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Abstract—Recently, data-driven prediction strategies have
shown the potential of shepherding the optimization strategies
for end viewer’s Quality-of-Experience in practical streaming
applications. The current prediction-based designs have largely
focused on optimizing the last-mile, i.e., viewer-side, which
1) need the real-time feedback from viewers to improve the
prediction accuracy; and 2) need quick responses to guarantee
the effectiveness of optimization strategies in the future. Thanks
to the emerged crowdsourced livecast services, e.g., Twitch.tv, we
for the first time exploit the opportunity to realize the long-term
prediction and optimization with the assistance derived from the
first-mile, i.e., source broadcasters.

In this paper, we propose a novel framework CastFlag, which
analyzes the broadcasters’ operations and interactions, predicts
the key events (i.e., highlights), and optimizes the transcoding
stage in the corresponding live streams, even before the encoding
stage. Taking the most popular eSports gamecast as an example,
we illustrate the effectiveness of this framework in the game
highlight prediction and transcoding workload allocation. The
trace-driven evaluation shows the superiority of CastFlag as it:
(1) improves the prediction accuracy over other learning-based
approaches by up to 30%; (2) achieves an average of 10% saving
of the transcoding latency at less cost.

I. INTRODUCTION

Fueled by today’s high-speed networks (e.g., LTE/5G) and
high-performance personal devices (e.g., iPhone 11 Pro),
crowdsourced livecast1 has emerged as one of the most fash-
ionable applications. According to the statistics from Alex-
a.com, Twitch’s global traffic ranking just experienced a huge
boost from 100th to 30th in recent three years. Moreover,
crowdsourced livecast services also occupy a large number of
Internet users’ daily life. Recent Twitch’s report reveals that
there are more than 1.2 million concurrent visitors and more
than 3 million unique monthly livecasters in 2019. The “Daily
Time on Site” of Twitch’s viewers is over five minutes per day,
and this index on DouyuTV [1] is about nine minutes2.

To improve the viewers’ Quality-of-Experience (QoE), more
and more proposals attempted to use data-driven prediction
strategies to analyze the viewers’ streaming sessions, then
employ the prediction results to shepherd the correspond-
ing optimizations [2]–[4]. Yet the existing prediction-based

1In this paper, we use terms “livecast” and “livecaster” to represent “live
broadcast” and “live broadcaster” for convenience.

2The index of YouTube.com and Netflix.com are 11m51s and 3m14s,
respectively.
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Fig. 1: Illustration of CastFlag

solutions have largely focused on optimizing the last-mile
(i.e., viewer-side) performance, which still suffers from severe
limitations, as they mainly collect viewer’s feedback and need
quick response to usher the prediction and optimization in real-
time [6], [8], [9]. Thanks to today’s crowdsourced livecast ap-
plications, in which livecasters broadcast daily performances,
creative shows, and game playthroughs3 conveniently to a
large number of viewers who discuss livecast-related topics at
the same time, it is known that the first-mile (i.e., livecaster-
side) is equally, if not more, important as the last-mile.

In this paper, we target a livecaster-centric framework
CastFlag, as shown in Figure 1, to capture their traces,
predict the highlights, and optimize the livecasts. The key
challenges towards designing the framework lie in: 1) how to
determine a proper prediction lag and improve the accuracy
based on the collected data from livecasters; and 2) how to
optimize crowdsourced livecast services with the assistance of
the highlights prediction. Considering that: 1) the number of
viewers watching eSports has leapfrogged that of traditional
sports broadcasting [10]; and 2) the eSports multiplayer’s
interactions furnish a large number of first-mile data which
contribute to evaluating the effectiveness of our proposed
framework, we take eSports gamecast (i.e., game-related live-
cast) as an example to explore the opportunities and challenges
in designing such a framework.

We closely examine the impact of the highlights in eSports
gamecast services. The measurement result reveals that a

3Game playthrough is the act of playing a game from start to finish.



highlight in a game largely impacts the complexity of the cor-
responding game scene, which in turn determines the transcod-
ing latency. Moreover, by analyzing the official video statistics
from Twitch.tv, we find that the broadcast latency, which is
defined as the time lag between a game scene on the gamer
side and the corresponding gamecast content received on the
viewer side, is mainly derived from the transcoding period.
Motivated by these observations, we design the prediction and
optimization modules in the framework CastFlag to capture the
unique features in eSports games, i.e., the multiplayer’s real-
time operations, extract game-related strategies, predict the
game highlights (i.e., key events), and optimize the transcoding
task allocation.
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Fig. 2: A typical crowdsourced livecast service

To the best of our knowledge, our study is the first to explore
the potential from the multiplayer’s operations in the eSports
gamecast services. Our contributions can be summarized as
follows: (1) We conduct the cloud-based measurements to
reveal the challenges and motivate our design; (2) To usher
the optimizations for transcoding workloads, the framework is
designed with full knowledge of multiplayer’s game strategies;
(3) The performance evaluation demonstrates that the proposed
prediction module achieves more than 90% accuracy in the
highlight prediction based on the collected game replays. In
addition, the trace-based evaluation shows that the proposed
optimization approach reduces the broadcast latency cost-
effectively.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background. Section III illustrates the
measurement results based on a cloud-based streaming testbed,
which also motivated our work in this paper. In Sections IV
and V, we propose the design of each module in the framework
CastFlag. We then evaluate the performance of our framework
in Section VI. We present the related work in Section VII.
Section VIII concludes the paper with further discussion.

II. BACKGROUND

A. Crowdsourced Livecast

Crowdsourced livecast has emerged as one of the most
popular live streaming applications in recent years [11]. Such

services as Twitch, Periscope [12], and DouyuTV, have con-
tributed to a significant amount of today’s Internet traffic
and got into fellow viewers’ daily life. It offers two par-
allel services: Streaming Service and Interactive Service, as
shown in Figure 2. Monitor scenes are first captured and
encoded by a streaming software (e.g., Open Broadcaster
Software [13]) deployed on a livecaster’s device. Then, the
streaming service ingests game sessions, assigns transcoding
tasks, and distributes contents to viewers. In the meantime, the
interactive service provides an embedded chatting platform for
the livecasters and viewers, creating lots of novel streaming
scenarios, e.g., crowdsourced gaming TwitchPlaysPokemon.

B. eSports Gamecast

As the mainstay of crowdsourced livecast applications,
eSports gamecast continuously attracts much attention from
both gamers and viewers. According to the statistics from
Twitch, more than 60% of concurrent viewers are contributed
by eSports gamecasts every day, such as Dota2, League of
Legends (LoL), and CS:GO. Here, Dota2 and League of
Legends are two multiplayer online battle arena (MOBA)
video games and Counter-Strike: Global Offensive (CS:GO)
is a multiplayer first-person shooter video game. Similarly,
DouyuTV, the twenty-eighth of top sites in China, also report-
ed that more than 70% of the most attractive livecasters are
interested in LoL game matches [14].

It has been reported that the global games market generated
$120.1 billion in revenues and the number of the viewers for
gaming videos grew by 5% to reach $944 million in 2019 [15],
which further elevates the growth of eSports gamecast. As the
source of eSports gamecast, a typical eSports match contains
several gamers who are divided into different teams to compete
for various resources, e.g., golds, weapons, or controlled
regions. The left part in Figure 2 briefly demonstrates the
design of an eSports game “Dota2”, in which ten gamers are
grouped into two teams. The battle area consists of several
types of regions: three lanes (top, middle, and bottom), a
river, four jungle areas, etc. When a match starts, every
gamer first chooses one hero, then upgrades the hero’s level
and equipment by fighting with the enemies and the other
gamers in another team. Like most eSports games, Dota2 also
highlights the gamers’ cooperation in one team, therefore, how
to fight enemies together, called “teamfight”, becomes the most
important event, which may determine the final result of a
match. In a Dota2 teamfight, most of the gamers participate
in casting their heroes’ skills and attacking others, which also
attracts the attention from fellow viewers during the gamecast.

In a Dota2 match, the game flow mainly includes the
following five parts, as shown in Figure 3:

• Pick/Ban (P/B): The captain in each team bans certain
heroes, preventing either team from picking the heroes;
every captain also chooses five heroes for the whole team
alternately;

• Game Start: After choosing preferred heroes, the gamers
in a team start the game from their base and choose the
combat lanes according to the heroes’ abilities;
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Fig. 3: Illustrations in the playing flow of MOBA games.
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Fig. 4: Transcoding latency

• Farming/Pushing (F/P): All gamers upgrade their equip-
ment and levels through earning golds and experience
from clearing enemy creeps on the lanes or combating
the neutral creeps at the jungle areas;

• Teamfight (TF): During an eSports gamecast, teamfights
are the most attractive events, in which the gamers attack
the opponent heroes using their skills. It occurs among
several farming/pushing stages. Because the goal of a
teamfight is to eliminate as many of the opponent heroes
as possible, a good teamfight can determine the final
result of a match.

• Game End: After several rounds of farming, pushing and
teamfight, the gamers in a team will try to attack the
opponents’ base, if success, they win the match;

III. MEASUREMENT AND OBSERVATIONS

In this section, we investigate the characteristics of transcod-
ing tasks on various Amazon EC2 instances. The measurement
is mainly based on the game Dota2, which, according to
the statistics about the most watched games on Twitch [16],
ranks the third in 2018. Besides, Dota2 game client provides
game match replays, which contains every player’s interaction
and all game-related information, to any users friendly. The
measurement results also motivate our work in this paper.

A. Broadcast Latency

The encoded game scenes are continuously streamed from
content sources managed by gamers to ingesting servers
through proprietary protocols, e.g., RTMP (Real Time Mes-
sage Protocol [17]). Considering the overhead on the server-
side, such proprietary protocols cannot be used to deliver
gamecast contents to all viewers in the livecast scenario [18].
The general way, therefore, is to transcode original RTMP
streaming to HTTP-based streaming, e.g., HTTP Live Stream-
ing (HLS [19]), but consume a massive amount of compu-
tational resources and costs [20]. Besides, eSports gamecast
service providers encourage livecasters and fellow viewers
to participate in real-time discussions. If there exists a huge
difference among the viewer-side latencies, viewers’ Quality-
of-Experience (QoE) will be largely impaired. For example, a
high-latency viewer may know the final result of an eSports
match from the low-latency viewers’ online discussion before
watching the corresponding gamecast content.

There have been some efforts addressing the aforementioned
issues from both industry and academia [6], [21]. Yet the
existing solutions either change transcoding settings on the
livecaster side or optimize the streaming delivery using the
information on the viewer-side. Such strategies, when used
in eSports gamecast services, lack full knowledge of game
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Fig. 5: Measurement results on different instances

events, which lead to the lag and inaccuracy of optimization-
s [22]. For instance, a strategy first predicts that the highest
concurrent viewing number will occur after two minutes in
an eSports gamecast. Then, the corresponding optimization
strategy reserves extra computational and bandwidth resources
to serve this peak workload in the future. Yet this match and
gamecast are terminated after one minute, the optimization
fails, and the reserved resources also become wasteful.

To explore the challenges and opportunities for addressing
these problems, we collect the official latency statistics from
the top 100 livecasters in Twitch eSports game to investi-
gate the characteristics of broadcast latency. We observe that

TABLE I: Configuration of Amazon EC2 instances

ID Type vCPU Memory (GB) Price
A1 m4.xlarge 4 16 $0.2/h
A2 m4.2xlarge 8 32 $0.4/h
A3 m4.4xlarge 16 64 $0.8/h
A4 c4.xlarge 4 7.5 $0.199/h
A5 c4.2xlarge 8 15 $0.398/h
A6 c4.4xlarge 16 30 $0.796/h

more than 68% of the broadcast latency is derived from
the transcoding period, as shown in Figure 4. Therefore,
if transcoding latency reduces, the viewer’s QoE could be
improved accordingly.

B. Transcoding Workload

We further analyze the transcoding latency by deploying
a crowdsourced gamecast service on various Amazon EC2
instances [23]. The measurement for each stage relies on ten
videos that are recorded from five randomly selected Dota2
replays.

As shown in Table I, we use six types of instances, which
have various settings and prices. A1, A2, and A3 are m3
instances, which provide a balance of computing, memory, and
network resources. A4, A5, and A6 are c4 instances, which
are optimized for compute-intensive workloads and delivers
very cost-effective high performance at a low price/compute
performance in EC2. We measure the transcoding performance
using FFmpeg to convert the original videos to different
resolutions and bitrates. The broadcast latency is measured by
deploying an RTMP-Nginx module [24] on each platform. The
instance with this module can play a practical streaming server
that ingests an original video as a livecast and transcodes it to
various quality versions.

Figure 5 shows the measurement results of the transcoding
tasks on different instances. As shown in Figure 5a, we
observe that the computation-optimized instances A4, A5,
and A6 achieve lower latencies than the general instances
A1, A2, and A3, even they have the similar cost. But the
superiority of computation-optimized instances is decreased in
the transcoding tasks with the low-resolution quality versions.
Figures 5b indicates the performance of transcoding the game
scenes in different stages on A4. We find that the latency in the
P/B stage is clearly lower than the other stages. Besides, the
transcoding tasks in the TF and End stages need more time to
process complex game scenes, which introduce extra latencies.
We also observe the huge disparity among different streaming
qualities. For example, in the TF stage, the average transcoding
latency of the 1080p videos is 3 seconds higher than that of
the 720p videos in Figure 5b. Figure 5c shows the impacts
of the number of the threads on A6 instance. By changing
the number of the used CPU threads to a reasonable setting,
we can dynamically adjust the transcoding latencies for the
different quality versions in a gamecast. These measurement
results motivate us to design a framework that not only
predicts the highlights in a gamecast but also balances the
transcoding latency and cost in different settings according



to the prediction results. Our measurement results reveal that
game highlights, i.e., the key events in a game, largely impact
the complexity of the corresponding game scenes, which in
turn determines the transcoding latency in a gamecast.

IV. CASTFLAG: AN OVERVIEW

Motivated by the previous measurement results in eSports
gamecast services, we propose the detailed design concepts
in the CastFlag framework. The two modules in the previous
generic framework are designed to facilitate the existing eS-
ports gamecast services. As shown in Figure 6, it consists of
a Strategy-based Prediction (SBP) module and a Highlight-
aware Optimization (HAO) module. The SBP module is a
new part of this framework compared with that of the existing
eSports gamecast services. Upon receiving the gamers’ inter-
actions in a match from the game server in real-time, the SBP
module will be aware of the team strategies, predicting the
highlights, e.g., teamfights, in this match. The HAO module
receives the predictions from the SBP module as the hints
guiding the gamecast transcoding. Combining these hints and
the viewing demands, the HAO module allocates resources
ahead of the emergences of the predicted highlights cost-
effectively.

There are however a number of critical practical and theo-
retical issues to be addressed in this generic framework. First,
the gamers’ interactions change over time, which generates the
varying strategies of cooperations in a team and competitions
between two teams. Although the existing study in [25] have
predicted the highlights in the next few seconds, the accuracy
of its prediction is not very high. As such, after receiving the
interactions, CastFlag must well forecast the highlights with
a higher accuracy under a longer prediction gap, which can
early shepherd the corresponding optimization strategies. In
addition, after predicting the highlights, how to cost-effectively
allocate the transcoding tasks and strategically design the
content distribution will significantly impact the viewers’ QoE.
These problems are further complicated given the heteroge-
neous devices and network connections of viewers and that of
livecasters (i.e., gamers). More importantly, such a framework
should be transparent to the livecasters and viewers, that is,
the whole design should not suspend the match, impair the
gamecast, or reduce the viewers’ QoE, so as to complement
with existing eSports gamecast services.

V. FRAMEWORK DESIGN

In this section, we illustrate the design of the framework
CastFlag and further propose the solution to optimize the
gamecast. We first illustrate the strategy-based prediction
(SBP) module based on gamers’ interactions.

A. Strategy-based Prediction

In an eSports game match, the replay records the gamers’
interactions into a proprietary file; we therefore have the
opportunity to retrieve every gamer’s data by parsing a game
replay. To better understand these interactions and preprocess
them, we first classify them into several groups according

TABLE II: Statistics of the data in a replay sample

Type Description # of logs Percentage
4 Hero’s movements 392,268 87.9%
24 Damage in combats 29,544 6.6%

3 Hero’s local statistic,
e.g., gold and experience 5,810 1.3%

27 Ability used in combats 1,801 0.4%
26 Death in combats 3,903 0.9%
29 Item buy/sell 600 0.1%

others Other info. in combats,
gamers’ statistics, etc. 12,434 2.8%

to the interaction types that are pre-defined by the game
developers. As shown in Table II, we show the details of
different types of data in a replay. We observe that about
88% of data show the changes in gamers’ locations, and
6.5% are combat logs, which illustrate how gamers attack
their enemies, e.g., damage values during a teamfight. Besides,
other data consist of the changes of gamers’ golds, experience,
skill levels, equipment, etc. These interactions can naturally be
classified into two types of interactions: (1) spatial interactions,
e.g., every gamer has a fixed location at a certain time; (2)
temporal interactions, e.g., the golds owned by every gamer
will be changed along with the time of a match. The CastFlag
framework, therefore, must capture the characteristics of these
two types of interactions. To fulfill this target, we extract
global strategies and local strategies. The global strategies
contain the location changes of all gamers, the unit changes
of the whole battle arena, and the competition data of two
teams. The local strategies include the changes of the gold,
experience, buy/sell items of every gamer along with match
time.

Finally, we constructed the SBP module using a deep
learning network, as shown in Figure 7. It consists of several
2dCNN (Convolutional Neural Network) layers [26], [27]
and stack LSTM (Long Short-Term Memory) layers [28],
capturing the correlations between the spatio-temporal features
in an eSports game and the highlights in the corresponding
gamecast. In deep learning research, CNN is a class of deep,
feed-forward neural network that has successfully been applied
to processing videos/images and decreasing the dimensions of
input data. The LSTM is a type of RNN (Recurrent Neural
Network) [29], well classifying, processing and predicting
time series. Through unique gating units, LSTM avoids the
long-term dependency problem, having the ability to remove
or add information when learning time series. The output
shows whether the input data in a time slot will induce a
highlight or not after a few times. Considering the eSports
gamecast scenario, we define the game teamfight as the
highlight in this paper. Because the SBP module is expected
to predict highlights before their occurrences, we assume that
the interactions between time slot T and T + tgap will trigger
a highlight, i.e., teamfight, if they occur tgap seconds ahead
of this highlight.

In the SBP module, the first part is two 2dCNN layers for
global strategy and local strategy, respectively. For each time
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slot, the 2dCNNs can reduce the dimensions of the two types
of input data. Then, we concrete the outputs of two 2dCNNs
as the input of the stacked LSTM Networks. The stacked
LSTM layers output the prediction results, indicating that the
highlights will occur. To reflect the prediction lag, we train the
model using different input data labeled by various time gaps.
The training and testing procedures and the parameter settings
of all learning layers will be illustrated in Section VI. In this
paper, we utilize the features of eSports games as an example
to design the SBP module in this framework, which can be
easily revised to fit other livecast scenarios in crowdsourced
livecast. For example, livecaster can only use mobile devices
to broadcast live contents in Periscope. After collecting the live
contents and the corresponding time-series from the sensors,
e.g., GPS sensor and accelerometer sensor, on the mobile
devices, a similar learning network can be trained to predict
the highlights, which will be investigated in our future work.

B. Transcoding Task Assignment Optimization
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Fig. 8: Example of task assignment

In this subsection, we design the transcoding optimization.
We assume a general transcoding framework, where a large
number of transcoding tasks need to be assigned to different
servers with various computational configurations. Because the
highlight prediction module creates an opportunity to reserve

and allocate resource earlier, we perform the transcoding
task assignment according to the following two rules: 1)
the workloads belonging to a predicted highlight should be
prioritized, such that the transcoding time for these workloads
can be reduced using high-performance servers; (2) other
workloads should be finished before deadlines when viewers
request them, such that our optimization does not impair
viewers’ QoE. Figure 8 illustrates the basic concept of the
transcoding task assignment optimization. Gamecast g1 needs
to be transcoded into two versions: v1 and v2. Based on the
predictions, we already know the time when a highlight occurs
(shadow areas); therefore, we first assign the workloads 3
and 4 on the high-performance server s1, and then assign the
workloads 1 and 2 on the low-performance server s2. Finally,
all transcoding tasks will be finished before their deadlines
and the total transcoding latency is lower than the previous
assignment. Yet how to allocate these tasks cost-effectively
still need to be addressed. Next, we formulate this problem
and propose a solution.

We denote (g, v) as a task that transcodes a gamecast g from
the original quality version to quality version v. Without loss
of generality, we use S

(T )
(g,v) to denote the transcoding server

that is assigned to task (g, v). Let E(T )[(g, v), s] denote the
transcoding cost if task (g, v) is allocated to server s in time
slot T . It can be calculated as follows:

E(T )[(g, v), s] =
c(T )(g, v)

C(s)
P(s)

where c(T )(g, v) is the amount of computation resource that is
required by task (g, v) in time slot T . C(s) and P(s) are the
computation capacity and unit price of a server s, respectively.
We also denote the profit of transcoding task (g, v) on server
s in time slot T as F (T )[(g, v), s], which can be calculated as
follows:

F (T )[(g, v), s] = W (T )(g, v)log(α− βl(T )[(g, v), s])

where W (T )(g, v) is the predicted viewing number of the
version v of gamecast g, which can be acquired according
to the viewing number in previous time slots using regression



models (e.g., ARIMA [30] used in this paper); l(T )[(g, v), s])
is the transcoding latency of task (g, v) on server s. Base on
the definitions of the transcoding cost and profit of tasks, we
define the transcoding gain TG(T )[(g, v), s] when assigning
task (g, v) on server s as follows:

TG(T )[(g, v), s] =
F (T )[(g, v), s]

E(T )[(g, v), s]
(1)

As such the optimization of transcoding tasks in time slot
T is then formulated as follows:

max
∑
g

∑
v

TG(T )[(g, v), S
(T )
(g,v)] (2)

subject to:
Transcoding Latency Constraint:

l(T )(g, v)H
(T )
(g,v) ≤

∑
t∈[0,T−1] l

(t)(g, v)(1−H
(t)
(g,v))∑

t∈[0,T−1](1−H
(t)
(g,v))

≤ γ, ∀(g, v) ∈ G(T )

(3)

H
(T )
(g,v) =

{
1, if task (g, v) belongs to a highlight
0, otherwise

(4)

Resource Availability Constraint:∑
g

∑
v

c(T )(g, v) ≤
∑
s

C(T )(s) (5)

where H
(T )
(g,v) shows whether task (g, v) belongs to a highlight,

as shown in equation (4). The optimization is to assign the
transcoding tasks to different servers, so that the overall
transcoding gain can be maximized. The rationale of transcod-
ing constraint is as follows: (1) the tasks that belong to
highlights should enjoy a similar transcoding time compared
with other tasks; (2) all tasks should be completed in a period
γ, which proposes a basic QoE requirement for the transcoding
tasks in eSports gamecast services. The resource availability
constraint guarantees that there exist enough computational
resources for all transcoding tasks.

Because the Transcoding Latency Constraint is independent
of the Resource Availability Constraint, we can first consider
the former to remove the transcoding servers that do not meet
it, and then this problem can be transformed into a minimum
cost network flow problem. The minimum cost network flow
problem [31] is briefly introduced as follows. Let G = (N,E)
be a directed network with a set N of n nodes and a set E of
m edges. Every node i ∈ N has an associated number b(i) to
denote its supply or demand depending on whether b(i) > 0
or b(i) < 0. Every edge (i, j) ∈ E has an associated per unit
flow cost cij and a flow capacity uij . The minimum cost flow
problem can be formulated as follows.

Minimize
∑

(i,j)∈E

cijxij

TABLE III: Performance of the SBP module

Approaches Highlight Non-highlight
R P F R P F

CNN-based 0.84 0.89 0.86 0.81 0.86 0.83
LSTM-based 0.71 0.79 0.74 0.74 0.83 0.78

CF-G 0.99 0.66 0.79 0.74 0.99 0.85
CF-L 0.50 0.99 0.67 0.50 0.99 0.67

CF-GL 0.98 0.93 0.95 0.92 0.98 0.95

subject to: ∑
{j:(i,j)∈E}

xij −
∑

{j:(j,i)∈E}

xji = b(i), ∀i ∈ N

0 ≤ xij ≤ uij , ∀(i, j) ∈ E

To transform our optimization to a minimum cost flow
problem, we next introduce several transformation rules:

1) We introduce supply node vstart and demand node vend.
2) For each transcoding task (g, v), we add a node v(g,v)

and an edge (vstart, v(g,v)), its capacity uvstart,v(g,v)
is

equal to the computational requirement of transcoding
task (g, v);

3) For each transcoding server s, we add a node vs and an
edge (vs, vend), and its capacity uvs,vend

is equal to the
amount of available computational resource on server s;

4) If task (g, v) can be assigned to server s, we add an edge
(v(g,v)), vs) and its capacity uv(g,v),vs is equal to the
computational requirement of transcoding task (g, v).

5) We set the cost from vstart to any task node v(g,v)
and the cost from any server node vs to vend to
0, and set the cost of existing edge (v(g,v), vs) to
−[TG[(g, v), s]/cv(g,v),vs ]

4.
6) To meet our optimization problem, we use the follow-

ing constraints in the transformed minimum cost flow
problem:

xvstart,v(g,v)
= uvstart,v(g,v)

, ∀v(g,v) ∈ N

xv(g,v)),vs = uv(g,v)),vs , ∀v(g,v), ∀vs ∈ N

xvs,vend
≤ uvs,vend

, ∀vs ∈ N

After applying the above rules, we can transform our
optimization problem (1) into a minimum cost flow problem.
Such a problem can be solved by double scaling algorithm [31]
in polynomial time. Let C denote the largest magnitude of
any edge cost and U denote the largest magnitude of any edge
capacity. The time complexity is O(nmlogUlog(nC)).

VI. PERFORMANCE EVALUATION

We have conducted trace-driven experiments to evaluate
the performances of the prediction module SBP and the
optimization module HAO in the framework CastFlag.

4Without loss of generality, we omit the time slot index T .
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Fig. 9: Comparison of normalized transcoding expense under
different # of broadcasters and three strategies
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Fig. 11: Comparison of normalized transcoding latency under
different # of broadcasters and three strategies

A. Strategy-based Prediction Results

We collect 80 game replays from Dota2. Based on an open-
source package [32], we write an offline parser to extract inter-
action data from every replay into continuous time slots and
recognize teamfights based on the damage and multiple kill
data. According to the prediction rule mentioned in Section V,
we label the data in different time slots using highlight or non-
highlight. We train the proposed learning network using half
of these data, and then test the prediction performance of the

network using the remaining half. The deep learning based
highlight prediction in the SBP module is implemented in
Keras [33] with cuDNN on an NVIDIA GTX 1080 GPU. For
the comparison of the SBP module, we have also implemented
several networks with different settings, as shown in Table III.
In our evaluation of this module, we use three typical metrics:
Recall, Precision, and F-score [34], which combined together
reflect the performance of the SBP module.

As shown in Table III, we compare the prediction module
SBP with two typical approaches: (1) CNN-based approach
only adopts CNNs to classify key events with full information;
(2) LSTM-based approach only uses LSTM network with the
full information. We select the best performance of all three
approaches in different settings empirically. For our method,
the setting is 1-layer CNN and 3-layer stacked LSTM network-
s, the prediction gap is 10 seconds. Here, we also investigate
the impact of the global (G) and local (L) information in our
design. We observe that our design achieves the highest score
(up to 30%) in the three metrics.

B. Highlight-aware Optimization Results

For the comparison of the HAO module, we have im-
plemented two strategies: Randomly Transcoding Allocation
(RTA) and Load-Based Allocation (LBA). The former assigns
a transcoding task on a randomly selected server from all
available ones. The latter always selects the transcoding server
with the lowest load for the current task. In the evaluation of
this module, we adopt two metrics: transcoding latency and
expense, which combined together illustrate the performance
when using three strategies. We use the transcoding traces
collected in Section II and the gamecast traces crawled using
Twitch’s official API [35] in one hour. We write three simula-
tors to conduct the performance evaluation, which can choose
the transcoding servers from three types of instances, i.e., A4,
A5, and A6 and elastically lease/release them. Considering
the transcoding settings in practical gamecast services, we
assume that all gamecasts are transcoded from the original
RTMP streaming to HLS segments with four quality versions,
i.e., 1080p, 720p, 480p, and 360p [36], using the instances on
Amazon EC2.

1) Transcoding Cost on the Cloud: In this experiment,
because the instances can be leased elastically, they can satisfy
all the transcoding requests of gamecasts. We calculate the
cost of leasing Amazon EC2 instances as transcoding servers.
In Figure 9, each bar represents the cost when a particular
number of gamecasts are transcoded in one hour. For ease
of comparison, the results are normalized by the maximum
cost. It is noted that transcoding a large number of gamecasts
generally consume larger computation resources. The reason
is that all gamecasts have to be processed and transcoded, even
if some of them do not have any viewer. For any number of
gamecasts in this figure, we observe that the transcoding cost
with our HAO module is less than or equal to that with the
other two approaches.

2) Transcoding Latency: In the following experiments, we
will evaluate the effectiveness of our HAO module. We focus



on the average transcoding latency, which is the average time
when transcoding a large number of gamecasts. For ease of
comparison, the results are normalized by the maximum la-
tency in Figures 10 and 11. Because our optimization strategy
has knowledge of gamecast highlights, we first compare the
effectiveness when using it to transcode the highlight and non-
highlight segments. We fix the number of gamecast to 100. In
Figure 10, because the HAO module gets the differences of
highlight segments and non-highlight segments, the average
transcoding latency of the highlight segments is slightly lower
than that of the non-highlight segments. Moreover, both of
them with our optimization strategy is lower than those with
the other two comparisons. We next evaluate the impact of
the different number of gamecasts. As shown in Figure 11,
each bar represents the average transcoding latency when a
particular number of gamecasts are transcoded in one hour.
Our optimization approach achieves an average of 10% saving
of the transcoding latency. In particular, transcoding latency is
reduced by up to 20% when the number of the gamecasts is
equal to five.

VII. RELATED WORK

A. Event Prediction in eSports Games

Several pioneer works to detect the highlights and winning
team in an eSports match have been presented in recent years.
After parsing the replay or video of a match, these studies
focus on the changes of the gamers’ information, e.g., location,
gold, and experience, and the dynamics of visual effects in the
videos. Yang et al. [37] analyzed the replays using a sequence
of event-related graphs and extracted key patterns to predict
the successful team of the entire game. Drachen et al. [38]
examined the spatiotemporal patterns of the gamers with four
skill tiers, i.e., normal, high, very high, and professional.
They further analyzed the relationship between game skills
and match results. The work in [39] detected the highlights
from the videos of eSports game matches using CNNs to
learn the features of visual effects in the videos. Similarly,
Chu et al. [25] recognized the designated text displayed on a
game screen when key events occur as visual features. Their
approach can also predict the emergence of a highlight in
the next few seconds. These previous efforts motivate our
work, but still face two limitations: (1) because the highlights
can only be detected after they appear, existing approaches
cannot meet the timeliness requirement of the optimization
in eSports gamecast applications; (2) based on pre-recorded
eSports videos, current prediction strategies can hardly guide
the optimization due to the low accuracy and short forecasting
gap. To overcome these limitations, we directly investigate the
interactions among the gamers in an eSports game, closely
explore the correlations between these interactions and high-
lights, and timely predict the highlights in the next minutes.

B. Optimization in Livecast Services

Some recent studies have already focused on the opti-
mization in crowdsourced livecast services. Fan-Chiang et
al. [37] investigated the importance of segment-of-interest in

such services and optimized the resource allocation during the
gamecast. Wu et al. [40] explored opportunities to combine
the edge-based and cloud-based network resources. A novel
framework to allocate the resources was designed to improve
the ingesting performance in crowdsourced gamecast services.
He et al. [41] proposed a fog-Based transcoding framework for
livecast services that allocate the transcoding assignment to the
massive viewers. Our work complements them by exploiting
the hints that guide the optimization in advance, even before
the encoding stage of a gamecast. Our work proposes a new
design in the realm of utilizing the gamers’ interactions in
eSports games, where the cooperation and competition data
are extracted into gamer-related, team-related and item-related
features. Integrating these features into deep learning models
offers a new opportunity to optimize the eSports gamecast
services and improve the viewers’ QoE.

VIII. CONCLUSION

In this paper, we have shown a strong evidence that in
practical crowdsourced gamecast platforms like Twitch, the
transcoding complexity and latency of an eSports gamecast
closely depends on the gamers’ interactions in the correspond-
ing game match. Motivated by this observation, we explored
opportunities and challenges to optimize the transcoding tasks
in eSports gamecast services. We presented CastFlag, a gener-
ic framework that investigates eSports gamers’ interactions
and predicts game highlights to optimize the corresponding
transcoding tasks cost-effectively. Specifically, we first de-
signed a strategy-based prediction (SBP) module, which main-
ly adopts a deep learning based network to predict highlights in
real-time. We further proposed a highlight-aware optimization
(HAO) module, which receives the prediction results from the
SBP module and select transcoding servers cost-effectively.
Extensive evaluations driven by traces from Amazon EC2
and Twitch illustrated the high prediction accuracy of the
SBP module as well as the cost-effectiveness and superior
transcoding performance of the HAO module.

We are currently designing a novel deep learning network
to forecast game highlights with various prediction gaps in
different game stages. We are also interested in enhancing
the HAO module to provide gamecast delivery and cache
optimization according to the prediction results from the SBP
module. Moreover, we are collecting data traces from other
crowdsourced livecast services, e.g., Periscope, to verify the
effectiveness of the CastFlag framework in general.
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