
Multi-Seed Group Labeling in RFID Systems
Jihong Yu ,Member, IEEE, Jiangchuan Liu , Fellow, IEEE, Rongrong Zhang , Lin Chen,Member, IEEE,

Wei Gong,Member, IEEE, and Shurong Zhang

Abstract—Ever-increasing research efforts have been dedicated to radio frequency identification (RFID) systems, such as finding

top-k, elephant groups, and missing-tag detection. While group labeling, which is how to tell tags their associated group data, is the

common prerequisite in many RFID applications, its efficiency is not well optimized due to the transmission of useless data with only

one seed used. In this paper, we introduce a unified protocol called GLMS which employs multiple seeds to construct a composite

indicator vector (CIV), reducing the useless transmission. Technically, to address Seed Assignment Problem (SAP) arising during

building CIV, we develop an approximation algorithm (AA) with a competitive ratio 0.632 by globally searching for the seed contributing

to the most useful slot. We then further design two simplified algorithms through local searching, namely c-search-I and its enhanced

version c-search-II, reducing the complexity by one order of magnitude while achieving comparable performance. We conduct

extensive simulations to demonstrate the superiority of our approaches.

Index Terms—RFID, group data writing, seed assignment

Ç

1 INTRODUCTION

RECENT years have witnessed an unprecedented devel-
opment of the radio frequency identification (RFID)

technology in various applications ranging from inventory
control [2] and supply chain management [15], [28], to
object tracking [18] and localization [5]. An RFID system
typically consists of RFID readers and tags wherein a reader
can query tags and collect information from tags, and a tag
works in mode of backscatter communications [23], which
captures energy in RF signal from its nearby reader and use
the energy to send message to this reader. With the develop-
ment of RFID technology, new generations of tags, referred
to as computational tags, are armed with abilities of sensing
and computing, and become programmable, e.g., WISP
tag [1], UMASS Moo tag [27].

In these applications, categorizing the objects (tags) to be
monitored into groups is a common practice for efficient
management, especially when the system scales (e.g., librar-
ies, supermarkets). A bootstrapping functionality to enable
group-wise object management is to inform each object its

group data (e.g., group ID, other related group informa-
tion), which is named group labeling. For example:

� Over-the-air reprogramming on computational RFID
tags [21], [22]. These tags work in the same region on
a variety of sensing tasks, e.g., temperature, humid-
ity monitoring, and intrusion detection. We regard
the tags carrying out the same mission as belonging
to the same group. In such scenario, it is necessary to
maintain and upgrade firmware of tags wirelessly.
Since the firmware for tags in different groups is
usually different, the system administrator must
reprogram categorized tags correctly. That is to say,
data for one group should not be received by tags in
the other groups.

� Group ID-enabled applications. When the administra-
tor needs to frequently check the status of the expiry-
date-sensitive objects, grouping the objects (tags) with
the similar expiry date is necessary, wherein group
IDs play a important role. Specifically, if the tags with
the similar expiry date share the same group ID, the
reader can send the required data together with the
group ID once to all group members, which not only
sharply reduces the communication cost in compari-
son with the traditional unicast transmission, but also
is prerequisite of diverse queries in RFID systems,
such as tag estimation [3], [11], top-k query [13], [19]
andmissing tag detection [25].

While due to the nature of RFID, a tag has neither infor-
mation of the other tags nor its group, it thus does not know
which data is only for its group. In this context, the group
labeling is called for to correctly tell each tag the data for its
group and facilitate the tag management illustrated above.

The RFID group labeling problem is to inform all tags of
their associated group data in an RFID system correctly and time-
efficiently. Despite its importance, this cornerstone service is
largely under-investigated. The work [16] can solve this

� J. Yu is with the School of Information and Electronics, Beijing Institute of
Technology, Beijing 100811, China. E-mail: jihong.yu@bit.edu.cn.

� J. Liu is with the School of Computing Science, Simon Fraser University,
Burnaby, BC V5A 1S6, Canada. E-mail: jcliu@sfu.ca.

� R. Zhang is with the Information Engineering College, Capital Normal
University, Beijing 100089, China. E-mail: zhangrr@cnu.edu.cn.

� L. Chen is with the School of Data and Computer Science, Sun Yat-sen
University, Guangzhou 510275, China. E-mail: chen@lri.fr.

� W. Gong is with the School of Computer Science and Technology, Univer-
sity of Science and Technology, Hefei 230052, China, and also with the
School of Computing Science, Simon Fraser University, Burnaby, BC
V5A 1S6, Canada. E-mail: weigong@ustc.edu.cn.

� S. Zhang is with the College of Mathematics, Taiyuan University of Tech-
nology, Taiyuan 030024, China. E-mail: zhangshurong@tyut.edu.cn.

Manuscript received 10 Jan. 2019; revised 26 June 2019; accepted 6 Aug.
2019. Date of publication 14 Aug. 2019; date of current version 3 Nov. 2020.
(Corresponding author: Jihong Yu.)
Digital Object Identifier no. 10.1109/TMC.2019.2934445

2850 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0003-3639-5342
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0002-2311-4348
https://orcid.org/0000-0002-2311-4348
https://orcid.org/0000-0002-2311-4348
https://orcid.org/0000-0002-2311-4348
https://orcid.org/0000-0002-2311-4348
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


problem by polling each tag. BIC [26] can label tags by
exploiting the singleton slots. While they spend too much
time sending either many tag IDs or same group data repeti-
tively, as only one tag is labeled per slot. The single-seed
protocol CCG [10] leverages the slots which multiple tags of
the same group are mapped to label multiple tags with one
slot. It, however, wastes much time on the transmission of
empty slots and slots mapped by multiple tags from differ-
ent groups, and is inefficient for the low useful slot proba-
bility in a single indicator vector. For example, consider 103

tags are evenly partitioned into 4,8,10 groups, the probabil-
ity that a slot cannot be used to label tags in CCG exceeds
0.6, which leaves huge space for improvement.

This paper presents a multi-seed-based protocol enabling
multiple mappings from tags to slots so that the reader can
pick up the most informative slots among all mappings for
the data transmission and the efficiency is thus improved.
The key challenge lies in how to find these slots while
achieving seed assignment with low complexity. The supe-
riority and novelty of our method compared with the exist-
ing ones is four-fold:

1) Empty slots and those mapped by multiple tags from
different groups under one seed which are wasted
in [10], can be used to label tags with another seed in
our method.

2) The impact of multiple mappings on tag collisions of
different groups is weaken. With different seeds a
tag mapped to multiple slots actually receives its
group data only in one slot and will keep silent,
reducing collision probability of different groups in
the subsequent slots.

3) Collision slots with tags from same groups instead of
only singleton slots or empty slots in the existing
work [4], [14] are exploited in our method, improv-
ing time efficiency. Moreover, a k-good slot that can
label k tags of the same group, can become kþ-good
where k and kþ are constant and kþ > k, signifi-
cantly reducing the labeling delay.

4) This paper is the first work formally proving NP-
hardness of the formulated problem arising from the
application of multiple seeds and designing the
approximation algorithms to for the group labeling
problem, which makes the mathematical nature of
our work completely different from the existing ones
and more challenging.

Our contributions are articulated as follows: 1) We use a
multi-seed approach to achieve efficient group labeling
wherein we find NP-hardness of the Seed Assignment Prob-
lem (SAP) arising from the employment of multiple seeds to
the group labeling. This result reveals the underlying diffi-
culty of the group labeling problem, which has not been
found before. 2) Due to the NP-hardness of the problem, we
first design an approximate seed assignment algorithm,
with a competitive ratio 0.632, which selects the slot with
the most tags from the same group each time among all slots
and assigns the corresponding seed to this slot. Then by
leveraging the characteristic that a tag only receives its asso-
ciated group data in one slot, we develop another two sim-
plified algorithms, namely c-search-I and c-search-II. By
exploiting to a greater extent that the slots are originally

useless but will become useful, they achieve the comparable
performance with less complexity. 3) We develop a unified
group labeling protocol, named GLMS, to consolidate each
of AA, c-search-I, c-search-II with concrete communication
mechanism for the reader and tags. We also investigate the
optimal parameter configuration.

Our multi-seed protocol generalizes the existing single-
seed protocols with remarkably better performance. Our
test results show that GLMS achieves a gain of up to 34.2
percent in terms of the group labeling time.

2 PROBLEM FORMULATION AND MOTIVATION

We study an RFID system of one or multiple readers and a
number of tags, wherein the tags are partitioned intomultiple
groups and the readers are connected via high-speed channels
with a back-end server of powerful computing capability. We
regard the server and the reader(s) as a single entity called the
reader for simplicity [7], [14]. Generally, the tags have user-
defined memory to achieve the writing and storage of the
user-defined data [8]. Moreover, we assume that the reader
has the IDs of all tags in the system, commonly in designing
application-oriented protocols, e.g., missing tag event detec-
tion [14], [29] and information collection [4], [16]. To stream-
line the presentation, we first consider the single-reader case
and discuss themulti-reader case later.

Consider a set X ¼ fx1; x2; . . . ; xNg of N tags whose IDs
are recorded in the reader divided into G disjoint groups.
Suppose the size of group g (1 � g � G) is Ng and we have
PG

g¼1 Ng ¼ N . We denote by dg the data for group g

(1 � g � G). In this paper, we are interested in addressing
the following problem: The group labeling problem is to devise
a protocol to send each group data correctly to all its members
(tags) within the minimum time. By correctly, we mean that
the data for one group should not be received by tags of the
other groups. The performance metric is the communication
cost between the reader and the tags. Table 1 summaries
main notations used in the paper.

2.1 Single-Seed versus Multi-Seed

The communication between the reader and tags follows
the frame slotted Aloha protocol [6]: the reader initiates

TABLE 1
Main Notations

Symbols Descriptions

k-good Useful slot with k tags
N The number of tags in the system
G The number of groups
g, dg Group index, data for group g
Ng The number of tags of group g
f , l Frame size, the number of seeds
si The ith seed
Cij The set of tags mapped to jth slot under si
m The number of labeled tags in the current round
z The number of chosen useful slots in the current round
u Time efficiency
N 0 Unlabeled tags in current round
N 0g Unlabeled tags of group g in the current round
G0 The number of groups with unlabeled tags
f Upper bound of f
l Upper bound of l

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2851

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



communication first by broadcasting commands containing
the parameters, such as frame size f , l random seed(s) si
with i � l. In the existing single-seed protocols where l ¼ 1,
each tag uses its ID and the received seed to generate one
pseudo random number via hash function HðID; s1Þ and
then maps itself to the slot ðHðID; s1Þmod fÞ in the frame.
On the contrary, in our multi-seed protocol where l � 1,
each tag holds multiple pseudo random numbers with l dif-
ferent seeds and is mapped to l slots in the frame and the
most useful slot will be chosen by the reader to send data as
introduced shortly.

In this paper, we make the following definitions on slot
states: 1. Empty slot: Consider an arbitrary slot, if no tag is
mapped to this slot; 2. Heterogeneous slot: if multiple tags
from different groups are mapped to this slot. 3. Useless slot:
if this slot is either empty or heterogeneous. If the reader
sends data in such a slot, either no tag receives data or tags
from one group receive data of another group, which
should be avoided in the group labeling problem; 4. Useful
slot: if one or multiple tags from the same group are mapped
to this slot. In such a slot, the reader can send data to one or
multiple tags from the same group. 5. Reparable slot: A slot is
reparable if it becomes useful from a heterogeneous slot as
the protocol runs, which will happen when tag(s) blent with
the others from another group stays silent after being
assigned useful slots.

2.2 Motivation

As an indicator vector constructed from a single mapping
generates limited useful slots, much time is wasted on the
transmission in the useless slots. If multiple seeds are used
to generate multiple mappings, the reader can pick up the
most informative slots from them to build a composite indi-
cator vector (CIV), reducing the number of the useless slots.
Intuitively, assume a slot in a single indicator vector is use-
ful with the probability of 0.5, then with l seeds used to map
the tags this probability is 1� ð1� 0:5Þl, which quickly
approaches 100 percent with the increase of l.

In addition to increase the number of useful slots, using
multiple seeds can also contribute to more labeled tags. Let
k-good define a useful slot with k tags. A slot may be
k-good under one seed but kþ-good under other seeds
where kþ > k, which can be interpreted from the following
toy example.

Example 1. Consider an RFID system with two tag groups
G1 ¼ fx1; x2g and G2 ¼ fx3; x4; x5g and suppose a frame
of four slots and two seeds s1, s2. From Fig. 1where the
shaded rectangles stand for the useful slots, we find just
partial slots useful after either mapping, but a CIV of all

slots being useful can be built by selecting the most infor-
mative slots from two mappings. Specifically, designating
s1 for the first and third slots, and s2 for the second and
fourth slots, we can build a CIV indicating the seed
assignment for each slot so that all slots to be executed
become from useless ones (e.g., the 2nd slot under s1) to
useful ones (e.g., the 2nd slot under s2) and from 1-good
one (e.g., the 3rd slot under s2) to 2-good one (e.g., the 3rd
slot under s1).

Motivated by the above observation, we design a series
of seed assignment algorithms to build the CIV, and
develop a unified group labeling protocol, named GLMS, to
consolidate each algorithm with the concrete communica-
tion mechanism for the reader and tags, respectively. Note
that the designed seed assignment algorithms are used in
the first phase of the group labeling protocol GLMS. In the
following, we first introduce the group labeling protocol
and elaborate how to build the CIV, subsequently.

3 GROUP LABELING PROTOCOL WITH MULTIPLE

SEEDS (GLMS)

The execution of the protocol GLMS consists of multiple
rounds, each having three phases referred to as initialization
phase, screening phase and labeling phase, respectively. The
reader first uses one of the seed assignment algorithms,
namely AA, c-search-I, and c-search-II, to be introduced
in Section 4 to build a CIV that determines a unique tag-
seed-slot relationship. In the screening phase, the reader
sends the CIV to inform each active tag of whether and
when it is scheduled to receive its associated group data. In
the labeling phase, the reader transmits group data in the
designated slots to the eligible tags. If a tag receives its asso-
ciated group data, it will keep silent in the subsequent
rounds. The process of GLMS and the core function of each
phase are illustrated in Fig. 2.

Protocol Description. Consider an arbitrary round in the
execution of the protocol GLMS. Let N 0; N 0g denote the num-
ber of the remaining overall unlabeled tags and that of unla-
beled tags of group g in the beginning of this round,
respectively. And denote by G0 the number of the groups
with unlabeled tags. If it is the first round, it holds that
N ¼ N 0 and G ¼ G0. The l seeds denoted as si, 1 � i � l, are
used in this round to generate the CIV of f slots. Our multi-
seed protocol GLMS is shown in Algorithms 1 and 2.

1) Initialization Phase. Given l seeds and the frame size f ,
the CIV can be compounded from l mappings, each involv-
ing a different seed. How the values of f and l are chosen
will be analysed in Section 5 on the parameter optimisation.
Specifically, in the ith mapping, we employ seed si to map
each active tag to one of f slots in the frame. With all l seeds
used, the reader records l vectors, each consisting of f cells

Fig. 1. Exemplifying the motivation: The shaded rectangles typify useful
slots.

Fig. 2. The process of GLMS: Initialization phase, screening phase, and
labeling phase in sequence.

2852 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



storing tags mapped to the corresponding slots. Using one
of the seed assignment algorithms introduced in Section 4,
the reader can designate one seed for each slot in the CIV
maximizing the time efficiency in this round.

More specifically, based on the seed assignment, the
reader builds a CIV of f slots each of which corresponds to
a slot in the frame at the same position and stores the index
of the assigned seed. If designating seed si for a slot j, the
reader stores i that is the index of si in the jth slot of the
CIV. If a slot is still useless after l mappings, the reader sets
its value in the CIV to zero. Consequently, the positions of
non-zero value in the CIV stands for the useful slots of the
frame. As there are l seeds, we need dlog 2ðlþ 1Þe bits to
record one seed’s index, that is to say, the length of the CIV
is f � dlog 2ðlþ 1Þe.

Note that if a tag is mapped to a useful slot as specified in
the CIV, we refer to this slot as the useful slot for this tag.

Algorithm 1. GLMS for the Reader

1 // Phase one - the CIV construction
2 Generate l seeds s1, s2; . . . ; sl randomly
3 Map the unlabeled tags into l slots and generate f � l cells

each recording a set of the tags mapped to the correspond-
ing slot

4 Build CIV via AA or c�search-I or c�search-II; record the
number of non-zero slots in the CIV z

5 // Phase two - CIV transmission
6 Issue a frame start command, transmit CIV and the corre-

sponding frame size f and l seeds
7 // Phase three - tags labeling
8 for i ¼ 1 to z do
9 Issue slot-start command
10 Broadcast the corresponding group ID to the tags mapped

to the ith homogeneous slot
11 end
12 Update the set of the unlabeled tags and initiate the next

round

2) Screening Phase. The reader broadcasts a message con-
taining the built CIV, the frame size f and l seeds
s1; s2; . . . ; sl. Upon receiving the message, each tag can
extract two pieces of information from the CIV: One is
whether the tag is eligible to receive its group data in this
round. Specifically, each tag can employ the received l seeds
to select l slots in the frame and knows the corresponding l
positions it is mapped to in the CIV. Based on the rule of
generating the CIV, if a tag is mapped to the jth position in
the CIV under seed si and the value in that position is i,
then the tag regards slot j as the useful slot for it. In case
that the conditions can be satisfied under multiple seeds,
the tag only selects the slot with the smallest value of j.
While if a tag fails under all seeds, it does not participate in
any activity until next round.

The other one is which slot a qualified tag should actu-
ally wait for its group data. Because the CIV may contain
zero elements which stand for the useless slots, the reader
needs to remove the corresponding slots before starting the
frame to transmit group data for saving time. The key here
is that the tag must know which slots are removed. To that
end, we use the ordering approach [16]. Assume slot j is the
useful one for the tag, the tag first checks every position

before the position j in the CIV. If there exist ĵ non-zero ele-
ments, the tag will select ðĵþ 1Þth slot to receive its group
data and ĵ < j.

Let us see an example shown in Fig. 3. Consider an arbi-
trary tag x9. With seeds s1; s2; s3, x9 is mapped to the 2nd,
1st and 4th slots. After checking the corresponding posi-
tions in the CIV, x9 finds only the 4th element equal to 3
that is the index of s3, so it regards slot 4 as its useful slot.
Furthermore, as there exist two non-zero elements before
the 4th position in the CIV, x9 will wait for its group data at
slot 3 in the labeling phase. Therefore, only the three useful
slots will be executed in the labeling phase instead of four
in the original frame.

Algorithm 2. GLMS for Tags

1 Receive the CIV and the corresponding frame size f and l
random seeds

2 Compute lmapped slot number sn½i� ¼ Hðf; ID; siÞ
3 Initialize the current slot number csn 1 and current ran-

dom seed index ci 0
4 while TRUE do
5 Wait-for-slot-start().
6 j the number of zeros in the first csn positions in CIV
7 ci CIV ½csnþ j�
8 if ðcsnþ jÞ ¼¼ sn½ci� then
9 Store the received Group ID.
10 end
11 csn csnþ 1
12 end

3) Labeling Phase. After the qualification test in the screen-
ing phase, only the eligible tags partake in this phase. As
knowing all tag IDs and the CIV, the reader knows the order
of the slots actually selected by the eligible tags. Assume
there are z non-zero positions in the CIV, the reader initiates
a labeling frame of z slots and sends the corresponding
group data at each slot to the eligible tag(s) for which this
slot is useful. As the tag(s) in each slot comes from the same
group, they can be labeled simultaneously. On the other
hand, each tag learns from the CIV at which slot the reader
will transmit its group data and can thus receive the data at
that slot.

For instance, recall the example in Fig. 3, the reader actu-
ally initiates a frame containing three useful slots in Fig. 3. It
can label tags x1; x2; x3 by sending ID of group 1 in the slot
1, and label tags x5; x6 and x9; x10 in the slots 2 and 3,
respectively.

After the current round, the reader moves to the next
round, which is identical except that the labeled tags will
keep silent. That is, only the unlabeled tags attend the next
round. The above process repeats round after round until
all tags receive their associated group data.

In what follows, we start formally presenting the seed
assignment algorithms used to build the CIV.

Fig. 3. Interpreting indicator vector: s1; s2; s3 are the used seeds.

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2853

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



4 SEED ASSIGNMENT ALGORITHMS

The key of our multi-seed method lies in the seed assign-
ment arising in building the CIV. Specifically, given l seeds
si (1 � i � l) and the frame size f , the reader needs to des-
ignate one seed for each slot in the CIV and inform each
tag of the seed assignment through sending the CIV.
Therefore, if the CIV is built the tags mapped to each slot
are deterministic.

More specifically, recall that the CIV of f slots is com-
pounded from l mappings, there are l� f cells in total
each of which records a set of the tags mapped to the cor-
responding slot, as shown in Fig. 4. Cij stands for the set
of the tags mapped to slot j under seed si for 1 � i � l and
1 � j � f , and 1 � Ij � l denotes the index of the seed
finally assigned for slot j in the CIV, and Cj is the set of
tags that will be mapped to slot j under seed sIj following
the built CIV. Note that since l seeds are used and zero
represents useless slots, we need dlog ðlþ 1Þe bits to stand
for each seed index Ij. Moreover, it may happen that
Ij ¼ Ij0 for j 6¼ j0 because a seed may be assigned to multi-
ple slots in the CIV.

As a tag can be mapped to l positions under l different
seeds, slots from multiple mappings may share the same
tags, that is, Cij \ Ci0j0 6¼ ? for i0 6¼ i and j0 6¼ j. Define a set
comprising tags from the same group as pure set which is
equivalent to a useful slot. Define the time efficiency u as
the number of tags labeled per unit time. Recall that if a
seed is designated for a slot, then the tags mapped to this
slot under this seed are deterministic. In this sense, we
should carefully assign seeds such that the time efficiency u
can be maximized.

Given a seed assignment, let z be the number of yielded
useful slots and let m ¼ j [j Cjj be the size of the union of
the tags mapped to the useful slots. Let t0 and tg denote the
time for the reader to transmit one bit and data for group g,
respectively. Without loss of generality, we assume data
size for each group is identical. With (2), we formally define
the following seed assignment problem.

Problem 1 (Seed Assignment Problem). Given l� f sets of
the tags Cij for 1 � i � l and 1 � j � f , and define S as the
collection of the seeds assigned to each slot in the CIV, the seed
assignment problem is to seek S satisfying

S ¼ argmax
sIj

j [j Cjj
tgðaþ zÞ ;

where a ¼ fdlog 2ðlþ 1Þet0=tg. That is to say, given the seeds
and the frame size, the reader seeks an optimum collection S of
the seeds which will maximize the time efficiency u.

Algorithm 3. Approximation Algorithm for Problem 1

Input: si, f
Output: umax, tags in picked slots C, seed assignment S
1 Initialisation: C; S  ? ;R; z; umax  0;H  ðCijÞl�f
2 while j1 � f do
3 // Search the most useful slot
4 for j ¼ 1 to f do
5 for i ¼ 1 to l do
6 if Cij is useful and jCijj > R then
7 R jCijj; I  i; J  j
8 end
9 end
10 end
11 // Select the seed contributing to the most useful slot
12 if jC[CIJ j

tgðaþzþ1Þ � umax then

13 S  S [ ðsI ; JÞ /* Assign seed sI to slot J */ C  C [ CIJ ,
and z zþ 1

14 umax  jC[Cijj
tgðaþzÞ

15 else
16 Stop
17 end
18 // Clear the slots at Jth column in Fig. 4 and deduct the tags in

the picked slot from the remaining slots
19 for j ¼ 1 to f do
20 for i ¼ 1 to l do
21 if j ¼¼ J then
22 H  H=Cij; Cij  ?

23 else
24 Cij  Cij � CIJ

25 end
26 end
27 end
28 ifH ¼¼ ? then
29 Stop
30 end
31 end
31 Return umax; C; S

Problem 1 performs combinatorially, which is usually
NP-hard. The challenge here lies in how to prove its NP-
hardness. In the following, we formally state the NP-hard
observation and its proof.

Theorem 1. Problem 1 is NP-hard.

Proof. For clarity, we just outline the proof here and the
complete proof is provided in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/2934445. To study
the hardness of Problem 1, we prove it polynomially
reducible from the Maximum coverage problem [20]
which is a classic NP-hard problem. Given h sets and an
integer k � h with which we need to solve the Maximum
coverage problem, the polynomial reduction comprises
three steps: First, we replicate each set k times and obtain
h� k sets. Second, we introduce k dummy sets to guaran-
tee that each slot in the CIV is assigned only one seed.
Third, we prove that u reaches its maximum only when k
sets are chosen in Problem 1. tu
Due to theNP-hardness of SAP, inwhat follows, we design

a series of algorithms to approach the optimal time efficiency.

Fig. 4. Exemplifying the seed assignment problem: Cij is the set of the
tags mapped to slot j under seed si; Ij denotes the index of the seed
assigned for slot j in the CIV; Cj is the set of the tags mapped to slot j
under seed sIj .

2854 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/2934445
http://doi.ieeecomputersociety.org/10.1109/2934445


Specifically, we first design an approximation algorithm (AA)
and develop two simplified algorithmswith the less complex-
ity but good performance on the top ofAA.

4.1 Approximation Algorithm

4.1.1 Motivation

Recall the Problem 1 that seeks the seed assignment to maxi-
mize time efficiency u, we can achieve this objective from
two directions. On the one hand, we want to use fewer use-
ful slots, i.e., minimizing z, while maximizing the number
of the tags m involved in these used useful slots. Observing
the waste of heterogeneous slots (c.f. Section 2.2) in the prior
work, we, on the other hand, hope to design an algorithm
that is able to exploit the heterogeneous slots that can
become useful as the algorithm runs.

4.1.2 Overview

Define the most useful slot as the useful slot with the most
tags from the same group. The core idea of AA lies in that
each time the reader selects the seed contributing to the
most useful slot to maximize the time efficiency u. Note that
there is a unique seed-tag-slot mapping, that is, given any
two of them, we can fix the third one. Since a set of the tags
(c.f. Fig. 4) is indexed by the used seed and the mapped slot,
once a most useful slot is found the reader assigns the corre-
sponding seed to this slot and knows the tags mapped to
this slot, which are referred to as covered tags here.

Moreover, to enable the utility of heterogeneous slots,
the reader first deducts the covered tags from the remain-
ing nonempty slots including both heterogeneous and use-
ful slots, and then checks their states and picks the most
useful one among them. The rationale behind this is that
each covered tag will stay silent after its corresponding
most useful slot so that actually it will not be blent with
tags in the subsequent slots under all mappings, which ena-
bles the conversion of a subsequent heterogeneous slot into
a useful one. Note that we refer to such a heterogeneous
slot as reparable slot.

4.1.3 Algorithm Description

Formally, we illustrate the AA in Algorithm 3 with the
input of l seeds and the frame size f . It is easy to check that
the computation complexity of AA is Oðl � f2Þ. The main
procedures of AA are summarized below.

� Each time the reader
– picks the most useful slot which the most uncov-

ered tags are mapped to and brings the most gain
in time efficiency u. (Line 4-12 in Algorithm 3)

– records the subscripts of the chosen slot standing
forwhich seedwill be assigned to this slot. (Line 13)

– records the tags in the chosen slot and marks
them as covered, and removes them from the

remaining slots. Since only one seed should be
assigned to each slot in the CIV, the slots under
the other mappings but in the same column (c.f.
Fig. 4) as the chosen most useful slot would be
emptied. (Line 19-27)

� The algorithm stops if there is no useful slot or no
useful slot contributing to the greater time efficiency.

� The algorithm outputs the seed allocation for each
slot in the CIV and a collection of the covered tags,
with which the time efficiency u is maximized under
the given input.

Algorithm 4. c-Search-I for Problem 1

Input: si, f , c
Output: umax, tags in picked slots C, seed assignment S
1 Initialisation: C; S  ? ;R; z; umax  0;H  ðCijÞl�f
2 while j1 � f do
3 Choose c columns out of unselected ones randomly
4 // Search the most useful slot from the c columns: define jj0 as

the j0th chosen column
5 for j0 ¼ 1 to c do
6 for i ¼ 1 to l do
7 Cijj0  Cijj0 � CIJ ;H  H=CiJ

8 if Cijj0 is useful and jCijj0 j > R then

9 R jCijj0 j; I  i; J  jj0
10 end
11 end
12 end
13 Conduct the operations as lines 12� 14 in Algorithm 3
14 end
15 Return umax; C; S

After executing Algorithm 3, the reader builds a CIV and
knowswhich tags can be labeled inwhich slots. Specifically, if
a setCij in the useful slot is chosen, then the reader designates
seed si for the slot j and sets the value of the slot j in the CIV
to i. In case that all sets in the column j in Fig. 4 are not chosen,
the reader sets the slot j’s value to zero in the CIV.

Next, we illustrate AA in Fig. 5 with 2 seeds and a frame
of 3 slots. First, the reader finds C12 the most useful, then it
assigns s1 to slot 2 in the CIV and empties Ci2 while remov-
ing the tags in the intersections between C12 and the others,
yielding C0ij. Repeating the operations, the reader finds C023
the most useful via searching from the columns 1 and 3,
and then C	21 from the columns 1 in sequence. Finally, the
reader builds the CIV as shown in Fig. 5. To evaluate
algorithm performance, we derive the competitive ratio of
the algorithm.

Lemma 1 (Competitive ratio of Algorithm 3). Let uopt

denote the optimal time efficiency of Problem 1, it holds for the
time efficiency umax of Algorithm 3 that umax � 0:632uopt.

Proof. The proof is detailed in Appendix B, available
online. tu

4.2 Simplified Algorithms

For better scalability to the system scale, we here present two
simplified algorithms, namely c-search-I and its improved
version: c-search-II, to reduce the complexity of AA while
achieving the comparable performance.

Fig. 5. AA: The streak represents the unselected most useful slot.

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2855

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



4.2.1 c-Search-I

The key difference of c-search-I from AA consists in locally
searching the most useful slot among the c columns in Fig. 4
chosen randomly each time instead of global searching
among all f columns in AA. At first glance, this simplified
operation would degrade the performance significantly, but
besides the less complexity, another advantage by this is
curing more heterogeneous slots, which benefits to the
increase in time efficiency. Look at an example with the
frame size f and c � f . Assume that the first most useful
slot in AA occurs at one of the mappings in fth column of
Fig. 4, then none of heterogeneous slots can become useful.
This is because a tag mapped to a heterogeneous slot can be
eliminated from this slot only when this heterogeneous slot
is later than the most useful slot for this tag. While in
c-search-I, if we find the first most useful slot in f=2th col-
umn by locally searching among c randomly chosen col-
umns, then we can exploit the subsequent reparable slots.

Algorithm 5. c-Search-II at c ¼ 1 for Problem 1

1 while j1 � f do
2 // Search the most useful slot from the j1th column
3 for i ¼ 1 to l do
4 Ci;j1  Ci;j1 � CIJ ;H  H=CiJ

5 if Ci;j1 is useless then
6 Ci;j1  ?

7 else if jCi;j1 j > R then
8 R jCi;j1 j; I  i; J  j1
9 end
10 end
11 The remaining steps are the same as c-search-I
12 end

We list c-search-I in Algorithm 4 with a new input c and
summarize the main procedures as below: Each time the
reader

� chooses c columns from unselected ones randomly,
containing c � l slots.

� removes the covered tags from these chosen slots.
� picks the most useful slot among the slimmed-down

c � l slots, which achieves the most gain in time effi-
ciency u.

� records the subscripts of the chosen slot standing for
which seed will be assigned to which slot.

� records the tags in the most useful slot picked and
marks them as covered.

Next, we illustrate the influence of c on the performance.

Example 2. In the experiment, we partition 1000 tags evenly
into G ¼ 2; 4; 8; 10 groups, and vary c from 1 to 40. Fig. 6
shows that the time overhead at c ¼ 40 is the least, which
is very close to AA. For the tradeoff between the complex-
ity and performance, we will set c ¼ 40 in the simulation
in Section 6.

4.2.2 c-Search-II

As described above, c-search-I achieves the comparable per-
formance with the less complexity, but it may fail to exploit
the reparable heterogeneous slots furthest. For example, if
the first most useful slot in c-search-I arises in f=2th column
among c randomly chosen columns, then we cannot exploit
the potential reparable slots in the first ðf2 � 1Þ columns. To
address the issue in c-search-I, we propose an improved
algorithm, named c-search-II, pursuing less complexity but
better performance than c-search-I.

The main difference from c-search-I is that c-search-II
chooses c columns among the unselected columns in the
ascending order of the column number instead of randomly. For
instance, assume c ¼ 10, we choose the columns 1—10 as the
candidates (c.f. Fig. 4). In the case that columns 1, 3 and 4
have been chosen previously, we will select columns 2 and
5—13. Next, we would like to take an example to explain the
main differences among AA, c-search-I and c-search-II.

Algorithm 6. Seeking the Optimal f and l

Input:N 0, G0, step, t1 and tgid
Output: u	, f	, l	

1 Initialisation: f ¼ 1; l ¼ 1; u	 ¼ 0; Q ¼ 0
2 while f � f and l � l do
3 Execute Algorithms 3 or 4 or c-search-II
4 u ¼ umax returned from the executed algorithm
5 Q ¼ Qþ 1, find fq	 , lq	 with argmax1�q�Q uðfq; lqÞ
6 f	 ¼ fq	 , l	 ¼ lq	 , u	 ¼ uðfq	 ; lq	 Þ
7 Update f with (3) and update lwith (4)
8 f ¼ f þ step, l ¼ lþ 1
9 if f > f then
10 if l � l then
11 f ¼ 1 : step : f
12 else
13 Stop
14 end
15 else if l > l then
16 l ¼ 1 : l
17 end
18 end
19 Return optimum efficiency u	 and the optimum (f	; l	)

Example 3. We show the first round operation of the three
algorithms in Fig. 8 where we suppose c ¼ 2 in two simpli-
fied algorithms. Specifically, AA finds C24 the most useful
slot by globally searching among 2 	 4 cells, while c-search-I
first selects two columns randomly (assume that columns 2
and 4 are chosen), and searches for the most useful slot
among 2 	 2 cells. Differently, c-search-II chooses the first
two columns and then searches among the corresponding
2 	 2 cells. As C11 is found the most useful in c-search-II, the
reparable slots in the columns 2—4 can be exploited later.

In this paper, we will set c to 1 in c-search-II and state
the seed assignment process in Algorithm 5. The rationale

Fig. 6. Impact of c in c-search-I.

2856 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



behind the setting is that with c ¼ 1 we can employ
the potential reparable slots to the greatest extent, namely
those in the columns 2—f . Besides, the yielded complexity
is Oðl � fÞ which is less than Oðc � l � fÞ in c-search-I and
Oðl � f2Þ in AA, which are listed in Table 2. Under the set-
tings as in Example 2, we show in Fig. 7 that c-search-II
achieves good performance at c ¼ 1. We will further evalu-
ate the performance of c-search-II at c ¼ 1 in Section 6.

5 PARAMETER CONFIGURATION

In this section, we investigate how to tune the used parame-
ters in the protocol to maximize the time efficiency which is
defined as the ratio of the labeled tag population size to the
execution time in each round. The reason for optimizing
time efficiency lies in that the higher time efficiency means
that the more tags will be labeled per unit time.

The execution time of the current round, defined as
T , comprises the time to transmit the CIV and group data.
Denote by z the frame size in the labeling phase, for f slots
are executed in the screening phase, T can be calculated as

T ¼ dlog 2ðlþ 1Þe � f � t0 þ z � tg; (1)

where t0 and tg denote the time for the reader to transmit
one bit and group data, respectively.

Let m be the number of tags labeled in the considered
round, then the time efficiency in this round, denoted by u, is

u ¼ m

T
¼ m

dlog 2ðlþ 1Þe � f � t0 þ z � tg : (2)

Given (2) on u, we next need to find such a pair of f and l
that u achieves the maximum. Note that we use u and uðf; lÞ
interchangeably in the rest of the paper. Asm and z and their
relationship in the protocol cannot be formulated, it is neces-
sary to search the optimal parameter pair of f and l. For this
purpose, we propose a dynamic searching algorithm.

Before introducing the searching algorithm, we first
establish an upper bound for f and l, denoted by f and l
respectively, in the following lemma.

Lemma 2. For 8f > f and/or l > l, it holds that ûðf; lÞ <
ûðf; lÞ and ûðf; lÞ < ûðf; lÞ where ûðf; lÞ ¼ N 0

dlog 2ðlþ1Þe�f �t0þG0 �tg.

Proof. The proof is provided in Appendix C, available
online. tu
Having derived the upper-bounds of f and l, we get the

searching region ½1; f� � ½1; l�. To speed up the searching
process, we propose a dynamic searching algorithm updat-
ing the value of f and l for the ðQþ 1Þth search from the
observations of the Q leading searches. Let fq; lq with
1 � q � Q denote each pair of f and l in the first Q searches,
we can find the optimal pair ðfq	 ; lq	 Þ contributing to the
greatest u in the first Q searches. Given f and l, executing
any of AA, c-search-I and c-search-II will return u. With
observations above, we update f and l by solving the fol-
lowing equations:

Update f : uðfq	 ; lq	 Þ ¼ ûðf; lq	 Þ; (3)

Update l : uðfq	 ; lq	 Þ ¼ ûðfq	 ; lÞ: (4)

Formally, Section 4 the searching process is illustrated in
Algorithm 6. With the input of the number N 0 of the unla-
beled tags, the number G0 of groups with unlabeled tags as
well as the step size for f , t1 and tg, Algorithm 6 will output
the optimal pair (f	; l	) and the maximum time efficiency u	.

Considering the memory of commercial tags ranges from
32 bits to 8192 bits [8], one cannot use an arbitrary number of
seeds, so we denote by lact the maximum seeds a tag can store
in its memory. Consequently, we need to update l in Algo-
rithm 6 by choosing the minimum one between lact and the
solution of (4). Note thatwe set lact to 10 in the simulation.

Moreover, we investigate how the frame size f influences
the time efficiency u via the experiment where lact ¼ 10 and
N ¼ 103 tags are evenly partitioned into G ¼ 4; 8; 10 groups.
Specifically, we snapshot the first round of GLMS with
c-search-I and c-search-II. Figs. 9 and 10 show that the time
efficiency u can be regarded as convex approximately with
respective to f . It is thus feasible to employ the gradient
method to speed up the searching for the optimum f	.

Fig. 8. Difference among three algorithms: s1 and s2 are two seeds.

TABLE 2
Algorithm Complexity with l Seeds and the Frame Size f

Algorithm AA c-search-I c-search-II

Complexity Oðl � f2Þ Oðc � l � fÞ Oðl � fÞ

Fig. 7. Impact of c in c-search-II.

Fig. 9. c-search-I: u versus f.

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2857

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



Discussion on Multi-reader case. In large-scale RFID sys-
tems deployed in a large area, multiple readers are required
to ensure the full coverage for a larger number of tags. To
work with multiple readers, we leverage the same approach
as [9], [17], [25] that the back-end server synchronizes and
schedules all readers such that a multi-reader RFID system
operates as the single-reader one. Specifically, the back-end
server calculates all the parameters and constructs the CIV
involved in the group labeling protocol and sends them to
all readers such that the readers broadcast the same param-
eters and CIV to the tags.

Explanation on NP-hardness. When lact ¼ 1 or the opti-
mum l	 ¼ 1, our protocol is degraded to the single-seed pro-
tocol which does not need to assign seeds and is not NP-
hard. The NP-hard seed assignment problem arises from
the employment of multiple seeds. Albeit NP-hardness
brings new challenges, we design a series of algorithms run-
ning in polynomial time to approximate the optimum and
confirm their performance theoretically and experimentally.
Moreover, the computation is done in the back-end server
which is usually of the high computational capacity.

Potential implementation. Consider the implementation
of the proposed protocol, programmable tags, such as those
based on WISP hardware, and a USRP-based Software-
Defined RFID reader are needed. In order to achieve hashing
functionality, hash values are pre-stored in each tag, which
is supported byWISP 4, WISP 5, and MSP430. In the scheme
implementation, two commands need to be added: 1) TRAN-
SIV that is used to transmit the CIV; 2) QUERPAR that con-
tains the parameters used in the protocol and starts the slot.

Specifically, the reader first sends TRANSIV commend to
broadcast theCIV, and then sendsQUERPAR commend. Con-
sider an arbitrary slot j. When a tag receives this commend, it
starts computing the number by selecting the blog fc-bit string

starting from the ith bit in the pre-stored hash value like in [4],
where i is the seed value of the jth position in the CIV. If the
number equals to the current slot number, then the tag waits
and receives the data sent from the reader.

6 PERFORMANCE EVALUATION

6.1 Simulation Settings

We evaluate the performance of proposed approaches in
comparison with the state-of-the-art solution CCG [10]. We
conduct the experiments under both symmetric and asym-
metric scenarios with various number of groups and group
sizes. By symmetric/asymmetric, we mean that tag popula-
tion size in each group is identical/different. We use the com-
munication parameters specified in the EPCglobal C1G2
standard [6]. Specifically, the data rate from the reader to tags
is 26.7 kbps, meaning it takes 37.45 ms for the reader to trans-
mit one bit, so we have t1 ¼ 37:45 ms. We take group ID of
dlog 2Ge bits as group data, so we have tg ¼ 37:45 	 dlog 2Ge.
Besides, we consider the time interval of 302 ms between any
two consecutive communications between the reader and
tags in the computation of the execution time.

Due to the complexity of AA, we will focus on evaluating
the GLMS running the simplified algorithms, namely GLMS
with c-search-I and GLMS with c-search-II, but we can mea-
sure the performance of AA from Fig. 6 in the RFID system
of 1000 tags. As discussed in Sections 4.2.1, 4.2.2 and 5, we
set c ¼ 40 for c-search-I, and set c ¼ 1 and lact ¼ 10 for
c-search-II. Albeit using lact ¼ 10, we also evaluate its impact
on the performance. For simplification, we will use c-search-
I and c-search-II in the figures in the below to stand for
GLMSwith c-search-I and c-search-II, respectively.

6.2 Simulation Results

The performance metric is the communication cost in terms of
execution time. We first show the influence of lact with diverse
number of groups G and tags N in the system, and simulate
symmetric scenarios with G and the group size varied and
proceed to its asymmetric counterparts, subsequently.

6.2.1 Performance Evaluation Under Different lact

Here, we conduct experiments to investigate the impact of
lact on GLMS with c-search-I and GLMS with c-search-II.
To that end, we simulate scenarios with N ¼ 100;
1000; 2000; 5000 tags in the system where the tags are evenly
partitioned into G ¼ 4; 8; 10 groups, respectively. And the

Fig. 10. c-search-II: u versus f.

TABLE 3
Execution Time Under Diverse N;G; lact: Studying the Impact of lact

Protocol
Vary the number of groups G and lact: ðG; lactÞ

(4,10) (4,15) (4,20) (8,10) (8,15) (8,20) (10,10) (10,15) (10,20)

c-search-I

N ¼ 100 0.025 0.025 0.025 0.039 0.037 0.036 0.042 0.041 0.039
N ¼ 1000 0.333 0.311 0.31 0.444 0.426 0.424 0.473 0.456 0.449
N ¼ 2000 0.680 0.636 0.623 0.935 0.877 0.871 0.982 0.928 0.917
N ¼ 5000 1.700 1.647 1.622 2.260 2.240 2.204 2.385 2.287 2.282

c-search-II

N ¼ 100 0.024 0.024 0.024 0.037 0.035 0.035 0.041 0.038 0.037
N ¼ 1000 0.32 0.285 0.282 0.431 0.407 0.391 0.455 0.425 0.421
N ¼ 2000 0.629 0.572 0.562 0.890 0.813 0.801 0.946 0.880 0.860
N ¼ 5000 1.581 1.459 1.433 2.209 2.001 1.978 2.331 2.127 2.204

2858 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



value of lact are set to 10; 15; 20. The simulation results are
listed in Table 3.

As shown in Table 3, the increase in the value of lact
reduces the execution time under all settings. Specifically,
the performance difference between lact ¼ 10 and lact ¼ 20 is
bigger than that between lact ¼ 15 and lact ¼ 20 which is less
than 3 percent. More specifically, we observe from the
results that the most significant performance difference is
about 11 percent arising between lact ¼ 10 and lact ¼ 20 for
GLMS with c-search-II when G ¼ 4 and N ¼ 2000. Consid-
ering the constraint on memory capacity of commercial tags
as discussed in Section 5 and the tradeoff between the
computational complexity and the execution time, we set
lact ¼ 10 in the subsequent simulations.

6.2.2 Performance Comparison Under Symmetric

Scenario

This scenario consists of two cases: one is varying the num-
ber of the groups and the other is varying the group size.

Case 1.Here we set the total number of the tags N ¼ 12000
and G ¼ 2 : 2 : 10 with the identical group size. From the
results shown in Fig. 11a, we can observe that GLMS with
c-search-II and GLMS with c-search-I perform better than
CCG,with the performance gain of up to 26.8 and 15.9 percent,
respectively. This is because we employ multiple seeds to
reduce the transmission of useless slots and c-search-II can fur-
thest exploit the heterogeneous slots that will become useful.
Besides, increasing the number of groups renders more execu-
tion time, asmore groups reduce the useful slot probability.

Case 2. Here we set G ¼ 3; 6 while varying the group size
from 500 to 2000, and show the results in Figs. 11b and 11c,
respectively. As shown in the pictures, GLMS with
c-search-I and GLMS with c-search-II can still finish the
group labeling task within the less time than CCG. Espe-
cially, with c-search-II, GLMS can save time, under all

group size settings, at least 22.5 percent when G ¼ 3, and at
least 14.8 percent when G ¼ 6.

6.2.3 Performance Comparison Under Asymmetric

Scenario

This scenario consists of there cases: the first two cases are
the asymmetric counterparts of the symmetric scenarios, i.e.,
varying the number of the groups and the group size, respec-
tively, andwe increase the asymmetry in the third case.

Case 1. In this case, we choose each group size randomly
from [100, 2000] while varying G from 2 to 10, and depict
the results in Fig. 12a. It can be drawn from Fig. 12a that
c-search-II achieves the best time efficiency and c-search-I
performs better than CCG, which results from the ability of
our approaches of exploiting more useful slots. Specifically,
c-search-II and c-search-I reduce the time up to 34.2 and
24.3 percent, respectively, in comparison with CCG.

Case 2. In this case, we set the number of the groups to
G ¼ 3; 6, and choose the group size randomly from ½a; 5000�
with a ¼ 125; 625; 1250; 2500. Figs. 12b and 12c depict the sim-
ulation results, from which we observe that c-search-II per-
forms best and c-search-I is also better than CCG. Specifically,
c-search-II and c-search-I reduce the time cost up to 23.5 and
18.3 percent when G ¼ 3, and up to 17.2 and 12.1 percent
whenG ¼ 6, respectively, in comparisonwith CCG.

Case 3. In this case, we also set G ¼ 3; 6, but we synthe-
size the following four subcases by choosing the group size

Fig. 11. Performance comparison in symmetric scenario with the various number of groups and group sizes: Smaller execution time means better
performance.

Fig. 12. Performance comparison in asymmetric scenario with the various number of groups and group sizes: Smaller execution time means better
performance.

TABLE 4
Performance Evaluation In Case 3

Protocol Subcase 1 Subcase 2 Subcase 3 Subcase 4

CCG 1.1971 2.9932 1.429 3.1914
c-search-I 0.9567 2.5905 1.1704 2.7825
c-search-II 0.8719 2.3832 1.0496 2.6052

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2859

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



from different ranges: Subcase 1: G ¼ 3, we choose the
group size randomly for the first group from [100,500], and
from [2000,3000] for the others. Subcase 2: G ¼ 6, we choose
the group size randomly for the three groups from
[100,500], and from [2000,3000] for the others. Subcase 3:
G ¼ 3, we choose group size randomly for the three groups
from [100,500], [1000,2000], and [2000,3000], respectively.
Subcase 4: G ¼ 6, we choose the group size randomly for
the first two groups from [100,500], from [2000,3000] for the
last two groups, and [1000,2000] for the others, respectively.
As shown in Table 4, c-search-II and c-search-I always out-
perform CCG. Specifically, CCG spends up to 27.6 and 20.1
percent time more than ours, respectively, for the transmis-
sion of useless slots.

6.2.4 Performance Comparison Under Asymmetric

Scenario with Other Distributions

Normal distribution: We consider three cases, each of which
has the same number of the groups but has the different
group sizes. Specifically, we set G ¼ 2 : 2 : 10 in all cases,
and each group size follows the normal distribution
Nð1000; d2Þwith the standard deviation d varied from 200 in
Case 1 to 400 in Case 2 and to 800 in Case 3. As shown in
Fig. 13, GLMS with c-search-II is the fastest with the less
complexity than c-search-I, and saves time of up to 27, 23,
28 percent in the three cases, respectively, compared with
CCG. Zipfian distribution: Each group size is sampled from
[1,1000] following the Zipfian distribution Zð1000; 1; GÞ
with the number of groups G set to f10; 20; 50; 100g. The
performance gain of c-search-II over CCG is 31, 27, 20, and
8 percent, respectively.

7 RELATED WORK

Group labeling is a common functionality for many RFID
applications. This section presents the prior works on group
labeling and the existing multi-seed/hash RFID protocols.

The feasible solutions to the group labeling problem. One
straightforward solution is to use the basic polling protocol
(BP) [16] where each tag is polled with its group data by the
reader one by one. And BIC [26] can label each tag with its
group data by informing each tag of the singleton slot when
the tag should wait for its group data. These methods only
employ singleton slots such that only one tag can be labeled
per slot, as a result, they spend too much time either sending
many tag IDs or group data and are thus time-consuming.

To improve time efficiency, the authors in [10] devise three
protocols, namely EPG, FIG and CCG. In EPG, the reader first
polls all tags in the same group and sends the group data

once. EPG is better than BP for less transmission of group
data, however, it still wastes time sending many tag IDs. In
FIG, the reader builds a Bloom filter for each group from its
tags to filter out tags of the other groups. Although outper-
forming EPG, FIG suffers from the false positives of Bloom fil-
ter and has to deactivate the wrong tags by polling, which
increases the time cost. To address this problem, CCG allows
the reader send different group data to tags of multiple
groups in one round. The reader sends a single indicator vec-
tor to inform tags of each slot state such that only the tags in
the useful slots will receive their respective group data.
Instead of using one seed in CCG, this paper employs multi-
ple seeds to build a composite indicator vector to further
improve the time efficiency.

Multi-seed/hash based protocols in RFID systems. The
multi-seed/hash methods are used to address the information
collection and tag monitoring tasks in RFID systems. Chen
et al. [4] employ multiple hashes to enable the fast information
collection. Then, the multi-seed/hash method is used in moni-
toring the missing tag event and unknown tag event. Specifi-
cally, Luo et al. [14] introduce the multi-seed method to detect
missing tags in an RFID system. The works [12], [24], [25]
address the missing tag detection and identification with mul-
tiple hashes. Recently, Gong et al. [7] combine the Bloom filter
with multi-seed method in order to detect the unknown tags
fast and reliably. The main novelty of our work is exploiting colli-
sion slots instead of only singleton or empty slots in these works.
Moreover, we address a different group labeling problem, making the
theoretical analysis completely new. We would like to emphasize that
this paper is the first work proving NP-hardness of SAP arising
from the application of multiple seeds and designing the approxima-
tion algorithms, which makes our work more challenging.

8 CONCLUSION

This paper studied how to achieve efficient group labeling.
To this target, we proposed a newmulti-seed group labeling
protocol GLMS. We found the NP-hard seed assignment
problem arising from the employment of multiple seeds. To
address this problem, we first introduced an approximation
algorithm with the proved competitive ratio and then
designed two simplified algorithms with the less complex-
ity and comparable performance. The simulation results
demonstrate the superiority of the proposed approaches.

ACKNOWLEDGMENTS

This work is supported in part by the NSF of China (no.
61901035) and Beijing Institute of Technology Research
Fund Program for Young Scholars and Young Elite Scientist

Fig. 13. Performance comparison in asymmetric scenario with the normally distributed group size: Smaller execution timemeans better performance.

2860 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



Sponsorship Program by CAST and Chongqing Key Labo-
ratory of Mobile Communications Technology, and was
supported in part by a Canada NSERC Discovery Grant and
an NSERC E.W.R. Steacie Memorial Fellowship. Part of the
work of R. Zhang, S. Zhang is supported by the NSF of
China (no. 61801064, no. 61502330).

REFERENCES

[1] WISP platform. 2006. [Online]. Available: http://wisp.wikispaces.
com/

[2] Barcoding Inc., “How RFID works for inventory control in the
warehouse.” 2013. [Online]. Available: http://www.barcoding.
com/rfid/inventory-control.shtml

[3] M. Chen, J. Liu, S. Chen, and Q. Xiao, “Efficient anonymous cate-
gory-level joint tag estimation,” in Proc. IEEE Int. Conf. Netw. Pro-
tocols, 2016, pp. 1–10.

[4] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for sensor-augmented RFID networks,” in Proc. IEEE
INFOCOM, 2011, pp. 3101–3109.

[5] C. Duan, L. Yang, and Y. Liu, “Accurate spatial calibration of
RFID antennas via spinning tags,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., 2016, pp. 519–528.

[6] EPCglobal Inc., “Radio-frequency identity protocols class-1 gener-
ation-2 UHF RFID protocol for communications at 860 MHz -
960 MHz version 1.0.9,” 2005. [Online]. Available: http://www.
gs1.org

[7] W. Gong, J. Liu, and Z. Yang, “Fast and reliable unknown tag
detection in large-scale RFID systems,” in Proc. 17th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput., 2016, pp. 141–150.

[8] IMPINJ, “RFID tag chips.” 2015. [Online]. Available: http://
www.impinj.com/products/

[9] M. Kodialam, T. Nandagopal, andW. C. Lau, “Anonymous tracking
using RFID tags,” in Proc. IEEE INFOCOM, 2007, pp. 1217–1225.

[10] J. Liu, B. Xiao, S. Chen, F. Zhu, and L. Chen, “Fast RFID grouping
protocols,” in Proc. IEEE INFOCOM, 2015, pp. 1948–1956.

[11] X. Liu, K. Li, A. X. Liu, S. Guo, M. Shahzad, A. L. Wang, and
J. Wu, “Multi-category RFID estimation,” IEEE/ACM Trans. Netw.,
vol. 25, no. 1, pp. 264–277, Feb. 2017.

[12] X. Liu, et al., “A multiple hashing approach to complete identifi-
cation of missing RFID tags,” IEEE Trans. Commun., vol. 62, no. 3,
pp. 1046–1057, Mar. 2014.

[13] X. Liu, et al., “Top-k queries for multi-category RFID systems,” in
Proc. IEEE INFOCOM, 2016, pp. 1–9.

[14] W. Luo, S. Chen, T. Li, and Y. Qiao, “Probabilistic missing-tag
detection and energy-time tradeoff in large-scale RFID systems,”
in Proc. 13th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., 2012,
pp. 95–104.

[15] S. Qi, et al., “Double-edged sword: Incentivized verifiable product
path query for RFID-enabled supply chain,” in Proc. IEEE Int. Conf.
Distrib. Comput. Syst., 2017, pp. 414–424.

[16] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling pro-
tocols in RFID systems,” in Proc. 12th ACM Int. Symp. Mobile Ad
Hoc Netw. Comput., 2011, Art. no. 25.

[17] M. Shahzad and A. X. Liu, “Expecting the unexpected: Fast and
reliable detection of missing RFID tags in the wild,” in Proc. IEEE
INFOCOM, 2015, pp. 1939–1947.

[18] L. Shangguan, et al., “OTrack: Order tracking for luggage in
mobile RFID systems,” in Proc. IEEE INFOCOM, 2013, pp. 3066–
3074.

[19] B. Sheng, C. C. Tan, Q. Li, andW. Mao, “Finding popular categories
for RFID tags,” in Proc. 9th ACM Int. Symp.Mobile AdHocNetw. Com-
put., 2008, pp. 159–168.

[20] V. V. Vazirani,Approximation Algorithms. Berlin, Germany: Springer-
Verlag, 2003.

[21] D. Wu, M. J. Hussain, S. Li, and L. Lu, “R2: Over-the-air reprog-
ramming on computational RFIDs,” in Proc. IEEE Int. Conf. RFID,
2016, pp. 1–8.

[22] D. Wu, L. Lu, M. J. Hussain, S. Li, M. Li, and F. Zhang, “R3: Reliable
over-the-air reprogramming on computational RFIDs,” ACM Trans.
Embedded Comput. Syst., vol. 17, no. 1, 2017, Art. no. 9.

[23] X. Gao, P. Wang, D. Niyato, K. Yang, and J. An, “Auction-based
time scheduling for backscatter-aided RF-powered cognitive
radio networks,” IEEE Trans. Wireless Commun., vol. 18, no. 3,
pp. 1684–1697, Mar. 2019.

[24] J. Yu, L. Chen, R. Zhang, and K. Wang, “Finding needles in a hay-
stack: Missing tag detection in large RFID systems,” IEEE Trans.
Commun., vol. 65, no. 5, pp. 2036–2047, May 2017.

[25] J. Yu, L. Chen, R. Zhang, and K. Wang, “On missing tag detection
in multiple-group multiple-region RFID systems,” IEEE Trans.
Mobile Comput., vol. 16, no. 5, pp. 1371–1381, May 2017.

[26] H. Yue, et al., “A time-efficient information collection protocol for
large-scale RFID systems,” in Proc. IEEE INFOCOM, 2012,
pp. 2158–2166.

[27] H. Zhang, et al., “Moo: A batteryless computational RFID and
sensing platform.” 2014. [Online]. Available: http://spqr.cs.umass.
edu/moo/

[28] K. Zhao, et al., “EMod: Efficient motion detection of device-free
objects using passive RFID tags,” in Proc. IEEE Int. Conf. Netw. Pro-
tocols, 2015, pp. 291–301.

[29] Y. Zheng and M. Li, “P-MTI: Physical-layer missing tag identifica-
tion via compressive sensing,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1356–1366, Aug. 2015.

Jihong Yu (M’19) received the BE degree in
communication engineering and the ME degree
in communication and information systems from
the Chongqing University of Posts and Telecom-
munications, Chongqing, China, in 2010 and
2013, respectively, and the PhD degree in com-
puter science from the University of Paris-Sud,
Orsay, France, in 2016. He was a research fellow
with the School of Computing Science, Simon
Fraser University, Canada. He is currently a pro-
fessor with the School of Information and Elec-

tronics, Beijing Institute of Technology. His research interests include
RFID, backscatter networks, and Internet of things.

Jiangchuan Liu (S’01-M’03-SM’08-F’17) received
the BEng (cum laude) degree from Tsinghua Uni-
versity, Beijing,China, in 1999, and thePhDdegree
from the Hong Kong University of Science and
Technology, in 2003. He is currently a full professor
with the School of Computing Science, Simon
Fraser University, British Columbia, Canada. He is
a steering committeemember of the IEEETransac-
tions on Mobile Computing, and associate editor of
the IEEE/ACM Transactions on Networking, the
IEEE Transactions on Big Data, and the IEEE

Transactions on Multimedia. He is a co-recipient of the Test of Time Paper
Award of IEEE INFOCOM (2015), ACM TOMCCAPNicolas D. Georganas
Best Paper Award (2013), and ACMMultimedia Best Paper Award (2012).
He is a fellow of the IEEE, NSERC E.W.R. Steacie Memorial, and Cana-
dian Academy of Engineering.

Rongrong Zhang received the BE and ME
degrees in communication and information sys-
tems from the Chongqing University of Posts and
Telecommunications, Chongqing, China, in 2010
and 2013, respectively, and the PhD degree in
computer science from the University of Paris
Descartes, France, in 2017. She was a research
fellow with the School of Electrical Engineering
and Computer Science, University of Ottawa,
Ontario, Canada, and is an associate professor
with Capital Normal University, Beijing, China.

Her research interests focus on wireless area body networks for e-health
applications.

YU ET AL.: MULTI-SEED GROUP LABELING IN RFID SYSTEMS 2861

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 

http://wisp.wikispaces.com/
http://wisp.wikispaces.com/
http://www.barcoding.com/rfid/inventory-control.shtml
http://www.barcoding.com/rfid/inventory-control.shtml
http://www.gs1.org
http://www.gs1.org
http://www.impinj.com/products/
http://www.impinj.com/products/
http://spqr.cs.umass.edu/moo/
http://spqr.cs.umass.edu/moo/


Lin Chen (S’07-M’10) received the BE degree in
radio engineering from Southeast University, China,
in 2002, the engineer diploma degree from Telecom
ParisTech, Paris, in 2005, and the MS degree in
networking from the University of Paris 6. He is cur-
rently a professor with the School of Data and Com-
puter Science, Sun Yat-sen University, Guangzhou,
China. He serves as chair of the IEEE Special
Interest Group on Green and Sustainable Network-
ing and Computing with Cognition and Cooperation
and the IEEE Technical Committee on Green Com-

munications and Computing. His main research interests include control
for wireless networks, distributed algorithm design, and game theory. He is
amember of the IEEE.

Wei Gong (M’14) received the BS degree from
the Department of Computer Science and Tech-
nology, Huazhong University of Science and
Technology, Wuhan, China, in 2003, and the MS
and PhD degrees from the School of Software and
Department of Computer Science and Technol-
ogy, Tsinghua University, Beijing, China, in 2007
and 2012, respectively. He was a research fellow
with the School of Computing Science, Simon
Fraser University, Canada, and is currently a
professor with the School of Computer Science

and Technology, University of Science and Technology. His research
interests include backscatter networks, mobile computing, and Internet of
things. He is a member of the IEEE.

ShurongZhang received the PhD degree inmath-
ematics from Shanxi University, China, in 2013.
She is currently a lecturer with the College of Math-
ematics, Taiyuan University of Technology, China.
Her research interests include graph theory and
interconnection networks, computational complex-
ity, and algorithmdesign and analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2862 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 12, DECEMBER 2020

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 11:09:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


