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Abstract— Multipath TCP (MPTCP) has recently been
suggested as a promising transport protocol to boost the uti-
lization of underlaying datacenter networks, yet it also increases
the host CPU power consumption. It remains unclear whether
datacenters can indeed benefit from using MPTCP from the
perspective of energy efficiency. Through realworld measurement
of MPTCP, we show that the energy efficiency of MPTCP is
largely related to the flow completion time and the existence
of link-sharing subflows. In particular, we find that the link-
sharing subflows in MPTCP will significantly elevate the CPUs’
power consumption on hosts. To make the matter worse, it will
also reduce the transmission efficiency for both throughput-
sensitive long flows and latency-sensitive short flows. To address
such a problem, we present MPTCP-D, an energy-efficient
enhancement of MPTCP in datacenter networks. MPTCP-D
incorporates a novel congestion control algorithm that improves
energy efficiency by minimizing the flow completion time. It also
has a build-in subflow elimination mechanism that precludes
link-sharing subflows from increasing the host CPU power
consumption. We implement MPTCP-D in the Linux kernel,
analyze the parameter selection in the algorithm and study its
performance through packet-level simulation and on Amazon
EC2. Our results show that, without degrading the performance
of the long flow throughput and the short flow completion time,
MPTCP-D reduces the long flow energy consumption by up
to 72% compared to DCTCP for data transfers, and reduces
the short flow power consumption by up to 46% compared to
MPTCP with link-sharing subflows.

Index Terms— Multipath TCP, energy efficiency, datacenters,
link-sharing subflows, congestion control.
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I. INTRODUCTION

NOWADAYS, the world’s datacenters consume over 3 per-
cent of the global electricity production, producing

tremendous carbon footprint [31]. In particular, the datacenters
of the United States consumed 91 billion kilowatt-hours of
electricity in 2013, which is predicted to increase to 140 billion
kilowatt-hours by 2020, equivalent to 51 power plants (at a
scale of 500 megawatts) [1]. TABLE I shows that data transfers
significantly increase the power consumption of end-hosts.
There is a need to improve energy consumption at the end-
hosts from the perspective of network resource utilization.

It is known that the energy consumption of data commu-
nication depends on both the host CPU power1 and the flow
completion time. A host’s instantaneous CPU power during
data transfer noticeably increases compared to that in the
idle state, and it is affected by such factors as the sending
rate, the number of network interfaces, and the number of
simultaneously-used TCP sockets. The flow completion time
is closely related to the traffic pattern. In today’s datacenters,
most (90%) of the data are delivered by long flows (of sizes
from 1MB to about 1GB); yet a majority (90%) of the flows
are indeed short flows (of size smaller than 1MB) [3], [4]. The
completion time of the long flows decreases with throughput,
and that of the short flows, however, largely depends on the
instant path quality. These short flows often have completion
deadlines, too, ranging from tens to hundreds of milliseconds.
As such, energy optimization for data transfer has to jointly
consider all these factors. Simply upgrading the inside network
may not necessarily improve the energy efficiency. In fact,
even the common 1Gbps/10Gbps networks are still not well
utilized, and TCP remains the bottleneck there for throughput
and for energy efficiency [8]. Although such customized
protocols as DCTCP [5] and TIMELY [6] have attempted
to better serve the latency-sensitive short flows, they are not
optimized for the long flows and the overall energy.

Different from the traditional TCP, multipath transport
protocols (e.g., Multipath TCP (MPTCP) [7]) explore mul-
tiple routes between each pair of hosts to increase through-
put, thereby reducing the flow completion time, particularly
for long flows [8]. There has been significant research on
improving datacenter’s performance with MPTCP [8]–[14],
mostly from throughput and latency perspectives. Throughput
improvement brought by using multiple interfaces however
would also increase the instantaneous host CPU power.

1In this paper, the term power (in Watt) denotes the electrical energy
consumed per second, and the term energy (in Joule) denotes the integral
of power over time. Energy depends on both power and time.
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TABLE I

CPU POWER CONSUMPTION: IDLE STATE V.S. MPTCP DATA TRANSFER

It remains unclear whether datacenter can indeed benefit
from using MPTCP from the energy efficiency perspective.
As a matter of fact, it has been shown that short MPTCP
flows’ completion time may increase when a large number of
subflows are used [13]. This would severely delay latency-
sensitive short flows, and the consequent expirations and
retransmissions would increase power consumption.

In this paper, we aim to take an initial step toward under-
standing MPTCP’s energy efficiency in datacenter networks.
By analyzing the performance of the standard MPTCP on a
realworld testbed, we show that, compared to the single path
TCP, the reduced completion time (and hence energy) of long
flows by using MPTCP is enough to overshadow the increased
host CPU power. When multiple subflows are generated on
overlapped paths,2 MPTCP however can hurt both the long
flows’ throughput and the short flows’ completion time, and
consequently consumes significantly more energy.

Based on these findings, we design MPTCP-D, an energy-
efficient Multipath TCP for Datacenters. MPTCP-D can save
energy for both long and short flows without sacrificing
the long flows’ throughput and the short flows’ completion
time. A fluid model is developed for multipath congestion
control in MPTCP-D. The model ensures energy efficiency by
minimizing the flow completion time for long flows and by
Round Trip Time (RTT) based traffic shifting for short flows.
To reduce the power consumption of link-sharing sublfows,
an Extra Subflow Elimination (ESE) mechanism is developed
to close the congestion windows (cwnds) of extra subflows,
ensuring that only one subflow exists on overlapped paths.

To evaluate the performance of our enhancement, we have
implemented MPTCP-D on Linux and evaluated it on Ama-
zon’s Elastic Compute Cloud (EC2). We show that MPTCP-
D reduces the long flow energy consumption by up to 72%
compared to DCTCP, and achieves better latency for short
flows. It is able to maintain as good throughput as the
basic MPTCP for long flows; yet for multiple subflows on
overlapped paths, the ESE mechanism in MPTCP-D is highly
effective, reducing up to 20% and 46% of power consumption
for long and short flows, respectively. To evaluate the perfor-
mance of MPTCP-D over larger-scale datacenter topologies
with realistic traffic, we also perform packet-level simulations
with the discrete-event network simulator ns-3. In the simula-
tions, we study the key parameter configurations for the ESE
mechanism and demonstrate that the MPTCP-D’s congestion
control algorithm achieves similar throughput and RTT as

2In this paper, overlapped paths denote the routes that have common links
for a host-to-host MPTCP connection. We do not use the term bottleneck,
because conventionally a bottleneck in [7], [15], [16] is defined to study the
fairness between competing flows, e.g., an MPTCP flow and a TCP flow
coexisting on a shared link. Instead, we focus on overlapped paths to study
the mutual interference between link-sharing subflows of MPTCP and how it
impacts MPTCP’s energy overhead, rather than repeat the fairness issues.

Fig. 1. The MPTCP Linux kernel and end-to-end connection set up.

compared with MPTCP in a large topology under different
traffic patterns.

The remainder of this paper is organized as follows.
Section II gives an overview of MPTCP and related work.
Section III analyzes the energy efficiency of long and short
MPTCP flows. We present the design of MPTCP-D in
section IV, and evaluate the performance of MPTCP-D in
section V. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Overview of MPTCP

MPTCP is a multipath extension of TCP that can simulta-
neously use multiple paths and support the setup of backup
paths. To this end, it adds an extra layer which provides
scheduling and congestion control on the top of multiple
TCP subflows and has good compatibility to the current TCP.
As shown in Fig. 1, an MPTCP connection is initialized with a
MP-CAPABLE handshake, in which two ends will exchange a
key and establish the first subflow. Then other subflows can be
associated with this MPTCP connection by using the MP-JOIN
option after verifying the key.

The MPTCP architecture was introduced in RFC 6182 [34],
MPTCP congestion control was described in RFC 6356 [35],
and MPTCP was published as an experimental standard in
RFC 6824 [36] in 2013. Apple has supported MPTCP for
its application Siri since iOS 7, and iOS 11 provides a new
API for MPTCP [37], [38]. Korean Telecom has provided
service for MPTCP applications of Samsung and LG mobile
devices [41]. Citrix’s Netscaler and F5 BIG-IP also support
MPTCP [39], [40]. Fig. 1 shows the transport layer architec-
ture of the MPTCP Linux kernel and how the connection is
set up. The scheduler decides which path a packet will be
sent over. The path manager decides how to create subflows
among pairs of IP-addresses. Since the MPTCP Linux kernel
version 0.90, multiple subflows can be created on the path
between two IP-addresses. The version 0.93 supports the path
manager to re-create subflows after a timeout. The multipath
congestion control couples the subflows window adaptation.
To serve different design goals, various multipath congestion
control algorithms have been proposed [7], [9], [23]–[26], [32].

B. Related Work

There have been significant studies on investigating the
transport layer design in datacenter networks. TCP shows inef-
ficiency for both long and short flows in datacenters [8], [13].
Advanced single-path transport protocols, such as DCTCP
[5] and TIMELY [6], have been developed to improve the
performance of short flows in datacenter networks. Multipath
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transmission has also been suggested, and Raiciu et al. [8] val-
idated that MPTCP can improve datacenter network utilization
on different network scales with different topologies. Khalili
et al. [9] further investigated the optimized resource allocation
among a large number of simultaneous MPTCP flows. Follow-
ing these pioneer studies, various traffic scheduling methods
are proposed to explore disjoint multiple paths in datacenter
networks [11], [12], aiming to make full utilization of their
high aggregation bandwidth.

Besides bandwidth efficiency, latency has long been a
critical issue for the datacenter networks [5], [6], [13]. Opti-
mization of latency-sensitive short flows is attracting increased
attention in recent years. Cao et al. [10] proposed a mul-
tipath congestion control scheme for datacenters to explore
path diversity for better link utilization. It uses link queue
buffer control and traffic shifting to balance throughput and
latency. Kheirkhah et al. [13] proposed a random packet
scheduler to exploit good-quality paths for short multipath
flows, so as to reduce their completion time. Chen et al. [14]
further designed a fast loss recovery approach for multipath
transmission. This design uses good-quality paths to retransmit
the loss packets rather than wait for timeout on a lossy path.

The energy efficiency of MPTCP for datacenters, however,
remains largely unclear to the research community. In this
paper we show that, when subflows are sharing one/many
common links, MPTCP has poor energy efficiency, especially
for short flows. There have been methods for bottleneck
link detection with multipath congestion control [15], [16].
They however are mostly designed to provide fairness among
competing flows (e.g., MPTCP and TCP flows) on their
coexisting link, while we focus on the mutual interference
of MPTCP subflows on their shared link. Such a mutual
interference increases the overhead of flow management, ele-
vating the energy consumption. These methods also need to
wait for packet losses [15] or take 10-20 seconds to make
a decision [16], which is inefficient for the latency-sensitive
short flows. To deal with these issues, we introduce an Extra
Subflow Elimination module in MPTCP-D that first detects
whether multiple subflows are sharing a common link and then
closes the cwnds of the extra subflows. Some preliminary
results have been presented in [43] with the evaluation based
mainly on a multipath transport testbed. In this paper, we per-
form comprehensive measurement and evaluation across not
only realworld datacenters but also realistic traffic workloads,
as well as deep analysis on different components and key
parameters of the proposed algorithm.

Datacenter energy proportional management has been stud-
ied in the literature [2], [17] to match the energy con-
sumption with server workload. The targets of these works
are: (i) datacenters can ideally consume little power in idle
state; and (ii) datacenters can consume the amount of power
proportional to the level of workload in active state. Differing
from them, our work focuses on the transport layer energy
efficiency. Our measurement results in TABLE I also show
that a server’s CPU power consumption increases significantly
from idle state to data transfer state. Our design not only
reduces the energy consumption in active states for data
transfers but also potentially increases the duration of idle
states, serving as a complement of the energy proportional
management.

Fig. 2. Energy consumption of CPU during a multipath data transfer, and
the refined results of softwares including tools, Linux kernel modules and
MPTCP-related operations according to their share of CPU usage (Tx_Data:
transmitting data segments; Rx_ACK: receiving ACK; Ctl_cwnd: controlling
congestion window; etc).

Fig. 3. Testbed I setups for the experiments that emulate the path overlap
scenarios: MPTCP connection is set up between sender and receiver machines,
each one is configured with two interfaces (path 1 has capacity C1 and path
2 has capacity C2), Intel Core i7-3770 CPU, and the MPTCP Linux kernel
v0.90. iperf is used to generate flows. CPU power is read from RAPL.
The ‘num_subflows’ parameter in MPTCP path manager module is used to
control the number of subflows for each path. The setups can have disjoint
paths (‘num_subflows’ = 1) or n subflows for each path (‘num_subflows’
= n).

III. MEASUREMENT OF MPTCP ENERGY CONSUMPTION

In this section, we will examine the energy consumption of
MPTCP. We first investigate the long flow energy consumption
in our local cluster and EC2, and then dive into a more realistic
case in datacenter networks with shared links.

We record instant host CPU power from the Intel’s Running
Average Power Limit (RAPL) driver [18]–[20]. RAPL works
as a power management software platform for x86 architecture
CPUs. It uses a software-model to estimate, monitor, con-
trol and obtain information about the system-on-chip power
consumptions. Accordingly, it is also a built-in power meter
that can record the instantaneous power consumption of the
supported CPUs. We use the rapl-read tools [21] and
access the power information from Model-Specific Registers
(MSRs). TABLE I shows that multipath data transfers largely
increase the CPU power compared to the idle state. Fig. 2
shows a record of the energy consumed by an MPTCP
sender according to its share of CPU usage. We also include
the refined results of the multipath data transfer operations,
including functions related to data transmission and reception,
congestion window control, and other operations.

A. Testbed Overview

We measure the host CPU power during host-to-host data
transfers in both our server cluster and Amazon EC2. Our
cluster has 10 machines, each with double NICs and a Quad-
core Intel Core i7-3770 CPU. We rent server instances on
EC2 and configure them with different types of CPUs. These
include Quad-core Intel Xeon E5-2680 v2, Octa-core cores
Intel Xeon E5-2670 v2, and Octa-core Intel Xeon E5-2680 v2.
We install the MPTCP Linux kernel of version 0.90 [22] on
our local servers and the EC2 instances. We use iperf to
generate flows. The setup of testbed I is shown in Fig. 3. In this
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TABLE II

MPTCP VS. TCP: THROUGHPUT’S IMPACT ON BOTH HOST CPU
POWER AND LONG FLOW COMPLETION TIME

section, we measure the energy efficiency of MPTCP in two
scenarios: (i) long flow energy consumption of host-to-host
connection with MPTCP and TCP; (ii) mutual interference
between subflows on shared links. For long flow energy
consumption in subsection III.C, we use the testbed I’s setup
and set Path 1 and Path 2’s bandwidth using traffic shaping
tools. For the CPU types other than Intel Core i7-3770,
the measurements are conducted on EC2. For the energy
consumption of link-sharing subflows in subsection III.D,
we use the testbed I’s setup and the same path configuration
in subsection III.C.

B. Long Flow Energy Consumption

We first study the long flow energy consumption of host-to-
host connection with MPTCP and TCP, respectively. The long
flow energy consumption depends on both the CPU power and
the transfer completion time.

We use the same testbed setup as in Fig. 3, in which
we configure the CPU type and path capacity in different
measurements and obtain the results in Fig. 5 and TABLE II.
For the Quad-core Intel Core i7-3770 CPU, we use the
testbed I (Fig. 3), where TCP uses Path 1 and MPTCP uses
both paths. The capacity of the NIC in a host is 100Mbps,
which is the maximum througput that can be reached over
a single path, so can the aggregated throughput of mulitple
paths. We use traffic shaping tools to limit Path 1’s capacity
to 20Mbps and vary Path 2’s from 0 Mbps to 80Mbps
(progressively increasing by a step of 20Mbps), which offers
a wide range (5x) to examine the impact of throughput on
energy consumption. For Quad-core Intel Xeon E5-2680 v2,
Octa-core cores Intel Xeon E5-2670 v2, and Octa-core Intel
Xeon E5-2680 v2 CPUs, the data transfer is between a
pair of virtual machines in EC2. Each virtual machine has
two NICs with an aggregated capacity limit of 1024Mbps.
We set the minimum NIC capacity to be 210Mbps, and the
maximum NIC capacity to be 512Mbps. TCP uses a single
path with capacity 210Mbps, and MPTCP uses two paths

Fig. 4. MPTCP with multiple subflows on overlapped paths: (a) VL2 topol-
ogy, path overlap at host; (b) multihomed topology, path overlap at core.

Fig. 5. Performance of long flows (500 MB data transfer). Compared with
TCP, MPTCP largely increases the aggregration throughput and decreases the
transfer completion time, thus reducing the overall energy consumption.

with aggregated capacity progressively increased to 1024Mbps
(corresponding to different tested mean rates in TABLE II).

Fig. 5 shows the results from a server with Quad-core
CPU Intel Core i7-3770. It is easy to see that MPTCP is
more energy efficient because it can significantly reduce the
flow completion time (FCT). The FCT of classic TCP flow
is around 200s. MPTCP, on the other hand, only uses 50s
to complete the downloading. Although MPTCP has higher
instantaneous power, its short FCT increases the CPU’s idle
duration and hence successfully reduces the total energy
consumption. As can be seen in the subfigure for CPU energy
consumption, such a gap will also increase when we have
longer flows or larger files. To validate that this result is not
valid for the Intel Core i7 CPU only, we also conduct mea-
surements under different types of CPUs. TABLE II validates
that MPTCP consumes less energy than TCP.

C. Mutual Interference Between Subflows on Shared Links

As shown in Fig. 4, typical datacenter networks can hardly
avoid path overlap for MPTCP’s subflows. Such path overlap
can be either the links between hosts and Top of Rack (ToR)
switches, or the core switches with limited capacity [8].
To understand the mutual interference between subflows of
MPTCP on a shared link, we deploy MPTCP on our local test-
bed (Fig. 3). We use the MPTCP Linux kernel of version 0.90,
in which an MPTCP connection consists of multiple paths.
Each path can have one or more subflows with independent
congestion windows.

Fig. 6 compares the results of two cases: (i) two subflows
over two disjoint paths; and (ii) four subflows with two
of them sharing each link. We measure the path conditions
(throughput and RTTs) and CPU energy consumption for both
heterogeneous and homogeneous path configurations. First,
we use a stationary path configuration C1 = 100Mbps and
C2 = 20Mbps for the testbed in Fig. 3. This setup corresponds
to two heterogeneous paths. In subsection V.C, We also show
the experimental results in the scenario of homogeneous paths.
For both heterogeneous and homogeneous path configurations,
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Fig. 6. Performance comparison of the two cases: the MPTCP connection
with four subflows sharing two paths consumes more CPU power than the
connection using two disjoint paths, and it also degrades throughput and has
higher latency.

Fig. 7. Performance of 200 MPTCP flows: each flow uses different number
of subflows sharing each path. Each long MPTCP flow transmits 100MB data,
and each short MPTCP flow transmits 0.5MB data.

the measurement results demonstrate the same phenomenon
of mutual interference between subflows on the shared link.
Fig. 6 shows that link-sharing subflows not only degrades RTT
and throughput but also increases the energy consumption.

To pinpoint the root cause, we take a closer look at these
link-sharing subflows. We use iperf to generate 200 parallel
MPTCP connections between the two servers (still using
the path configuration C1 = 100Mbps and C2 = 20Mbps).
We use multiple connections because it is necessary to
consider many coexisting flows in datacenter networks, e.g.,
a large number (from hundreds to thousands) of flows may
arrive at a switch simultaneously [4]. We measure the power
consumption of both long flows (100 MB data transfer for
each connection) and short flows (0.5 MB data transfer
for each connection). These long flows and short flows are
isolated to separate tests, because: (i) we want to examine
the mutual interference between subflows for long flows
against that for short flows; (2) we need to calculate the
accumulated energy consumption over long flow duration.
The short flow power consumption is the instantaneous power
record (Joules per second) from the CPU’s RAPL driver, and
the long flow power consumption is calculated by using the
flow completion time to divide the integral of power over
time. Each connection can use the two paths simultaneously
to transmit data. On each path, we change the number of
subflows from 1 to 8 (increased by powers of 2). This is done
by modify Linux kernel’s MPTCP path-manager module
in ‘/sys/module/mptcp_fullmesh/parameters/num_subflows’
(note that this option is not included in the MPTCP Linux
kernel of version lower than 0.90).

Fig. 7(a) shows the short flow throughput of individual
MPTCP connections, ranked in ascending order of their
throughputs, with different number of subflows for each
path of MPTCP. Clearly, using multiple subflows for each
path fails to achieve higher average throughput. Although

approximately half of the connections with 4 or 8 subflows for
each path get higher throughputs, such a link sharing affects
the throughputs of the other half of connections, and thus
nearly 50% of the short flows are severely delayed. Fig. 7(b)
shows how the sender’s average CPU power consumption from
the short flows changes with different number of subflows
for each path. We see that using multiple subflows consumes
far more power than using only one subflow. For the long
flow throughput of individual MPTCP connections, as shown
in Fig. 7(c), using multiple subflows for each path cannot
improve throughput, either, and some connections with 4 and
8 subflows experience severe throughput degradation. Fig. 7(d)
shows that the sender’s average CPU power consumption from
the long flows also increases with the number of subflows. The
power consumption of using 8 subflows is nearly 50% more
than that of using one subflow. Fig. 6 and Fig. 7 indicate
that the existence of link-sharing subflows in MPTCP hurts
the throughput and hence the energy consumption for both
long and short flows. This can be ascribed to the sharply
increased operations to control too many subflow congestion
windows (each corresponds to a TCP socket) simultaneously,
the increase of loss and retransmission on each path, and the
highly fluctuating windows causing slow convergence to a
stable equilibrium.

IV. THE DESIGN OF MPTCP-D

A. Overview of MPTCP-D Design

In this section, we present the design of MPTCP-D for
energy-efficient data transfer in datacenter networks. It seeks
to minimize the flow completion time and to preclude link-
sharing subflows through detecting overlapped paths, thereby
reducing the power consumption for both long and short flows.
Fig. 8 shows an overview of our design. For the congestion
control algorithm, we set the design goals including full
utilization of the low-delay path, TCP-friendliness and Pareto-
optimality. We design the key parameters in extra subflow
elimination and a basic fluid model for congestion control to
meet the three design goals.

B. Congestion Control

MPTCP-D does not directly use the existing multipath
congestion control algorithms, e.g., LIA [7] and OLIA [9].
It has been shown in [9] that a large number of coexisting
MPTCP flows using LIA may downgrade the throughput of
each other. MPTCP-D however needs as high throughput as
possible to achieve good energy efficiency for long flows.
While OLIA can avoid the mentioned problem of LIA, it does
not have any delay-based traffic shifting strategy and hence can
be inefficient for latency-sensitive short flows.

As in [9], we consider a network that consists of a link
set L. A link l ∈ L has finite capacity cl. There is a set
S of MPTCP connections in the network. Each connection
s ∈ S has multiple subflows. Each subflow r ∈ s traverses
multiple links. If subflow r traverses a link l, then we denote
l ∈ r. For each subflow r, let RTTr(t) and wr(t) denote the
round trip time and congestion window, respectively, and let
xr(t) = wr(t)/RTTr(t) represent the send rate at time t. For
each connection s ∈ S, let xs(t) = (xr(t), r ∈ s).

Let [Rlsr] be the routing matrix where Rlsr = 1 if subflow
r of connection s traverses link l, and Rlsr = 0 otherwise.
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Fig. 8. Overview of MPTCP-D design.

Let yl =
∑
s∈S

∑
r∈sR

l
srxr be the aggregate traffic on link

l. Let pl(yl) be the packet loss probability at link l, which
is an increasing function of yl with constraint yl ≤ cl. The
packet loss probability of subflow r can be expressed as λr =
1−∏

l∈r(1−pl) ≈
∑
l∈r pl. For simplicity, we omit the time t

in the functions wr, RTTr, xr and xs.
Our design is based on a general fluid model for multipath

congestion control as follows.

dxr
dt

=
ψrx

2
r

RTT 2
r (

∑
k∈s xk)2

− 1
2
λrx

2
r (1)

Similar models have been used in previous work [9], [23],
[24], [32] to design multipath congestion control algorithms.

To provide high throughput for long flows, MPTCP-D
should have aggressive but fair enough send rate increase.
To fit latency-sensitive short flows, MPTCP-D should be able
to use low-delay good-quality paths for transmission.

1) Full Utilization of Low-Delay Paths: For mutlipath TCP
flows in datacenters, we should choose proper variables to
estimate the path quality and shift the traffic to good-quality
paths. This avoids frequent window decrease due to severe
packet loss, thereby reducing energy consumed by retransmis-
sion or recovery operations.

It has been studied in [9], [23], [24], [32] that parameter
ψr decides the aggressiveness of congestion window (or send
rate) increase. The aggressiveness decides how much traffic to
be shifted to a subflow. To fully utilize the low-delay paths,
we design the traffic-shifting parameter ψr as follows

ψr =
mink∈sRTTk

RTTr
. (2)

Among all the available paths, only the path with the best
RTT maintains high aggressiveness of send rate increase. The
send rate increase of other paths decreases with their RTT
values. This will shift traffic to the path with the best RTT.
Short flows are usually latency-sensitive, and thus it is very
intuitive to use RTT to estimate the path delay. As shown in
[6], in datacenter networks, RTT is an effective congestion sig-
nal without the need for switch feedback, and it can accurately
reflect the host-to-host path delay. Moreover, a datacenter
network usually consists of highly homogeneous hosts, links
and intermediate devices. Hence, for intra-datacenter traffic,
path delays depend mainly on two factors: the link congestion
level and the number of hops between source and destination
hosts. Large datacenters (scale of tens of thousands of servers)
typically have round trip delays around 200-500μs, where
congestion can cause delay spikes up to tens of milliseconds,
and switches can increase delay by tens of microseconds for
each hop [27]. This means that the path delays can sensitively
reflect the quality difference among multiple available paths.

2) TCP-Friendliness: Given the amount of data in a trans-
fer, high throughput brings short transfer time and we have
shown in section III that high throughput can save energy

for long flows. Yet the send rate increase of MPTCP-D
cannot be too aggressive. According to the design goal of
TCP-friendliness in [7] and RFC 6356,3 multipath TCP should
not take up more capacity than if it was regular TCP using the
best path. The equilibrium of the fluid model as Equation (1)
is a vector of send rates x∗

s(t) = (x∗r(t), r ∈ s) that makes the
right side of Equation (1) equal to zero for any route r. Our
analysis, with the theoretical methodology similar to [9], also
focuses only on the properties of the equilibrium.

Theorem 1: The congestion control algorithm of
MPTCP-D, derived from Equations (1) and (2), satisfies the
fairness design goal suggested by the RFC 6356, and the
aggregate send rate of an MPTCP-D connection s at the
equilibrium of Equation (1) is no more than the send rate
that a regular TCP connection would achieve on the best
path of s: ∑

k∈s
x∗k ≤

√
2/λh/RTTh (3)

where h = argmax
k∈s

x∗k.

Proof: The traffic parameter ψr in Equation (2) satisfies
ψr ≤ 1 for any path r ∈ s. Hence we have ψh ≤ 1. At the
equilibrium of Equation (1), we have dxr

dt = 0 and on the

best path h we have ψhx
2
h

RTT 2
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2
h. MPTCP-

D has an aggregate throughput of
√

2ψh

λh
/RTTh, which is no

more than the throughput
√

2
λh
/RTTh achieved on the best

path if it is a regular TCP. �
3) Pareto-Optimality: Besides TCP-friendliness, MPTCP-D

also has to accommodate the many coexisting flows in data-
center networks, where the number of active flows at a switch
in any given second could be as high as 10,000 [3]. That
said, Pareto-optimality should be maintained here. In resource
allocation problems, Pareto optimality is the equilibrium state
at which one individual cannot gain more profit without
damaging the profits of other individuals. For resource pooling
of transport protocols in a network, Pareto optimality is the
state at which it is impossible for an end-to-end connection
to increase its throughput without decreasing the through-
put of other coexisting end-to-end connections or increasing
congestion.

Suppose there are |S| connections using the same multipath
congestion control algorithm in the network. Each connection
s ∈ S has a utility Us(xs), which is an increasing function of
xk for all k ∈ s. The aggregate utility of all the connections
is as follows

∑
s∈S

Us(xs)− 1
2

∑
l∈L

∫ �
k∈l xk

0

pl(y)dy (4)

where pl(y) is the link price or congestion cost of link l, and
it is an increasing function with pl(0) = 0 for all links l ∈ L.
We have the following theorem.

Theorem 2: A multipath congestion control algorithm is
Pareto-optimal if for all routes r ∈ s it has a concave
utility function Us(xs) that satisfies θr(x′

s)
∂Us(xs)
∂xr

∣∣∣
xs=x′

s

=

3C. Raiciu, M. Handly, and D. Wischik, “Coupled Congestion
Control for Multipath Transport Protocols,” IETF RFC 6356, 2011.
https://tools.ietf.org/html/rfc6356
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Ir(x′
s), where θr(xs) is a positive function related to step size

of differential equation for the algorithm, x′
s = (x′r(t), r ∈ s)

is the maximizer of Equation (4) and Ir(xs) is the function
that decides the send rate increase of the algorithm.

Proof: In Equation (4), the utility Us(xs) is an increasing
function of xk for all k ∈ s, and the path price (congestion)
term 1

2

∑
l∈L

∫�
k∈l xk

0 pl(y)dy also increases with xs. At the
maximizer x′

s of Equation (4), it is impossible to increase xs
for connection s without decreasing the throughput of other
connections or increasing congestion. Therefore, the maxi-
mizer x′

s is at Pareto-optimality, and if its utility increasing
rate θr(x′

s)
∂Us(xs)
∂xr

∣∣∣
xs=x′

s

is equal to the the send rate

increase I(xs) of the multipath congestion control algorithm,
then the algorithm has the best aggressiveness of throughput
increase. It is known that Coupled [23], [24], EWTCP [25],
DWC [15] and OLIA [9] all have θr(xs) = x2

r , and wVegas
[26] has θr(xs) = xr/λr. Therefore, they all satisfy Pareto-
optimality in Theorem 2. �

Theorem 3: The congestion control algorithm of MPTCP-D
satisfies Pareto-optimality.

Proof: According to Equations (1) and (2), θr(xs) =
x2
r , the send rate increase of MPTCP-D is Ir(xs) =

ψrx
2
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= 0 for any r ∈ s. Let the utility

function be Us(xs) = − (
�

r∈s ψrx
′
r/RTT

2
r )2

(
�

r∈s x
′
r)2(
�

r∈s ψrxr/RTT 2
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x′
s = (x′r(t), r ∈ s) is the maximizer of Equation (4).

We have θr(x′
s)

∂Us(xs)
∂xr

∣∣∣
xs=x′

s

= Ir(x′
s). According to

Theorem 2, Ir(xs) is Pareto-optimal based on Us(xs). �
Theorems 1 and 3 guarantee that MPTCP-D uses a fair

and Pareto-optimal window evolution to achieve good energy
efficiency for long flows.

C. Extra Subflow Elimination

As shown in Fig. 7, the link-sharing subflows consume
more CPU power and cause increased latency. Link-sharing
subflows degrade the performance of MPTCP for both long
and short flows, especially for short flows which usually have
strict completion deadlines ranging from tens of milliseconds
to hundreds of milliseconds. We design an Extra Subflow
Elimination (ESE), which can identify and eliminate the extra
link-sharing subflows, so that only one subflow stays on a
shared link and the other subflows on the link set their
congestion windows to be zero.

Datacenters have many latency-sensitive short flows. Hence
ESE must detect overlapped paths and close extra cwnds
very quickly. As mentioned, RTT is an effective signal and we
use it for ESE to detect link-sharing subflows. To make full
utilization of the first several RTTs within the flow completion
time, ESE uses the first significantly changed RTT to trigger
the detection, and then uses both the RTT change and the
RTT difference between subflows to decide whether a subflow
shares a link with the subflow that triggers the detection.
In our implementation, the number of candidate RTTs for
the detection can be set to adapt to the variation of flow
durations in different application scenarios. We set it to 80 in
our current experiments. In realworld datacenters, it is very
possible that there are a large number of very short flows with
the number of packets in each subflow being less than the

threshold (i.e., the number of candidate RTTs). The detection
algorithm can hardly identify such flow patterns. To deal
with the issue, we use an adaptive update mechanism for the
number of candidate RTTs. This mechanism can be described
as a conditional statement: If NUMpkt < NUMcandidate,
then NUMcandidate = NUMpkt, where NUMpkt is the
number of packets in a subflow, and NUMcandidate is the
current number of candidate RTTs. As we have discussed
in Section III, the link-sharing subflows degrade the RTT
performance for both long flows and short flows. The design
of ESE is based on the observations in section III. When
MPTCP has multiple subflows sharing a common link, its
instant RTTs always start from the first several low values
and then gradually increase to the high values. After that,
the following RTTs are maintained at the high values, without
large difference between each other. Yet there would be large
difference between a high value and the lowest value. For
example, in the experiments of link-sharing subflows over
our testbed, the RTTs of two subflows on a link at the
stable state can be 30% higher than that at the starting
state, due to the interference between link-sharing subflows.
We use Fig. 19 to illustrate how the interference increases
the congestion of paths. Our experiments are conducted over
a cloud testbed, whose setup details will be introduced in
subsection V.C. We test the results in both Linux bridge
and Open vSwitch configurations. The data transfer lasts for
300 seconds and uses two paths with 300Mbps path capacity.
Fig. 19 shows that MPTCP retransmissions increases with the
number of subflows per path. Since retransmissions can be
regarded as the level of congestion, the link-sharing subflows
exaggerates the congestion on the paths. The path congestion
also increases the variation of RTTs. We can explain this as
follows: one subflow starts transmission over a less congested
path and has a relatively stable RTT; another subflow on
the same path starts to compete the bandwidth with the first
subflow. The path becomes congested and the average RTT
increases significantly (average RTT of two subflows per path
is about 30% more than that of one subflow per path in our
measurement). Such a difference can be used to trigger the
detection of overlapped paths. In addition, the link-sharing
subflows experience the same link condition, and hence they
have the similar RTT values. This can be used to exclude the
interference from cross traffic. Suppose that, a link l is used by
a subflow of MPTCP without link-sharing subflows, and there
is cross traffic on l. Although the cross traffic can increase the
RTT on l, it does not affect the other subflows, which do not
use the link l. That said, the other subflows do not have the
RTTs similar to the RTT on l, and their cwnds should not be
closed in this case.

We use flag TRIG(s) to indicate whether a subflow of
connection s with significant RTT change has triggered the
detection. If TRIG(s) is off, the subflow whose instant RTT
is larger than a threshold (α · baseRTT , where baseRTT
is the minimum RTT experienced by the subflow) will turn
on TRIG(s) and trigger the detection, and its RTT value
will be used as a reference rtt(s) to be compared with
the changed RTTs of other subflows. If TRIG(s) is on,
the subflow, who has a significantly changed RTT and the
current RTT similar to the reference rtt(s), will be identified as
the extra subflows on the shared link. The identified subflows

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on March 10,2020 at 19:16:21 UTC from IEEE Xplore.  Restrictions apply. 



64 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Algorithm 1: Extra Subflow Elimination
Input: RTTr, r corresponds to a subflow, and r ∈ s
Output: wr
if RTTr > α · baseRTTr then

if TRIG(s) = 0 then
set TRIG(s) = 1;
set rtt(s) = RTTr;

if
(TRIG(s) = 1) ∧ (|RTTr − rtt(s)| < β · baseRTTr)
then

set wr = 0;

for each ACK on path r do

wr ← wr + ψrwr/RTT
2
r

(
�

k∈s wk/RTTk)2 ; //derived from Eq. (1)

for each loss on path r do
wr ← 1

2wr;
return wr

will close their cwnds immediately. Otherwise, the subflow’s
cwnds will adapt following Equations (1) and (2). The link-
sharing subflow detection and window evolution algorithm are
summarized in Algorithm 1. The selection of parameters α and
β will be discussed in Section V. The performance of ESE
is not impacted by heterogeneous paths with different path
delays, because it uses both large variation of intra-subflow
RTTs and small difference of inter-subflow RTTs to confirm
that subflows go over the same path. If two subflows are sent
separately over two heterogeneous paths, their inter-subflow
RTT difference will be large, which does not satisfy the link-
sharing subflow condition.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MPTCP-D
through realworld experiments. We measure energy consump-
tion, throughput and latency of long and short flows that
use MPTCP-D. Most of our measurements are performed
on EC2. We do not know the underlying network topology
of VM instances, and we cannot control the background
traffic. We also perform testbed experiments and packet-level
simulations.

We build up our virtual private cloud and four private
subnets on EC2. In the cloud, we create 40 instances as hosts.
Each host is attached with four Elastic Network Interfaces
(ENIs), and each ENI has the capacity of 256Mbps. Each
ENI uses a private IP address to connect to a subnet. Accord-
ingly, there are four available routes between each pair of
hosts. We implement MPTCP-D in the MPTCP Linux kernel
of version 0.90 [22] and run the kernel on the instances. The
instance configuration is shown in TABLE III.

For the testbed experiments and EC2 experiments in this
section, we use iperf to generate long flows and short
flows. We use iperf command line option “-P” to generate
parallel connections. We read the throughput of each flow from
iperf’s trace record. We use tcpdump and tcptrace
to analyze the RTTs of a connection. We read host CPU’s
instant power consumption from Intel’s RAPL driver. The
experiments take 18 hours in total. The location is EC2’s US

TABLE III

EC2 INSTANCE CONFIGURATION

Fig. 9. Comparison of one subflow and multiple subflows for a path: (a) CDF
(cumulative distribution function) of throughput; (b) CDF of RTTs.

West datacenter, and the samples in the measurement are cross
both time and topology.

We perform the measurement and compare the results of
MPTCP-D with other transport protocols, including regular
TCP, DCTCP [5], MPTCP [7]. We aim to validate that
MPTCP-D can achieve energy efficiency for both long and
short flows, together with comparable throughput as MPTCP
and comparable latency as DCTCP.

A. Energy Efficiency

We first analyze the parameter selection in the ESE algo-
rithm. We study how throughput and RTT change with dif-
ferent number of subflows for a path when using MPTCP.
To do this, we record the throughput and RTT of the samples
in different measurements. We also change the path manager
module provide by Linux kernel of version 0.90 for this
operation. An MPTCP connection consists of multiple paths
and each path can have one or more more subflows with inde-
pendent congestion windows. Each connection can use the two
paths simultaneously to transmit data. On each path, we mod-
ify the Linux kernel’s MPTCP path-manager module in
‘/sys/module/mptcp_fullmesh/parameters/num_subflows’ and
set the num_subflows to be 1, 2, 4 and 8 in different measure-
ments. We use two machines for data transfers. Each machine
has a Quad-core Intel Core i7-3770 CPU and two NICs. When
the parameter ‘num_subflows’ is changed (e.g., from 1 to 2),
the path delay also changes from low values to high values.
We measure the RTT and instantaneous throughput during the
data transfers, as shown in Fig. 9.

Fig. 9(a) shows the distribution of the throughput sampled
during a multipath data transfer. For each data transfer, we set
the number of subflows for a path to be 1, 2, 4 and 8, respec-
tively. For an MPTCP connection, the throughput samples
are read from the iperf trace record that outputs an average
throughput value once a second during the data transfer. The
four cases have a significant portion of samples (around 70%)
achieving similar throughput. Fig. 9(b) shows the distribution
of RTTs of the samples observed during a multipath data
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Fig. 10. Energy consumption for long flows (10 GB data transfer) on EC2.

Fig. 11. Power for both long and short flows over testbed in Fig. 3.

TABLE IV

THROUGHPUT AND RTT WHEN USING DIFFERENT

NUMBER OF SUBFLOWS PER PATH

TABLE V

SUCCESS RATE OF CLOSING EXTRA SUBFLOWS cwnds

transfer. The results indicate that RTT increases significantly as
the number of subflows for a path increases from 1 to 8. Let Di

be the average RTT of using i subflows for a path. According
to the results in TABLE IV, we can calculate the ratios:
D2/D1 ≈ 1.2, D4/D1 ≈ 1.4, D8/D1 ≈ 1.8, D4/D2 ≈ 1.2,
D8/D2 ≈ 1.5 and D8/D4 ≈ 1.3. These ratios help us select
a proper value of α in Algorithm 1. The value should be large
enough to be able to detect the significant change of RTTs,
but it should not be too large in order to avoid insensitivity.
For example, the above ratios are all less than 2, and if α > 2
it is possible that α cannot detect RTT’s large change due to
the use of multiple subflows. From TABLE V we see that
MPTCP-D has high success rate of closing the extra subflow
cwnds with the parameter α = 1.3.

We measure the long flow energy consumption for different
transport protocols on EC2. We generate different loads (one
connection per host and 10 connections per host) of data trans-
fers for the hosts in the datacenter network. Each connection
transmits 10GB data. As shown in Fig. 10, MPTCP-D with two
subflows saves up to 50% of aggregated energy of DCTCP, and
MPTCP-D with four subflows saves up to 72% of aggregated
energy of DCTCP.

To measure the power consumption of both long and short
flows using overlapped paths, we still use our testbed in Fig. 3
(note that this experiment cannot be directly conducted over
EC2 as its underlying physical network topology is unknown
to us). For the testbed in Fig. 3, we set C1 = 100Mbps,
C2 = 20Mbps and use iperf to generate 200 parallel
MPTCP connections between the two machines. We use
iperf command line option “-t” to generate one second

Fig. 12. Distribution of throughput in the EC2 experiments. MPTCP-D gets
as good utilization as MPTCP (the throughput of MPTCP-D with 2 subflows
is similar to that of MPTCP with 2 subflows; the throughput of MPTCP-D
with 4 subflows is similar to that of MPTCP with 4 subflows).

Fig. 13. The three datacenter topologies with multihomed hosts.

short flows and 170 seconds long flows. This ensures that
MPTCP and MPTCP-D have the same flow completion time.
Fig. 11 shows the average host CPU power consumption of
MPTCP and MPTCP-D with parameters α = 1.3 and β = 0.1.
For short flows, MPTCP-D reduces the power consumption
by up to 46% compared to MPTCP in the scenario of two
subflows per path. For long flows, MPTCP-D reduces power
consumption by more than 20%.

B. Throughput and Latency

We next measure the long flow throughput on EC2. Fig. 12
shows the throughput of individual connections for different
number of coexisting flows (one connection per host and ten
connections per host) and different number of subflows. Our
results indicate that, for long flows, MPTCP-D has similar
throughput as compared with MPTCP.

To evaluate the long flow throughput in different datacenter
topologies, we use htsim [28], a packet-level simulator that
works well for large scale network traffic and has been used
to evaluate the performance of MPTCP in datacenters [8].
Various datacenter topologies have been proposed to address
traffic concentration on a small number of bottleneck links
in datacenter networks. We study the network utilization of
MPTCP-D in three representative topologies, namely, FatTree
[29], VL2 [4] and BCube [30]. As shown in Fig. 13, FatTree
and VL2 are the hierarchical topologies, which organize
switches in access, aggregate, and core layers. VL2 uses
10Gbps links between switches. BCube employs a gener-
alized hypercube topology, making use of some hosts to
relay traffic. We set the parameters of the three topologies
(FatTree: 128 hosts, 80 switches, 100Mbps 100ms links; VL2:
128 hosts, 80 switches, 1Gbps 100ms links; BCube: 128 host,
64 switches, 100Mbps 100ms links) in our simulations. Each
host sends a long-lived MPTCP flow (1000 seconds by
referring to long flow duration in [42]) to another host that
is chosen at random. In each configuration, we specify the
protocol, the topology and the number of subflows. For each
configuration, we simulate 10 times and calculate the average
of the aggregated throughputs. Fig. 14 and Fig. 15 show that,
for the long flows, the throughput of MPTCP-D is similar to
that of MPTCP in different datacenter topologies.
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Fig. 14. Aggregated throughput in three datacenter topologies. MPTCP-D
gets as good utilization as MPTCP.

Fig. 15. Distribution of throughput in three types of datacenter topology.
MPTCP-D and MPTCP, both with 8 subflows, have high network utilization.

Fig. 16. RTTs measured in the experiments on EC2.

Fig. 17. RTTs measured in the testbed experiments.

For short flows, we examine the latency of using different
protocols by both EC2 and testbed experiments. Fig. 16
compares the RTTs for MPTCP-D, MPTCP and DCTCP in our
experiments on EC2. The results show that MPTCP-D outper-
forms the other two protocols. In Equation (2), the parameter
ψr is used to shift traffic to low latency paths. Experiment
results indicate that our design of the RTT-based traffic-
shifting parameter works effectively in realworld datacenter
environments. Short flows may also be delayed by the over-
lapped paths in multipath transmission. Fig. 17 shows that,
in our testbed experiment for extra subflow elimination,
MPTCP-D largely reduces latency compared to MPTCP with
multiple subflows sharing a common link. This indicates that
the ESE of MPTCP-D can close the cwnds of extra subflow
on overlapped paths and hence improves the path quality.

C. Extensive Experiments in Virtualized Datacenter

In today’s datacenters, networking functions are increas-
ingly performed by software running on physical machines.
In this subsection, we investigate the performance of MPTCP
and MPTCP-D in virtualized environments. We conduct exten-
sive experiments in different architectures of virtualization,
varied network configurations, and different traffic character-
istics (e.g., incast and bursty traffic). We first briefly intro-
duce the used network I/O subsystems in the Kernel-based
Virtual Machine (KVM) environment and our experimental
setup. Fig. 18(a) shows the network I/O subsystems used in
our experiments, including Linux bridge and Open vSwitch,
together with vhost-net.

Fig. 18. Virtualized environment experiment setup: (a) Network I/O
subsystems in the KVM environment: Linux bridge and Open vSwitch with
vhostnet; (b) Our testbed II in a cloud.

Fig. 19. Retransmission vs. number of subflows per path when using MPTCP
in different network configurations.

We conduct the experiments over a cloud testbed4 as
shown in Fig. 18(b). All rack servers in the testbed are Dell
PowerEdge R430 servers. Each one is equipped with two
Intel Xeon E5-2630 v3 2.4GHz CPU nodes. Supported by
Intel hyperthreading technology, a CPU node has 8 physical
cores and 16 logical CPUs. The rack server has 256GB
RAM with a typical NUMA architecture. It also has two
Intel Ethernet Controller 10 Gigabit X540-AT2 NICs, support-
ing Dual 10 Gbps networking connections. Each server has
four additional Broadcom NetXtreme Gigabit Ethernet PCIe
NICs. We have two types of ToR switche, including Netgear
ProSAFE Smart Managed Switch XS712T and Dell Network-
ing N4032 switch. The Dell Networking N4032 switch sup-
ports advanced switching functions, e.g., RED/ECN marking
scheme. This scheme ensures that the sources are quickly
notified of the queue overshoot before excessive packet loss
events happen.

The operating system installed in both hosts and guest VMs
is Ubuntu 16.04.2 LTS. We install multipath TCP Release
version 0.91 on all virtual machines. The corresponding Linux
kernel version is 4.1.39. For the local KVM testbed, we install
QEMU version 2.9.0. The virtual switches installed at the
hypervisor are Open vSwitch and Linux briding utilities,
whose architectures are shown in Fig. 18(a). We compile
Open vSwitch 2.7.0 from its source tree. To quantify the
virtual switching performance, we use common profiling tools
integrated in mainline Linux distribution, including iperf,
ping, and netstat. For an in-depth analysis on RTT
variations and retransmissions, we use tcpdump/tcptrace
to extract such information.

Performance in Linux bridge and OvS: In this experiment,
we configure a virtual machine on each rack server. Each
virtual machine is configured with two virtual interfaces, lever-

4https://sfucloud.ca/client/
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Fig. 20. Power consumption vs. number of subflows per path when using
MPTCP in different virtualized network configurations.

Fig. 21. RTT change with the number of subflows per path for different
virtualized network configurations: (a) Linux bridge; (b) OvS host-net.

Fig. 22. Throughput change with the number of subflows per path in different
virtualized network configurations: (a) Linux bridge; (b) OvS host-net.

aging two disjoint paths. We set the bandwidth for each virtual
machine to be 300 Mbps5 and divided equally on the two
virtual interfaces. In section III, we have shown that the CPU
power consumption increases with the number of subflows
per path for heterogeneous path configuration. Fig. 20 shows
the same increasing trend of MPTCP energy consumption for
homogeneous path configuration. When two subflows share
a path, MPTCP increases the energy consumption by up to
20% compared to the case of one subflow per path. When
the number of subflows per path increases to 10, the energy
consumption of link-sharing subflows is 70% more than that
of non-link-sharing subflows. Fig. 21 shows the RTT perfor-
mance when using different number of subflows per path.
These results validate the inefficiency of link-sharing subflows
for both Linux bridge and OvS configurations. Fig. 22 shows
that the throughput of MPTCP-D is similar to that of MPTCP
in this experiment. TABLE VI shows the performance of
the ESE algorithm with parameters α = 1.3 and β = 0.1
(α > D2

D1
≈ 1.27 for Linux bridge configuration and α >

D2
D1
≈ 1.29 for OvS configuration). The operation of closing

extra subflow window in MPTCP-D achieves the true positive
rate of 0.833 and the false positive rate of 0.053.

Incast Traffic: Incast is a traffic pattern that usually occurs
in many-to-one communication sessions in datacenters. When
too many servers are simultaneously sending data via switches,
there might be severe packet loss due to switch buffer over-
flow. Fig. 23 illustrates how incast happens at the virtual
switch. Many virtual machines generate the traffic that simulta-

5Considering the limits of memory and network load in our testbed, we can
create at most 30 VMs on a host. The switch port bandwidth is 10Gbps. So,
we set a VM’s bandwidth to be 300Mbps < 10Gbps

30
.

Fig. 23. The scenario of incast at the virtual switch.

Fig. 24. The scenario of MPTCP flow between VMs with bursty background
traffic.

Fig. 25. Performance of MPTCP and MPTCP in the incast experiment.

TABLE VI

STATISTICS OF TESTING THE EXTRA SUBFLOW
ELIMINATION OVER TESTBED II

neously traverse a virtual switch. Since the virtual switch also
uses tail drop mechanisms to avoid congestion, incast problem
may happen in the bottlenecks of virtual switch. In this
experiment, we create 10 VMs on the host with OvS network
configuration. On each VM, we use iperf to generate 10 par-
allel connections (10 MPTCP/MPTCP-D flows). Each VM is
configured with two virtual interfaces, each of which has
150Mbps bandwidth. The ESE algorithm uses the parameters
α = 1.3 and β = 0.1 (α > D2

D1
≈ 1.29). We examine how the

ESE algorithm of MPTCP-D performs with the incast traffic.
As shown in Fig. 25, while MPTCP and MPTCP-D achieve
similar throughput, MPTCP-D largely reduces the latency if
there are link-sharing subflows. TABLE VII shows that the
true positive rate decreases and the false positive rate increases
compared to the result in TABLE VI. This is due to the
interference between the parallel flows, which may cause large
variation of RTTs.

Bursty Background Traffic: We also evaluate the perfor-
mance of MPTCP-D with bursty background traffic. Fig. 24
illustrates the experimental setup. An MPTCP/MPTCP-D con-
nection uses two disjoint paths between two pairs of virtual
interfaces, and each path has 150Mbps bandwidth. We use
the open source software MGEN [33] to generate on each
path a bursty traffic that follows Pareto pattern at rate 50Mbps
(more than 30% of the path bandwidth) and occurs at random
intervals (average ten seconds) with average bursty duration
of two seconds. The ESE algorithm uses parameters α = 1.3
and β = 0.1 (α > D2

D1
≈ 1.29). Fig. 27 shows that MPTCP-D

can improve the RTT performance in the case of link-sharing
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Fig. 26. Contribution of ESE and congestion control.

Fig. 27. Performance of MPTCP and MPTCP in the bursty traffic scenario.

subflows without throughput degradation. TABLE VII shows
that the performance of ESE is not much impacted by the
bursty background traffic, because ESE uses both the variation
of intra-subflow RTTs and the comparison of inter-subflow
RTTs to decide whether subflows go over the same path.
If there are multiple subflows on a path, the intra-subflow
RTTs of link-sharing subflows will increase together when
bursty background traffic occurs. For the case of non-link-
sharing subflows, if a burst occurs on a path, there is large
RTT difference between the subflows with and without bursty
background traffic. Since two paths are rarely with bursty
traffic at the same time, the ESE algorithm can still achieve a
low false positive rate.

We also analyze the respective contributions of the two
components (ESE and congestion control). To do this, we use
the algorithm A1 that incorporates the ESE of MPTCP-D
and the congestion control of MPTCP, and the algorithm
A2 that removes the ESE but retains the congestion control of
MPTCP-D. We perform both link-sharing (two subflows for
each path) and non-link-sharing experiments using the same
setup as Subsection V.C. For the link-sharing case, Fig. 26(a)
shows that A1 and MPTCP-D have similar performance, which
means that the ESE mechanism contributes nearly 100% to
the reduction of energy consumption. Fig. 26(b) and (c) show
the results of the non-link-sharing case. The performance of
A2 is similar to MPTCP-D, which indicates that the congestion
control of MPTCP-D makes nearly 100% contribution to
maintain the same performance with MPTCP. In the practi-
cal deployment, a combination of the congestion control of
MPTCP and the ESE may achieve the similar performance
as MPTCP-D. Yet, as we have mentioned in Subsection IV.B,
the MPTCP-D’s congestion control satisfies Pareto-optimality
and also theoretically ensures fair resource allocation among
many coexisting flows in datacenter networks.

D. Packet-Level Simulation and Algorithm Analysis

We perform packet-level simulations with the discrete-event
network simulator ns-3 [44] of version 3.27. The datacenter
network topology is a FatTree with 128 hosts and 80 switches.
The hosts are separated into two clusters. Each host has two
routes to another host and uses MPTCP and MPTCP-D to
transmit data, respectively. The FatTree topology has three
layers. The access layer has 128 hosts, which are separated

Fig. 28. Performance in packet-level simulation.

into two clusters. Each cluster has 16 racks. Each rack has
2 access switches and 4 hosts. In a rack, each host is connected
to the two switches. Each cluster has 4 aggregation switches,
two of which can reach any of 16 access switches, and the
other two of which can reach any of the other 16 access
switches in the same cluster. The other cluster uses the same
configuration. The core layer has 8 switches, each connected
to two aggregation switches that belongs to different clusters.
On this topology, we generate four traffic patterns. 1) Cross-
cluster traffic: each host communicates with another host
from a different cluster and the traffic workloads increase
from 16 host-to-host transfers to 64 host-to-host transfers.
2) Incast traffic: 32 hosts transmit data simultaneously to
one host. 3) Bursty traffic: bursty background traffic exists
on the links between ToR and aggregation switches. 4) Path-
overlap traffic: two host-to-host paths have a common link
between ToR and aggregation. We record the simulation results
including throughput and RTT for MPTCP and MPTCP-D,
respectively. We simulate 10 times and calculate the aver-
age throughput and average RTT (normalized by the maxi-
mum value between MPTCP and MPTCP-D, i.e., RTT ′ =
RTT/max(RTT (MPTCP ), RTT (MPTCP−D))). Fig. 28(a)
shows that MPTCP and MPTCP-D achieve similar through-
put for the four different traffic patterns. Fig. 28(b) shows
that MPTCP-D outperforms MPTCP in RTT for path-overlap
traffic.

As we have discussed in sections III and IV, The energy
efficiency of MPTCP-D comes from two aspects: (i) it has
higher throughput than single-path TCP; and (ii) it can close
extra subflows when subflows share a link. In subsections
V.A and V.C, our experiments over a testbed, a campus cloud
and EC2 datacenters, demonstrate the improvement of energy
efficiency from these two aspects. Our simulation results in
this subsection further demonstrate that MPTCP-D can also
provide similar throughput and RTT compared with MPTCP
in a large topology and different traffic patterns. According to
all of our results in section V, MPTCP-D can achieve energy
efficiency without other performance degradation.

The sensitivity of the ESE mechanism is examined for
different traffic patterns using packet-level simulation. The
non-link-sharing case uses the same configuration as Fig. 28.
For the link-sharing case, the incast traffic uses 32 hosts to
simultaneously transmit data with MPTCP-D to a destination
host, and the subflows from the 32 hosts are configured to
traverse the same link between ToR and aggregation. For
each host-to-host data transfer, the bursty background traffic
is generated on a link between ToR and aggregation, and the
transfer’s two subflows share that link. We calculate the true
positive (i.e., there is a link shared by subflows and it is
correctly identified) rate and the false positive (i.e., wrongly
reporting a shared link that in reality does not exist) rate.
TABLE VII compares the simulation result with the testbed
result in Subsection V.C. We find that the performance of ESE
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TABLE VII

STATISTICS OF TESTING THE EXTRA SUBFLOW ELIMINATION

TABLE VIII

ESE ACCURACY FOR DIFFERENT VALUES OF α

has degradation in the simulation. The main reason is that our
current implementation of ESE relies much on the threshold
α and has limitations to obtain associated traffic information.
TABLE VIII shows the true positive rate and false positive
rate of ESE for different α. We can see that α = 1.3 achieves
a balance between true positive and false positive. When α
is smaller than 1.3, ESE is hyper-sensitive with a high false
positive. When α is larger than 1.3, the true positive rate
decreases. This is also validated under different traffic patterns
(e.g., incast and bursty) over both ns-3 simulations and Linux-
based experiments, as shown in TABLE VI, TABLE VII, and
TABLE VIII. Based on the experimental data, we find that
α = 1.3 is a typical value of good performance for a wide
range of traffic patterns. We select α = 1.3 as the default
value for MPTCP-D and also allow users to reconfigure it
for their practical deployment, which may be complex with
varying traffic. A user can fine-tune α to adapt to a specific
traffic pattern based on traffic monitoring and analysis. For
example, the user can collect network performance metrics
using the traffic monitoring tools, e.g., [45], and accordingly
use the traces as specific traffic pattern to evaluate MPTCP-D.

VI. CONCLUSION

In this paper, we have presented a systematic study on
the energy efficiency of MPTCP for datacenters. Although
MPTCP can increase host CPU power by about 14%-36%
compared to TCP, it can fully utilize datacenter network
bandwidth to achieve high aggregated throughput and thus
largely saves energy for long flows. Yet in the scenarios where
multiple subflows share a common link, MPTCP has poor
performance in power consumption and latency, especially
for short flows. We present MPTCP-D to reduce the power
consumption for both long and short flows. The ESE of
MPTCP-D can detect link-sharing subflows and eliminate
the extra subflows on the shared link, thereby reducing the
power consumption. Our experimental results have shown that
MPTCP-D achieves good energy efficiency with a throughput
similar to MTPCP and a latency better than both DCTCP and
MPTCP. MPTCP-D has great potential to evolve in different
network scenarios and support a variety of high-quality ser-
vices. Large-scale datacenter topologies with realistic traffic
will impact the performance of ESE. For more complex
application scenarios (e.g., some hotspot/transient congestion

created by bursty traffic, and non-equal-cost paths in a cubic
topology), a possible solution is to combine the threshold α
with the detection of specific traffic patterns. It involves cross-
layer designs, and we will focus on it in future work.
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