
2022 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

Mobile Instant Video Clip Sharing With Screen
Scrolling: Measurement and Enhancement

Lei Zhang , Student Member, IEEE, Feng Wang , Member, IEEE, and Jiangchuan Liu , Fellow, IEEE

Abstract—Today’s multimedia content generation and sharing
have been dramatically boosted by the deep penetration of
broadband wireless accesses and the much improved processing
power of smart mobile terminals. Mobile users can now instantly
capture and share short video clips (usually of several seconds)
anywhere and anytime, and consume them with convenient touch
screen operations. The instant video clip sharing has emerged
as a mainstream application; such pioneers as Twitter’s Vine,
Miaopai, Instagram, and Snapchat have seen great acceptance,
particularly by the youth community. In this paper, we present
an initial study on instant video clip sharing. Taking Twitter’s
Vine as a representative, we systematically investigate its
distinct mobile interface, service framework, and user watching
behaviors, revealing how this mainstream multimedia service
type differentiates from its traditional counterparts. Our trace
measurement and analysis demonstrate that instant mobile video
clips have a much shorter lifespan and highly skewed popularity
that quickly decays over time. This is further aggravated by the
unique screen scrolling operation for video browsing. As such,
the download-and-watch scheduling used by existing platforms
can hardly achieve quality user experience and cost efficiency.
We closely investigate and model the input user gestures for
scrolling, including drag and fling, and analyze the scheduling
policy, partitioning it into prefetching scheduling and watch-
time download scheduling. We develop effective solutions toward
both subproblems as well as their integration with screen
scrolling. The superiority of our enhancement is demonstrated by
extensive trace-driven evaluation.

Index Terms—Mobile, instant video, efficiency.

I. INTRODUCTION

IN THE past two decades, we have witnessed the great suc-
cess of multimedia content sharing, in particular online video

sharing, and its rapid evolution. The first generation, sharing
over the Internet, is represented by a number of video shar-

Manuscript received May 3, 2017; revised September 15, 2017; accepted De-
cember 20, 2017. Date of publication January 17, 2018; date of current version
July 17, 2018. This work was supported in part by the Qatar National Research
Fund (a member of Qatar Foundation) under NPRP Grant [8-519-1-108] and
in part by the Natural Sciences and Engineering Research Council of Canada.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Balakrishnan Prabhakaran. (Corresponding author:
Jiangchuan Liu.)

L. Zhang and J. Liu are with the School of Computing Science, Simon
Fraser University, Burnaby, BC V5A 1S6, Canada (e-mail: lza70@cs.sfu.ca;
jcliu@cs.sfu.ca).

F. Wang is with the Department of Computer and Information Science,
University of Mississippi, University, MS 38677 USA (e-mail: fwang@
cs.olemiss.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2018.2794760

ing sites (VSSes) such as YouTube [1], [2]. Later, online social
networks (OSNs), e.g., Facebook and Twitter, emerged to of-
fer the second generation video sharing, in which users access
multimedia content through proactively sharing the video links
from external VSSes among friends [3], [4]. Recently, the rapid
development and penetration of mobile social networking have
enabled the third generation video sharing services that use
smart mobile terminals to instantly capture and share ultra-short
video clips (usually of several seconds). Many mobile apps, e.g.,
Twitter’s Vine, Instagram, and Snapchat, to name but a few, have
incorporated such multimedia services and seen great accep-
tance, particularly by the youth community [5]. It has also be-
come a mainstream service type in China, where similar emerg-
ing apps (e.g., Miaopai, Weishi, Kuaishou, Douyin, Huoshan,
etc.) have attracted tremendous amount of users and invest-
ments. For example, Miaopai with 70 million daily active users
closed a $500 million funding round in 2016,1 and it now han-
dles 1.5 million uploads per day, with 2.5 billion videos watched
every 24 hours; Kuaishou with 50 million daily active users who
upload 10 million videos per day, received a $350 million in-
vestment from Tencent in 2017.2 The instant video clips in these
services are directly consumed at smart-terminals with specially
designed mobile interfaces and operations. The expanded social
relations and the distinct operations on the mobile terminals,
particularly screen scrolling, have greatly increased the amount
of videos available to watch, and in the meantime, shorten the
time focusing on individual videos from tens of minutes to only
a few seconds.

User experience is crucial to mobile instant video clip shar-
ing. An instant video clip itself is of only several seconds long,
thereby a mobile user can hardly tolerate a long delay, which
would completely ruin the viewing experience. A straightfor-
ward solution is to pre-fetch video clips, which is known to be
cost-effective and energy-efficient [6]. Yet given the massive
ultra-short video clips, deciding which to pre-fetch and when to
pre-fetch become much greater challenges. Users of mobile in-
stant video clips also tend to make requests for but fail to finish
watching the video clips, many of which even have no chance
to start playing with fast screen scrolling. Smart and adaptive
watch-time scheduling is thus needed to cope with these distinct
operations in the mobile context.

To the best of our knowledge, this new service type has not
yet been studied in the literature. In this paper, we present an

1https://www.techinasia.com/china-miaopai-500million-funding-weibo
2https://techcrunch.com/2017/03/23/tencent-back-chinese-instagram-

kuaishou/

1520-9210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0001-6592-1984

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2023

Fig. 1. Typical main interface of mobile instant video sharing
(a) Vine. (b) Instagram. (c) Miaopai.

initial study on mobile instant video clip sharing empowered by
a combination of advanced mobile and cloud platforms. With
Twitter’s Vine as a representative, we systematically investi-
gate the distinct interface and service framework of this main-
stream service type, and identify the unique viewing behaviors,
including batch views and passive views. We develop a data
collection engine to track the metadata of video clips and user
accesses from Vine. Compared to early-generation videos, the
instant mobile video clips have much short lifespan and highly
skewed popularity that quickly decays over time, which is ag-
gravated by the unique screen scrolling operation. As such,
the download-and-watch scheduling widely used by existing
platforms can hardly achieve quality user experience and high
cost efficiency. We closely investigate and model the user ges-
tures for scrolling, including drag and fling, and analyze the
scheduling policy, partitioning it into pre-fetching scheduling
and watch-time download scheduling. We then develop effec-
tive solutions towards both subproblems as well as their integra-
tion with screen scrolling. The superiority of our enhancement
is demonstrated by extensive trace-driven evaluations.

II. OVERVIEW OF MOBILE INSTANT VIDEO CLIP SHARING

A. Background and Motivation

We next present a case study on Twitter’s Vine, which enables
users to create ultra-short video clips (limited to a maximum of
6-seconds), as well as post and share them with followers or
in OSNs, particularly Twitter (which acquired Vine in Octo-
ber 2012) and Facebook. Vine exclusively focused on mobile
users from the very beginning, attracted over 200 million active
users since its initial release in January 2013, and continued
its core service on Twitter. Other products in the market, e.g.,
Instagram, Snapchat, Miaopai, and Kuaishou, share similar ser-
vice architectures and interfaces.

With a Vine client, a user can view, like, comment, and share
(repost) the recent posts from others in the Home/Feed page,
which is, as shown in Fig. 1, a typical and necessary inter-
face for mobile instant video clip sharing and is commonly
seen in similar apps. The user can also search for video clips
and people of interest, and dedicated channels for specific top-
ics in the Explore page. Compared to traditional OSNs with

Fig. 2. Service framework of mobile instant video clip sharing (Vine as an
example).

follower-followee social relationships, a key (and significant)
difference is that the media of interest here are ultra short video
clips. This makes its user experience notably different.

B. Service Framework

We have conducted a traffic measurement from our univer-
sity campus on Twitter’s Vine. We captured the traffic between
test devices and servers, and intercepted the SSL connections
between them to view detailed requests from the application
by using the mitmproxy tool. The traces show that Twitter
builds the mobile instant video sharing system based on a clus-
ter of cloud services, including Amazon EC2, Amazon S3, and
Amazon CloudFront, as well as CDNs provided by Akamai
and Fastly. We accordingly illustrate the service framework in
Fig. 2. A Vine client initiates and maintains a HTTPS connec-
tion with the application server running on the EC2 instances
with domain name api.vineapp.com. After an authoriza-
tion process, the user can make requests, and the server in turn
offers responses for the user to complete such actions as brows-
ing, search, post, comment, and like. When the user logs into
the app (or returns to the Home/Feed page), the client makes
a GET request for the timeline information, which corresponds
to the recent updates. After receiving the response, the client
can further make GET requests to CDNs with domain name
v.cdn.vine.co or mtc.cdn.vine.co to download the
video clips and the corresponding thumbnails. From the meta-
data in captured packets, we infer that the videos and the thumb-
nails are stored on Amazon S3. Similar operations are performed
when visiting the Explore page. A slight difference is that the
static web images in the page layout are distributed by Amazon
CloudFront.

C. Screen Scrolling and Key User Behaviors

In traditional VSSes and OSNs, users need to click to view
or link to one specific video, which only allows them to view
one video each time/click. Vine-like services, however, return a
playlist of video clips when a user touches the screen to view
the updates for certain users, tags, or channels. As the user
scrolls the smartphone/tablet’s screen instant video clips are
seamlessly played from the generated list. Scrolling includes

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2024 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

Fig. 3. Video popularity (a) Video clips rank ordered by the number of repost
(b) Skewness of popularity across video clips from the user channels.

a series of user gestures, typically click, drag and fling, and
the speed, acceleration, and continuity vary depending on the
user’s input. Given the fixed organization of instant video clips
in playlists, it has become an essential user action.

We use Batch View to refer to the unique user behavior of
viewing multiple video clips with screen scrolling. The batch
view implies that mobile users can watch a considerable amount
of instant video clips within the playback time of one conven-
tional video (e.g., from YouTube). A related new behavior is
Passive View. The media contents are arranged in order and a
user has limited control over the order for playback (recall the
Vine case). For two video clips of interest, if they are separated
in the playlist, the user may have to download (and watch) all
the video clips between them. These videos of no interest have
to be passively watched, and resources for downloading and
playing them will be consumed.

III. A CLOSER INVESTIGATION: MEASUREMENTS AND

OBSERVATIONS

A. Properties of Instant Video Clips

1) Datasets: We developed customized crawlers and col-
lected the traces of Vine videos that were posted in 16 user
channels (47,794 posts) and 2 promotion channels (8,891 posts).
For each instant video clip, we accessed and recorded its repost
history, including the exact time when it was shared and the
user who reposted it. User channels focus on dedicated topics,
where each channel has two sections: recent and popular. An
instant video clip can be uploaded to any of the recent sections
in these 16 channels, and each user channel lists a small number
of popular posts in the popular section. The promotion channels
do not accept the posts directly from the normal users; Instead,
they choose the most popular and most trending videos clips
among all the recent posts in Vine.

2) Popularity: We use the number of reposts to evaluate the
video popularity, since the actual number of views for each
video clip is hard to obtain by our crawlers. Fig. 3(a) plots the
number of reposts as a function of the rank of the video clip
by its popularity for all 16 user channels. The plot does not
follow a Zipf distribution (which should be a straight line on a
log-log scale). This result is different from the previous obser-
vations on traditional video sharing services: While the popu-
larity of YouTube videos exhibits a Zipf-like waist with a trun-
cated tail [1], [2], the requests distribution versus video ranks of
Renren (the largest Facebook-like service in China) videos fol-

Fig. 4. Video lifespan and propagation. (a) Daily number of reposts. (b) CDF
of lifespan.

lows a perfect power-law pattern [4]. To further understand how
the popularity is distributed among Vine videos, we plot the
cumulative proportion of the total number of reposts versus the
percentile of the video clip in Fig. 3(b). As shown, the popu-
larity of video clips in the user channels is extremely skewed:
the top 5% video clips accounts for more than 99% reposts. It
heavily deviates from the Pareto Principle (or 80-20 rule). This
result is quite surprising, since other video sharing services
show much smaller skewness: the top 10% popular YouTube
videos account for nearly 80% of views [1]; whereas the top
2% videos in Renren take up 90% of the total requests, and the
5% videos attract 95% of requests [4]. The popularity distribu-
tions for different generations of video sharing services show
a trend of becoming more and more skewed throughout the 3-
stage evolution (YouTube: 10%–80%; Renren: 2%–90%, 5%–
95%; Vine: 2%–95%, 5%–99%). The YouTube result implies
that, originally, users’ interests across videos are not evenly dis-
tributed (biased towards popular videos). People tend to watch
what others have watched, which is exaggerated when OSNs
are introduced, as users in the same social group share com-
mon interests. On top of social networking, Vine-like services
further offer users ubiquitous mobile accesses, which lead to
a more efficient and more extensive propagation of the instant
video clips.

3) Lifespan and Propagation: To investigate how the num-
ber of reposts changes with time, we plot Fig. 4(a), which shows
the average daily number of reposts after the video clips were
created. As the popularity of the collected video clips is highly
skewed, we only consider popular video clips in the follow-
ing analysis, specifically, the top 5% reposted video clips from
the user channels and all the video clips from the promotion
channels. One may notice that the plot lasts slightly longer than
the data collection period. This is because many of the video
clips that we explored may have been there for a while when
we started crawling. In Fig. 4(a), the average number of reposts
for the popular video clips monotonically decrease day by day.
Even for many of the popular video clips, they are most popular
during the first day after the initial posts and are getting less
and less popular afterwards. This fast decay feature of mobile
instant video clips is quite unique: YouTube videos also reach
the global peak immediately after introduction to the system,
but decay much more slowly, while the requests for the new
videos published in Renren generally experience two or three
days latency to reach the peak value, then change dynamically
with a series of unpredictable bursts [4].

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2025

By defining the active lifespan of a video post as the duration
from its initial post to the first day in which it gets no repost,
we plot the CDF of active lifespan of the popular video clips in
Fig. 4(b). Here we use a real value (0) as the threshold to de-
cide whether the video clip is active in propagation, instead of
other metrics such as the changing rate and the moving average.
The reason is two-fold: first, as shown in Fig. 4(a), although the
number of reposts for the popular video clips may change dra-
matically in the first few days, it still can remain a large value;
second, we can hardly know the impact of one repost, as the
number of passive viewers after each repost varies significantly
(if the user who shares the video clip has a large population of
followers, this repost can have a potentially significant impact
on the propagation of the video clip). Even with such a “loose”
definition of active lifespan, Fig. 4(b) shows that more than half
of the popular video reposts can only stay in active for less than
10 days. This result is quite different from the related obser-
vations on traditional video sharing services: popular videos in
Renren can continuously attract requests for several months [4];
some of YouTube videos can still get views even after 1 year
since they were published, which implies that YouTube users’
interests are video-age insensitive in a gross scale [1]. The fast
decay feature can be possibly explained by the mobile nature
of ubiquitousness. As mobile users can upload, and more im-
portantly watch instant video clips at any time and anywhere,
they can propagate very efficiently and extensively, and thus can
reach the peak immediately. And the frequent video watching
and uploading from the mobile user also accelerates the fade of
existing instant video clips, even for the popular ones.

B. Summary and Implications

We have revealed a series of unique features of mobile instant
video clip sharing, including the extreme skewness, fast decay,
and short lifespan. Although lack of common VCR controls
(such as rewind and fast forwarding), batch/passive views with
scrolling are effective in approaching successive instant video
clips in the playlist, enabling users to find interesting contents
more easily, and accelerating the propagation of popular videos.
Yet, if not being handled properly, screen scrolling may ruin the
viewing experience. Currently, most Vine-like services employ
a naive download-and-watch scheme, which is clearly not an
optimal solution. In the worst case (e.g., downloading every
instant video clip through a poor cellular connection), a vicious
circle can be formed: the downloading of a just skipped video
will take up the network resources and block the downloading
of those of interest, which will in turn force the user to give up
watching the target videos and scroll forward to search for other
interesting videos.

As the unpopular video clips move towards the bottom of
the playlist, users hardly see them again. On the contrary, the
popular video clips will be promoted to the popular section, and
users can easily reach these posts. They become more and more
popular, keeping on the top of the playlist and thereby being
accessed more frequently. With the batch and passive views,
the above process is accelerated and exacerbated. Although this
extreme skewness suggests that identifying the popular videos

and pre-fetching them could be beneficial, deciding which video
clips will fall into the user’s interests is never an easy task.
Moreover, the short lifespan and fast decay imply the popular
contents are much more dynamic than those in other mobile VoD
or video streaming applications. This introduces a dilemma for
pre-fetching: on one hand, we would like to cache as many
videos as possible to provide fluent watching experience; on the
other hand, if the cached videos cannot be watched soon enough
by the user, it becomes a huge waste for fetching them, as they
will probably be flushed out by more recent feeds, having no
chance to be viewed. As such, neither a simple download-and-
watch scheme nor a naive pre-fetching/caching scheme would
work efficiently, and a smart adaptive solution is expected. More
importantly, it must work well with screen scrolling, a rich
operation whose multiple factors, e.g., speed/acceleration, are
to be considered.

IV. ENHANCEMENTS ON MOBILE SIDE: PRE-FETCHING AND

WATCH-TIME SCHEDULING

A. Problem Formulation

We now present a generic formulation for the video down-
load scheduling problem in mobile instant video sharing.
As mentioned, instant video clips are usually organized in
different playlists, which can be characterized into three types:
the list of video updates from followees (social videos), the
list of promoted videos in popular sections (popular videos),
and the list of user uploaded videos in recent sections (recent
videos). Only the playlist of social videos changes with
different users, and the other two types of playlists remain
the same across users. Consider one video watching event
of a specific user. Denote the playlist of instant video clips
that will be watched by the user as V = {v1 , v2 , ..., vn}. As
illustrated in Fig. 5, according to different user input actions,
each instant video clip may remain in the user’s viewport for
for a specific duration. We use U = {u1 , u2 , ..., un} to denote
such durations, where ui corresponds to the duration that the
user watches video vi . Also, we let u0 denote the time that
the user starts watching the playlist. We consider two types
of network connections in this formulation: mobile cellular
connections (e.g, 3/4G) and wireless local connections (e.g.,
WiFi). We use B(t), C(t), and E(t) to denote the available
bandwidth, the monetary cost, and the energy consumption
at a given time t, respectively, where B(t) ∈ {Bwifi , B3/4G},
C(t) ∈ {Cwifi , C3/4G} (Cwifi = 0, since the cost for WiFi
connections is usually negligible), and E(t) ∈ {Ewifi , E3/4G}.
As in previous studies [7], [8], we divide the time evenly into
discrete time slots. Let Ri be the video streaming rate of video
vi , and L be the maximum video length. In practice, most
users capture video clips till reaching the maximum length (in
Vine’s case, 6 seconds); hence, their file sizes after transcoding
to a certain resolution are almost the same, i.e., Ri and L can
be treated as given constants.3 Define a video downloading

3It is worth noting that for ease of exposition, here we assume homogeneous
video length. Our model and solutions can be easily extended to afford various
specifications for individual video, which does not change the fundamental
problem studied in this paper.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2026 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

Fig. 5. An illustration of playlist optimization.

schedule as S = {(v̂1 , t̂1 , l̂1), (v̂2 , t̂2 , l̂2), ..., (v̂k , t̂k , l̂k)},
where a tuple (v̂i , t̂i , l̂i) (v̂i ∈ V and l̂i > 0) means at time t̂i ,
we start to download video v̂i for the duration l̂i .

Our problem is to find a proper schedule S that optimizes
the video watching experience with high efficiency in terms of
monetary cost and energy consumption. We define the playback
discontinuity of a single video vi watched for the duration ui

as:

discontinuity(vi) = 1

− 1
min(ui, L)

·
∑

t∈
(

i−1∑
k = 0

uk ,min
(

i∑
k = 0

uk ,
i−1∑
k = 0

uk +L

)]

I

⎡

⎢⎢⎢⎣
∑

(v̂ j ,t̂j ,l̂j)∈S,

v̂j =vi ,t̂j ≤t

min(t̂j + l̂j −1,t)∑

t̂= t̂j

B(t̂) ≥
(

t −
i−1∑

k=0

uk

)
· Ri

⎤

⎥⎥⎥⎦,

where I[·] is the indicator function. Inside the indicator func-
tion, it checks whether the download progress stays ahead of the
playback at any given time slot. Given the watch duration (if it
is longer than the video length, we use the video length instead),
we can calculate the ratio of continuous playback, and thus
define the playback discontinuity accordingly (between 0 and
1). The single video playback discontinuity naturally reflects
the user experience for a continuous playback, which calcu-
lates how many time slots the downloading of this video misses
the deadline for the playback. We further define the playback
discontinuity of the playlist V as a weighted sum of those of

individual videos:

Discontinuity =
∑

vi ∈V

wi · discontinuity(vi),

where wi is the normalized weight for vi . An intuitive assign-
ment of wi can be 1∑ n

k = 1 uk
ui , which assigns higher weights

to the videos that have longer watching durations, as longer
watching durations usually imply higher user interests. We will
further discuss more specific assignments of wi later.

Our objective is thus to minimize the playback discontinuity,
as well as the total monetary and energy cost:

Ctotal =
∑

(v̂ j ,t̂j ,l̂j)∈S

t̂j + l̂j −1∑

t= t̂j

C(t),

Etotal =
∑

(v̂ j ,t̂j ,l̂j)∈S

t̂j + l̂j −1∑

t= t̂j

E(t).

It is easy to see that the above objectives contradict with
each other, as downloading more portions of the playlist can
reduce the playback discontinuity but will also inevitably con-
sume more energy and may increase the monetary expense. We
thus adopt the following linear combination form to align them
together:

p · Discontinuity + q · Ctotal

Cmax
+ r · Etotal

Emax
, (1)

where p, q and r are the parameters to assign different weights
to the three goals. As Discontinuity is a ratio between [0, 1], we
also normalize the monetary cost and the energy consumption
by their corresponding maximum values, where Cmax is the
maximum total cost of the case that all the videos in the playlist
are downloaded through 3/4G links, and Emax can be obtained
similarly. We then have the following theorem:

Theorem 1: The decision version of the modeled generic
downloading scheduling problem is NP-complete.

Proof: The key for the proof is to show that the Knapsack
problem can be reduced to the simplified version of our problem.
See the detailed proof in Appendix A. �

B. Pre-Fetching Scheduling

We first consider pre-fetching, which happens well before
the user starts watching the playlist, i.e., without a stringent
time constraint; hence we can offload the mobile traffic to the
wireless network to reduce the transmission cost. The objective
is to find a schedule Spf to pre-fetch the videos, subjecting to
the following constraints:

1) Storage Constraint:

∑

(v̂ j ,t̂j ,l̂j)∈Sp f

t̂j + l̂j −1∑

t= t̂j

B(t) ≤ StorageSize;

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2027

2) Cost Constraint:

∀(v̂j , t̂j , l̂j) ∈ Spf ,

t̂j + l̂j −1∑

t= t̂j

C(t) = 0.

The storage constraint ensures that the total amount of pre-
fetched video will not exceed the limited local storage. And
the cost constraint implies that the pre-fetch is performed only
through WiFi links. As the pre-fetched videos may not be
watched during the watch-time, the performance gain of pre-
fetching is uncertain. In order to achieve the unguaranteed per-
formance gain with lower costs, we do not consider cellular
communications during pre-fetching. The playlist V during the
pre-fetching may only be a subset of that during the watch-time,
as pre-fetching occurs before video watching and new videos
may be added to the playlist after pre-fetching, which will be
handled by the watch-time download scheduling to be discussed
lately.

Given that the user behavior during the video watching is
unknown at this stage (nor the watching duration U), we thus
introduce P = {p1 , p2 , ..., pn} to denote the user preference on
each video in the playlist, which can reflect the potential lengths
of the watch durations. In practice, P can be evaluated by video
popularity, video timeliness, or the social distance between the
publisher (the user who reposts the video) and the consumer
(the user who may watch the video), or a combination of them.
Without loss of generality, here we use the video popularity as
the metric of user preference. In addition, we introduce parame-
ter α ∈ [0, 1] to represent the aggressiveness of the pre-fetching.
For each instant video clip, we pre-fetch α of the total video,
instead of downloading the whole clip. The playback disconti-
nuity of a single video vi can then be rewritten as

discontinuity(vi) = 1 − 1
α · L · pf(vi)

Ri
,

where pf(vi) defines how much of vi has been pre-fetched:

pf(vi) =
∑

(v̂ j ,t̂j ,l̂j)∈Sp f ,v̂j =vi

t̂j + l̂j −1∑

t̂= t̂j

B(t̂).

The next step is to find a proper assignment of wi . For this
subproblem, we define wi as

wi =
1∑n

k=1 pk · discontinuity(vk)
pi · discontinuity(vi),

which considers both the user preference for vi and its current
playback discontinuity. Note that wi decreases as more of vi

has been pre-fetched, as given the batch view behavior, it is
not reasonable to allocate all the resources to a tiny portion of
extremely popular videos. In practice, the first several units of
a video are normally requested with a much higher probability
than its later part. Together with the pre-fetching aggressiveness
α, this assignment of wi allows us to pre-fetch more videos with
the video preference still being considered.

As the monetary cost for WiFi links is usually negligible, our
goal here is to minimize Discontinuity with the form:

Discontinuity =

1∑n
k=1 pk · discontinuity(vk)

·
∑

vi ∈V

pi · discontinuity(vi)2 .

Different from (1), this objective function does not directly in-
volve the energy consumption of pre-fetching. Here, we use
α to control the trade-off between the energy consumption
and the playlist playback discontinuity. As α gets larger, more
videos would be pre-fetched, which consumes more energy;
on the contrary, if α is small, only a small portion of videos
will be pre-fetched, and thus little energy is consumed. There-
fore, the above objective function can still represent the overall
performance.

This pre-fetching scheduling subproblem is a variation of the
knapsack problem with a total weight limit:

W = min(StorageSize,
∑

∀t such that C (t)=0

B(t)),

where an object is one time slot length of video playback, and its
value is the amount of decrease of pi · discontinuity(vi)2 after
pre-fetching one more time slot, if the object belongs to video
vi . It is easy to see that while the weight of each object is the
same, the value changes as the decisions are made, i.e., as one
object of video vi is downloaded, the value of all the remained
objects of video vi decreases as now discontinuity(vi) decreases.
We use a greedy algorithm to search and download one object
that currently has the greatest value in each iteration. Recall
that all the objects have the same weight. Given the optimal
result in each iteration, the algorithm returns the final optimal
pre-fetching schedule.

C. Watch-Time Download Scheduling

Unlike pre-fetching, the video watching durations can be
largely determined from the input user gestures, typically click,
drag and fling, where the last two gestures can cause screen
scrolling. Once a gesture is given, the following process of
screen moving is predetermined. Given the fixed display size of
each clip (specifically, the fixed height), the motion of screen
scrolling can be modeled and calculated, and the details of the
scrolling process can be obtained accurately (e.g., how many
videos are present, how long each video will stay in the view-
port), which can hardly be done in VoD or video streaming
applications. Although different operating systems have dif-
ferent technical details for implementation, the philosophy for
animating the screen scrolling is generally the same, which is to
gradually decelerate the scrolling speed until it reaches zero if
there is no other finger touch detected during the deceleration.4

We next show how to calculate the video watching durations
from the input user gestures, by taking the Android OS as an
example.

By detecting and collecting information about the user’s fin-
ger touch, the initial scrolling speed s0 can be calculated as

4https://developer.android.com/training/gestures/scroll.html

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2028 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

the dragging distance divided by the touch time in the unit of
pixels/second. As the screen only scrolls vertically in mobile
video sharing services, let h denote the height of each instant
video clip. By default, the threshold sT for the initial scrolling
speed to distinguish between a drag and a fling in the Android
OS is 50 pixels/second, which can be scaled under different
configurations based on the actual screen resolution.

Dragging: In the case of dragging, the screen scrolling speed
will experience a uniform deceleration with the default deceler-
ation d = 2000 pixels/second2 . Given the initial speed s0 , there
will be �s2

0/2hd� video clips covered by this drag gesture. In
the deceleration process, for the m-th video clip showing in the
dragging animation, we have

mh = s0tm − dt2m /2, (2)

where tm is the time that the (m + 1)-th video clip starts to
enter the viewport (t0 = 0). Solving (2) gives us

tm = (s0 −
√

s2
0 − 2mhd)/d (1 ≤ m ≤ �s2

0/2hd�). (3)

Flinging: If a fling is detected, the deceleration will change
with the scrolling speed. Given the scrolling speed s, the total
fling duration T (s) and the total fling distance D(s) can be
calculated by using the following equations:

l(s) = log [0.35 · s/(Fric · PCOEF)], (4)

T (s) = 1000 · exp[l(s)/(DRATE − 1)], (5)

D(s) = Fric · PCOEF · exp[DRATE/(DRATE − 1) · l(s)],
(6)

where DRATE = log (0.78)/ log (0.9), Fric denotes the pa-
rameter of the friction with the default value as 0.015, and
PCOEF = G · 39.37 · ppi · fc . To compute PCOEF , G is the
gravity of the Earth with a constant value of 9.80665 m/s2 ,
39.37 is used for the conversion between meters and inches, ppi
denotes the parameter of pixels per inch for the specific mobile
device, and fc is a user-defined value (fc = 0.84 by default). In-
stead of using real-world physics, screen scrolling is animated
based on platform-standard virtual physics (friction, velocity,
etc.). Such parameters as Fric and PCOEF that define the virtual
physics are adjustable for different devices and applications by
users or developers.

From (5) and (6), we can derive

D(s) = Fric · PCOEF · (T (s)/1000)DR AT E . (7)

Given the initial speed s0 , there will be �D(s0)/h� video clips
covered by this fling gesture. Assume sm is the scrolling speed
at time tm . In the deceleration process, the following equation
is also satisfied:

D(s0) − D(sm) = mh (1 ≤ m ≤ �D(s0)/h�). (8)

By combining (7) and (8), we have

tm = T (s0) − T (sm) = T (s0) − 1000·

[(T (s0)/1000)DR AT E − mh/(Fric · PCOEF)]
1

D R AT E

(1 ≤ m ≤ �D(s0)/h�). (9)

As the basis of this analysis, (2), (4), (5) and (6) are obtained
from our analysis of the Android OS source code.5,6 Assume
that the user will focus on one video at any given time. From (3)
and (9), the watching duration of m-th video clip showing in the
screen scrolling animation can be obtained as um = tm − tm−1 .
Based on the above analysis, we can now tell how many videos
are scrolled by a user gesture and how long each video can
stay in the viewport. Therefore, the video watching duration
U = {u1 , u2 , ..., un} is available once the input user gestures
are given. This subproblem of watch-time download scheduling
is thus to find a proper real-time download schedule Srd , so as
to minimize our objective:

p · Discontinuity + q · Ctotal

Cmax
+ r · Etotal

Emax
.

Note that Discontinuity here needs to consider the result of
the pre-fetching schedule with the updated discontinuity(vi):

discontinuity(vi) = 1

− 1
min(ui, L)

·
∑

t∈
(

i−1∑
k = 0

uk ,min

(
i∑

k = 0
uk ,

i−1∑
k = 0

uk +L

)]

I

⎡

⎢⎢⎢⎣
∑

(v̂ j ,t̂j ,l̂j)∈Sr d ,

v̂j =vi ,t̂j ≤t

min(t̂j +
l̂j −1,t)∑

t̂= t̂j

B(t̂) + pf(vi) ≥
(
t −

i−1∑

k=0

uk

)
· Ri

⎤

⎥⎥⎥⎦ ,

where the amount of the video vi that has been pre-fetched
(pf(vi)) is also considered in the calculation. For the watch-
time downloading subproblem, we define wi as

wi =
1∑n

k=1 u2
k

u2
i ,

which emphasizes the importance of watch durations.
The problem is essentially to trade off between playback

discontinuity, monetary cost and energy consumption during
the watch-time. Since videos with higher watching durations
have higher impacts on the objective function, they should be
scheduled for downloading with higher priorities. A heuristic
therefore tries to download one time slot of the video vi that has
the highest value of u2

i · discontinuity(vi) in the unscheduled
set, and schedules its downloading interval as late as possible
(i.e., closest to, but before its playback deadline) so as to only
introduce the minimal impact on other videos to be scheduled
later. If there still exist WiFi slots after the initial scheduling fin-
ishes, we reschedule the video downloadings that are originally
scheduled in the later cellular slots to fill up these WiFi slots.

Algorithm 1 integrates the solutions for both subproblems. Vp

is the set of videos that are considered for pre-fetching, which
can be initialized as the whole playlist. Vw is the set of videos

5https://android.googlesource.com/platform/frameworks/base/+/master/core
/java/android/widget/Scroller.java

6https://android.googlesource.com/platform/frameworks/base/+/master/core
/java/android/view/ViewConfiguration.java

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2029

Algorithm 1: Playlist Scheduling
1: while true do
2: if a video v is shown on screen then
3: Remove v from Vp ;
4: if a new user input gesture comes then
5: Set all slots in Q to empty;
6: Obtain Vw based on the user input gesture

model;
7: Sort Vw in descendant order according to

u2
i · discontinuity(vi);

8: Delete the videos that cannot reduce the
objective value if downloaded from Vw ;

9: while Vw is not empty do
10: Pick the 1st video v1 out of Vw ;
11: while v1 is not fully downloaded do
12: if there exist available slots in Q then
13: Update Q to assign the

closest-to-deadline slot to v1 ;
14: else
15: break;
16: end if
17: end while
18: end while
19: if there are available WiFi slots in Q then
20: Update Q to move later scheduled

downloadings forward to fill the WiFi slots;
21: end if
22: end if
23: else
24: Update Vp for newly arrived videos;
25: if cache is not full and WiFi is available then
26: Search Vp to find the video v with the largest

decrease amount of pi · discontinuity(vi)2

assuming one more unit of the video
is pre-fetched;

27: Update Q to schedule downloading one unit
of v;

28: end if
29: end if
30: Download one unit of video if currently scheduled in

Q and update Q accordingly;
31: end while

that are scheduled during watch-time according to the drag-
ging/flinging model given an user gesture input. Q is the sched-
ule queue, which denotes whether each time slot is available or
assigned to download one unit of a certain video. The first part
(line 2–22) sorts Vw accordingly (O(|Vw | log |Vw |)), and then
searches Q for a proper schedule for each video (O(|Vw ||Q|)).
Although this part is executed each time a user gesture is de-
tected, given that any user gesture can only affect a limited
number of videos that will show on the screen, |Vw | is quite
small, and so is the searching space in Q. In the second part
(line 23–28), the searching process will be performed at most
|M ||Vp | rounds assuming each video is divided into M units.

As each round of the search process only has the complexity of
O(|Vp |), its efficiency is also acceptable especially given that
the pre-fetching happens well before the video watching and is
often with a much longer time span.

V. PERFORMANCE EVALUATION

We evaluate our solution using real-world data of Vine videos
and the user gestures recorded. For comparison, we implement
another two downloading schemes [7]. Sequential Download-
ing (SeqD) downloads all the videos according to their order in
the playlist, and disregards all the user actions, which takes the
playlist as a single long video, and is the most aggressive down-
loading scheme with the least flexibility. Next-one Downloading
(NextD) always attempts to download the next video that en-
ters the viewport, which emulates the caching strategy mostly
used in Vine-like services. If the current watching duration is
not long enough to download the next video, its playback will
be interrupted. Besides the two downloading scheme, we also
implement a popularity-based raw Pre-fetching (rPF) method,
which caches instant video clips solely based on their popularity.

We consider a set of metrics including playback discontinu-
ity, monetary cost, energy consumption in our evaluation, which
directly relate to the three goals of our optimization problem.
We randomly introduce 20 video watching events from 9 a.m.
to 9 p.m. in the week-long dataset, emulate the user behav-
iors by using the user gesture traces, and produce the average
results. Each video watching event consumes 50 videos from
popular sections and 150 videos from recent sections. We as-
sume that, during the watch-time only cellular links are available
with 1 MB/s bandwidth, and WiFi is available for pre-fetching
once every hour. We adopted this setting to emulate a worst
case scenario, since if WiFi is available during watch time, our
solution can perform better. We assume each Wi-Fi session is
long enough to complete a round of pre-fetching. The applica-
tion local storage is set as 100 MB. The monetary cost model is
10 dollar per 100 MB traffic, which is close to the major mobile
operators’ data add-on prices.7 The energy model is adopted
from [9], which considers practical details such as the tail time
in 3G/4G communications [10].

A. Data Traces of Vine Videos and User Gestures

In our simulations, we use the dataset collected and presented
in Section III. Fig. 6 plots the video popularity versus its rank
for the two types of videos (from popular sections and recent
sections, respectively), in which videos from recent sections
exhibit a higher skewness. The average numbers of hourly video
uploads during a day for popular and recent sections are shown
in Fig. 7.

To obtain the real-world user gesture traces, we implement an
Android app to record user touch events. We recruit 10 volun-
teers to watch Vine videos using the official client on Android
under cellular connections and WiFi connections, respectively.
Each experiment is conducted around 5 minutes. We plot two
important characteristics of user behavior from the collected

7http://www.telus.com/en/ca/mobility/prepaid/add-ons/

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2030 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

Fig. 6. Popularity distribution.

Fig. 7. Average video uploading rate. (a) Videos uploaded into popular sec-
tions. (b) Videos uploaded into recent sections.

Fig. 8. Density of inter-arrival time of user gestures. (a) Inter-arrival time of
user actions under 3G scenarios. (b) Inter-arrival time of user actions under WiFi
scenarios.

traces: Fig. 8 shows the probability density distribution of the
user gestures’ inter-arrival time, and its curve fitting result; and
Fig. 9 plots the histogram of the measured initial scrolling speed
of the triggered flings. The user gesture traces are used to sim-
ulate video watching events by applying the dragging/flinging
model.

B. Impacts of p/q and p/r Ratios

As we have three goals in our objective function, two of
which are designed for efficiency, we vary the ratio of p/q with
r = 0, and vary the ratio p/r with q = 0, respectively. The re-
sults are shown in Fig. 10(a) and (b), which demonstrate how
the playback discontinuity, the cost efficiency and the energy

Fig. 9. The initial scrolling speed of flings. (a) Fling speed under 3G scenarios.
(b) Fling speed under WiFi scenarios.

Fig. 10. Impacts of p, q and r. (a) Impact of different p/q values on effi-
ciency and playback discontinuity (r = 0) (b) Impact of different p/r values
on efficiency and playback discontinuity (q = 0).

efficiency change with different parameters. As p, q and r only
affect our optimization goal during the watch-time, we disable
pre-fetching in this experiment, and only focus on studying the
proper settings of p/q and p/r for watch-time downloading
(referred to as WT). Since changing the ratios between p, q
and r is essentially the trade-off between efficiency and perfor-
mance, it is not surprising that the plots in Fig. 10(a) and (b)
are very similar. Note that, as we adopt both a linear monetary
cost model and a linear energy model, the normalized results
for monetary cost and energy consumption is nearly the same
when pre-fetching has been disabled. When p/q (p/r) is small
(<0.5), very limited number of videos have been downloaded
and the video playback is severely affected, so as to reduce the
monetary cost (energy consumption). On the other hand, if p/q
(p/r) increases to a certain degree (>3), the video watching ex-
perience is optimized but results in a much higher monetary cost
(energy consumption). Moreover, there is a small interval near
1.5 in the figure, in which the playback quality is acceptable
with a relatively good cost efficiency (energy efficiency). We
thus pick p/q = 1.5 and p/r = 1.5 as the default setting for the
remaining evaluation.

C. Impact of Pre-Fetching Aggressiveness α

We vary α from 0.1 to 0.9, which represents how aggressively
our pre-fetching (referred to as PF) acts, and normalize the per-
formance metrics of WT+PF by WT as the baseline. As shown
in Fig. 11(a), when α grows large, the playback discontinuity
decreases gradually, while the monetary cost first decreases and
then becomes stable. This is because when the pre-fetching
becomes more aggressive, more videos to be watched are

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2031

Fig. 11. Impact of α (a) Relative monetary cost efficiency and playback
discontinuity of WT+PF normalized by WT (b) Relative energy efficiency of
WT+PF normalized by WT.

downloaded through WiFi, thereby saving the monetary cost;
however, as one cannot accurately predict which video (and
which portion of it) will be consumed and the application local
storage is also limited, there are still some parts of videos to be
downloaded. At the same time, as more and more videos are
pre-fetched, some of the videos, which originally will not be
downloaded during watch-time according to the performance-
efficiency trade-off, are pre-fetched and make the playback dis-
continuity continue to decrease. On the other hand, Fig. 11(b)
shows that the normalized energy consumption keeps growing
(from 1.2x to 3.8x) until α reaches 0.5, where the application
local storage is used up and limits the amount of pre-fetched
videos even if α gets larger than 0.5 (and thus the energy con-
sumption). It is worth noting that here the comparison is only
between WT+PF and WT, not WT+PF and SeqD (WT+PF and
NextD), where, as will be discussed in the next section, the en-
ergy saving can achieve as much as over 90%. Fig. 11 suggests
us setting α = 0.2 as the default value, where WT+PF consumes
about 2x energy of WT to save around 45% monetary cost and
improve the playback discontinuity by over 60%.

D. Performance Enhancement

We next show the overall performance gain of our solution
(WT+PF) compared to Sequential Downloading (SeqD), Next-
one Downloading (NextD), and the two downloading schemes
with raw pre-fetching (SeqD+rPF and NextD+rPF) under dif-
ferent operating conditions. To conduct a fair comparison, we
ensure that PF and rPF consume the same amount of storage.
Note that the scheduling results of our pre-fetching (PF) affects
directly those of watch-time downloading (WT). Therefore, we
consider our solution as a whole piece and compare it with other
baseline approaches. To simulate different levels of connection
quality, we vary the downloading bandwidth from 150 KB/s to
3 MB/s.

Fig. 12 shows the results with p/q = 1.5 and p/r = 1.5,
which plots the playback discontinuity in Fig. 12(a), and the nor-
malized monetary cost and the normalized energy consumption
in Fig. 12(b). As we keep α fixed in this experiment, the mon-
etary cost and the energy consumption exhibit similar patterns
due to their linear models, and thus we see overlapping plots for
NextD in Fig. 12(b). As SeqD naively downloads videos and dis-
regards their playbacks, which introduces the highest monetary
cost/energy consumption, we use it as the baseline, and normal-

Fig. 12. Impact of downloading bandwidth when p/q = 1.5, p/r = 1.5.
(a) Playback discontinuity. (b) Monetary and energy costs normalized by the
baseline results of SeqD.

ize the costs of the other two approaches. Our proposed approach
(WT+PF) shows a very stable performance with different down-
loading bandwidths, in terms of both playback discontinuity and
cost efficiency. On the contrary, the playback discontinuity of
NextD and that of SeqD increase dramatically when the band-
width is low (<0.5 MB/s). The reason is that, as the bandwidth
becomes lower, it is more and more difficult for these two down-
loading schemes to finish each downloading before the play-
back, while our proposed approach can still keep the playback
discontinuity at a low level by smartly managing the download-
ing according to user actions and efficient pre-fetching. On the
other hand, the monetary cost/energy consumption of NextD
quickly increases after reaching the minimal at 0.5 MB/s. The
reason for both NextD and SeqD introducing high monetary
cost/energy consumption is that, when the bandwidth is low,
both NextD and SeqD keep the downloading link busy almost all
the time; whereas both of the downloading schemes attempt to
download all the videos if the bandwidth becomes high enough.
After introducing the popularity-based raw pre-fetching, both
NextD+rPF and SeqD+rPF provide better viewing experience
(lower playback discontinuity) than their counterparts. On the
cost efficiency, NextD+rPF causes slightly higher costs than
NextD, while SeqD+rPF can save around 10% costs than SeqD
when the bandwidth is high. This is because unlike NextD,
SeqD can always benefit from pre-fetching. Fig. 12(b) shows
that our approach can save at least over 40% monetary cost
and 30% energy consumption, and the cost/energy saving under
high bandwidths can be higher than 90%.

The other four caching schemes may achieve the similar per-
formance to ours in terms of playback discontinuity when the
bandwidth is high enough. This is because the setting of p/q and
p/r asks for a balance between cost efficiency and playback dis-
continuity. If a user is more aggressive on the video watching
experience, s/he can further increase of the ratio of p/q and p/r,
e.g., to p/q = 3.5 and p/r = 3.5. We plot the corresponding
results in Fig. 13, which shows that our solution can always
achieve the best playback discontinuity at diverse bandwidths,
and still with huge amounts of (over 90%) cost/energy savings.

VI. FURTHER DISCUSSION

Considerable research efforts have focused on evaluating and
improving video services for mobile users over various commu-
nication networks [8], [11]–[13], mainstream platforms [14],
efficient coding schemes [15], [16], emerging cloud computing

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2032 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

Fig. 13. Impact of downloading bandwidth when p/q = 3.5, p/r = 3.5.
(a) Playback discontinuity. (b) Monetary and energy costs normalized by the
baseline results of SeqD.

architecture [17]–[19], and novel transmission standards [20],
[21]. Unlike most of the existing studies that either focus on the
1st or the 2nd generation of video sharing service, we for the
first time presented an in-depth measurement on mobile instant
video clip sharing and took a different approach to investigate
the enhancement of this mainstream service type from the mo-
bile perspective.

The increasing availability of sensors integrated in mobile de-
vices further provides ample opportunities for understanding the
operating contexts and the surrounding environment. Existing
works have been done on energy-efficient mobile context sens-
ing [22], [23]. Further integrating such sensing abilities with a
human mobility model based on periodic travels [24] can bring
us the chances to make our proposed approach even smarter, i.e,
automatically adjusting parameter values of p, q and r according
to the currently obtained operating context.

Moreover, extracting patterns from mobile users’ daily ac-
tivities can assist us to find proper locations for pre-fetching
[25]–[27]. Mobile users visit certain locations as daily routines
(e.g., office, classroom, home), which normally provide dedi-
cated WiFi connections and thus can act as regular pre-fetching
sites. The knowledge of the locations with regular user accesses
can be more useful as Vine-like services such as Miaopai and
Kuaishou allow users to check uploads from nearby users.

Finally, our work has also touched the interests of some
other research fields such as popularity prediction and human-
computer interaction. Numerous popularity prediction schemes
for online contents have been proposed in the literature, most of
which focus on predicting the trend based on time series with re-
gression models [28], [29] and classification models [30], [31].
Better video popularity prediction [32] can help estimate the
level of user interests in the future accesses. Such major prod-
ucts in the market like Miaopai and Kuaishou make personal-
ized content recommendations according to the user interest.
Although existing studies have investigated how users express
interests by examining and understanding various user behav-
iors [33]–[35], we may push it one step further–predicting the
future user behaviors based on the potential user interests, where
machine learning techniques can be applied.

VII. CONCLUSION

In this paper, we presented an initial study on instant video
clip sharing services enabled by mobile platforms and explored

the potentials for its further enhancement. Taking Vine as an ex-
ample, we closely investigated its mobile user interface and
system architecture, and examined underlying services that
enable this mobile social application. We presented the key
difference between mobile instant video sharing services and
traditional video sharing services, including highly skewed pop-
ularity, fast propagation, short lifespan. We further identified and
characterized the unique watching behaviors of this mainstream
multimedia service type, namely, batch view, passive view and
screen scrolling. To enhance Vine-like services, we formulated
a generic scheduling problem to maximize the viewing experi-
ence as well as the cost efficiency, which is shown to be NP-
complete. To better solve it, we further divided the problem
into two subproblems, specifically, the pre-fetching scheduling
and the watch-time download scheduling, conquered them sep-
arately and then developed a general solution for the generic
problem. Using extensive simulations driven by the real-world
traces, we showed that our solution can significantly improve
the viewing experience while still keeping high cost efficiency.

APPENDIX A
PROOF OF THEOREM 1

The corresponding decision problem can be described as:
given all the required parameters, is there a schedule for the
playlist such that the objective value given by (1) is at most M?
First, we show that this decision problem is in NP. Given an
instance of this decision problem, a certificate that it is solvable
would be a specification of the downloading schedules for each
video. We can then easily check each video’s playback discon-
tinuity, downloading monetary cost, energy consumption and
whether the objective value is no greater than M , and thus ver-
ify the solution in polynomial time, which suggests the decision
problem is in NP.

We next show that the Knapsack problem is reducible to
our problem. The decision version of the Knapsack problem
can be stated as: given n items with size l̂1 , ..., l̂n and
value ŝ1 , ..., ŝn , capacity W and value S, is there a subset
I ⊆ 1, 2, ..., n such that

∑
i∈I l̂i ≤ W and

∑
i∈I ŝi ≥ S? To

construct an equivalent scheduling instance of our problem,
one may be struck initially by the fact that we have so many
parameters to manage. The key is to sacrifice some of the
flexibility, producing a simpler “skeletal” instance of the
problem that still encodes the Knapsack problem. Let p = 1,
q = 0 and r = 0 in (1). The objective of optimization problem
is thus to minimize Discontinuity of the playlist V , which is
equivalent to maximize 1 − Discontinuity = 1 −∑vi ∈V wi ·
discontinuity(vi) =

∑
vi ∈V wi · (1 − discontinuity(vi)), giv

en that Discontinuity ∈ [0, 1], discontinuity(vi) ∈ [0, 1]. Let
B3/4G = Bwifi = B, which implies that we disregard the
difference of connection type. Assume that all the available
downloading slots exist before the watch-time, which suggests
that, instead of producing detailed download schedules, we only
need to make download decisions (i.e., different downloading
times make no difference).

Given the Knapsack instance, we now show how to con-
vert it to an instance of our problem in polynomial time.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: MOBILE INSTANT VIDEO CLIP SHARING WITH SCREEN SCROLLING 2033

Corresponding to the capacity W and the n items in the Knap-
sack problem, we have W downloading slots and n videos
v1 , ..., vn ∈ V . Assume the watch duration (effective length) for
each video vi is 1 time slot. The problem then becomes to decide
whether to download each vi (i.e., discontinuity(vi) ∈ {0, 1}).
We set the streaming rate of vi as Ri = l̂i · B, so that down-
loading vi takes l̂i time slots. Note that, in our problem, the
playlist discontinuity is a weighted sum of individual video
discontinuity. We set the weight of vi as wi = ŝi/

∑
j∈[1,n] ŝj ,

and M = 1 − S/
∑

j∈[1,n] ŝj . Now our problem is to down-
load the videos with the given W available time slots such
that

∑
i∈[1,n] wi · xi ≥ 1 − M = S/

∑
j∈[1,n] ŝj , where xi =

1 − discontinuity(vi) is 1 if vi is downloaded and 0 otherwise.
This described instance is equivalent to the original Knapsack
decision problem except the value for each item is scaled down
by a constant of

∑
j∈[1,n] ŝj .

Consider any instance that satisfies (answers “Yes” to)
the Knapsack decision problem with the chosen subset
I . In our scheduling problem, we download videos with
indices in I , which suggests discontinuity(vi) = 0,∀i ∈ I
and xi = 1 − discontinuity(vi) = 1,∀i ∈ I . This down-
load schedule (downloading videos with indices in
I) uses at most W time slots since

∑
i∈I l̂i ≤ W .

The objective value given by (1) is Discontinuity =∑
i∈[1,n] wi · discontinuity(vi) =

∑
i∈[1,n] wi · (1 − xi) = 1

−∑i∈[1,n] wi · xi = 1 −∑i∈[1,n] xi · ŝi/
∑

j∈[1,n] ŝj = 1 −∑
i∈I ŝi/

∑
j∈[1,n] ŝj ≤ 1 − S/

∑
j∈[1,n] ŝj = M . Therefore,

downloading videos with indices in I satisfies (answers “Yes”
to) our decision problem.

Conversely, if there is a schedule (a set of download
decisions) for our constructed decision problem instance
such that Discontinuity ≤ M . The subset I for the Knapsack
decision problem can be defined as the set of indices of
the videos that are downloaded (i ∈ I, if vi is downloaded).
Since S/

∑
j∈[1,n] ŝj = 1 − M ≤ 1 − Discontinuity = 1 −∑

i∈[1,n] wi · discontinuity(vi) =
∑

i∈[1,n] wi · (1 − disconti-
nuity(vi)) =

∑
i∈I wi =

∑
i∈I ŝi/

∑
j∈[1,n] ŝj , we can have∑

i∈I ŝi ≥ S. As the schedule is valid, which uses at most W

downloading slots, we naturally have
∑

i∈I l̂i ≤ W . Therefore,
this subset I satisfies (answers “Yes” to) the Knapsack decision
problem. This finishes the proof that the decision version of our
original modeled optimization problem is NP-complete.

ACKNOWLEDGMENT

The findings achieved herein are solely the responsibility of
the authors.

REFERENCES

[1] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you tube,
everybody tubes: Analyzing the world’s largest user generated content
video system,” in Proc. ACM Internet Meas. Conf., 2007, pp. 1–14.

[2] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of
internet short video sharing: A youtube-based measurement study,” IEEE
Trans. Multimedia, vol. 15, no. 5, pp. 1184–1194, Aug. 2013.

[3] T. Rodrigues, F. Benevenuto, M. Cha, K. Gummadi, and V. Almeida, “On
word-of-mouth based discovery of the web,” in Proc. ACM Internet Meas.
Conf., 2011, pp. 381–396.

[4] H. Li, H. Wang, J. Liu, and K. Xu, “Video sharing in online social net-
works: measurement and analysis,” in Proc. ACM Netw. Oper. Syst. Sup-
port Dig. Audio Video, 2012, pp. 83–88.

[5] S. Yarosh, E. Bonsignore, S. McRoberts, and T. Peyton, “Youthtube: Youth
video authorship on youtube and vine,” in Proc. ACM Conf. Comput.
Support. Cooperative Work, 2016, pp. 1423–1437.

[6] N. Gautam, H. Petander, and J. Noel, “A comparison of the cost and
energy efficiency of prefetching and streaming of mobile video,” in Proc.
ACM Workshop Mobile Video, 2013, pp. 7–12.

[7] L. Zhang, F. Wang, J. Liu, and X. Ma, “On mobile instant video clip
sharing with screen scrolling,” in Proc. IEEE/ACM Int. Symp. Quality
Serv., 2016, pp. 1–10.

[8] Z. Wang et al., “Propagation-and mobility-aware D2D social content repli-
cation,” IEEE Trans. Mobile Comput., vol. 16, no. 4, pp. 1107–1120, Apr.
2016.

[9] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy consumption in mobile phones: A measurement study and implica-
tions for network applications,” in Proc. ACM Internet Meas. Conf., 2009,
pp. 280–293.

[10] J. Huang et al., “A close examination of performance and power char-
acteristics of 4G LTE networks,” in Proc. ACM Int. Conf. Mobile Syst.,
Appl., Serv., 2012, pp. 225–238.

[11] X. Cheng, H. Li, and J. Liu, “Video sharing propagation in social networks:
Measurement, modeling, and analysis,” in Proc. IEEE INFOCOM, 2013,
pp. 45–49.

[12] Y. Xu and F. Liu, “Qos provisionings for device-to-device content delivery
in cellular networks,” IEEE Trans. Multimedia, vol. 19, no. 11, pp. 2597–
2608, Nov. 2017.

[13] D. He et al., “Progressive pseudo-analog transmission for mo-
bile video streaming,” IEEE Trans. Multimedia, vol. 19, no. 8,
pp. 1894–1907, Aug. 2017.

[14] R. Trestian, A.-N. Moldovan, O. Ormond, and G. Muntean, “Energy con-
sumption analysis of video streaming to android mobile devices,” in Proc.
IEEE Netw. Oper. Manage. Symp., 2012, pp. 444–452.

[15] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission
using scalable video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 17, no. 9, pp. 1204–1217, Sep. 2007.

[16] Z. Yuan, G. Ghinea, and G.-M. Muntean, “Beyond multimedia adaptation:
Quality of experience-aware multi-sensorial media delivery,” IEEE Trans.
Multimedia, vol. 17, no. 1, pp. 104–117, Jan. 2015.

[17] Y. Wen, X. Zhu, J. J. Rodrigues, and C. W. Chen, “Cloud mobile media:
Reflections and outlook,” IEEE Trans. Multimedia, vol. 16, no. 4, pp. 885–
902, Jun. 2014.

[18] X. Wang, M. Chen, T. T. Kwon, L. Yang, and V. Leung, “AMES-cloud:
A framework of adaptive mobile video streaming and efficient social
video sharing in the clouds,” IEEE Trans. Multimedia, vol. 15, no. 4,
pp. 811–820, Jun. 2013.

[19] Z. Wang, B. Li, L. Sun, W. Zhu, and S. Yang, “Dispersing instant social
video service across multiple clouds,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 3, pp. 735–747, Mar. 2016.

[20] C. Müller, S. Lederer, and C. Timmerer, “An evaluation of dynamic adap-
tive streaming over http in vehicular environments,” in Proc. ACM Work-
shop Mobile Video, 2012, pp. 37–42.

[21] D. De Vleeschauwer et al., “Optimization of http adaptive stream-
ing over mobile cellular networks,” in Proc. IEEE INFOCOM, 2013,
pp. 898–997.

[22] H. Lu et al., “The jigsaw continuous sensing engine for mobile phone
applications,” in Proc. ACM Conf. Embedded Netw. Sensor Syst., 2010,
pp. 71–84.

[23] S. Nath, “Ace: Exploiting correlation for energy-efficient and continuous
context sensing,” in Proc. ACM Int. Conf. Mobile Syst., Appl., Serv., 2012,
pp. 29–42.

[24] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User
movement in location-based social networks,” in Proc. ACM KDD, 2011,
pp. 1082–1090.

[25] K. Evensen et al., “Mobile video streaming using location-based network
prediction and transparent handover,” in Proc. ACM Netw. Oper. Syst.
Support Dig. Audio Video, 2011, pp. 21–26.

[26] R. K. Panta, “Mobile video delivery: Challenges and opportunities,” IEEE
Internet Comput., vol. 19, no. 3, pp. 64–67, May/Jun. 2015.

[27] A. Roy, P. De, and N. Saxena, “Location-based social video sharing over
next generation cellular networks,” IEEE Commun. Mag., vol. 53, no. 10,
pp. 136–143, Oct. 2015.

[28] G. Szabo and B. A. Huberman, “Predicting the popularity of online con-
tent,” Commun. ACM, vol. 53, no. 8, pp. 80–88, 2010.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

2034 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 8, AUGUST 2018

[29] Z. Wang, L. Sun, C. Wu, and S. Yang, “Guiding internet-scale video
service deployment using microblog-based prediction,” in Proc. IEEE
INFOCOM, 2012, pp. 2901–2905.

[30] D. A. Shamma, J. Yew, L. Kennedy, and E. F. Churchill, “Viral actions:
Predicting video view counts using synchronous sharing behaviors,” in
Int. AAAI Conf. Weblogs Social Media, pp. 618–621, 2011.

[31] J. Yang and J. Leskovec, “Patterns of temporal variation in online
media,” in Proc. ACM Int. Conf. Web Search Data Mining, 2011,
pp. 177–186.

[32] J. Xu, M. Van Der Schaar, J. Liu, and H. Li, “Timely video popularity
forecasting based on social networks,” in Proc. IEEE INFOCOM, 2015,
pp. 2308–2316.

[33] R. W. White, P. Bailey, and L. Chen, “Predicting user interests from
contextual information,” in Proc. ACM SIGIR, 2009, pp. 363–370.

[34] J. Ruiz, Y. Li, and E. Lank, “User-defined motion gestures for mobile
interaction,” in Proc. ACM CHI, 2011, pp. 197–206.

[35] L. Sun, X. Wang, Z. Wang, H. V. Zhao, and W. Zhu, “Social-aware
video recommendation for online social groups,” IEEE Trans. Multimedia,
vol. 19, no. 3, pp. 609–618, Mar. 2017.

Lei Zhang (S’12) received the B.Eng. degree in 2011
from the Advanced Class of Electronics and Informa-
tion Engineering, Huazhong University of Science
and Technology, Wuhan, China, and the M.S. degree
in 2013 from Simon Fraser University, Burnaby, BC,
Canada, where he is currently working toward the
Ph.D. degree at the School of Computing Science.
His research interests include mobile cloud comput-
ing, social media, and multimedia systems and net-
works. Mr. Zhang is a recipient of the C.D. Nelson
Memorial Graduate Scholarship (2013).

Feng Wang (S’07–M’13) received both the Bach-
elor’s and Master’s degrees in computer science
and technology from Tsinghua University, Beijing,
China, in 2002 and 2005, respectively, and the Ph.D.
degree in computing science from Simon Fraser Uni-
versity, Burnaby, BC, Canada, in 2012. He is cur-
rently an Assistant Professor with the Department
of Computer and Information Science, University of
Mississippi, University, MS, USA. His research in-
terests include wireless mesh/sensor networks, cyber-
physical systems, peer-to-peer networks, socialized

content sharing, cloud computing, and big data. Prof. Wang is the recipient
of the Chinese Government Scholarship for Outstanding Self-financed Students
Studying Abroad in 2009 and the IEEE ICME Quality Reviewer Award in 2011.
He is a Technical Committee Member of Elsevier Computer Communications.
He served as Program Vice Chair in the International Conference on Internet of
Vehicles 2014, and as TPC Co-Chair in the IEEE CloudCom 2017 for Internet
of things and mobile on cloud track. He also serves as TPC member in various
international conferences such as the IEEE INFOCOM, ICPP, the IEEE/ACM
IWQoS, ACM Multimedia, the IEEE ICC, the IEEE GLOBECOM, and the
IEEE ICME.

Jiangchuan Liu (S’01–M’03–SM’08–F’17) re-
ceived the B.Eng. degree (cum laude) from Tsinghua
University, Beijing, China, in 1999, and the Ph.D.
degree from The Hong Kong University of Science
and Technology, Hong Kong, in 2003, both in com-
puter science. He is a University Professor in the
School of Computing Science, Simon Fraser Univer-
sity, Burnaby, BC, Canada. He is an EMC-Endowed
Visiting Chair Professor of Tsinghua University, Bei-
jing, China, and an Adjunct Professor of Tsinghua-
Berkeley Shenzhen Institute, Berkeley, CA, USA. His

research interests include multimedia systems and networks, cloud computing,
social networking, online gaming, big data computing, RFID, and Internet of
things. Prof. Liu is an NSERC E.W.R. Steacie Memorial Fellow. He is a co-
recipient of the inaugural Test of Time Paper Award of the IEEE INFOCOM in
2015, ACM SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award in
2013, and ACM Multimedia Best Paper Award in 2012. He has served on the
editorial boards of the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE
TRANSACTIONS ON BIG DATA, the IEEE TRANSACTIONS ON MULTIMEDIA, the
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, and the IEEE Internet of
Things Journal. He is a Steering Committee member of IEEE TRANSACTIONS

ON MOBILE COMPUTING and Steering Committee Chair of IEEE/ACM IWQoS
(2015–2017).

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 18:27:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

