
Load-Balanced Migration of Social Media to
Content Clouds∗

Xu Cheng
School of Computing Science

Simon Fraser University
British Columbia, Canada

xuc@cs.sfu.ca

Jiangchuan Liu
School of Computing Science

Simon Fraser University
British Columbia, Canada

jcliu@cs.sfu.ca

ABSTRACT
Social networked applications have been more and more
popular, and have brought great challenges to the network
engineering, particularly the huge demands of bandwidth
and storage for social media. The recently emerged content
clouds shed light on this dilemma. Towards the migration to
clouds, partitioning the social contents has drawn significant
interests from the literature. Yet the existing works focus on
preserving the social relationship only, while an important
factor, user access pattern, is largely overlooked.

In this paper, by examining a large collection of YouTube
video data, we first demonstrate that partitioning the net-
work entirely based on social relationship would lead to un-
balanced partitions in terms of access. We further analyze
the role of social relationship in the social media applica-
tions, and conclude that user access pattern should be taken
into account and social relationship should be dynamically
preserved. We formulate the problem as a constrained k-
medoids clustering problem, and propose a novel Weighted
Partitioning Around Medoids (wPAM) solution. We present
a dissimilarity/similarity metric to facilitate the preserva-
tion of the social relationship. We compare our solution
with other state-of-the-art algorithms, and the preliminary
results show that it significantly decreases the access devi-
ation in each cloud server, and flexibly preserves the social
relationship.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Distributed Systems

General Terms
Algorithms, Measurement, Performance

Keywords
Social Network, Content Cloud, Clustering

∗This research is supported by a Canada NSERC Strate-
gic Project Grant, an NSERC Discovery Grant, an NSERC
DAS Grant, and an MITACS Project Grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’11, June 1–3, 2011, Vancouver, British Columbia, Canada.
Copyright 2011 ACM 978-1-4503-0752-9/11/06 ...$10.00.

1. INTRODUCTION
Social networked applications and services have been dom-

inating the Web 2.0 world in the recent years. The most
popular applications include YouTube1 for video sharing,
Facebook2 for online social networking, and Twitter3 for
micro-blogging. Besides these representatives, many other
user-generated content (UGC) applications have emerged
and been developing extremely fast.

Generally, it is difficult if not impossible to predict the
impact and the development of any UGC application in ad-
vance. The provision of resource is thus a great challenge,
because any application is possible to grow to the similar
scale to YouTube and Facebook, and any one is possible to
fail. The applications have brought great challenges to the
network engineering, and social media faces a much greater
challenge because of the huge resource demands of band-
width and storage. The recently emerged content cloud ser-
vice sheds light on this dilemma. Clouds provide “pay-as-
you-go” service that allows designers to start small and easy
to grow big [1]. A migration that moves the current non-
cloud contents, particularly video contents, into clouds is es-
sential for the benefit of the social networked application’s
development and competition.

To move such application into content clouds, one of the
most important steps is to partition the social media con-
tents and assign them into a number of cloud servers. Dif-
ferent from traditional web contents that are isolated, social
media contents have connections among each other, and thus
the partition is non-trivial. There are some existing works
trying to solve this problem, e.g., SNAP [2] and SPAR [15].
Aiming at preserving the social relationship, they are quite
effective tools to partition the social network.

However, considering the cloud scenario, one important
factor, user access pattern, is largely overlooked in the pre-
vious studies. If the videos are assigned into cloud servers
entirely based on social relationship, a possible result is that
some servers hold many very popular videos but some hold
many very unpopular ones, even if the load-balance in terms
of the video number is considered. By the evidence of our
measurement study on a large collection of YouTube video
data, we demonstrate the existence of this phenomenon,
which would cause great problem in cloud computing, from
the perspective of network engineering. Specifically in the
client/server architecture scenario, some cloud servers with
many popular videos would be accessed much more fre-

1http://www.youtube.com
2http://www.facebook.com
3http://twitter.com

51

quently than the other servers with many unpopular videos,
and this behavior would decrease the utilization of cloud
computing [1]. Even worse, one cloud server may not han-
dle the computation and transmission of the intensive data,
while workloads of others are extremely low. The unbal-
anced partition would also lead to network traffic problems,
thus further degrading the quality of service.

On the other hand, partitioning the social media is not
simply isolating the popular videos and evenly distributing
the others. Taking YouTube as an example, we analyze the
role of social relationship in the application, and argue that
the social relationship should be dynamically preserved.

In this paper, we formulate the problem as a constrained
k-medoids clustering problem, and present a dissimilar-
ity/similarity metric to facilitate the preservation of the so-
cial relationship. We propose a novel Weighted Partition-
ing Around Medoids (wPAM) algorithm to partition the so-
cial networked video repository, focusing on load-balance in
terms of access. We evaluate our solution on YouTube data,
comparing with state-of-the-art algorithms. The prelimi-
nary results show that wPAM achieves extremely low devia-
tion of load in terms of the popularity, and flexibly preserves
the social relationship under different requirements.

2. RELATE WORK
Web 2.0 UGC applications are emerging in the recent

years, and there have been numerous related measurement
studies, particularly on understanding YouTube for video
sharing [16][5][16], Facebook, MySpace and LinkedIn for on-
line social networking [12][3], Twitter for micro-blogging [9],
and etc. Most of them focus on the social structure, user
behaviors, and network usage.

There are some works trying to detect the communities
and partition social networks. Newman et al. studied a set
of algorithms for discovering community structure [13]. The
algorithms iteratively remove edges, identified by “between-
ness”measure, from the network to split it into communities.
Mishra et al. introduced a new criterion that overcomes the
limitations that clusters typically do not overlap, by com-
bining internal density with external sparsity in a natural
way [11]. SNAP [2] is a tool for analyzing and partitioning
small-world network, and it introduces a series of algorithms
trying to maximize the modularity of the graph in a parallel
manner. SPAR [15] is a work similar to ours, as it considers
the cloud scenario. SPAR replicates linked nodes in the same
server, and tries to minimize the replications. But as men-
tioned, while the social relationship is an important factor
to the efficiency of the cloud computing, user access pattern
is overlooked in their work. Also, different from their work,
we focus on the migration to clouds, and thus the mainte-
nance such as adding and removing nodes and edges, adding
and removing cloud servers, is not our focus in this paper.

3. MOTIVATION
In this section, we argue that partitioning the social me-

dia entirely based on social relationship is not enough, as
user access pattern should be taken into account. By exam-
ining YouTube video data, we show the correlation between
the social relationship and the user access pattern. We also
discuss the role of social relationship in social media appli-
cations, and conclude that a dynamic preservation of social
relationship is preferred.

3.1 Understanding User Access Pattern
User access pattern is yet to be considered while parti-

tioning the social media. We show strong evidence that
partitioning entirely based on social relationship would lead
to unbalanced partitions in terms of popularity.

We have crawled YouTube videos and obtained a dataset
containing over 40, 000 videos. The methodology of the data
collection can be referred to our previous work [5]. We fo-
cus on the information of video ID, popularity (the num-
ber of views), and IDs of the related videos in the dataset.
YouTube video graph is a directed graph, and the dataset
only records the top-twenty outgoing related video IDs for
each video, yet the incoming videos can be easily found
within the dataset, and the number might be much greater
than 20. We are particularly interested in the number of
views and incoming links.

Figure 1 shows the scatter plot of the video’s popularity
against the number of incoming links. There is a clear trend
that videos with more incoming links have greater number of
views. This is because videos with more incoming links have
more chances to be accessed through related videos. Yet
videos with few incoming links might also be very popular,
because our measurement dataset is not the entire YouTube
video repository. Nevertheless, videos with many incoming
links are mostly popular.

We further study the correlation between the video’s pop-
ularity and the neighbors’ popularity. We calculate the mean
of neighbors’ views, and plot in Figure 2, which clearly shows
the positive correlation. Figure 3 further shows the CDF of
the ratio of neighbors’ popularity and its own popularity.
Most of the videos have the comparable number of views as
their neighbors’ (ratio between 0.1 and 10). This character-
istic indicates that if a video is popular, its neighbors are
probably also popular, and vice versa.

In summary, a popular video’s social neighbors are prob-
ably also popular, and they are likely to be clustered based
on social relationship only.

3.2 Social Relationship Is Not Enough
From the measurement above we know that partitioning

the social media entirely based on social relationship would
lead to unbalanced partitions, i.e., some cloud servers have
many very popular videos, but others have many very un-
popular videos. This behavior would cause great problems
in the content clouds as we discussed.

Figure 4 gives a simple example: 8 nodes, each with a
weight in terms of popularity as shown, constitute a social
graph, which is divided into two parts. As a result, the
number of inter-connections is 2 on the left graph, but the
standard deviation of the total weight in each part is as great
as 348; while on the right graph that we take popularity into
account, although the number of inter-connections is 4, the
standard deviation is as small as 23.

3.3 Beyond Social Relationship
It is intuitive to preserve the social relationship when par-

titioning the social graph, but we raise our question: is social
relationship that important? Towards answering this ques-
tion, we analyze the role that social relationship plays in
social media applications.

We take the representative YouTube as an example,
and discuss videos’ social relationship in particular. Each
YouTube video has a list of related videos, which constitute

52

10
0

10
1

10
2

10
3

10
0

10
2

10
4

10
6

10
8

Number of Incoming Links

N
um

be
r

of
 V

ie
w

s

Figure 1: Popularity against in-
coming links

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

Number of Views

M
ea

n
of

 In
co

m
in

g
N

ei
gh

bo
rs

’ V
ie

w
s

Figure 2: Mean of neighbor view
against number of views

10
−4

10
−2

10
0

10
2

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean of Neighbors’ Views / Number of Views

C
D

F

Figure 3: CDF of mean of neigh-
bors’ views over number of views

200

100 50

6

25 12

400 3 200

100 50

6

25 12

400 3

(a) (b)

Figure 4: Example of different partitions based on
(a) social relationship only, (b) both social relation-
ship and popularity

a social graph. Two videos that have similar titles, tags, de-
scriptions are likely to be linked to each other. The related
videos can also be considered as the recommendation from
the YouTube system [16]. As studied, one related video is
possible to be requested after the user finishes the current
video [5][16]. If two related videos are held by the same
cloud server, the system can quickly locate the second one
to achieve a smooth transition; if the two videos are held by
two different cloud servers, this process would take longer,
and thus delay would occur. Therefore from this perspec-
tive, preserving social relationship is beneficial.

However, the social relationship among videos is not so im-
portant that preserving it should be the top priority. As the
measurement study shows, about 30% of the overall views
are referred from the related recommendation, which is the
most important view source [16]. This characteristic indi-
cates that the system’s recommendation has a great influ-
ence on user’s viewing behavior, and thus the system can
easily adapt to the situation where related videos are in dif-
ferent cloud servers, e.g., by lowering the rank of the recom-
mendation of the videos that are in different cloud servers.
In fact, Zhou et al. suggested utilizing YouTube recom-
mendation to help increase the diversity of video views in
aggregation, which encourages users to discover more videos
of their interest rather than the popular videos only [16].

Furthermore, a pre-fetching mechanism, where the next
video is predicted and being fetched while the user is watch-
ing the first video, has been proposed to reduce the startup
delay for social media sharing [4]. Considering a system uti-
lizes such a mechanism, sending the two videos at the same
time from the two respective cloud servers works better, be-
cause it takes advantage of the cloud computing and better
utilizes the network resource. Thus from this perspective,

breaking the social relationship is beneficial, which seems
counter-intuitive but is the case under this circumstance.

In summary, the importance of preserving social relation-
ship is not so significant, and thus it should not be the top
priority. Some systems can easily adapt to the situation
where related videos are held by different cloud servers, and
if the systems utilize a pre-fetching mechanism, it is even
better to break the social relationship.

4. PROBLEM STATEMENT
In this section, we first formulate the problem statement,

and then introduce a new distance metric used in the prob-
lem. We also discuss the details about weight constraint.

4.1 Formulation
Consider a social graph with N nodes n1, n2, . . . , nN , each

node ni has a weight wi.
We try to partition the nodes into k clusters (cloud

servers), C1, C2, . . . , Ck. Each cluster Cj has a weight Wj ,
which is the summation of all the weights of the nodes in
cluster Cj , Wj =

∑
ni∈Cj

wi.

We suppose there is a representative node oj in each clus-
ter Cj . We denote d(ns, nt) as a distance metric between
the two node ns and nt. The problem is to find a partition
which minimizes

E =
k∑

j=1

∑

ni∈Cj

d(ni, oj)

subject to

|Wj1 −Wj2 | < Δ

for j1, j2 = 1, 2, . . . , k, where Δ is a weight difference con-
straint.

The problem can be considered as a k-medoids clustering
problem with constraint. k-medoids problem is related to k-
means problem, except that k-means calculates the mean in
each cluster as the center yet k-medoids selects a represen-
tative node in each cluster as the center. k-medoids method
is more robust than k-means in the presence of noise and
outliers, because a medoid is less influenced by outliers or
other extreme values than a mean [6].

4.2 Node Distance – Dissimilarity/Similarity
In the previous studies, several metrics for measuring

social networks are used, such as betweenness [13], con-

53

ductance [11], modularity [2], and number of replicas [15].
Since k-medoids problems generally use Euclidean distance
as the metric, we initially considered using integral number
of shortest path length between nodes as the metric. After
further consideration, we found that the range of the inte-
gral path length is however too small. Studies have shown
that the shortest path length for YouTube dataset is about
8 [5], and that individuals are separated by six degrees of so-
cial contact, known as “six degree of separation” [10]. Fur-
thermore, to compute the path length between two nodes
requires the whole knowledge of the social graph, which is
very costly.

We thus introduce a new metric, dissimilarity/similarity.
It provides a much larger range of calculation than integral
number of path length, and computing it only requires the
knowledge of the adjacent nodes, which is much more effi-
cient than requiring the information of the whole graph.

We define the similarity metric as follows: consider two
nodes ns and nt, each has a set of adjacent nodes As and
At. Let A∗

s = As ∪ ns and A∗
t = At ∪ nt. The similarity is

calculated as

sim(ns, nt) =
|A∗

s

⋂
A∗

t |
|A∗

s

⋃
A∗

t |
.

Different from Jaccard similarity coefficient [7], we include
the node itself in the adjacent node set, because we take the
relationship between the two target nodes into account as
well. Take Figure 5 as an example, both ns and nt have
four adjacent nodes, yet they are not adjacent on the left
while they are on the right. If we do not include the node
itself in the adjacent node set, i.e., the similarity is calcu-

lated by Jaccard similarity coefficient as |As
⋂

At|
|As

⋃
At| , the results

are 1 and 0.6, respectively, but the right graph is closer to
our concept of “similar”. By our definition of similarity, the
results are 0.67 and 1, respectively.

ns nt ns nt

(a) (b)

Figure 5: Similarity calculation

To cluster the similar nodes, we require the smaller dis-
tance indicating closer nodes, and thus we use dissimilarity
as the metric, which is defined as

dissim(ns, nt) = 1− sim(ns, nt).

Therefore, the dissimilarity/similarity metric has the
unique advantage: we can either use dissimilarity as the
metric to preserve the social relationship, or use similarity
as the metric to break the social relationship, i.e., to cluster
the dissimilar nodes.

4.3 Weight Constraint
In this application, the weight of a node is the number

of views of the video, which reflects the possibility of being
accessed by the users.

We do not utilize standard deviation for the constraint,
because the mathematical formula of the standard deviation
would make the problem difficult if not entirely infeasible
to solve (we will calculate the standard deviation for the
evaluation results). Since it is nearly impossible to decrease
the standard deviation to zero, i.e., all the clusters have the
same weight, it is much better to use a threshold. In our
problem statement, the difference between the total weight
of any two clusters should be less than Δ.

Clearly, the smaller the threshold is, the tighter the con-
straint is, and the less the social relationship will be pre-
served. Thus there exists a trade-off between social relation-
ship preservation and load-balancing, and we will examine
it in the evaluation by testing different value of Δ.

5. SOLUTION
To solve the problem, we propose a wPAM algorithm in

this section, and explain the modifications from the original
PAM algorithm. We also discuss methods to improve its
efficiency and scalability.

5.1 wPAM
Both k-medoids and k-means clustering problems have al-

ready been proven to be NP-hard, and a variety of heuristic
algorithms have been proposed. PAM (Partitioning Around
Medoids) was one of the first k-medoids algorithms intro-
duced [8]. We develop a Weighted PAM algorithm (wPAM)
based on PAM, and Algorithm 1 shows the pseudo-code.

Algorithm 1 wPAM

Input:
N nodes n1, n2, . . . , nN with weight w1, w2, . . . , wN ,
cluster number k,
weight constraint threshold δ.
Output:
a set of k clusters satisfying the weight difference constraint:
|Wj1 −Wj2 | < k · δ.
Method:
(1) arbitrarily choose k nodes as the initial representative
nodes (medoids);
(2) repeat
(3) assign each remaining node with weight w, to the first
nearest cluster with weight Wj , if satisfying Wj+w < W+δ,
where W is the average weight of all the clusters;
(4) randomly select a non-representative node, n′;
(5) compute the total cost, S = E′ − E, of swapping
representative node, oj , with n′;
(6) if S < 0 then swap oj with n′ to form the new set of
k representative nodes;
(7) until no change;

Step (3) is the only modification from the original PAM,
and there are two major differences. First, in PAM, the dis-
tance is between the target node and the representative node
in the cluster. We found that there is a great chance that
the target node has no mutual neighbors with any represen-
tative nodes, and thus using dissimilarity/similarity metric
would not get the nearest one. To address the problem, we
not only calculate the distance between the target node and
the representative node, but also the distance between the
target node and the set of nodes that are in the cluster.
Specifically, the target node is nt, and the set of nodes in

54

the cluster is As; we apply the distance calculation in Sec-
tion 4.2, and further calculate the mean of the two distances.

Second, in PAM, each node is just assigned to the near-
est cluster. Since we have weight constraint, when assign-
ing the node, we need to ensure that the resulted cluster’s
weight will not exceed the maximum. In the perfect case,
each cluster has a weight W ; considering all clusters but one
have weight W + δ, which is the maximum result from the
algorithm, the last cluster thus has weight W − (k − 1) · δ.
The difference between the last cluster and the others is
k · δ = Δ, which is the weight difference threshold in the
problem statement.

Step (5) is the same as the original algorithm, but we
explain it in detail here. This step calculates the difference
of E if a current representative node is replaced by a non-
representative node,

E′ −E =
∑

ni∈Cj

d(ni, n
′)−

∑

ni∈Cj

d(ni, oj).

If this total cost is negative, then nj is replaced or swapped
with n′ since the actual E would be reduced; if the total cost
is positive, the current representative node, nj , is considered
acceptable, and nothing is changed in the iteration. In our
experiment in Section 6, the number of iteration turns out
to be under 5 in most cases.

5.2 Improving Efficiency
The complexity of iteration in PAM is O(k(n−k)2), where

k is the number of clusters and n is the number of nodes.
Therefore, it does not scale well for large dataset.

A sampling-based method, CLARA (Clustering LARge
Applications), was introduced to deal with larger dataset
[8]. The idea is taking a small portion of the data into con-
sideration, choosing medoids from the sample using PAM.
If the sample is selected fairly random, it should closely rep-
resent the original dataset, and the medoids chosen would
likely be similar to those that would have been chosen from
the whole dataset. The complexity of each iteration becomes
O(ks2 + k(n− k)), where s is the size of the sample.

CLARANS (Clustering Large Applications based upon
RANdomized Search) was further proposed [14]. Unlike
CLARA, CLARANS draws a sample with some randomness
in each step of the search, and it has been experimentally
shown to be more effective than both PAM and CLARA.

Both CLARA and CLARANS are based on PAM, and
thus we can utilize either method based on our wPAM algo-
rithm to solve the problem without any further modification.
More details about CLARA and CLARANS can be referred
to [8] and [14], respectively.

6. EVALUATION
We implement wPAM algorithm to evaluate its perfor-

mance. For weight difference constraint, we test Δ being
0.1 ·∑W , 0.01 ·∑W and 0.001 ·∑W , and the number of
clusters (cloud servers) k being 4, 8, 16, 32, 64 and 128.

To compare, we also implement pLA algorithm in SPAN
[2] and SPAR algorithm [15], as well as a random algorithm
that assigns each video to a random cluster without consid-
ering social relationship. Briefly, pLA algorithm is a greedy
aggregation algorithm to merge the nodes/clusters that in-
creases the overall modularity score, and SPAR algorithm
assigns each node to a cluster that needs to generate the

fewest replicas. More details about the two algorithms can
be referred to the papers [2][15]. Because all the algorithms
are randomized, we run each algorithm five times and cal-
culate the average results and their standard deviations.

Our top priority is load-balance, and hence we first look at
the result of the standard deviation of each cluster’s weight.
The cluster’s weight is the summation of all the videos’
weight (popularity) in the cluster, and reflects the possibility
of being accessed. The results against the number of clusters
are shown in Figure 6. We normalize the result by dividing
the total weight of all the videos in the dataset. Note that
both axes are in logarithmic scale. pLA algorithm performs
worst, because it tends to detect the popular community,
and moreover, pLA does not consider load-balance in terms
of the video number in each cluster, and thus the weight
deviation is extremely high when the number of clusters is
small. Random algorithm performs well, because videos are
randomly assigned and thus load-balance is partly achieved.
SPAR algorithm performs worse than random algorithm.
The reason is the same as that of pLA, yet SPAR strictly
balances the number of videos in each cluster, and thus it
performs better than pLA. When the weight difference con-
straint is loose and the number of clusters is small, wPAM
algorithm performs similar to SPAR, and becomes better
when the number of clusters increases. When the constraint
is tight, wPAM outperforms all the compared algorithms, as
the green and blue solid lines shown in the figure, thanks to
the strict constraint when clustering (step 3) in Algorithm 1.

Supposing the system requires to preserve the social re-
lationship as much as possible, we run wPAM using dis-
similarity metric. To test how well the social relationship is
preserved in the resulted partition, we generate 10 test cases,
each contains 10, 000 YouTube video viewing transactions,
which are used in work [4]. If two consecutive videos are
held by two different cloud servers, we define it as one tran-
sition, and thus the less the number of transitions is, the
better the social relationship is preserved. Because SPAR
replicates all the linked nodes (called slave node) of a mas-
ter node, the next video of a master video is always in the
same server. Therefore, only if the next video of a slave
video is in a different server, the number of transitions in-
creases. We calculate the percentage of the transitions by
dividing the total number 10, 000.

Figure 7 shows the results. Not surprisingly, random al-
gorithm performs worst, because it does not take social re-
lationship into account at all. On the other hand, SPAR
performs best, since replicas are always in the same cloud
server. Our wPAM performs similar to pLA, and with looser
weight difference constraint, it performs better as expected,
but the difference is not big. Although SPAR outperforms
wPAM in terms of preserving social relationship, it requires
much more space to store the replicas, about 4 to 12 times
more than wPAM for different values of k. Nevertheless,
wPAM achieves a rather good performance, even though
our priority is load balance.

One advantage of wPAM is that we can break the social
relationship to cluster the dissimilar videos, using similar-
ity as the metric, which other algorithms are not capable to
do. Figure 8 shows the result using the same test cases as
above, and we compare it with the same random algorithm.
As a result, when the number of clusters increases, wPAM
outperforms random algorithm, and nearly achieves 100%
transitions, i.e., the next video is always in a different server.

55

4 8 16 32 64 128

10
−4

10
−3

10
−2

10
−1

10
0

k

N
or

m
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

wPAM (Δ = 0.001⋅Σ w)
wPAM (Δ = 0.01⋅Σ w)
wPAM (Δ = 0.1⋅Σ w)
Random
pLA
SPAR

Figure 6: Comparison of normal-
ized weight deviation

4 8 16 32 64 128
0

0.2

0.4

0.6

0.8

1

k

P
er

ce
nt

ag
e

of
 T

ra
ns

iti
on

s

wPAM (Δ = 0.001⋅Σ w)
wPAM (Δ = 0.01⋅Σ w)
wPAM (Δ = 0.1⋅Σ w)
Random
pLA
SPAR

Figure 7: Comparison of percent-
age of transitions (preserving social
relationship)

4 8 16 32 64 128
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

k

P
er

ce
nt

ag
e

of
 T

ra
ns

iti
on

s

wPAM (Δ = 0.001⋅Σ w)
wPAM (Δ = 0.01⋅Σ w)
wPAM (Δ = 0.1⋅Σ w)
Random

Figure 8: Comparison of percent-
age of transitions (breaking social
relationship)

Looser weight difference constraints do not significantly im-
prove the result. Therefore, considering the performance
in terms of load-balance, we suggest using tight constraint
when the system requires to break the social relationship.

7. CONCLUSION AND FUTURE WORK
In this paper, we took user access pattern into account in

the problem of partitioning social contents, especially social
media, in the cloud scenario. By examining YouTube video
data, we have demonstrated that partitioning social media
content entirely based on social relationship leads to unbal-
anced access, which would cause great problems to cloud
computing. We concluded that a dynamic preservation of
social relationship is preferred, by analyzing the role of so-
cial relationship in the social media applications. We have
formulated the problem as a constrained k-medoids cluster-
ing problem, and proposed wPAM algorithm, which signifi-
cantly decreases the deviation of access in each cluster, and
flexibly preserves the social relationship.

Although preliminary results show positive performance
of wPAM, we are doing more experiments to validate, in
particular with larger datasets. We are also trying to find
a more efficient solution to solve the problem. In addition,
we are doing the same research on other types of social net-
worked applications, such as Twitter and Facebook. In this
paper, we only considered the client/server (C/S) architec-
ture, yet peer-to-peer (P2P) architecture worths investigat-
ing as well. The difference between the two scenarios is
that, from the server perspective, unpopular videos would
be more likely to be requested in P2P, as opposite to C/S,
because popular videos are more likely to be shared among
peers. P2P scenario is more complicated, as the key issue
is how to assign weight to each video to apply the wPAM
algorithm.

8. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing.
Technical report, University of California at Berkeley,
2009.

[2] D. A. Bader and K. Madduri. SNAP, Small-world
Network Analysis and Partitioning: An open-source
parallel graph framework for the exploration of
large-scale networks. In Proc. of IPDPS, 2008.

[3] F. Benevenuto, T. Rodrigues, M. Cha, and
V. Almeida. Characterizing user behavior in online
social networks. In Proc. of IMC, 2009.

[4] X. Cheng and J. Liu. NetTube: Exploring Social
Networks for Peer-to-Peer Short Video Sharing. In
Proc. of INFOCOM, 2009.

[5] X. Cheng, J. Liu, and C. Dale. Understanding the
Characteristics of Internet Short Video Sharing: A
YouTube-based Measurement Study. IEEE
Transactions on Multimedia, 2011.

[6] J. Han and M. Kamber. Data Mining Concepts and
Techniques (2nd Edition). Morgan Kaufmann, 2006.

[7] Jaccard Index.
http://en.wikipedia.org/wiki/Jaccard index.

[8] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley,
1990.

[9] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a Social Network or a News Media? In Proc.
of WWW, 2010.

[10] S. Milgram. The Small World Problem. Psychology
Today, 2(1):60–67, 1967.

[11] N. Mishra, R. Schreiber, I. Stanton, and R. Tarjan.
Clustering Social Networks. In Algorithms and Models
for the Web-Graph, volume 4863 of Lecture Notes in
Computer Science, pages 56–67. Springer Berlin /
Heidelber, 2007.

[12] A. Nazir, S. Raza, and C.-N. Chuah. Unveiling
Facebook: A Measurement Study of Social Network
Based Applications. In Proc. of IMC, 2008.

[13] M. E. J. Newman and M. Girvan. Finding and
Evaluating Community Structure in Networks.
Physical Review E, 69(2):026113, 2004.

[14] R. T. Ng and J. Han. Efficient and Effective
Clustering Methods for Spatial Data Mining. In Proc.
of VLDB, 1994.

[15] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang,
N. Laoutaris, P. Chhabra, and P. Rodriguez. The
Little Engine(s) That Could: Scaling Online Social
Networks. In Proc. of SIGCOMM, 2010.

[16] R. Zhou, S. Khemmarat, and L. Gao. The Impact of
YouTube Recommendation System on Video Views. In
Proc. of IMC, 2010.

56

