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Abstract—The pervasive penetration of mobile smart devices
has significantly enriched Internet applications and undoubt-
edly reshaped the way that users access Internet services. D-
ifferent from traditional desktop applications, mobile Internet
applications require users to input via touch screens and view
outputs on the displays with considerably limited size. The
significant conflict between the limited-size of touch screens
and the richness of online media contents requires the mobile
Internet applications to download contents way beyond the
user’s viewing region (referred as viewport).

In this paper, we present a Mobile-Friendly HTTP middle-
ware (MF-HTTP), which interprets user touch screen inputs
and optimize the HTTP downloading of media objects to
improve quality of experience (QoE) and cost efficiency. We
first demystify screen scrolling in mobile operating systems and
precisely break down the viewport moving process. We identify
the key influential factors for media object downloading and
develop an optimal download scheme. Towards building a
practical middleware, we further discuss and address the
implementation issues in detail. We implement a MF-HTTP
prototype based on Android platforms and evaluate the per-
formance of MF-HTTP by conducting concrete case studies
on two representative applications, namely, web browsing and
360-degree video streaming.

1. Introduction

During the past decade, we have witnessed the pervasive
penetration of mobile smart devices such as smartphones,
tablets and wearable devices, which significantly enrich In-
ternet applications and improve user experience. In the fore-
seeable future, mobile smart devices are predicted to take
up over 50% of global devices/connections and surpass 4/5
of mobile data traffic by 2021 [1]. Different from traditional
desktop applications, in which users interact via input/output
devices like large-size displays, keyboards, and mouses,
mobile Internet applications require users to input through
touch screens and allow them to view outputs on the displays
of considerably limited size. This distinct feature introduced
by mobile hardware interfaces brings both challenges and
opportunities to mobile Internet applications. On one hand,
the service providers of mobile Internet applications should
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Figure 1: An example of mobile web browsing

provide multiple copies of media contents with different
resolutions and even multiple versions of application user
interface (UI) layouts to fit various sizes of screens on
heterogeneous devices. On the other hand, as media con-
tents are usually organized in certain order/layout in mobile
Internet applications, it is possible to predict the viewing
region (referred as viewport hereafter) given the user inputs
and the fixed size of display.

The significant conflict between the limited-size of touch
screens and the richness of online media contents requires
the mobile Internet applications to download contents way
beyond the user viewport. Figs. 1 to 3 show three ex-
amples of different applications (i.e., mobile web brows-
ing [2], 360-degree video watching [3], and mobile social
networking [4]) that constantly download contents out of the
viewports to guarantee good user experience. Understanding
how the viewport moves becomes crucial to optimize those
applications. Fortunately, as the screen scrolling animation
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(a) A raw frame

(b) Viewport 1 (c) Viewport 2

Figure 2: 360-degree video watching

(a) Vine (b) Instagram

Figure 3: Mobile social networking

is mostly affected by user touches, once an input gesture
is given based on user touches, the following process of
viewport movement is predetermined in mobile operating
systems. Therefore, by studying the impacts of user touches
on screen scrolling, our work targets to improve Quality
of Experience (QoE) and cost efficiency for a class of
mobile Internet applications that make downloads beyond
user viewport.

Taking web browsing as an example, mobile users usu-
ally can only view a limited area of the web page. By
tracking user touches, it is possible to identify in which
direction the viewport moves and where it stops, as well
as the area covered during the deceleration. Conventionally,
web browsers download all the elements in the web page
by default, as users can easily view the whole web page
on a desktop display. However, in the mobile scenario,

given the entire screen scrolling process, we are able to tell
what media contents need to be downloaded. For instance,
in Fig. 1, the user browses the web page and scrolls the
viewport from position A to position B. The area bounded
by the dashed lines is covered during the deceleration of
screen scrolling. In this web browsing event, there is no need
to download the images that are entirely out of the scrolling
covered area, which does not hurt the user experience as
they never appear in the viewport.

In this paper, we present the Mobile-Friendly HTTP
middleware (MF-HTTP), which acts at the application layer,
interprets screen scrolling processes on mobile devices by
tracking user touch screen operations, and optimize the
downloading of media objects to improve QoE and cost
efficiency. We first demystify screen scrolling philosophy
in mobile operating system in depth. With the opportunities
of collecting and understanding user touch screen opera-
tions, we show how to precisely break down the viewport
movement, and identify the media objects involved in the
process. By examining the key influential factors for me-
dia object downloading, we develop an optimal download
scheme. Towards building a practical middleware, we further
discuss the implementation details for MF-HTTP, based on
which we implement a prototype on Android platforms. We
conduct two concrete case studies on web browsing and 360-
degree video streaming, integrate them with our MF-HTTP
middleware implementation, and evaluate the performance
through extensive experiments.

2. Background and Related Work

A serial of studies have been conducted to optimize
web browsing, an application that is largely affected by user
viewport. Prior work [2] suggests that client-only approach-
es have significant limitations for mobile users: caching [5]
web contents does not remove the true bottleneck of web
page loading–RTT, and predictive prefetching [6] cannot
work well either since most of the pages will only be
requested once by a user. A recent measurement study [7]
shows that only a few web sites have fully deployed HTTP/2
(the state-of-the-art standard in industry) servers, and few of
them have correctly realized the new features in HTTP/2,
which implies the desire of research efforts on optimiz-
ing web performance. Scheduling network requests is a
widely exploited approach to reduce page load time, which
is designed base on the dependency between web page
elements [8]. Butkiewicz et al. [9] proposed KLOTSKI, a
system that prioritizes the contents most relevant to the user
preference and with least rendering time. By collecting the
traces of user gaze fixation during web browsing, Kelton et
al. [10] examined the focus of user attention and reordered
the loading of web objects accordingly. To achieve the
best performance-energy tradeoff, Ren et al. [11] adopted
a machine learning based approach to predict the optimal
processor configurations at runtime for heterogeneous mo-
bile platforms.

Video streaming is another killer application influenced
by user viewport. Dynamic Adaptive Streaming over HTTP
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(DASH) is widely deployed on the Internet for live and
on-demand video streaming services. The rate adaptation
scheme is one of the fundamental research issues for DASH.
By studying the responsiveness and smoothness trade-off
in DASH, Tian et al. [12] showed that client-side buffered
video time is a helpful feedback signal to guide rate adapta-
tion. Instead of constantly predicting future capacity, Huang
et al. [13] proposed to use simple capacity estimation only
in the startup phase and then choose the video rate based
on the current buffer occupancy in the steady state. Re-
cently, MPEG DASH standard has included a new Spatial
Representation Description (SRD) [14] feature, to support
the streaming of spatial sub-parts of a video to display
devices, in combination with adaptive multirate streaming
that is intrinsically supported by DASH. Following this ad-
vance, DASH has been further exploited to stream zoomable
and navigable videos [15], virtual reality videos [16], and
multiview videos [17]. Recent work have adopted novel
technique, e.g., deep learning [18] and emerging computing
architecture, e.g., fog/edge computing [19] to improve the
rate adaptation for DASH.

Such mobile smart devices as smartphones, phablets, and
tablets, undoubtedly reshape the way that users access Inter-
net services, and therefore attract tremendous attention from
academia. Existing studies tackle the challenges brought by
the intrinsic mobile nature and enhance network protocols
to accommodate seamless mobility [20], [21], inefficient
retransmission [22], unstable channel quality [23], [24],
and unexpected interference [25] in wireless and mobile
networks. Yet, very few of them have attempted to improve
network protocols for multimedia applications by utilizing
rich interfaces and user interactions on mobile smart devices.
Rather than optimizing one specific application, our work
strives to enhance HTTP for a class of mobile Internet
applications that make downloads outside user viewport.

3. MF-HTTP: Architecture and Design

3.1. Middleware Architecture

We first illustrate the opportunities from screen scrolling,
the unique user–screen interaction on mobile platforms.
Fig. 4 shows an example of screen scrolling process. Along
the time axis, the solid line segments indicate the user/device
actions, and the dashed line segments indicate when the
objects enter the user viewport. From t0 to t1, the view-
port changes as the user moves his/her finger. Once the
finger is released at t1, the following scrolling process is
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Figure 5: Middleware architecture

predetermined. Thus, at t1, we can accurately calculate the
viewport’s movement and predict object A’s exit and object
B and C’s entrance in the viewport, which will be addressed
in detail in later subsections. Given such information, better
download arrangements can be made for the media objects
in advance.

Our middleware consists of three modules: touch event
monitor, screen scrolling tracker and flow controller, each
of which will be elaborated in the following subsections.
The main work flow is shown in Fig. 5. The touch event
monitor attaches on the target mobile app to collect user
touch data, which will be sent to the screen scrolling tracker.
The middleware server that holds the other two modules can
be either a remote content server or a forward or reverse
proxy. With the information of user touch and device con-
figuration, the screen scrolling tracker traces and predicts the
viewport’s movement. Further, given the location and size of
the viewport and those of the media objects, the coverages of
the media objects in the viewport can be calculated. Finally,
with the full knowledge of the screen scrolling process, the
flow controller is able to determine the optimal download
policy.

3.2. Touch Event Monitor

The touch event monitor is a light-weight module that
collects the device specification and configuration (e.g.,
screen size, pixel density, viewport scale) as well as the
user touch data. As the user touch data can only be obtained
from the mobile device, this module is designed to locate
on the mobile client and provide interfaces for the mobile
app developers to feed the user touch data. The collected
information and data are sent to the screen scrolling tracker,
which only introduces negligible traffic overhead.

In general, there are 3 types of input user gestures:
click, drag, and fling, the last two of which can result in
screen scrolling animation. Each gesture can be identified
by a series of touch events. By detecting and collecting the
information about the user’s finger touch and release on the
screen, the initial scrolling velocity on x axis (denoted as
vx) and that on y axis (denoted as vy) can be calculated
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as the displacement divided by the touch time in two axes
respectively.

3.3. Screen Scrolling Tracker

3.3.1. Scrolling Animation Philosophy. As we will dis-
cuss the practical issues for the implementation in the next
section, we first investigate the philosophy of animating the
screen scrolling for most mobile operating systems, which
is to gradually decelerate the scrolling speed until it reaches
zero if there is no other finger touch detected during the
deceleration. Taking Android OS as an example, we next
show how to calculate the viewport movement and the media
object coverage during the scrolling process. Given the user
touch data, the initial scrolling speed can be obtained as

v =
√

v2x + v2y . Android OS uses a threshold for the initial

scrolling speed to distinguish between a drag and a fling,
whose default value is 50 pixels/second and can be scaled
under different configurations based on the actual screen
resolution.

For dragging, the screen scrolling speed will experience
a uniform deceleration, which can be easily interpreted
given the deceleration parameter and initial speed. As the
deceleration of a dragging event is usually short and has
very limited impact on viewport movement, we focus on
analyzing the case of flinging. If a fling is detected, the
deceleration will change with the scrolling speed. Given
the initial scrolling speed v, the total fling duration T (v)
and the total fling distance D(v) (the viewport displacement
caused by the fling) can be calculated by using the following
equations:

l(v) = log[0.35 · v/(Fric · PCOEF )], (1)

T (v) = 1000 · exp[l(v)/(DRATE − 1)], (2)

D(v) = Fric · PCOEF · exp[DRATE/(DRATE − 1) · l(v)],
(3)

where DRATE = log(0.78)/log(0.9), Fric denotes the
friction parameter with the default value as 0.015, and
PCOEF = G · 39.37 · ppi · 0.84. To compute PCOEF , G
is the gravity of the Earth with a constant value of 9.80665
m/s2, 39.37 is used for the conversion between meters and
inches, and ppi denotes pixel density for the specific mobile
device. Note that, as the basis of the following analysis, the
above equations are obtained from our analysis of Android
OS source code.

3.3.2. Viewport Displacement. Assume that, at time t,
which denotes the time elapsed since the scrolling starts,
the scrolling speed decreases to v′. From Eq. 2 and Eq. 3,
we can have

D(v) = Fric · PCOEF · (T (v)/1000)DRATE . (4)

Given t = T (v)− T (v′), the viewport displacement at time
t can be calculated as

d(t) = D(v)− Fric · PCOEF · [(T (v)− t)/1000]DRATE .
(5)

Upon obtaining d(t), we can further calculate the view-
port displacement on x and y axis as dx(t) = d(t) · vxv and
dy(t) = d(t) · vy

v , respectively. Note that, as d(t) can have
any direction, which is usually the same as (or opposite to)
the direction of the user’s finger touch movement, dx(t) and
dy(t) can be either positive or negative.

3.3.3. Objects Involved in Viewport Movement. As the
viewport and the rendered media objects (e.g., objects in a
web page) are usually rectangular or bounded by rectangular
boxes, let (x0

p, y
0
p) be the original coordinates of the left-top

vertex of a viewport, and wp and hp be its width and height.
The viewport can be then uniquely defined. Similarly, we
define (xi, yi), wi, and hi as the coordinates of the left-
top vertex, the width, and the height of a media object i,
respectively.

To identify the media objects covered by a scrolling
process, we first determine the area covered by the view-
port movement. Given the viewport displacement calculated
above, the final location of the viewport’s vertices can be
obtained. As the viewport can move in any direction in a
2-D plane, the mathematical description of the covered area
depends on the specific situation. For simplicity, we study
the case of Dx(v) = D(v) · vxv > 0, Dy(v) = D(v) · vyv > 0
(other cases can be studied similarly), in which the cov-
ered area is surrounded by the boundary consisting of 6
intersected line segments: (1) x = x0

p; (2) y = y0p; (3)

x = x0
p + wp + Dx(v); (4) y = y0p + hp + Dy(v); (5)

y =
Dy(v)
Dx(v)

(x−x0
p)+y0p+hp; (6) y =

Dy(s)
Dx(v)

(x−x0
p−wp)+y0p.

To decide whether object i appears in such a bounded
area, we check its four vertices to see if it intersects or
is located inside. Since the four vertices are correlated,
we can further evaluate the case based on the location of
one vertex. Specifically, given this boundary, we can then
determine object i located in/intersecting the covered area,
if (xi, yi) meets the following conditions: (1) x0

p − wi <
xi < x0

p+wp+Dx(v); (2) y0p−hi < yi < y0p+hp+Dy(v);

(3)
Dy(v)
Dx(v)

(xi−x0
p−wp)+ y0p −hi < yi <

Dy(v)
Dx(v)

(xi +wi−
x0
p) + y0p + hp.

As we are now able to filter the media objects that
are involved in a scrolling process, intuitively, the media
objects that never appear in the viewport can be omitted for
downloading or considered with low priority, which likely
causes no difference in user QoE.

3.3.4. Object Coverage in Viewport. For those media
objects that appear in the viewport, calculating how much
area each of them covers is a straight-forward evaluation
of its significance to user’s multimedia viewing experience.
We next show how to compute the coverage of a media
object i in the viewport at a given time t. Based on the
analysis in the previous subsections, we have that, at time t,
the left-top vertex of object i is moved to (xp(t), yp(t)) =
(x0

p + dx(t), y
0
p + dy(t)). Similarly, we consider object i

appearing in the viewport at time t, if the two following
conditions are satisfied: (1) xp(t) − wi < xi < xp(t) + wp

and (2) yp(t)−hi < yi < yp(t)+hp. If object i is identified
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in the viewport, we can further calculate how much area it
covers. Let si(t) be the coverage of object i in the viewport
at time t, which can be obtained as:

si(t) =[min (yi + hi, yp(t) + hp)−max (yi, yp(t))]·
[min (xi + wi, xp(t) + wp)−max (xi, xp(t))].

(6)

3.4. Flow Controller

The flow controller determines and executes the optimal
download policy for the media objects identified in the
last step. We next present the formulation of the download
optimization problem, which is solved in this module.

Consider n media objects that are involved in a screen
scrolling event. A media object can be an image in a
web page or a video segment in a DASH stream. To
accommodate the heterogeneity of mobile platforms, the
service/content providers usually offer multiple versions of
media objects, e.g., images/video segments with different
qualities. Assume that each object i ∈ [1, n] have m versions
ordered increasingly by resolution. Let ti be the time when
object i first appears in the viewport. Assume that the media
objects are indexed based on the order in which they enter
the viewport, which implies t1 ≤ t2 ≤ ... ≤ tn. Let B(t)
be the available bandwidth at time t and fi,j be the file
size of object i with resolution rj (j ∈ [1,m]). We further
define the cost function as c(fi,j), which denotes the cost
of download with the given file size. We use ki,j ∈ {0, 1}
to denote the download policy for the given object, where
the binary variable ki,j = 1 indicates the object i of version
j will be downloaded, and ki,j = 0 otherwise.

3.4.1. Performance Metrics. We propose two metrics to
evaluate the performance gain as well as the download cost
for a media object, namely the QoE model and the cost
model.

Based on Section 3.3.4, object i covers a faction
si(t)
S

of the viewport at time t, where S is the area of the
viewport. In practice, the user QoE is not only influenced by
a media object’s coverage and resolution, but also depends
on how long the object stays in the viewport. Following this
intuition, our QoE model consists of two parts. The first part
Q1(i, j) weights the object based on its coverage during the
screen scrolling, which can be calculated as the normalized
integral of si(t) in discrete time with resolution rj :

Q1(i, j) =
1

T (v)

rj
rm

T (v)∑
t=1

si(t)

S
=

1

T (v)

1

S

rj
rm

T (v)∑
t=1

si(t),

(7)
where S = wp · hp. The terms in the denominator are used
to normalize Q1(i, j) so that its value is between 0 and 1.

The second part Q2(i) is an binary indicator which
checks whether the object appears in the final viewport when
the screen scrolling stops:

Q2(i) = �[si(T (v))>0], (8)

where �[·] is the indicator function.

The QoE metric of object i with resolution rj is defined
as a weighted sum of the two parts defined above:

Qi,j = a ·Q1(i, j) + b ·Q2(i). (9)

To simply our QoE model, we set a = b = 1/2, so that Qi,j

is between 0 and 1, and the QoE score of the object in the
final viewport will never be lower than that of the object
out of the viewport.

The performance gain comes with a price. The download
cost of a object can be obtained from the cost function
c(fi,j) given the file size fi,j . We calculate the normalized
cost for downloading object i with resolution rj as

Ci,j = c(fi,j)/cM (10)

where cM is the highest download cost during the scrolling
process. As cM is reached when all the involved media
objects are downloaded at the highest resolutions or the
bandwidth is completely consumed, it can be calculated as

cM = c(min(
∑n

i=1 fi,m,
∑T (v)

t=1 B(t))). We keep the cost
model generic so that it can be easily adapted to different
practical scenarios.

3.4.2. Performance Optimization. The goal is to generate
the optimal download policy for all the media objects, which
maximizes the QoE gain and minimizes the download cost.
The objective function can be formulated as

n∑

i=1

m∑

j=1

ki,j(p ·Qi,j − q · Ci,j) =

n∑

i=1

m∑

j=1

ki,j(
p

2

1

2T (v)

1

S

rj
rm

T (v)∑

t=1

si(t) +
p

2
�[si(T (v))>0] − q

c(fi,j)

cM
),

(11)

where p and q are the weighting parameters.
For the proposed optimization problem, the following

two constraints must be satisfied.
(1) Each object is downloaded once at most:

∀i ∈ [1, n],

m∑
j=1

ki,j ≤ 1. (12)

(2) The bandwidth should be enough to download the
objects in time:

∀i′ ∈ [1, n],
i′∑

i=1

m∑
j=1

ki,j · fi,j ≤
ti′∑
t=1

B(t). (13)

The first constraint ensures that no more than one copy
(with a certain resolution) of each object can be downloaded.
The second constraint implies that, when any object i′
appears in the viewport at time ti′ , there should be enough
bandwidth to download it and all the other selected objects
that enter the viewport before it. Given the download policy,
the underlying scheduling scheme hinted by Eq. 13 is to
schedule the download in the same order that the objects
are requested in the application.

We solve the formulated optimization problem by con-
verting it to a variation of the 0-1 Knapsack problem.
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Define the value of object i with with resolution rj as
v(i, j) = p ·Qi,j − q ·Ci,j , its weight as w(i, j) = fi,j , and

the maximum weight capacity as W (t′) =
∑t′

t=1 B(t). The
key difference is that, in our problem, W (t′) (the available
bandwidth till a given time t′) varies with time. Define
M [i, l] as to be the maximum value that can be attained with
weight less than or equal to l using first i items. Inspired
by the solution of 0-1 Knapsack problem, we solve the
formulated problem by dynamic programming, in which the
recursive equation is:

M [i, l] = max
j∈[1,m]

{M [i− 1,min(l,W (ti−1))],

M [i− 1,min(l − w(i, j),W (ti−1))] + v(i, j)},
(14)

and the initial setting is:

M [i, l] = 0, ∀i ∈ [1, n], l ∈ [0,W (tn)]. (15)

In the modified solution to our problem, v(i, j) and
w(i, j) are initialized according to the definitions. The max-
imum weight capacity is carefully updated as it increases
with larger i. The time complexity of the designed algorith-
m is O(nm2W (tn)). Although the algorithm is executed
whenever a user touch event is detected, given that any user
gesture can only affect a limited number of media objects
for a very short time, n, m, and W (tn) are most likely
to have very small values, and thus our algorithm can run
efficiently.

4. Middleware Implementation

In this section, we present and discuss the implementa-
tion issues for the MF-HTTP middleware.

4.1. Touch Event Monitor

The touch event monitor is implemented on the mobile
side. The middleware should introduce least modifications
on mobile clients and HTTP servers for multimedia services.
As the user touch events need to be collected from mobile
devices, integrating the touch event monitor to the client-side
software, typically a mobile app, is however inevitable. It
thus should be effortless for general mobile app developers
to implement and integrate the touch event monitor, which
employs simple and standard APIs.

Taking Android platform as an example, the user in-
terface for an Android app is built using a hierarchy of
layouts (ViewGroup objects) and widgets (View objects).
The widget that occupies (a part of) the device’s screen can
listen to and handle user touch events on it. The idea is to
find the proper View object class in the application’s source
code, which can also be provided by developers, and attache
this module to the scrollable View objects that display the
scrolling effect in response to touch gestures. Next, we
override the onTouchEvent method of the target View
objects to handle key touch screen motion events such as
ACTION_DOWN, ACTION_MOVE, and ACTION_UP, based
on which the input gesture can be identified as a fling or

a drag. We further decouple the scrolling animation from
the original mobile application to produce a well-controlled
scrolling process, by employing the Scroller class to an-
imate scrolling over time using platform-standard scrolling
physics (friction, velocity, etc.). The corresponding scrolling
offsets for both drag and fling events are calculated and sent
to the screen scrolling tracker.

4.2. Screen Scrolling Tracker

The screen scrolling tracker requires certain knowledge
about the mobile multimedia services. As such knowledge
can be hardly collected from client side, we implement
the screen scrolling tracker on the middleware server. This
module can thus access the related data on the cache of the
middleware server or directly from the multimedia service
server with very low cost.

During the consumption of mobile Internet services, the
screen scrolling tracker first retrieves the device specification
and configuration information from the touch event monitor.
Second, the user touch data is constantly transmitted to the
module through a TCP socket connection. Based on the
analysis in Section 3.3, the viewport locations and object
coverages the during the scrolling process can be calculated.
Whenever a touch event with a newer timestamp arrives, the
simulation of current/unfinished scrolling is aborted.

4.3. Flow Controller

The flow controller is also implemented on the mid-
dleware server and runs in a separate thread from the
screen scrolling tracker sharing necessary global variables.
We adopt the mitmdump1 tool, run MF-HTTP as a man-
in-the-middle proxy, and redirect the mobile client’s HTTP
traffic to the middleware server. We develop a Python script
to run with mitmdump on the middleware server to iden-
tify and handle the HTTP traffic generated by the target
mobile multimedia service, and modify the script with the
@concurrent setting so that MF-HTTP proxy works in
a non-blocking mode to process multiple HTTP requests at
the same time. The control of media object downloading
is realized by modifying, deferring, or blocking the target
HTTP headers, requests and responses.

The flow controller executes the optimization logic p-
resented in Section 3.4. It is worth noting that, our op-
timization model of MF-HTTP can adapt to various us-
er requirements and different practical scenarios, as the
cost function and the weights of performance metrics are
adjustable. Moreover, as the inputs, the outputs, and the
interfaces employed by MF-HTTP are simple and straight-
forward, users of MF-HTTP can design and implement their
own optimization logics.

5. Case Studies

MF-HTTP targets to optimize a class of mobile Internet
applications that make downloads outside user viewport.

1. https://mitmproxy.org/
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For different applications, the knowledge assumed from
the last section can be carefully obtained or bypassed. We
next present concrete case studies on two representative
applications, web browsing and 360-degree video streaming,
and discuss the light and practical adjustments for the MF-
HTTP prototype.

5.1. Mobile Web Browsing

The media objects that are critical to mobile web brows-
ing experience are the images in the web page (the videos
are often marked by their thumbnails before being selected
to play). Therefore, our scrolling-aware HTTP middleware
can be adjusted for the download of images.

5.1.1. Implementation Details. We develop a light-weight
web browser based on the WebView2 class from An-
droid API with the touch event monitor integrated, whose
onTouchEvent method is customized as described in the
last section. Note that WebView share the same rendering
engine as Chrome for Android. To collect the information
needed by the screen scrolling tracking, we use Chrome’s
developer tool to emulate the web page layout under differ-
ent screen sizes. Every time the web page is requested, this
reference is built and updated, so that the middleware keeps
refreshing the information of web page layouts proactively.
The dependencies between web objects can be profiled using
tools such as Wprof [26]. As mentioned, we focus on and
modify the download of images, among which dependencies
rarely exist. We keep the download sequence of styling rules
and scripts unchanged to ensure that MF-HTTP does not
violate the dependencies of the web page.

5.1.2. Optimization Workflow. As bandwidth is rarely the
bottleneck for web browsing [2], we release the bandwidth
constraint from the formulated problem in Section 3.4.
Rather than modifying the hardcore of the web engine to
have fine-grained control over the download of web page
objects, MF-HTTP adopts simple but effective approaches.
The flow controller is adjusted to execute the following work
process. (1) When a web page is requested, as the images’
source URLs are already collected, the flow controller main-
tains a block list of source URLs for the images outside
the initial viewport. (2) For each data flow, it checks the
header to see if the requested URL is in the block list.
If so, it blocks the HTTP request. (3) By receiving the
updates of viewport location, viewport displacement, and
object coverage from the screen scrolling tracker, the flow
controller is able to determine whether an image appears in
the viewport in the scrolling process. If the image is never
involved in the scrolling, it remains in the block list. For
web browsing, the images in the viewport before and after
its moving are the most crucial to user QoE. Thus such
images are in the current viewport or in the final viewport
when the scrolling stops are identified and removed from
the block list. For the images that appear but fail to stay

2. https://developer.android.com/reference/android/webkit/WebView.html

in the viewport, the flow controller evaluates their values
p·Qi,j−q·Ci,j as in Eq. 11. The images with positive values
are allowed to download, while others with negative values
are kept in the block list. (4) Whenever a new user touch
event is detected, the flow controller receives the updates
from the screen scrolling tracker and reacts in the same
logic as described above.

5.2. 360-Degree Video Streaming

Different from web browsing, video streaming is
bandwidth-sensitive and -intensive, which can also bene-
fit from MF-HTTP. 360-degree videos provide users with
panoramic views and create unique viewing experience,
which are now popular on major video sharing platforms
such as YouTube and Facebook. In our case study, 360-
degree videos are consumed as navigable videos from mo-
bile clients with limited viewports. As shown in Fig. 2, the
user’s viewport is significantly confined by the device’s size
of display, while the whole raw frame is streamed back with
large portions outside the viewport. We next discuss how
to enable the key idea of MF-HTTP for 360-degree video
streaming.

5.2.1. Implementation Details. The touch event monitor
is implemented and attached to an open source 360-degree
video player3. In this case, we directly pin the touch event
monitor to the player’s main View object class, which
extends the TextureView class from Android API, to
handle the touch events and output the user gestures and
the scrolling offsets.

As the delivery schemes for traditional Internet videos
are inefficient for 360-degree videos and provides no flex-
ibility to adapt to the change of user’s Region Of Interest
(ROI), we use the tile-based streaming approach [27], [28] to
adapt the user’s viewport. To map the viewport in the spher-
ical view to the tiles of the rectangular raw video frame,
we adopt the widely used equirectangular projection [29]
as the sphere-to-play mapping scheme, which unwraps a
sphere with a radius of r on a 2D rectangular plane with
the dimensions of (2πr, πr).

5.2.2. Optimization Workflow. As user interest for video
contents is usually coherent in one viewing session, 360-
degree video users produce much more drag events than
fling events if there are any. Given that a DASH segment’s
duration is usually much longer than a scrolling, instead of
interpreting viewport movement, the screen scrolling tracker
only keeps a close track of the viewport’s current location by
monitoring the user drag events. The tiles are thus classified
into two categories: tiles that appear in the viewport and
tiles that have no overlap with the viewport. In the original
formulation, media objects with different resolutions are
evaluated and selected separately, which can be simplified
here by setting Qi,j to be binary, as the tiles that are appear
in the viewport should be of the same quality so as to

3. https://github.com/fbsamples/360-degree-video-player-for-android
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provide better and consistent QoE for video watching. As
the design of more sophisticated algorithms specifically for
360-degree video DASH streaming optimization is out of
the scope of this paper, therefore, for illustration purpose,
here the flow controller adopts the following principle for
tile-based 360-degree video DASH streaming: given the
available bandwidth, minimize the quality of the tiles that
have no overlap with the viewport and maximize the quality
of the tiles that appear in the viewport.

6. Performance Evaluation

6.1. Experiments for Web Browsing

6.1.1. Test Platforms and Settings. In this subsection, we
evaluate the performance improvement of our MF-HTTP
middleware for the mobile web browsing case study. We use
a Nexus 6 phone running Android 7.0 as the mobile client,
and a desktop computer with Intel Core i7-3770 CPU @
3.40GHz × 8 and 16 GB memory running Ubuntu 14.04
LTS as the MF-HTTP middleware. As the touch interface

(a) MF-HTTP enabled (b) MF-HTTP disabled

Figure 8: Screenshots of two browsing sessions with the same
timestamp
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Figure 9: A sample trace of one video watching session

has no dramatic change across different generations of hard-
ware and software platforms, similar experiment results are
observed with other phones. The mobile client is connected
to MF-HTTP through an IEEE 802.11 WLAN router. Both
of the middleware and the router locate in the university
campus network, and the network condition is good and
stable. We use the browser to access the Alexa’s top 25 glob-
al websites [30]. Each browsing session consists of default
viewport loading followed by a random scrolling touch. We
set the weight of cost metric q = 0 to maximize the viewing
experience. To better trace the loading performance, we add
a timer to the browser. We compare the performance of
browsing with and without MF-HTTP enabled.

6.1.2. Results. We first check the default viewport size
against the webpage size, where Fig. 6 shows the ratio
of top 25 websites. In particular, there are 11 websites
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having full-size viewports and 14 websites having limited-
size viewports. The 11 websites with full-size viewports
are mainly search engines (e.g., Google global and 4 other
regions, Microsoft Live) and login pages (e.g. Facebook,
Twitter, and Linkedin), while the other 14 websites stand
for more general and various types of websites, from which
mobile users can only view a small portion of the whole
page (as low as 4.1% in the case of Sohu). It is worth noting
that, some websites (e.g., YouTube and Yahoo) have pages
of varying length, which will always load new contents
when users hit the bottom. In theory, these websites can
have unlimited length of contents, and thus the impacts of
limited viewports become even more notable.

Rather than using page load time, one of the major
performance metrics for web browsing, we use a new metric,
viewport load time, which is the elapsed duration when
the viewport is fully loaded. We record the screen of the
test smartphone and replay the video to track the loading
process as well as the timer. As shown in Fig. 7, MF-
HTTP significantly improves the loading performance for
the websites with limited-size viewports as it prioritizes the
downloads of the objects in the viewport. In average, MF-
HTTP reduces the viewport load time by 44.3%. Fig. 8
further shows two screenshots taken at the same time for
two YouTube browsing sessions using different approaches.
In this example, MF-HTTP finishes loading the viewport,
while the baseline approach still struggles in downloading
objects disregarding whether they are in the viewport.

6.2. Simulations for 360-Degree Video Streaming

6.2.1. Data Collection. In this subsection, we evaluate the
performance improvement of our MF-HTTP middleware for
the 360-degree video streaming case study. We obtain three
test videos from YouTube4 at 4 different resolutions: 1080s,
720s, 480s, and 360-degrees (“s” stands for spherical). We
recruit 10 volunteers to watch each video on the Nexus 6
phone and modify the 360-degree video player to record user
touches during the video watching. Each video watching

4. YouTube IDs of the three test videos are: -xNN-bJQ4vI,
rG4jSz 2HDY, wXeKxY3F0sE.

session lasts for 1 minute. To support tile-based DASH
streaming, we use the GPAC5 toolbox to slice and package
the 360-degree videos into into 4× 4 tiles. We further do a
segmentation on the encoded tile-based videos and generate
segments with duration of 1 second as well as the MPD files,
which are ready to be DASHed. The viewport movement
and the resulting tile and rate selection are generated by
MF-HTTP based on the collected traces of user touches.

6.2.2. Results. We first check the bandwidth consumption
for MF-HTTP and plot a sample trace of one 1080s video
watching session in Fig. 9. Compared to the baseline ap-
proach, streaming the whole frame with a fixed resolution
without considering the viewport, MF-HTTP significantly
reduces the bandwidth consumption. The result also sug-
gests that MF-HTTP does not necessarily share network
load peaks with the baseline steaming approach, and its
bandwidth consumption is closely affected by the number
of tiles that appear in or overlap the viewport, as the valleys
of the two curves match in Fig. 9.

We next vary the available bandwidth from 250KB/s
to 1000KB/s to examine the streaming quality of MF-
HTTP, and compare its performance with a greedy DASH
scheme that maximizes bandwidth usage and streams at
the highest possible resolution. Fig. 10 shows how much
time (in percentage) the test videos are played at different
resolutions using two streaming approaches, where “NA”
denotes the bandwidth is insufficient for any of the given
resolutions. As shown, MF-HTTP constantly outperforms
the greedy DASH scheme under all bandwidth conditions for
all test videos. MF-HTTP can maintain good video quality
when the bandwidth is low, and it quickly responds to the
increase of the bandwidth. This result suggests that MF-
HTTP can more efficiently utilize the network resource to
focus on downloading the high quality video segments in
the viewport.

7. Conclusion

In this paper, we presented the Mobile-Friendly HTTP
middleware (MF-HTTP). MF-HTTP acts at the application

5. https://gpac.wp.imt.fr/home/
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layer and interprets screen scrolling processes on mobile
devices by tracking user touch screen operations. Based on
the information from the screen scrolling processes, MF-
HTTP further optimizes the downloading of media objects
to improve QoE and cost efficiency. To achieve this, we
first demystified the detailed screen scrolling philosophy in
mobile system and showed how to precisely break down the
viewport movement. We then identified the key influential
factors for media object downloading, and developed an
optimal downloading scheme. We further discussed practical
issues towards the implementation of MF-HTTP. Finally, we
implemented a prototype based on Android platforms and
conducted two concrete case studies, namely, web browsing
and 360-degree video streaming, to demonstrate the superior
performance of MF-HTTP.
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