in advance and the potential drivers are count-
less, simply using traditional phase and Doppler-based
approaches (e.g., [8], [10])may not work perfectly. Data gath-
ering and training have to be re-done whenever there is a
new driver, which is quite costly.

The car model is another key impact factor since different
models can have quite diverse spaces, shapes, and interior
decorations. An in-car space is much more compact than a
typical indoor environment so that a slight difference can
lead to dramatic pattern changes in the phase measurement,
given the rich reflection, diffraction, and absorption [20]. We

examine such impacts using 6 different car models, includ-
ing a mini size car (Benz Smart), a compact sedan (Honda
Fit), a standard sedan (Hyundai Elantra), an SUV (Hyundai
Tucson), a minivan (Kia Sedona), and a pickup truck (Nis-
san Frontier), as illustrated in Fig. 5. Similar to previous
works for indoor environment [20], we use the dynamic
time warping (DTW) distance to quantitatively describe the
dissimilarities of the phase shift patterns when the same
volunteer is performing an activity in two different cars and
the same car, respectively. Intuitively, a smaller DTW dis-
tance indicates a higher similarity in activity features. For
each car, we randomly select 20 samples and compare the
DTW distance between them in Fig. 6. We also measure the
DTW distance for the same car. Clearly, different cars have
quite different measurements for the same activities, with
the average DTW distance increased by 45 percent more
than that of the same car.

In summary, our real-world experiment suggests that a
practical RFID-based in-car activity recognition systemmust
adapt to the highly varying driving conditions, human sub-
jects and car models. Yet the existing solutions work only in
well-trained domains; once the domain changes, costly re-
training has to be invoked or the recognition performance
will degrade dramatically. It is necessary to develop new
flexible and robust solutions to deal with the extraneous
implicit information in activity data that contaminates the
activity-related features in different domains.

3 RF-CAR: HIGH-LEVEL SYSTEM OVERVIEW

We present RF-CAR, a robust environment-independent sys-
tem for RFID-based in-car activity recognition. With one-time

Fig. 3. Activity recognition accuracy in different driving conditions using
traditional RFree-ID approach.

Fig. 4. The processed phase difference when different human subjects
performs the same activity with other configurations consistent.

Fig. 5. Different car models we consider in our experiments.

Fig. 6. The CDF plot of DTW distance when the same person performs
the same activity in different cars.
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training, it works for diverse driving conditions, human sub-
jects, and car models. We integrate a customized RFID signal
processing and a novel multi-adversarial domain adaptation
network for training and prediction. RF-CAR consists of three
cascaded components, namely, data measurement, data pre-
processing, and domain adaptationmodel, as in Fig. 7.

Data Measurement. We use a UHF RFID reader with mul-
tiple antennas and commercial tags (four and six, respec-
tively, in our current implementation) deployed in cars for
activity sensing. The collected phase data of each sensing
link through the system APIs are streamed to the backend
module for further preprocessing and recognition.

Data Preprocessing. The raw phase data needs to be trans-
formed into proper feature representations before training.
We first conduct phase unwrapping and smoothing, where
the Doppler frequency shift is derived thereafter. Principal
component analysis (PCA) is then applied to extract the
shared characteristics from multiple antennas. We leverage
a KL-divergence-based algorithm to detect and segment
each activity sample. At last, we use a short-time Fourier
transform (STFT) to obtain the feature spectrogram on both
time dimensions and frequency dimensions.

Domain Adaptation Model. As demonstrated earlier, in the
in-car environment, the derived feature spectrogram can be
complex with much extraneous information. We design a
deep-learning-based domain adaptation model to effectively
remove the domain-specific information while retaining the
activity-related features. A CNN-based feature encoder
cooperates with an activity classifier to maximize the activity

recognition accuracy. To prevent the model from extracting
domain-related information, a set of domain discriminators
then work against the feature encoder. Note that our domain
adaptation model is able to learn the transferred features
even when the data of the target domain is unlabelled.
Through such a domain adaptation approach, the trained
model can be well applied to other untrained domains such
as new cars and new drivers for activity recognition.

4 DATA PREPROCESSING

In this section, we give a detailed demonstration of our pre-
processing steps before the model training and inference,
including phase processing, activity segmentation, and fea-
ture representation.

4.1 Phase Processing

In a practical wireless environment, the received RF signals
contain multipath components (MPCs) due to the multipath
effect. MPCs can arrive at a receiver through such various
propagation mechanisms as reflection, diffraction, and scat-
tering [20]. The multipath effect is strong in the compact in-
car space. Fig. 8a shows the raw phase of a pushing activity
reported by an RFID reader Thingmagic M6e in a car
(Hyundai Tucson). When there is an activity nearby, such
components can be classified into a superposition of static
components ssðtÞ and dynamic components sdðtÞ

Fig. 7. The framework of RF-CAR.

Fig. 8. The result of data preprocessing.
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sðtÞ ¼ ssðtÞ þ sdðtÞ ¼ ssðtÞ þ
XN

k¼1

akðtÞe�j2pftk ; (1)

where N is the number of propagation paths, akðtÞ includes
the signal attenuation and the initial phase offset in the com-
plex form, and e�j2pftk denotes the phase shift through the
corresponding propagation path k with a delay tk on carrier
frequency f . According to Euler formula, Eq. (1) can be trans-
formed into a trigonometric form andwe can get the angle

ffsðtÞ ¼ arctan
jssðtÞj sin ffssðtÞ þ jsdðtÞj sin ffsdðtÞ
jssðtÞj cos ffssðtÞ þ jsdðtÞj cos ffsdðtÞ ; (2)

where j � j and ff� represent the amplitude and phase, respec-
tively. From the above two equations we can see that any
signal propagation path length change is highly correlated
with the phase change [12], which we use as the key signal
metrics for activity recognition.

The raw signal phases reported by the reader are confined
to a periodic function ranging from 0 to 2p, which cannot be
directly applied for processing. We therefore first need to
unwrap the phase to correct values. We adopt the commonly
used One-Dimensional Phase Unwrapping method [21] to
restore the original phase values.

After the phase unwrapping process, we then smooth the
phase values since the random access mechanism of RFID
reading can lead to signal impulse and inconsistent time
interval. We first apply the Hampel identifier to detect the
outliers and filter them out from the processed phase. We
then use a Savitzky-Golay filter [22] to remove the random
noise and smooth the data. It is a widely usedweightedmov-
ing average filter, which is able to effectively increase the sig-
nal-to-noise ratio with limited distortion to the signal.

In a practical RFID deployment, a reader can have multi-
ple antennas closely placed as an array (e.g., 4 in our deploy-
ment), where the backscatter links between the antenna
array and one tag usually share similar wave patterns. Given
the correlations therein, we apply principal component anal-
ysis to the processed phase data of these links to extract the
common characteristics. For each tag, we use PCA to obtain
multiple feature components. We have randomly selected
more than 100 samples and find that the percentage of the
top two components account for more than 90.5 percent of
the total captured variance. And from the third PCA compo-
nent, the retained features with low resolution of different
frequency component values are not sufficient enough for a
good classification. We therefore use the top two PCA com-
ponents for analysis. The average of them are referred to as
the representative phase stream, denoted as p-stream. The
individual phase value actually does not show specific
meaning after unwrapping, yet the phase difference of two
consecutive sample points indicates how fast the surround-
ing activity is performed. We next calculate the phase differ-
ence of each p-stream as shown in Fig. 8b, denoted as dp-
stream for further processing.

4.2 Activity Segmentation

Given the phase difference, the next step is to detect
whether there exists an in-car activity and segment the
activity related samples from the whole data sequences.

From Fig. 8b we know that the phase value keeps relatively
stable in absence of human activities, while the variance
increases dramatically with activities. Since different activi-
ties can have diverse time durations and gaps, a dynamic
activity segmentation approach is required for adaptive and
real-time activity sensing. Motivated by such observations,
we use the Kullback-Leibler divergence (KL-divergence) [23]
to detect and segment the effective human activities from
the dp-stream. The KL-divergence is a measure of how one
probability distribution is different from another distribu-
tion. The key insight here is that the KL value of two station-
ary samples are very small, while the KL value of two
activity samples or one stationary sample and one activity
sample will be significantly higher.

In our activity segmentation method, we first segment
the dp-stream data into frames of every 0.5 second with 50
percent overlap, which balances both the granularity and
computational efficiency. By calculating the KL-divergence
value of each consecutive frames, we can easily ascertain
whether a frame is belonging to samples in absence of activ-
ities. Naturally, the rest frames belong to samples in pres-
ence of activities.

4.3 Spectrogram Generation

The segmented frame contains the wave patterns of the col-
lected phase data. Yet it is still not a good feature representa-
tion for the subsequent deep learning since it only shows the
phase difference without exhibiting the phase changing fre-
quency explicitly. To this end, we take advantage of time-
frequency transform tools to reveal the frequency features.
RF-CAR uses short-time Fourier transform on every seg-
mented sample to extract the frequency characteristics and
converts the time domain wave patterns to time-frequency
spectrograms. Instead of using the discrete wavelet trans-
form (DWT) as most existing systems [24], STFT enables
more fine-grained and homogeneous resolution on the fre-
quency domain, which is particularly suitable for in-car
activity recognition because spectrograms with higher reso-
lution can provide more details for the learning model.
Fig. 8c illustrates the spectrogram of a pushing activity. We
can see that the corresponding part has an obvious frequency
increase when a person is performing the motion, and the
frequency component dropswhen themotion ends.

Note that our RFID-based sensing system can easily sup-
port multiple tags, where the sensing links between the
antenna array and each tag generate a representation spec-
trogram. With multiple tags deployed in a car, these sensing
links can observe activities from multiple angles, and the
spatial diversity therein can greatly improve the robustness
and accuracy. We then concatenate the generated spectro-
gram data from multiple links together and feed such input
to the learning model for further processing.

5 MULTI-ADVERSARIAL DOMAIN ADAPTATION

We describe the design of our domain adaptation model for
activity recognition in this section. As illustrated in Fig. 9, the
learning model mainly includes three components, a feature
encoder, an activity classifier and a set of domain discriminators.
This learning model is designed to only capture the activity-
specific features while filtering out those domain-specific
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features, so as to achieve domain-adaptive activity recogni-
tion. To do so, the activity classifier aims to boost the perfor-
mance of the activity prediction, and the domain
discriminators aim to discriminate the target domains from
the source domains. The feature encoder however is designed
to cooperate with the activity classifier to minimize the loss of
activity prediction and play against the domain discrimina-
tors to maximize the loss of the domain prediction. Through
this way, we are training the feature encoder to be domain
adaptive. After enough training, the feature encoder and
activity classifier can be used to predict labels from target
domains.

5.1 Feature Encoder

We denote xi 2 X as an input data spectrogram associated
with tag i and X is the whole input space. Each input data
spectrogram has an activity label yi 2 Y indicating the cur-
rent activity, where Y is the label space. Besides the activity
label, each xi also has a domain label from the domain space
D, which consists of the source domain spaceDs with labels
and the target domain spaceDt without labels.

The goal of the feature encoder Gf is to take the spectro-
grams as input and transform the original complex high
dimensional features to low dimensional feature representa-
tions z. Given that CNN has exhibited powerful abilities in
extracting the spatial relationships from images, we adopt a
CNN-based architecture to extract the features from the
image-like structures in our input spectrogram. Note that
the CNNmodel requires a uniform input feature representa-
tion. Yet the spectrogram transformed from each segmented
data samples can have diverse time lengths with different
activity durations. In our experiment, the window size is
empirically set as 5 seconds, which is enough to include
most activity features. For those continuous activities such
as making phone call and texting, we mainly detect the start
of the motion, which is also less than 5 seconds. We fill
shorter activities with padding zeros to guarantee the fixed
time length.

In the feature encoder, we stack two CNN layers to pro-
cess each input spectrograms, each followed with a rectified
linear unit (ReLU) layer as the activation function. Max
pooling layers are also applied to reduce the feature

dimensions. Since the extracted features from these multiple
input spectrograms are of the same dimension, we can eas-
ily merge the results with fully connected networks and
obtain the feature vector with a multi-view observation. The
output is represented as

z ¼ Gfðx; ufÞ; (3)

where uf represents all the parameters of the feature encod-
ing layers.

5.2 Activity Classifier

The output feature z is fed into the activity classifier Gy as
input. We use two fully connected layers with activation
layers to learn the discriminative activity-related features.
We then put a softmax layer at last to map the features to a
latent space with the same size as the activity label space. In
this way, we can represent the predicted activity label distri-
bution probabilities for input x as

ŷ ¼ GyðGfðx; ufÞ; uyÞ; (4)

where uy denotes all the parameters in the activity classifier.
The integrated loss function of Gf and Gy can be

obtained by calculating the cross-entropy function between
the actual labels and the predicted labels as

LyðGf;GyÞ ¼ Ex;y½�log GyðGfðx; ufÞ; uyÞ�

¼ � 1

jDsj
X

xi2Ds

XM

j¼1

yij logðGyðGfðxi; ufÞ; uyÞÞ;
(5)

where M is the number of activities labels and jDsj is the
number of samples in source domains. In the training pro-
cess, the feature encoder Gf cooperates with the activity
classifier Gy to minimize the label prediction loss Ly, so as
to maximize the recognition accuracy.

5.3 Domain Discriminators

Domain adversarial network emerges as a key technique
in transfer learning [25] given its strong ability to learn
transferable features between source domains and target
domains. In our in-car activity recognition scenario, a

Fig. 9. The main components of the learning model.
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generic model for activity recognition is necessary since
there always exist new domains (e.g., new driving condi-
tions and drivers). We consider using unsupervised domain
adaptation [19], which is able to remove those domain-
specific characteristics even when the target domains are
fully unlabeled.

State-of-the-art indoor activity recognition models [15],
[16] mainly consider a single domain discriminator for
domain adaptation, which however is not sufficient for the
in-car scenario. As shown earlier, in-car activities can be
affected by multiple impact factors (or classes) such as driv-
ing conditions, car models and human subjects. The implicit
features within each particular class usually exhibit specific
structures, indicating either the boundaries of different clas-
ses in supervised learning or the boundaries of different
clusters in unsupervised learning. Without exploiting the
multimode structures, single domain adaptation is prone to
either under transfer or negative transfer [17], which easily
leads to false alignment of discriminative structures. To
address this challenge, in RF-CAR, we for the first time
incorporate multi-adversarial domain adaptation for RFID-
based in-car activity recognition.

We use a set of domain discriminators Gd ¼ fG1
d; G

2
d;

. . . ; GK
d g, where K is the number of classes. Each domain

discriminator includes two fully connected layers as well as
ReLU activation function. A softmax layer is also employed
as last to generate the domain distributions for each class.
Correspondingly, the domain space can be divided into K
classes as D ¼ fD1; D2; . . . ; DKg. We also assign each input
sample a domain label dki for every class Dk. Each domain
discriminator takes as input the concatenation of the feature
representations z from the feature encoder and the label dis-
tributions ŷ from the activity classifier, and predicts the
domain labels distributions d̂k of class k as

d̂k ¼ Gk
dðz; ŷ; ukdÞ ¼ Gk

dðGfðx; ufÞ; GyðGfðx; ufÞ; uyÞ; ukdÞ; (6)

where ukd denotes the parameters of the kth domain discrim-
inator. As mentioned, the target of the feature encoder Gf

and the domain discriminators Gd is to play a minimax
game to remove the domain-specific characteristics of the
input data. To do this, we first calculate the integrated loss
function of these two components as

Lk
dðGf;GdÞ ¼ Ex;d½�log Gk

dðz; ŷ; ukdÞ�

¼ � 1

jDj
X

xi2D

XjDkj

j¼1

dkij logðGfðxi; ufÞ; GyðGfðxi; ufÞ; uyÞ; ukdÞ;

(7)

where jDj is the number of samples belonging to the whole
sample space, jDkj is the number of labels for class k and dkij
is the corresponding domain label. Combining the loss of all
the K discriminators together, we get the total loss for dis-
criminators Gd as

LdðGf;GdÞ ¼
XK

k¼1

Lk
dðGf;GdÞ: (8)

5.4 Optimization Objective

The objective of our learning model is to minimize the label
prediction loss LyðGf;GyÞ and maximize the domain dis-
crimination loss LdðGf;GdÞ, so as to achieve domain inde-
pendent activity recognition. However, these two sub-
objectives are mutually exclusive with each other and can-
not be applied together directly. We introduce the gradient
reversal layer proposed in [19] for training, so as to make
the sub-objectives consistent. Based on Eqs. (5), (7) and (8),
we integrate these two sub-objectives together and have the
final joint loss function as follows:

LðGf;Gy;GdÞ ¼ LyðGf;GyÞ � �LdðGf;GdÞ; (9)

where � is a hyper-parameter to trade-off the two objectives in
the model optimization. During the training process, our
learning model aims to minimize this joint loss function, so as
to achieve domain independent in-car activity recognition.

6 EVALUATION

In this section, we implement a prototype to evaluate the
performance of RF-CAR. We conduct trace-driven experi-
ments to compare our RF-CAR framework with the state-of-
the-art RFID-based solutions and evaluate the impacts of
different settings.

6.1 Implementation and Evaluation Setup

Implementation. We build our RF-CAR prototype using the
commercial-off-the-shelf devices without any hardware or
software modification. The frontend module includes a
Thingmagic M6e UHF reader connected to a common laptop
(Thinkpad T430 in our prototype) and several passive RFID
tags attached at different places (e.g., mirrors, doors, and
seats) in a car. The frequency range of our RFID reader is our
region is between 902 MHz and 928 MHz, and each channel
has a bandwidth of 250 kHz. The sampling frequency is
about 300 Hz. The Thingmagic reader provides APIs to cus-
tomize the hopping table. We thus fix the channel on a com-
mon frequency 908.25 MHz to avoid the phase offset caused
by channel hopping. The backend module on a server keeps
fetching tag readings from the frontendmodule and perform
the subsequent training and inference process.

Activity Collection. In our evaluation, we consider 8 com-
mon activities in cars for recognition, including pushing
right (PR), pushing forward (PF), raise hand twice (RT), left
shoulder check (LSC), right shoulder check (RSC), answer-
ing cellphone (AC), texting message (TM), and picking up
things (PK), as illustrated in Fig. 10. For each activity, we

Fig. 10. Collecting activity samples in different domains.
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have collected about a total of 2,500 samples in different set-
tings, including 4 different driving conditions (i.e., down-
town, school, rural, and residential area), 4 types of cars
(i.e., compact sedan, standard sedan, SUV, and Minivan),
and 4 volunteers differing in gender, weight, height, and
habit. For each collection, the antenna array and the tags are
placed at the relatively same location to guarantee the con-
sistency in our measurement.

Learning Setup.We implement the RF-CAR learningmodel
based on tensorflow [26] and train the learning model on a
desktop equipped with a GTX 1,080 Ti GPU card, dual Intel
I7 3.6 GHz CPU cards and 32 GB memory. The default filters
of convolutional layers are 5� 5with the stride of 1. And the
default filters of max-pooling layers are 2� 2 with the stride
of 2. We set the default neuron numbers in the two fully con-
nected layers in both the activity predictor and domain dis-
criminators to 256. In the testing stage, we collect new data
samples from untrained domains for model evaluation.
Specifically, we ask another 4 volunteers to perform activities
in different driving conditions and cars, collecting about
2,000 activity samples for testing. These are then used to ver-
ify the generality of the domain adaption model in new
environments.

Baseline Methods. We compare our approach with several
existing learning models, including Random Forest (RF),
RFree-ID [10] and EI [16]. RFree-ID is a state-of-the-art RFID-
based system that uses traditional approaches without
domain adaptation network to recognizes human gait pat-
terns for identification. We incorporate its basic idea for the
in-car activity recognition in our context. EI is the latest
indoor activity recognition framework that uses single
domain discriminator. RF is one of the most widely used
classificationmethods, which can effectively inhibit the over-
fitting effect comparing with other classification methods.
We extract the same features as used in EI. To guarantee the
fairness of comparison and better evaluate the learning capa-
bility of our domain adversarial model, all the baseline mod-
els are fedwith the same feature space as RF-CAR.

6.2 General Activity Recognition Performance

We first present the general in-car activity recognition per-
formance of RF-CAR. Before diving into the evaluation, we
introduce our used metrics in the classification problem: 1)
Precision (PR) is defined as TP

TPþFP , where TP is the ratio of cor-
rectly labeled activities and FP is the ratio of falsely labeled
activities as another activity; 2) Recall (RE) is TP

TPþFN, where
FN is the ratio of mislabeled true activities; 3) F1-score (F1) is
a combined metric for precision and recall, defined as
2�PR�RE
PRþRE ; 4) Accuracy (ACC) is defined as TPþTN

TPþTNþFPþFN,

representing the correctly classified sample ratio. Besides the
four metrics specific to each individual class, we also denote

the overall accuracy (O-ACC) as

P
TPi

all samples to evaluate the over-
all performance of the classificationmodel.

Fig. 11 shows the confusion matrix of the recognition
results on 8 activities, comparing RF-CAR with the state-of-
the-art RFree-ID approach (without domain adaptation).
Note that the number of samples for each activity is the same,
i.e., the data for each activity is balanced. Each row repre-
sents the actual activity label and each column represents the
predicted label. Given the above metric definition, we can
see that RF-CAR can achieve an overall recognition accuracy
of 95.5 percent with a standard deviation of 2.1 percent,
while RFree-ID only has an overall recognition accuracy
of 67 percent with a standard deviation of 4 percent. Speci-
fically, for activities with very special feature patterns (such
as RT), our approach can achieve nearly 100 percent recog-
nition performance, while the approach without domain
adaptation seems unable to well extract and capture such
patterns for recognition. This result indicates that RF-CAR
can effectively extract activity related features and remove
domain specific information. With one-time training, RF-
CAR can effectively recognize those target activities even
under new domains.

We next examine more metrics from the perspective of
statistics to comprehensively understand the classification
result. Fig. 12 compares these metrics of the state-of-the-art
RFree-ID and RF-CAR. We can find that RFree-ID only
achieves about 70 percent for both precision and recall. In
contrast, both the precision and recall of RF-CAR are over
90 percent. The recognition of several activities even
achieves near 100 percent precision and recall. These results
indicate that our approach can not only accurately but also
comprehensively recognize in-car activities.

6.3 Evaluation on Feature Encoder

The feature encoder is a key role in our learningmodel,which
cooperates with the activity classifier and plays against the
domain discriminators to extract domain invariant feature
representations. To intuitively evaluate the performance of
the feature encoder, we use the t-SNE [27] tools to visualize
the response of the CNN-based feature encoder. The t-SNE
embedding tool maps the high-dimensional features into a
2D or 3D space, where the relative positions of data samples
can be used to characterize the difference among them. As
shown in Fig. 13, we randomly select about 100 data samples
for each activity in our dataset for visualization in a 2D space
and compare the different performance of simple neural

Fig. 11. The prediction confusion matrix of all activities when using
RFree-ID approach and our RF-CAR approach. Fig. 12. Precision, recall and F1 score of all activities when using our RF-

CAR approach and using RFree-ID approach.
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network (NN) based representation and CNN-based repre-
sentation used in RF-CAR. We can find that with NN-based
feature encoder, although samples belonging to different
activities are mostly concentrated in their respective regions,
the boundaries are quite unclear and many data samples are
mixed together, leading to inaccurate activity recognition. As
a contrast, our CNN-based feature encoder has much better
feature representation visually. As presented in Fig. 13b,
samples belonging to one activity are grouped with clear
boundaries, with only a few samples misclassified into other
labels. This result indicates that our CNN-based feature
encoder can effectively capture the feature differences of
multiple activities even under untrained domains.

We next consider the impact of different neural network
settings on the overall recognition accuracy, especially the
number of CNN layers. As shown in Table 1, each column
represents the number of CNN layers we used in the learn-
ing model and each row represents the corresponding per-
formance metric. The default CNN filter size is set as 5� 5
for layer number from 1 to 4. We can find that when we do
not use CNN architecture (instead we use two NN layers),
the general performance is relatively poor, with both recall
and F1-score below 50 percent. This result shows that sim-
ple NN architecture may not be able to extract the useful
features for recognition effectively. For CNN architecture,
our experiment demonstrates that the performance is best
when using two CNN layers, with 95.6 percent precision,
95.5 percent recall and 168 seconds training time. Yet when
we keep increasing the CNN layer number, these metric val-
ues begin to decrease. This is because too many layers will
compress spatial features too much and further cause infor-
mation loss and too few layers are not able to fully capture
the spatial correlations in the input data spectrogram.

6.4 Evaluation on Domain Adversarial Network

Wenext consider the domaindiscriminators and evaluate their
performance on in-car activity recognition. For comparison,

we consider our multi-adversarial domain adaptation app-
roach, RF-CAR, and EI, the state-of-the-art single-adversarial
domain adaptation approach. We select two activities and
each activity contains data samples from three domains,where
each domain is one particular combination of the three classes
in our in-car activity recognition context. As described in
Fig. 14, we also use t-SNE tool to compare the feature represen-
tations, where L1 and L2 denote the two activity labels, and
D1 to D3 denote the three domain labels. We can find that
the feature representations of RF-CAR are clearly separa-
ted into two parts according to their activity labels, yet the
domain labels within each activity group are mixed
together. This observation indicates that our model achieves
good activity recognition with extracted features and suc-
cessfully removes those domain-specific features. As a
comparison, we can see the feature representations of the
single-discriminator-based approach in Fig. 14a. Even the
samples belonging to different activities are relatively sepa-
rated, the domain labels are not completely mixed. For
example, most samples of L2�D1 and L2�D3 appear in
relatively different regions. On one hand, our experiment
shows that different domains do have an obvious impact on
activity recognition. On the other hand, the extracted latent
features of different activities are clearly separated while the
features of the same activities in different domains almost
have the same distribution. Note that the testing data col-
lected is from domains that are different from the training
data. This experiment therefore confirms that domain adver-
sarial network, especially the multi-adversarial domain
adaptation network, is capable of removing domain-specific
features and retaining activity-related features.

Fig. 13. Comparison of feature representations between simple NN and
CNN with t-SNE visualization.

TABLE 1
Activity Recognition Performance With Different CNN Layers

CNN layers 0 1 2 3 4

Precision 0.508 0.829 0.956 0.917 0.893
Recall 0.364 0.808 0.955 0.891 0.864
F1-score 0.424 0.818 0.955 0.903 0.878
Training time 65s 159s 168s 175s 182s

Fig. 14. Comparison of feature representations using single-adversarial
domain adaptation and multi-adversarial domain adaptation.

Fig. 15. Overall recognition accuracy under different training domain
settings.
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Fig. 15 compares the overall recognition accuracy of RF-
CAR and the baseline approaches varying different domain
settings for training, where the x-axis ki indicates the number
of domains used in the ith class. We can observe that our
approach outperforms all other baseline approaches for the in-
car scenario with different training settings. Specifically,
RFree-ID only has about 70 percent overall recognition accu-
racy even trained with enough domains. This is because tradi-
tional methods consider all captured information during
activity sensing,while the extraneous domain-specific features
can distort the activity related features, leading to low recog-
nition accuracy. For domain adversarial approaches, EI has
87 percent accuracy with enough domains while RF-CAR can
achieve about 95 percent overall accuracy. This comparative
result shows that RF-CAR is more capable of distinguishing
the inherent multimode structures of different domains and
can remove such domain-specific impactsmore effectively.

6.5 Impact of the Number of Tags and Antennas

The number of tags we used in the activity sensing is a key
factor for recognition performance. We conduct experi-
ments to evaluate such impacts. As described in Section 4,
the backscatter signals between the RFID reader and each
tag form a communication link that is used for activity sens-
ing. As these tags are deployed at different positions, multi-
ple tags together with the reader can generate multiple
sensing links from different angles, providing more sensing
information with spatial diversity in the in-car space. Fig. 16
presents the overall recognition accuracy when using differ-
ent numbers of tags. We can see that with more tags, both
RF-CAR and the baseline approaches could achieve better

recognition performance. Comparing to using only one tag,
using 6 tags can increase the overall recognition accuracy
from 71.2 to 95.5 percent for RF-CAR, which is a great per-
formance improvement with little extra overhead since the
tag cost is negligible. This experiment indicates that the
multi-tag sensing and the collaborative analysis in the learn-
ing stage can extract the activity features from multiple ori-
entations, which greatly improves the overall recognition
accuracy and robustness of RF-CAR.

In addition to the number of tags, the number of anten-
nas is also an influential parameter given that commercial
RFID readers usually support multiple antennas. Since the
antennas are usually placed close as an array, the phase pat-
tern information between one tag and multiple antennas are
correlated with each other and we use PCA to extract the
common characteristics. Fig. 17 illustrates the overall recog-
nition accuracy of using different numbers of sensing anten-
nas. From this experiment, we can know that different from
adding tags, increasing the number of antennas only results
in quite marginal performance improvement, especially
when there are already multiple antennas. For example, RF-
CAR only has 10 percent overall accuracy improvement
when adding antenna number from 1 to 4. This is because
in our preprocessing methods, the antenna array actually
offers high reliability for sensing from one orientation com-
pared to using only one antenna, while more tags provide
extra sensing information from more orientations.

Fig. 16. Overall recognition accuracy with different numbers of tags.

Fig. 17. Overall recognition accuracy with different numbers of antennas.

Fig. 18. Recognition accuracy given multiple people’s presence.

Fig. 19. Overall recognition accuracy with different setting of �.
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6.6 Evaluation on Hyperparameters

We next consider the impact of different settings for the
hyperparameters on the recognition performance. As descri-
bed in Eq. (9), � controls the tradeoff between activity predic-
tion and domain adaptation. Similar to [19], we dynamically
set the value of � based on the following rules

� ¼ 2

1þ expð�10 � pÞ � 1; (10)

where p is the percentage of current training steps to the
maximum steps. Using such a dynamic setting, we can sup-
press noisy signal from the domain classifier at the early
stages of the training procedure and encourage the domain
adaptation at the late stage. Fig. 19 shows the recognition
performance with different settings of �, where d in the
x-axis means the dynamic setting. We can find that either a
too small or a too large value will cause a poor domain
adaptation. And in general, the dynamic setting outper-
forms all the static settings.

6.7 Cross Validation and Statistical Test

In our experiment, given that the test domain should not
appear in the training process, we cannot directly apply the
conventional cross-validation method to verify the effective-
ness of our model (because an arbitrary division may not
well separate different domains). Note that our collected
dataset contains 4 driving conditions, 4 persons and 4 types
of cars. We therefore design a cross validation: each time we
select one combination for testing, and the remaining
3� 3� 3 domains served as the training set. We randomly
conducted 10 groups of experiments for cross validation.
The recognition accuracy of our model and the baseline
models are presented in Table 2, which indicates that our
model achieves good and stable recognition performance.

To further assess whether the performance of RF-CAR is
significantly different from other baseline models, we con-
duct paired t-test over each experiment group between RF-
CAR and other baseline models. The null hypothesis is
rejected with respective p-values of 2:8 � 10�10, 7:7 � 10�9,
and 1:3 � 10�5, for RF, RFree-ID, and EI, all of which are
well below 0.05. This indicates that their performances are
significantly different from a statistical perspective.

6.8 Evaluation on Multiple People’s Presence

In many situations, there will be passengers inside a car
other than the driver. Thus, we next evaluate the recogni-
tion performance when there are multiple people in a car.
Fig. 18 presents the overall recognition accuracy for differ-
ent approaches when the people in a car is ranging from 1
to 4. We can find that when the number of people increases,
the overall recognition accuracy gradually decreases for all

approaches. RF-CAR however still outperforms other base-
line models, achieving 83.2 percent even when there are 4
people inside the car. This is because passengers will to
some extent block the RF signals between the reader and
the tags, making the multi-view observing incomplete.
Besides, the small movements of these passengers will affect
the received RF signals, making the recognition inaccurate.
Note that in this paper we mainly focus on activity recogni-
tion for one target person (the driver in particular). Hence,
the solution will work as long as the passengers do not
move close to the operational space and perform these activ-
ities simultaneously. The scenario of activity recognition for
multiple people is discussed in Section 8.

6.9 Evaluation on Sequential Activity Recognition

In practical driving scenarios, a person can perform a series
of (sequential) activities, e.g., a left shoulder check followed
with a right shoulder check when the driver tries to turn left
and then turn right. We next examine the overall recogni-
tion accuracy of two sequential activities in different envi-
ronments as previous settings. The recognition ratio results
of the first and the second activity are presented in Table 3,
where N indicates failure and Y indicates success. We can
see that the recognition ratio for both two activities is still
good enough, which achieves 89.5 percent. Comparing the
situation of recognizing only one activity, the ratio of recog-
nizing the first activity is almost twice that of the second
activity. This is probably because the interval is quite
ambiguous for some sequential activities, which makes the
start detection of the second activity not so accurate.

6.10 Evaluation on Activity Detection

The preliminary step for activity recognition is accurately
detecting and segmenting the activity samples. We also
evaluate the activity detection ratio for RF-CAR. As pre-
sented in Table 4, our approach can detect and segment the
target activities with an average ratio of 96 percent, and
only TM and LSC fall below 95 percent detection ratio. This
is because compared to other activities, these two activities
have relatively small movement. Even so, the results show
that our approach can effectively detect and segment target
activities, which is necessary for in-car activity recognition.

TABLE 2
Cross Validation and Statistical Test

Models Accuracy P-value

Random Forest 0.513 	 0.032 2.8e-10
RFree-ID 0.679 	 0.039 7.7e-9
EI 0.855 	 0.026 1.3e-5
RF-CAR 0.949 	 0.023 N/A

TABLE 3
Activity Recognition for Sequential

Activities

1st Activity
2nd Activity

N Y

N 0.01 0.03
Y 0.065 0.895

TABLE 4
Activity Detection Ratio

Activity PR PF RT LSC
Ratio 0.983 0.965 0.984 0.931

Activity RSC AC TM PK
Ratio 0.962 0.956 0.925 0.978
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7 RELATED WORK

7.1 RFID-Based Activity Recognition

Radio Frequency Identification is rising as a promising sens-
ing technology in recent years given its low cost, tiny size, low
dependency, and the batteryless feature, making it widely
used in a range of applications. Many pioneer researches have
explored the sensing ability of RFID in activity recognition,
which can be classified as tag-based approaches and tag-free
approaches. Tag-based approaches usually attach tags to the
surface of moving objects or people. The different motions of
tags will produce different patterns for RSSI, phase, and
Doppler shifts, which can be leveraged to recognize human
breath [6], free-weight exercise [8], indoor activities [28], etc.
Tag-free approaches usually attach tags to stationary objects
such as walls and furniture instead of moving objects, and
the patterns of reflected signals are used for recognition. For
example, Zhang et al. [10] constructed a tag array attached on a
wall to analyze people’s gait characteristics, so as to identify
different people. Fan et al. [11] analyzed the rich multipath
effects caused by different motions in an indoor environment
and further utilized the diverse phase patterns therein to recog-
nize activities. Zou et al. [12] mainly profiled the phase chan-
ges when performing different gestures nearby and captured
the spatial features to achieve gesture recognition. Besides,
Yao et al. [29] used semi-supervised learning to analyze both
tag-based and tag-free dataset for human activity recognition.

Previous activity recognition systems are usually con-
fined to working in trained environments and are not well
designed for fast-changing scenarios, such as in-car activity
recognition. In contrast, RF-CAR adopts multi-adversarial
domain adaptation to remove activity-irrelevant information
while only keeping activity-related features for training,
which achieves domain independent activity recognition.

7.2 Other RF-Based Activity Recognition

Besides RFID, there are many other radio frequency-based
technologies that can be used for human activity recognition.
Among them,WiFi is one of themostwidely explored sensing
technology given its ubiquity, low overhead and easy man-
agement. Many researchers relied on the coarse-grained
received signal strength indicator [30], [31], [32] for sensing.
For example, Sigg et al. [30] focused on the detection of static
and dynamic activities of single individuals by leveraging
active and passive, non-adhoc device-free systems to recog-
nize four activities. WiGest [31] leveraged the change of pat-
terns in RSSI to sense 8 in-air gestures even not in line-of-sight
scenarios. As a relatively more fine-grained metric, channel
state information (CSI) [33], [34], [35], [36] was also widely
used to recognize more various activities. For example,
WiDraw [37] was able to harness the Angle-of-Arrival values
of incoming wireless signals at the mobile device to track the
user’s hand trajectory. To achieve more subtle activity recog-
nition, Ali et al. [35] proposed WiKey that was able to recog-
nize keyboard typing based on the variance of collected CSI
patterns. Furthermore, mode advanced RF hardware such as
USRP was employed to generate frequency-modulated car-
rier wave (FMCW) sweeping across a certain band to achieve
more fine-grained sensing, such as constructing images of
objects [38] and tracking 3Dmotions [39].

7.3 Domain Adversarial Learning

The learning model used in RF-CAR is related to adversarial
networks for domain adaptation. Adversarial networks are
mainly introduced to effectively train the generative model,
where themost representative one is the generative adversar-
ial network (GAN) [40]. In GAN, a generator is trained to fool
the discriminator, so as to generate near-realistic data. Yet for
domain adversarial network [17], [19], [41], the final objective
is to train a feature encoder so that the extracted features are
discriminative for the main task and keep stable when the
domain changes. This unique function enables domain
adversarial network to be used in activity recognition to elim-
inate the environmental impact. Pioneer researchers have
explored it inWiFi-based activity recognition. Zhao et al. [15]
improved domain adversarial network to remove the indi-
vidual and condition-specific information during sleeping
and used the extract features for accurate sleep stage predic-
tion. Jiang et al. [16] proposed an adversarial learning frame-
work to remove environment and subject related features
in indoor activity recognition. Existing activity recognition
systems all use single domain discriminator, where the mul-
timode structures are easily mixed up, affecting the recogni-
tion performance. Different from these approaches, RF-CAR
fully explores the in-car recognition and integrates multi-
adversarial domain adaptation, which achieves a much
higher recognition accuracy.

8 DISCUSSION

This paper mainly introduces the fundamental design of
RF-CAR, yet it can be further enhanced from many aspects
before practical deployment in cars. We discuss the most
important ones as follows.

Directional Activity Sensing. For traditional indoor activity
recognition, different locations and orientations of activities
can lead to quite diverse recognition performance. How-
ever, for in-car recognition scenario, people are usually
restricted by seats and safety belts so that the location and
orientation of activities are usually fixed. For this reason,
RF-CAR focuses more on dealing with the extraneous
domain information rather than considering the location
and orientation. Even so, our model can be easily extended
to recognize directional activities if necessary.

Scalability for Multiple People. In the current stage, RF-CAR
mainly focuses on recognizing single person’s activities in a
car. Given that the positions of the RFID reader, tags and
people’s seats are fixed, activities should also yield some spe-
cific patterns in collected metrics including RSSI and phase.

TABLE 5
The Electric Field Strength Measurement of In-Car RFID and
Other Common Devices as well as the Reference Values for

Public Exposure

Scenarios/Standards E-Field (V/m) Distance (m)

in-car RFID (Thingmagic M6e) 1.82 0.5
Smart Phone (iPhone 11) 2.17 0.05
Smart Watch (Apple Watch 4) 2.58 0.05
WiFi Router (ASUS AC1900) 3.23 1
ICNIRP Stardard [42] 41.8 N/A
Canada Stardard [43] 32.4 N/A
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Advanced learning tools such as deep learning can be further
used for feature extraction and activity recognition.We leave
themulti-activity recognition as our futurework.

Practical Implementation. Our RFID-based sensing system
requires a frontend module including a reader and multiple
tags to collect the reflected backscatter signals. In the practical
deployment, the reader can be integrated at the far end of the
central control system in a vehicle. Tags can be simply fixed at
manyplaces such as doors and car body. Comparedwith other
devices in a vehicle, deploying such sensing system does not
costmuch for carmanufacturers considering its functionality.

Health Concern. The deployment of RFID-based sensing
with enough distance actually does not introduce harm to
human health. We have measured the electric field strength
of different devices and compare it with several interna-
tional RF explosure standards [42], [42] as in Table 5. The
results indicate that even when RFID is deployed, the elec-
tric strength is within 1/10 of the reference level of these RF
exposure standards, which is even lower than that of our
daily used device. It is also known that RFID-based sensing
has been used safely in Hongkong Airport for bagging han-
dling for a long time [44]. Sensitive people with extra con-
cerns such as pregnant women and infants can choose to
close this function freely although FCC does not forbid the
usage in this scenario.

Data Collecting and Model Training. Service providers can
recruit users to drive various vehicles in different driving
conditions and collect the sensing data accordingly for the
subsequent training. Our model requires only one-time
data collecting as well as training. The well-trained model
can be delivered to other vehicles with limited overhead.
Furthermore, the training data can be updated in a crowd-
sourced manner, i.e., users can contribute their raw data to
the service provider with an incentive reward. We believe
richer data collected in various conditions will help improve
the overall recognition accuracy as well as robustness.

Model Generality. In this paper, we mainly focus on the in-
car activity recognition scenario. The learning model seeks
to remove extraneous domain information while retaining
task-related features in training. Therefore, our learning
model has the potential to accommodate other activity sens-
ing technologies (e.g., WiFi, Ultrasound, and visible light)
and application scenarios (e.g., indoor and outdoor environ-
ment). A future direction is to extend our model to other
sensing methods and verify the effectiveness therein.

9 CONCLUSION

In this paper, we have proposed RF-CAR, an RFID-based in-
car activity recognition framework. RF-CAR uses COTS
RFID devices to collect the backscatter signal metrics. A pre-
processing scheme is then applied to convert raw phase data
into representative features. We have employed a multi-
adversarial domain adaptation learning model to remove
domain-specific extraneous information and keep activity-
related features. Through the domain adversarial training,
RF-CAR achieves domain independent in-car activity recog-
nition. Extensive experiments have further demonstrated
the superiority of RF-CAR compared to state-of-the-art rec-
ognition systems.
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