
MemNet: Enhancing Throughput and Energy
Efficiency for Hybrid Workloads via

Para-virtualized Memory Sharing

Chi Xu*, Xiaoqiang Ma†, Ryan Shea*, Haiyang Wang‡, and Jiangchuan Liu*

*Simon Fraser University, British Columbia, Canada
†Huazhong University of Science and Technology, Hubei, China

‡University of Minnesota at Duluth, Minnesota, USA

{chix,xma10,rws1}@sfu.ca, haiyang@d.umn.edu, jcliu@cs.sfu.ca

Abstract—Virtualization has become a building block for
modern IT industry, and many datacenters are now highly
virtualized. It is known that virtualization also introduces non-
trivial overhead, which can cause severe self-interference inside
a VM when CPU intensive tasks and bandwidth intensive tasks
are co-located. Energy efficiency of the server can be affected as
well. While such overhead is well-studied in application/protocol
specific context, a more comprehensive solution is yet to be
explored for general cloud services. In this paper, we present
MemNet, a novel protocol-independent solution that enables para-
virtualized memory sharing between host and guest VMs. This
design successfully decouples I/O and computation operations
and lifts the offered interface from the physical devices to high-
level network services. Our real-world implementation on KVM
indicates that, MemNet can achieve 27% and 70% gain in
terms of computing and networking performance, respectively, by
resolving the self-interference. It also provides 32% improvement
in terms of energy efficiency.

I. INTRODUCTION

State-of-the-art enterprise cloud services leverage virtu-

alization technologies to achieve high resource utilization

as well as performance isolation among co-located virtual

machines (VMs). Through resource multiplexing, the cloud

providers can effectively reduce their operational costs, which

in turn enables flexible pricing strategies to attract cloud

users. Despite the benefits, it is known that virtualization

introduces non-trivial overhead, which often leads to longer

and unstable job completion time for typical computation-

intensive applications [1]. Meanwhile, the virtualized network-

ing subsystem is also suffering from performance degradation

with unpredictable latency and notably lower throughput [2].

To make the matter worse, a broad spectrum of cloud-based

applications, e.g., video transcoding in content delivery, and

compression/error check in cloud storage, incur both intensive

network transmission and realtime computation. This further

increases their self-interference [3]. In contrast to the well

discussed cross-VM interference [4] [5] [6], self-interference

happens within a VM when the network traffic handling

process of the VM is starved, as other computation processes

have used up the CPU resources allocated to this VM.

There have been many works focusing on improving the

network performance in the cloud [8] [9] [10]. These pi-

oneer studies mainly target specific networked applications

or protocols (TCP in particular), and the self-interference has

not been well addressed, either. Furthermore, the coexistence

of CPU intensive and bandwidth intensive tasks also brings

negative impacts on the CPU usage and the energy efficiency

of a physical server. For example, CPU intensive tasks may

experience longer finish time and the physical server consumes

a greater amount of energy, since the ceaseless VM running

state change under the scheduling policy, together with the

context switching between tasks, increases the job finish time

and the energy consumption of the underlying server. Such

impact remains unexplored, and a solution is to be developed

for general cloud services demanding both transmission and

realtime data processing with VMs.

In this paper, we present MemNet, a novel architecture

that explores a para-virtualized memory sharing mechanism

between host and guest VMs. Instead of offloading certain

protocol functions, MemNet shifts the general I/O intensive op-

erations to the host and decouples I/O and computation work-

loads for the cloud VMs. The possible task self-interference is

therefore minimized, enabling enhanced network performance

and shorter job completion time, as well as improving the en-

ergy efficiency of the physical server. The design of MemNet

is not confined to any specific protocols or applications, and

raises the level of provision from physical device interfaces to

high-level network services. This eliminates the cost of setting

up complex network configurations and hence minimizes

the encapsulation overhead on the data exchanging between

host and its guest VMs. We have addressed the key design

issues in MemNet architecture, including efficient intermediate

data sharing and QoS-aware memory usage redistribution.

Our prototype-based evaluation shows that MemNet can im-

prove the network throughput by 70% by resolving the self-

interference, with a moderate memory usage. Meanwhile, the

experiments also indicate that MemNet can reduce the job

completion time by 27%. As for the energy efficiency of the

physical server, it also exhibits a 32% improvement.

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.147

980

10 20 30 40
0

50

100

150

200

250

Time (s)

N
et

w
or

k
th

ro
ug

hp
ut

 (
M

bp
s)

Interference
No interference

Fig. 1. Network interference

720P 480P 360P 240P
0

5

10

15

20

25

30

Video resolution

F
in

is
hi

ng
 ti

m
e

(s
)

Interference
No interference

Fig. 2. Transcoding job

400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Network throughput (Mbps)

C
D

F

Unlimited
90% cap
70% cap
50% cap

Fig. 3. Scheduling policy

STREA TRANS HYBRI
0

20

40

60

80

Job type

S
er

ve
r

en
er

gy
 c

on
su

m
pt

io
n

Bare−metal
Virtualized

Fig. 4. Energy Comparison

II. MEASUREMENT-BASED MOTIVATION

Previous research has confirmed the existence of self-

interference inside a single VM, and quantified the degradation

of the network performance with standard benchmark tools [3].

To further understand the self-interference from real-world

applications, we have conducted measurements on two sets of

typical hybrid workloads: 1) video transcoding and streaming,

and 2) file compression and delivery. Despite the great effort

towards highly modulized and layered design for modern cloud

applications, such hybrid workloads involving both network

transmission and realtime computation still widely exist in

cloud environments, which can hardly be decoupled.

Our first experiment is conducted on a VM which serves as a

video streaming server and also a transcoder with realworld ap-

plication LIVE555 and FFmpeg. We present our experiment

results in Fig. 1. As the experiment begins, the total throughput

on this VM is relatively stable around 190 Mbps when it

is dedicated to handling the streaming traffic. Unfortunately,

when we start to add concurrent transcoding workload to

the VM, the total throughput becomes as low as 115 Mbps,

not to mention the high variance. Before the transcoding

finishes at 28s, the clients experience nearly 40% throughput

degradation. On the other hand, for the concurrent transcoding

workloads, the processing is also delayed by 10% − 18%
for multiple resolution levels, which is shown in Fig. 2.

Another set of experiments with file compression and delivery

workloads shows similar impaired performance. To take a

further step, we maintain a hard limit on the CPU usage

of the VM. Such a non-work conserving scheduling policy

has often been adopted in realworld commercial clouds, e.g.,

Amazon AWS, to achieve better isolation between VMs. The

CDF (cumulative distribution function) of the VM’s network

throughput in Fig. 3 shows that, as we limit a lower cap on

the CPU usage of the VM, the average throughput significantly

decreases, together with a perpetual network instability. Our

measurement results clearly indicate that adopting such a

scheduling policy further deteriorates the network performance

with more severe self-interference. In fact, the root cause of

such self-interference is a combined effect of the network

architecture design and the scheduling policy in virtualized

environments. When hybrid workloads are introduced on the

VM, the computation-intensive task can consume the entire

quotas demanded by the network traffic, and vice versa.

Furthermore, the ceaseless VM running state change, together

with the context switching between the CPU intensive tasks

and the network intensive tasks inside the VM, can further

increase the energy consumption of the underlying server.

As a concrete example, Fig. 4 shows that, when we run the

stand-alone streaming job or the stand-alone transcoding job

inside the VM, the energy consumption of the physical server

increases by 22% and 18%, respectively, compared to running

the stand-alone task inside the bare metal Linux system.

However, when we run the hybrid workloads inside the VM,

the energy consumption increases by 31%, also compared to

the bare metal case. The results simply indicate that the context

switching, brought by the hybrid workloads, consumes more

power inside the VM than the bare metal system. Although

progress is made on improving the scheduling policy [11] [3]

to benefit the VM with heavy I/O workloads, the existence of

the hybrid workloads within the VM remains and so is the

self-interference. In this paper, we seek the opportunities for

raising the provision level from physical device interfaces to

high-level networking services. Such approach can be applied

for decoupling the hybrid workloads and largely reducing the

self-interference in cloud environments.

III. DESIGN AND PROTOTYPE IMPLEMENTATION

In this section, we present the design of our enhanced

virtualization framework. To mitigate the self-interference, the

principle of our system is to enable a communication ex-

pressway by explicitly providing a lightweight paravirtualized

memory sharing interface. As shown in Fig. 5, this design

consists of the following components:

• Processing Module: The processing module performs

CPU intensive jobs inside the guest VM, with a complete

isolation against networked communications.

• Transmission Module: The transmission module per-

forms network intensive jobs, running in the host space,

so as to eliminate the networked transmission of the large

bulk data in between the VM and its host space.

• Shared RAM Space: The shared memory space stores

the temporary intermediate data. It is in the virtual

memory maintained by the host kernel.

• Controller: The controller is to coordinate the computa-

tion progress and the network transmission speed.

• Profiler: The profiler is to collect application perfor-

mance indicators from the processing module, e.g., job

response time and detailed logs.

981

�������	
��������	
�����

�����
���
�������
������

���	��
���������

�
��	
���	

�	��������
�
�
����

�
��	
���	

�	
�������
�
����

��������	
���

�
�����
�������

��������

�������
	

�	�����	��
	

�	
 ����	

�
�����

�
����	���

���������

�
��	
�� �
! "���� �
!

Fig. 5. MemNet architecture

• Estimator: The estimator collects information from the

continuously-updated performance profiler. Based on the

information, it also makes optimization decisions.

• Orchestrator: The orchestrator implements and executes

estimator’s optimization decisions in the system, i.e., the

shared RAM space assignments of each VM. This is

executed by the memory resizing mechanisms.

As presented in Fig. 5, our framework provides a paravir-

tualized memory sharing interface to allow the guest VM

directly operate on the intermediate data in the shared RAM

space. While the shared memory design is not a brand new

idea to improve OS efficiency [13], our system takes the

first step towards the utilization of this classic approach to

decouple the self-interference in cloud VMs. In particular,

we utilize the page cache space from operating systems.

This space is in the virtual memory and maintained by the

host kernel. Such a deployment allows VMs to access data

via direct memory-to-memory copy without expensive I/O

requests. To achieve better efficiency, our design also makes

use of existing kernel interfaces, which further minimizes the

impact on memory resource management. Moreover, instead

of having a fixed amount of memory space for the exclusive

use, this architecture also provides adaptive memory allocation

and control to handle workload dynamics.

The design of such shared memory space is undoubtedly

the key to enable efficient data transfers between a host and

its guest VMs. Note that the rigid management of shared

memory space, however, suffers from the inflexibility in

the presence of highly skewed memory intensive workloads

across co-located VMs. Therefore, the static management

in virtualized cloud may result in either resource waste or

VM performance degradation. Although almost all modern

hypervisors implement memory overcommitment mechanisms

such as ballooning, page sharing, and host swapping; they

lack policies to coordinate these mechanisms in order to

minimize performance degradation as memory space utilized

by MemNet can be redistributed across VMs. Therein, a

critical design issue in MemNet is then to smartly assign

and adjust the shared memory space among different VMs.

In the cloud context, the hybrid job types and the arrival rate

on each VM are highly dynamic and hence is the efficiency

720P 480P 360P
0

5

10

15

20

25

30

Video resolution

F
in

is
hi

ng
 ti

m
e

(s
)

Interference
MemNet
No interference

Fig. 6. Video Trancoding

4GB 1GB 500MB100MB
0

10

20

30

40

50

60

70

File size

C
om

pr
es

si
on

 ti
m

e
(s

)

Interference
MemNet
No interference

Fig. 7. File compression

of the MemNet space usage. As such, we propose an online
self-adaptive control scheme to efficiently adjust the size of

MemNet space and meet users’ SLOs.

In our MemNet architecture, we combine queueing the-

ory modeling and self-tuning of adaptive control together

to provide a robust regulation scheme. The reason why we

need such a design is twofold. First, we learn from a large

cloud provider-Google’s trace analysis [15] that typical job

inter-arrival time actually exhibits an exponential distribution.

Meanwhile, queueing models are also widely applied in the

cloud context to provide simplification on the system that has

a bottleneck stage [7] [16]. Second, the adaptive feedback

loop can build the residual error model and the controller,

based on realtime measurements of the system. It can reduce

inaccuracies in the queueing model and handle sudden changes

of VM workloads in a dynamic fashion. Together with the

queueing model estimator, the proposed queueing model-

integrated self-adaptive control scheme provides a better per-

formance regulation under a wide range of workloads and

conditions. We included further details of our MemNet design

in our extended report [14].

We implemented a prototype of MemNet in real-world KVM

environments. Similar to an in-memory file system, our im-

plementation provides highly dynamic shared memory space

between hosts and VMs. This space can be quickly mounted

and lifted when needed. To efficiently create a paravirtualized

interface on top of the RAM space, our implementation

leverages the 9p-virtio (Plan 9 folder sharing over VirtIO)

framework to provide a direct memory sharing on top of the

native host and guest I/O transport [12]. The shared RAM

space is ported as a local file system on the guest VM. Note

that VirtIO PCI transport allows the memory space shared in

such a way that both guest and host driven I/O operations can

be zero-copy. This greatly improves the efficiency and makes

our approach outperform standard network file systems.

IV. PERFORMANCE EVALUATION

Fig. 6 shows the job completion time when we ran transcod-

ing workloads on MemNet. As we have discussed in Section II,

when the transcoding workloads and the streaming workloads

are overlapped (labeled as “Interference” in the figure), their

interference greatly slow down the job completion on the

cloud VMs. Based on the results in Fig 6, we can see

that MemNet can successfully decouple such interference and

greatly accelerate the processing of transcoding. To further

982

4 6 8 10
0

50

100

150

200

MemNet space usage (MB)

R
es

po
ns

e
T

im
e

(s
)

λ =1/300
λ =1/180
λ =1/90

Fig. 8. Memory Usage

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Network throughput (Mbps)

C
D

F

Interference
No Interference
MemNet

Fig. 9. Network Throughput

10 20 30 40
0

20

40

60

80

100

120

Time (s)

E
ne

rg
y

co
ns

um
pt

io
n

(W
at

ts
)

MemNet total
Interference total
MemNet CPU
Interference CPU

Fig. 10. Streaming and transcoding

STREA HYBRI
0

0.2

0.4

0.6

0.8

1

Job type

W
at

ts
/n

um
be

r
of

 c
lie

nt
s

MemNet
Unmodified

Fig. 11. Energy efficiency

extend our experiment to other applications, we also examined

the interference between file compression and file delivery

workloads. As we can see in Fig. 7, The proposed MemNet

design achieves similar job completion time with the “No

Interference” case. To demonstrate the effectiveness of the

memory usage control scheme, we provide a memory usage

comparison with different job arrival rates λ in Fig. 8. This

figure shows that with the online memory usage control

scheme, MemNet can operate with a moderate memory us-

age under dynamic workload stress. As for the networking

performance, in Fig. 9 we present the CDF of the streaming

throughput when the streaming traffic is colocated with the

transcoding job. In this figure, “No interference” means a

stand-alone streaming service inside the VM. By comparing

the results between “Interference” and “No Interference”, we

can observe a 40% throughput degradation. When we enabled

our MemNet architecture, the average throughput reached up

to 260 Mbps, which is a 70% improvement compared with

the “Interference” scenario. The throughput of MemNet even

has a better performance than the “No interference” case, and

this is because in this case the streaming module has a near

bare-metal performance when it runs at the host space.
We also pinpoint the energy saving achieved by MemNet

design. We closely measured the energy consumption while

running the hybrid workloads. As shown in Fig. 10, after we

initialized the transcoding job, the energy consumption of the

“MemNet” case is only slightly higher than the “Interference”

case, despite that the MemNet system was sending faster by

110 Mbps and has a better processing performance. In the

figure, the transcoding job is completed 26s for the “MemNet”

case, shorter than 29s for the “Interference” case. To make

it more clear, we calculated energy consumed per client for

both the streaming only case and the hybrid workload case

to evaluate the actual energy efficiency. Here we assume

that each client requires 2 Mbps bandwidth and divide the

total energy consumption by the maximum number of clients.

The results are shown in Fig. 11. In this figure, “STREA”

denotes the streaming only case and “HYBRI” denotes the

streaming and transcoding case. We can see MemNet can

provide approximately 32% improvement in terms of total

energy efficiency when handling the hybrid workloads.

V. CONCLUSION

In this paper, we closely examined the self-interference

from real-world applications in virtualized environments. To

jointly optimize the hybrid job performance and the energy

efficiency of the physical server, we designed and developed

MemNet, a novel protocol-independent solution that leverages

the para-virtualized memory-sharing mechanism to directly

share intermediate data between a host and its guest VM

with minimum encapsulation overhead. We implemented a

prototype of MemNet based on KVM and evaluated MemNet

through realworld workloads, which indicates that such a

design can largely improve the network throughput and accel-

erate the processing of computational jobs in the presence of

the self-interference, as well as enhance the energy efficiency.

ACKNOWLEDGEMENTS

This publication was made possible by NPRP grant #[8-519-

1-108] from the Qatar National Research Fund (a member of

Qatar Foundation). The findings achieved herein are solely the

responsibility of the authors.

REFERENCES

[1] Younge A J, Henschel R, Brown J T, et al. “Analysis of virtualization technologies
for high performance computing environments.” in Proc. of IEEE CLOUD, 2011.

[2] Wang G, Ng T S E. “The impact of virtualization on network performance of
Amazon EC2 data center.” in Proc. of IEEE INFOCOM, 2010.

[3] Shea R, Wang F, Wang H, et al. “A deep investigation into network performance
in virtual machine based cloud environments.” in Proc. of IEEE INFOCOM, 2014.

[4] Nathuji R, Kansal A, Ghaffarkhah A. “Q-clouds: managing performance interfer-
ence effects for QoS-aware clouds.” in Proc. of ACM Eurosys, 2011.

[5] Ayodele A O, Rao J, Boult T E. “Performance Measurement and Interference
Profiling in Multi-tenant Clouds.” in Proc. of IEEE CLOUD, 2015.

[6] Maji A K, Mitra S, Bagchi S. “Ice: An integrated configuration engine for
interference mitigation in cloud services.” in Proc. of IEEE ICAC, 2015.

[7] Bruneo D, Lhoas A, Longo F, et al. “Modeling and Evaluation of Energy Policies
in Green Clouds.” IEEE TPDS, 2015, 26(11): 3052-3065.

[8] Gamage S, Xu C, Kompella R R, et al. “vPipe: Piped I/O Offloading for Efficient
Data Movement in Virtualized Clouds.” in Proc. of ACM SoCC, 2014.

[9] Gamage S, Kangarlou A, Kompella R R, et al. “Opportunistic Flooding to Improve
TCP Transmit Performance in Virtualized Clouds.” in Proc. of ACM SoCC, 2011.

[10] Gamage S, Kompella R R, Xu D, et al. “Protocol Responsibility Offloading to
Improve TCP Throughput in Virtualized Environments.” ACM Transactions on
Computer Systems (TOCS), 2013, 31(3): 7.

[11] Xu C, Gamage S, et al. “vSlicer: latency-aware virtual machine scheduling via
differentiated-frequency CPU slicing.” in Proc. of ACM HPDC, 2012.

[12] Jujjuri V, Van Hensbergen E, Liguori A, et al. “VirtFS-A virtualization aware File
System passthrough.” in Proc. of Ottawa Linux Symposium (OLS), 2010.

[13] Hwang J, Ramakrishnan K K, Wood T. “NetVM: high performance and flexible
networking using virtualization on commodity platforms.” in Proc. of USENIX
NSDI, 2014.

[14] Xu C, Ma X, Shea R, Wang H, Liu J. “Enhancing Throughput and Energy
Efficiency for Hybrid Workloads through Para-virtualized Memory Sharing.”
Technical Report, 2016.

[15] Reiss C, Tumanov A, Ganger G R, et al. “Towards understanding heterogeneous
clouds at scale: Google trace analysis.” Intel Science and Technology Center for
Cloud Computing, Tech. Rep, 2012: 84.

[16] Xu F, Liu F, Jin H, et al. “Managing performance overhead of virtual machines
in cloud computing: A survey, state of the art, and future directions.” Proceedings
of the IEEE, 2014, 102(1): 11-31.

983

