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Abstract—Recent years have witnessed a new content de-
livery paradigm named crowdsourced CDN, in which devices
deployed at edge network can prefetch contents and provide
content delivery service. Crowdsourced CDN offers high-quality
experience to end-users by reducing their content access latency
and alleviates the load of network backbone by making use of
network and storage resources at millions of edge devices. In
such paradigm, redirecting content requests to proper devices is
critical for user experience. The uniqueness of request redirection
in such crowdsourced CDN lies that: on one hand, the bandwidth
capacity of the crowdsourced CDN devices is limit, hence devices
located at a crowded place can be easily overwhelmed when
serving nearby user requests; on the other hand, contents
requested in one device can be significantly different from another
one, making request redirection strategies used in conventional
CDNs which only aim to balance request loads ineffective. In this
paper, we explore request redirection strategies that take both
workload balance of devices and content requested by users into
consideration. Our contributions are as follows. First, we conduct
measurement studies, coving 1.8M users watching 0.4M videos, to
understand request patterns in crowdsourced CDN. We observe
that the loads of nearby devices can be very different and the
contents requested at nearby devices can also be significantly
different. These observations lead to our design for request
balancing at nearby devices. Second, we formulate the request
redirection problem by taking both the content access latency
and the content replication cost into consideration, and propose
a request balancing and content aggregation solution. Finally,
we evaluate the performance of our design using trace-driven
simulations, and observe our scheme outperforms the traditional
strategy in terms of many metrics, e.g., we observe a content
access latency reduction by 50% over traditional mechanisms
such as the Nearest/Random request routing scheme.

I. INTRODUCTION

Video content traffic has shown tremendous growth over
the past several years, and it has already become the largest
Internet traffic category [1], [2]. To improve the content access
quality experienced by users as well as alleviate the content
delivery load for both CDN servers and backbone network,
recently, Content Delivery Networks (CDNs) have been mak-
ing use of the network and storage resources of devices in the
edge network (even at people’s homes) to assist their video
service [3], [4], [5], [6], [7]. As such edge network based con-
tent delivery platform acts as a crowdsourcing system which
offloads content distribution tasks to massive edge devices,
we name it after crowdsourced CDN and refer to the edge

devices as content hotspots (or hotspots). In crowdsourced
CDN, CDN servers keep pushing content to edge hotspots;
while edge hotspots are encouraged to contribute their storage
to cache content and upload bandwidth to distribute content to
end users. For example, Youku, one of the most popular online
video providers in China, has deployed over 300K smart Wi-
Fi Access Points (APs) as the content hotspots to cache and
distribute videos [8]. Due to the short distance between content
hotspots and user requests, the transmission of videos which
are prefetched to hotspots can be done very efficiently, i.e.,
reducing the content access latency experienced by end users.

In the crowdsourced CDN, redirecting content requests to
proper hotspots is critical for user’ experience. The uniqueness
of request redirection in such crowdsourced CDN lies that: on
one hand, the bandwidth capacity of the edge content hotspots
is tightly limited (apparently smaller than CDN servers). When
hotspots serve nearby users, their workloads are directly in-
fluenced by the neighbouring user density distribution. Hence
the workload of each individual hotspot will be highly volatile
and many hotspots can be easily overwhelmed while others
are under-utilized; on the other hand, contents requested in
the hotspots can be significantly different from each other due
to the influence of small population [9] (i.e., the popularity
of contents requested at each hotspot is influenced by a
small number of local requests), making request redirection
strategies used in conventional CDNs only aiming to balance
request loads ineffective. Meanwhile, the scalability is another
important problem because request redirection strategies have
to be efficiently enforced to massive individual hotspots.

Previous studies on request redirection can be divided into
two categories. (i) Load balance based solutions [10], [11]:
which assume the content is replicated on all CDN sites.
They redirect requests to different CDN sites based on latency,
server load, and the traffic cost. The limitation of such solu-
tions for crowdsourced CDN is that the content popularity in
crowdsourced CDN is significantly affected by local users [9],
making the request redirection inefficient without considering
the content placement. (ii) Content-based solutions [12], [3],
[6], which jointly consider the user redirection and content
placement problem based on content locality, bandwidth costs,
and storage capacity. But they assume the CDN servers have



enough capacity to serve the requests. This assumption is un-
realistic for the edge hotspots in crowdsourced CDN, making
the load balance be a fatal factor for request redirection.

In this paper, we propose a request redirection strategy that
takes both hotspots’ load balance and content requested by
users into consideration. Our contributions are as follows.

� First, we carry out large-scale measurement studies
on mobile video request patterns and today’s deployment
of crowdsourced CDN infrastructure. We use the follow-
ing datasets: a video session dataset containing 1.8M users
watching 0.4M videos in 59M sessions, provided by a major
video provider in China; and a Wi-Fi Access Points (APs)
dataset containing the deployment information of 1M APs
which can be used as content hotspots in crowdsourced CDN.
In our trace-driven experiments, we select the Wi-Fi APs
as the content hotspots and redirect requests to hotspots
based on their geo-location. Our measurement insights are
as follows: (1) Workloads of nearby hotspots can be very
diverse, making cross-hotspot collaboration for the request
balancing promising; (2) Contents requested at nearby hotspots
can be significantly different, making content an important
factor in request redirection. Our comprehensive measurement
studies not only identify the request balancing problem in
crowdsourced CDN, but also provide the invaluable guidelines
for our solution design.

� Second, based on our measurement insights, we formulate
the request redirection and content replication problem in
crowdsourced video CDN. We propose a Request-Balancing
and Content-Aggregation (RBCAer) algorithm, a novel request
redirection solution that not only achieves load balance across
content hotspots but also minimizes content replication costs
for the content provider. Firstly we transform the request
balancing as a minimum-cost-maximum-flow (MCMF) net-
work problem; Then we incorporate content aggregation into
the framework, in which we guide the workload redirection
between hotspots with high content similarity, to alleviate the
content replication costs incurred by the load balance.

� Third, we design trace-driven experiments to verify the
effectiveness and efficiency of our solution. Through extensive
trace-driven evaluation, we show that our design outperforms
conventional request redirection solutions including nearest
routing scheme and random routing scheme, e.g., compared
to Nearest/Random scheme, RBCAer can improve the hotspot
serving ratio, reduce the content access latency by 42% and
reduce the CDN server load by 20%.

The rest of the paper is organized as follows. Sec II conducts
measurement to motivate our design. Sec III introduces the
system model and problem definition. Sec IV gives a detailed
description of our algorithm, and Sec V presents the simulation
results. Sec VI reviews related works. A conclusion is drawn
in Sec VII.

II. MEASUREMENT AND MOTIVATION
We illustrate the proposed system architecture in Fig. 1.

There is a scheduling server which learns the global system
information and makes the user redirection and content repli-
cation decision.

CDN server Scheduling server

Fig. 1: The architecture of
crowdsourced CDN.

median workload: 504 

99th percentile workload: 4583 

Fig. 2: Workload distribu-
tion of content hotspots.

Firstly, we use a measurement study to motivate our work.
In this section, we 1) quantify the high skewness of the hotspot
load distribution in crowdsourced CDN; 2) demonstrate the
collaborative potential among content hotspots from the per-
spective of load diversity and content similarity. We then
highlight the importance of considering the cost constraint
when optimizing the user routing in crowdsourced CDN for
VoD streaming.

Firstly, we introduce two datasets used for our crowdsourced
CDN measurement:
� Video session traces collected by iQiyi1, one of the

most popular online video providers in China. The traces were
collected in 2 weeks of May 2015, in Beijing, containing 1.8M
users watching 0.4M videos in 59M sessions. Each trace item
records four fields, including the global unique user identifier,
the video session timestamp, the requested video title, and the
location where the user watches the video (reported by the
video player based on built-in GPS function);
� Wi-Fi traces provided by a famous Internet company in

China. The dataset contains the location for over 1M Wi-Fi
APs in Beijing, which occupies a large fraction of Wi-Fi APs
that are actually deployed in Beijing.

Note that the network hop distance2 may be more suitable
for us to evaluate latency for user routing. However, due to the
difficulty of collecting such statistics, we assume that network
latency between two devices in the network is proportional to
their geo-distance [13].

To conduct the following measurement, we need to sample
some Wi-Fi APs as the content hotspots for crowdsourced
CDN. There are 300K content hotspots in the latest news of
Youku, and the population in Beijing accounts for 1.5% of the
population in China3, so we randomly sample 300K·1.5% =
5K hotspots from the Wi-Fi AP datasets of Beijing for our
measurement (unless otherwise specified).

A. Two Strategies to Reveal the System Design Tradeoff

Quantifying the load difference in the Nearest Routing
strategy. In the crowdsourced CDN, each content hotspot
naturally has the incentive to serve the video requests nearby
to minimize the network access latency, and this is a typical

1iQiyi website: http://www.iqiyi.com/
2Network hop definition: https://en.wikipedia.org/wiki/Hop_(networking)
3Beijing population: http://www.bjstats.gov.cn/zt/rkjd/sdjd/201603/

t20160322_340767.html



solution for the crowdsourced CDN. We map each request to
its nearest hotspot through the geo-location information in the
datasets. The line with legend “Nearest” in Fig. 2 shows the
workload distribution of hotspots using the video request trace
of 1 day (other days are similar). Specifically, we observe that
the 99th-percentile workload can be up to 9× of the median,
and this high skewness is caused by the density of mobile
users’ geo-distribution.

Due to the significant load difference among hotspots, some
hotspots may be overloaded while others may be under-
utilized. It results in the inefficiency for crowdsourced CDN.
Since the overloaded hotspots which violate the capacity
constraints impair the system effectiveness, we need a request
balancing solution among hotspots that can address the load
variance in crowdsourced CDN.

Quantifying the highly content replication cost for the
Random Routing Strategy Since the skewed workload in
the Nearest Routing Strategy leads to a significant reject
ratio, a straightforward way to balance the load of hotspots is
randomly redirecting a request to any of the hotspots within a
certain of distance threshold, i.e., Random Routing Strategy.
To identify the effectiveness of the random scheme, we set
the 1km and 5km as the Random Routing threshold. The
measurement results show that permitting users to leverage
distant hotspots, i.e., at the cost of higher latency, is indeed
an effective approach that can reduce the workload variance
and increase the hotspot serving ratio observed from Fig. 2.

To explore the content replication cost, we assume every
requested content should be replicated to the hotspots. By
calculating the sum number of requested contents in each
content hotspot, we observe the content replication cost for the
Random Routing Strategy with threshold 1km (resp. 5km) is
10% (resp. 23%) more than the content replication cost in the
Nearest Routing Strategy. It indicates content hotspot caches
additional contents to serve users distant from it. However,
it is unreasonable that hotspots pre-fetch contents as much
as possible for serving more requests in crowdsourced CDN,
because a large amount of content replication cost increases
the CDN server load and the cache size of hotspots is finite
compared to CDN server (even if it is not limited in our
measurement).

In summary, although we can route users to a different
hotspot and make hotspots cooperate with each other to
improve the hotspot serving ratio, the concrete scheme for
user redirection should be well designed to avoid inefficient
replication.

B. Cooperation Potential and Design Insights

We examine two design spaces in the hotspot coordination,
including workload correlation and content similarity correla-
tion between pairs of hotspots.

Workload correlation among hotspots. We calculate the
workload correlation (under the Nearest Routing Strategy)
over timeslots (1h) during 1 day between hotspots. Fig. 3(a)
shows the CDF of Spearman correlation between any two
hotspots with distance lower than 5km. There are 70% pairs

of hotspots having the correlation under the 0.4, indicating a
low-level dependency between pairs of nearby hotspots. Hence
hotspots could cooperate with each other spanning the time
of day for load balancing, e.g, peak video delivery demand in
residential districts may be at night while another place like a
company may be have low demand at the night.

Workload correlation between hotspots
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Fig. 3: Cooperation potential among content hotspots.

Cache Cooperation among Hotspots. We calculate the
content correlation between hotspots under the Nearest Rout-
ing Strategy. To identify the content similarity with a different
number of hotspots in the system, we randomly sample 50%,
15% and 3% of the original 5K hotspots as 3 new content
hotspot sets. For each content hotspot set, we calculate the
Jaccard similarity coefficient of the two sets of Top-20%4

contents for any pair of hotspots using Eq. 1, i.e., the size
of the intersection divided by the size of the union on two
content sets Vi and Vj .

Jaccard(Vi,Vj) =
∥Vi ∩ Vj∥
∥Vi ∪ Vj∥

. (1)

As shown in Fig. 3(b), we plot the CDFs of the Jaccard
similarity coefficient between any two hotspots whose distance
between them is lower than 5km. Considering a hotspot
covers a smaller region in case of more sampled hotspots, we
observe the popular contents are less similar between smaller
regions. We make the line labelled “Original” demonstrate the
content similarity between hotspots which cover small regions
in the crowdsourced CDN, and the line labelled “Sample
ratio=3%” demonstrate the content similarity between servers
which cover a large region in the traditional CDN. We observe
the content similarity between two nearby hotspots can be
very diverse ranging from 0.1 to 0.8 in the crowdsourced
CDN, which is different from the CDN servers. Therefore, the
traditional request redirection strategy which only considers
the server load and ignores the content distribution is not
suitable for the crowdsourced CDN, hence we should carefully
design the request redirection scheme by making use of the
content similarity between hotspots in crowdsourced CDN.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and define the
request redirection problem considering both of the content
access latency and content placement cost.

4We choose Top-20% videos due to the video popularity follows the 80/20
rule of the Pareto principle: https://en.wikipedia.org/wiki/Pareto_principle



In our system, we make the following assumptions for the
formulation convenience:

� The connection betweens video requests and content
hotspots do not change during the video session, and one
request is only served by one hotspot or original CDN server.

� As the number of user requests is too massive (compared
with the number of content hotspots) for us to make redirection
decision individually, they are aggregated to their nearest
hotspots and we redirect these incoming requests among
hotspots to achieve the load balance.

� We assume that all of the videos reside permanently at
the CDN server. Besides, each video has an identical size 1
and each user request has unit demands 1 (if not, the original
video can be divided into fixed-size segments).

� The popularity distribution of the files changes slowly
[14], and it can be learned through some popularity prediction
algorithm (like the regression model ARIMA [15]). After
the content placement is determined, the hotspots prefetching
contents to their caches for the video requests.

A. System Model

In reality, a crowdsourced CDN provider owns M content
hotspots H = {1, 2, ...,M} at fixed locations in the network.
The content hotspots are co-located at Wi-Fi APs and all
of them are connected with each other via the backhaul
network. We denote the service (resp. storage) capacity for
each hotspots h as sh (resp. ch) in terms of the number of
requests can be handled by it in one timeslot (resp. the number
of contents it can cache). These content hotspots operate
in conjunction with the original CDN server and cache the
popular videos based on the incoming requests, chosen from
a set of O videos V = {1, 2, ..., O}. For ease of presentation,
the size of each video in V is one unit. This is rational because
videos can be split into equal-sized chunks.

In each timeslot t, we assume that a set of N user requests
R = {1, 2, ..., N} can be served by any of the M content
hotspots. And we denote the map function between the user
request r and the video requested v as W (r) = v, v ∈ V .
Users will firstly issue the content request to the scheduling
server. If the requested video k which is presented in the
suitable content hotspots, then the request is scheduled to be
served immediately. However, if content v is not presented in
the suitable hotspots, the scheduling server then forwards the
request to the original CDN peering server. Let drh denote
the latency incurred by redirecting request r to hotspot h and
CDN server, respectively.

Intuitively there are two binary decision variables in the
system:

• The redirection between user requests and hotspots is
denoted as a binary N × M matrix X , and variable
xij indicates whether the user request i is redirected to
hotspot j xij = 1 or not xij = 0. If no hotspot is available
to serve request i, it would be redirected to the original
CDN server S, i.e, xiS = 1.

• The assignment between contents and hotspots is denoted
as a binary O ×M matrix Y , and variable ykj indicates

whether the video vk is assigned to hotspot j ykj = 1
or not ykj = 0. And we assume the original CDN server
caches all of the videos.

B. Problem Definition

We consider a user redirection problem with the considera-
tion of minimizing the content access latency and the content
replication cost:
� Accumulated content access latency. The most crucial

target of implementing the crowdsourced CDN is to shorten
the distances between content hotspots and user requesting,
and thereby make the use experience low content access
latency. This factor can be calculated as below:

Ω1 =
∑
i∈R

∑
j∈H∪{S}

xijdij . (2)

� Content replication cost. We note that there are a
substantial amount of prior works on user redirection and
content placement algorithms for edge content delivery, see
e.g. [3], [16], [4], [6] and references therein. To the best of our
knowledge, all these related works neglect the content repli-
cation cost. But in crowdsourced video CDN, an abundant of
content hotspots are scheduled to cache content, which incurs
influential pressure for the CDN server in the crowdsourced
CDN[7], [17]. Thus the content replication cost is a significant
factor as below:

Ω2 =
∑
j∈H

∑
k∈O

ykj . (3)

Then this joint request redirection and content replication
problem can be formulated as the following optimization
function (U):

min
X ,Y

αΩ1 + βΩ2, (U)

s.t. ∑
j∈H

xij + xiS = 1, (4)

xij ≤ yW (i)j , ∀i, j, (5)∑
i∈R

xij ≤ sj , (6)

∑
k∈V

ykj ≤ cj . (7)

Where α, β are weight factors to tune the objective function.
Eq. 4 ensures that each request must be served by a content
hotspot or original CDN server. Eq. 5 ensures that if a request
i is assigned to hotspot j, then i’s requested video W (i) must
be placed on the hotspot j. Eq. 6 and Eq. 7 are needed to
achieve the service capacity and storage capacity.

Clearly, the problem (U) is very hard to solve optimally.
[4] proves that the joint user redirection and content place-
ment problem (JUR-CP) which only minimizes the content
access latency is polynomial-time reducible to the NP-hard
problem—Unsplittable Hard-Capacitated Metric Facility Lo-
cation Problem (UHCMFL). And it is easy to see that solving
an instance of the problem (U) is equivalent to solving an



instance of the JUR-CP problem in [4]. Thus problem (U) is
also NP-hard. Hence we should design an efficient solution
for the crowdsourced video CDN.

C. Formulation Transformation

Recall that we aggregate each user request to its nearest
hotspot for the simplification, hence in each timeslot t, we
denote λh as the number requests aggregated to the hotspot
h ∈ H, and λhv as the number requests for video v that
are aggregated to h, and λh =

∑
v∈V λhv . Since we denote

CDN server as S, λS = 0. As the aggregated requests at
different hotspots can be significantly different, some hotspots
may be overloaded while others may be under-utilized. We
assume that all content hotspots are reachable from each other,
then a hotspot can redirect a fraction of its video request to
another hotspot. Denote fij and fiS as the number of requests
redirected from hotspot i to hotspot j (i ̸= j) and CDN server
S respectively. In terms of the flow characteristics in the flow
network, There are the following constraints on fij :

fij =

{
−fji, if i ̸= j

0, if i = j
∀i, j ∈ H ∪ {S} (8)

∑
i∈H∪{S}

∑
j∈H∪{S}

fij = 0, (9)

∑
j∈H∪{S}

max{fij , 0} ≤ λi, ∀i ∈ H ∪ {S}, (10)

λi−
∑

j∈H∪{S}

max{fij , 0}+
∑

j∈H∪{S}

max{fji, 0} ≤ si,∀i ∈ H.

(11)
Eq. 8 ensures that for any two hotspot i and j, the flow

of user request in terms from hotspots i to hotspots j is the
negative of the flow from hotspots j to hotspots i. As the
requests from any given hotspot i to itself is zero, we have
fii = 0. Eq. 9 ensures that all flow is conserved. Finally, Eq. 10
ensures that the sum of all outgoing request from hotspot i is
not greater than its incoming request λi, and Eq. 11 ensures
that the final request flows served by hotspot i is not greater
than its service capacity si.

Then we rewrite the Eq. 2 as follows:

θ =
∑

i∈H∪{S}

∑
j∈H∪{S}

dij ·max{fij , 0} (12)

Using this flow network based formulation, we present our
heuristic workload scheduling mechanism in the next section.

IV. REQUEST BALANCING AND CONTENT AGGREGATION
FOR CROWDSOURCED CDN

In practice, as the optimization is performed over massive
and widespread users and content hotspots, scalability is a
crucial issue. In this section, we present a polynomial time
algorithm, i.e., Request Balancing and Content Aggregation
algorithm (referred to as RBCAer), a novel workload schedul-
ing mechanism that leverages the workload, latency and
content distribution in different hotspots to wisely schedule

user requests. Firstly, we consider the request balancing as
a minimum-cost-maximum-flow (MCMF) network problem;
Secondly, we incorporate content aggregation into the frame-
work to decrease the content replication costs incurred by the
request balancing among hotspots.

A. Request Balancing Flow Network Model

Our workload scheduling mechanism makes decisions at the
beginning of each time slot (e.g., 1h). We start our algorithm
with a Load-Balance-aware MCMF model used in RBCAer.
To minimize the accumulated latency, firstly we consider
requests should be served by its nearest hotspots as much as
possible. Hence we redirect extra requests from overloaded
hotspots to under-utilized hotspots by considering the latency
as the cost in MCMF model. We denote the set of overloaded
hotspots as Hs = {i|i ∈ H, λi > si} and set of under-utilized
hotspots as Ht = {i|i ∈ H, λi < si}. We determine the
upper bound of the outgoing or incoming flows ϕi for each
hotspot i based on its service capacity si, i.e., ϕi = |si − λi|.
The total workload that can be offloaded from Hs to Ht is
maxflow = min{

∑
i∈Hs

ϕi,
∑

j∈Ht
ϕj}.

Then we need to determine the value of fij , i.e., the number
of requests that should be redirected from hotspot i to hotspot
j for all i ∈ Hs and j ∈ Ht, to minimize the accumulated
network latency. We construct a flow network Gd = (V,E) in
Fig. 4(a), where the vertex set V contains the set of overloaded
hotspots Hs and the set of under-utilized hotspots Ht, together
with a source vertex source and a sink vertex sink. For each
edge between the source and overloaded hotspots i ∈ Hs, the
link capacity is set to ϕi, and the cost is set to 0. Similarly,
we set the capacity and cost of the edge between j ∈ Ht and
sink to ϕj and 0 respectively.

For adding edges between i ∈ Hs and j ∈ Ht, we give
a threshold θ and only add edge < i, j > when dij < θ to
achieve graph simplification and algorithm efficiency below.
For each edge < i, j > between Hs and Ht, its service
capacity is set to ϕij = min{ϕi, ϕj}, and their cost is set to
delay dij . The final network flow graph Gd(V,E) is illustrated
in Fig. 4(a).

Given a network graph Gd(V,E), we could determine the
fij by finding the maximum flow in Gd(V,E) from source to
sink such that the total latency cost of the flow is minimized.
However, the graph Gd(V,E) fails to capture the content-
related factor for the request redirection. Thus in the next
subsection, we modify the Gd(V,E) to a flow graph which
also cares for the content replication cost.

B. Content Aggregation Flow Network Model

In order to reduce the content replication cost incurred by
the request redirection from the overloaded hotspots to under-
utilized hotspot, we update Gd(V,E) to a content aggregation
one Gc(V,E).

Our basic idea is to greedily urge a set of overloaded
hotspots with higher content similarity to offload their requests
to one under-utilized hotspots. Firstly, using the hierarchical
clustering algorithm [18], we cluster the hotspots based on
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Fig. 4: The algorithm framework: (a) Request balancing in
MCMF network Gd(V,E); (b) Content aggregation flow net-
work Gc(V,E).

the content-aware distance between pairs of hotspots which is
calculated as follows:

Jd(i, j) = 1− Jaccard(Vi, Vj), (13)

where Jaccard(Vi, Vj) is shown in Eq. 1. We restrict the
distance Jd(i, j) between any two hotspots in the same cluster
lower than 0.5 (it is suitable for our hotspot clustering). We
denote the clustering results as K cluster of hotspots P =
{P1, P2, ...PK}. Pk ∈ P is the set of hotspots belongs to
cluster Pi, and any two items in P are disjoint.

Next, we construct Gc(V,E) illustrated in Fig. 4(b) fol-
lowing the hotspot cluster. Initially, we have Gc(V,E) =
Gd(V,E). In order to guide the overloaded hotspots in a
cluster to offload their workloads to the under-utilized hotspot
in the same cluster, we insert the flow guide nodes about
the hotspot cluster to the Gc(V,E). We denote function
SourcetoSink(·) (resp. SinktoSource(·)) to map the over-
loaded hotspot i (under-utilized hotspot j) to the set of under-
utilized hotspots (resp. overloaded hotspots) which connect
with i (resp. j), i.e., SourcetoSink(i) = {j| < i, j >∈ E}
(resp. SinktoSource(j) = {i| < i, j >∈ E}). We denote
Hjk = {i|i ∈ SinktoSource(j), i ∈ Pk}.

For each under-utilized hotspot j and each hotspot cluster
Pk, if

∑
i∈Hjk

ϕij ≥ 1/2ϕj or overloaded hotspots in Hjk

belongs to the cluster of hotspot j, we add a flow guide
node nkj to Gc(V,E). This setting could guarantee this guide
node is influential for urging hotspot i ∈ Hjk offloads their
workloads to hotspot j. For flow guide node nkj , we modify
the edges in Gc(V,E) as follows: 1) Add edges between
overloaded hotspot i ∈ Hjk and flow guide node nkj with
capacity ϕij and cost 0. 2) Add edges between the flow guide
node nkj and under-utilized hotspot j with capacity ϕij and

cost
∑

i∈Hjk
ϕij

∥Hjk∥ ; 3) Remove edges < i, j > (i ∈ Hjk). So far
we obtain the network flow graph Gc(N,E) shown in Fig. 4(b)
derived from Fig. 4(a).

Next, we demonstrate our complete algorithm using the flow
graph Gc(N,E).

C. Content Aggregation and Request Balancing Algorithm

Algorithm 1 shows the detail of our RBCAer algorithm. In
the initialization (from line 1 to line 4), we calculate the total
value of moveable workloads maxflow in line 4. We aim at
finding a feasible solution fij for achieving the maxflow.
After the initialization, it iteratively computes partial f∗

ij with

the latency threshold θ (line 6), which starts at θ1, until θ is
larger than the θ2 or a feasible solution fij is found (line 5).

The tuning parameters θ1, θ2 and δ are to balance the
content-similarity influence and the cost of latency. Recall in
Sec. IV-A, we can guarantee all edge cost in Gd(V,E) is lower
θ. The low value of θ implies few edges between Hs and
Ht, which results in fewer moveable workloads between Hs

and Ht in Gc(V,E) and consequently reduces the influence
of content-similarity-aware flow network. The crowdsourced
CDN providers could tune θ1, θ2 and δd in accordance with
specific conditions.

After the iteration, we examine whether a feasible solution
fij is found. If not, the value of f∗

ij for the remaining
moveable workloads is calculated based on Gd(V,E) (line 12)
or redirected them to CDN server (line 14).

Next subsection details how we determine the specific
video request redirection and the content placement strategy
according to fij .

Algorithm 1: RBCAer Algorithm.
Input : The set of video request R; the service capacity si

and storage size ci for each hotspot i ∈ H; the
network latency matrix dij (i, j ∈ H); and tuning
parameters θ1, θ2, δd.

Output: Inter-hotspot flow redirection fij between
overloaded and under-utilized hotspots, and video
replication decision yvj (∀v ∈ V, j ∈ H).

1 fij ← 0; θ = θ1;
2 Construct the graph Gd(V,E) with θ;
3 Construct the graph Gc(V,E) based on Gd(V,E);
4 maxflow ← min{

∑
i∈Hs

ϕi,
∑

j∈Ht
ϕj};

5 while θ <= θ2 and
∑

i∈Hs

∑
j∈Ht

fij < maxflow do
6 Calculate fij

∗ in Gc(V,E) by invoking MCMF
algorithms in [19];

7 fij ← fij + fij
∗; ϕi ← ϕi − fij

∗;
8 ϕj ← ϕj + fij

∗; θ ← θ + δd;
9 Update Gd(V,E), Gc(V,E) with current ϕi and θ;

10 end
11 if maxflow −

∑
i∈Hs

∑
j∈Ht

fij > 0 then
12 Calculate fij

∗ for residuary unmoved workload:
update Gd(V,E) with current ϕi and θ, and invoke
MCMF algorithms in [19];

13 fij ← fij + fij
∗;

14 For the unmoved workloads which cannot be handled
within θ2, redirect them to original CDN server;

15 end
16 Calculate yvj by invoking Procedure 1

ContentAggregationReplication(fij);
17 return fij , yvj ;

D. Content Aggregation Procedure

According to the flow redirection result fij , we conduct
the request redirection and content replication. The details are
illustrated in Procedure 1. To redirect requests with similar



content set from overloaded hotspots to similar under-utilized
hotspots, We design 3 efficiency indexes: 1) The redirect-
ing efficiency index ef (i, v, j) is video v’s request volume
which could be redirected from hotspot i to j (line 2); 2)
The content placement efficiency index eu(v, j) is the sum
of the video v’ request volume which could be redirected
from overloaded hotspot i ∈ SinktoSource(j) to j, i.e.,
eu(v, j)←

∑
i∈SinktoSource(j) ef (i, v, j) (line 4); And 3) the

offload efficiency index el(v, i) is the video v’s request volume
in hotspot i (line 5).

For the goal of reducing the content replication cost in-
curred by the offloading from the overloaded hotspots to the
under-utilized hotspots, we determine which videos’ requests
should be redirected from which overloaded hotspots to which
under-utilized hotspots based on the sorted content placement
efficiency eu(v, j). The redirection continues until we find a
feasible solution to achieve fij . For the final content replica-
tion, we make the replication continue until all of the caches
are filled (line 16) or server load reaches the peak traffic Bpeak

observed (line 15). At the end, RBCAer returns the content
placement decision yvj .

We use the classical Ford-Fulkerson algorithm [19] to solve
the MCMF problem, and it is the most time-consuming pro-
cess in our algorithm. Hence the time complexity of RBCAer
is O(|V |2|E|) time complexity, where |V | is the number of
hotspots in Gc(V,E). |E| is the number of edges in Gc(V,E)
whose maximum number is on |V |2 order of magnitudes. In
the next section of the algorithm evaluation, we will show our
θ used in the graph generation could greatly reduce the value
of |E| which benefits the algorithm scalability and efficiency.

V. PERFORMANCE EVALUATION

In this section, we conduct an extensive trace-driven evalu-
ation and present the numerical results. Specifically, using the
real-world dataset, we characterize the effectiveness offered
by our proposed algorithms RBCAer, and compare it with
other conventional request redirection schemes according to
the performance and running time.

A. Simulation Setup and Methodology

To simplify and speed up our simulation, we choose a rect-
angular region (17km × 11km) in Beijing from our datasets
including a rich collection of 212, 472 requests, 15, 190 videos
and 310 content hotspots. Fig. 5 shows the geo-distribution
of these requests and content hotspots. Unless otherwise
specified, we consider the collaboration between overloaded
hotspots and under-utilized hotspots within a circular shape
with radius 1.5km in default, i.e., θ1 = 0.5km, θ2 = 1.5km,
and δd = 0.5km. And each hotspot i ∈ H is endowed with
a cache size equalling 3% of the entire video set size (i.e.,
ci = 450), and its service capacity si suffices for transmitting
5% of the entire video set (i.e., si = 760).

We mainly compare RBCAer to the following frequently
used schemes in crowdsourced video CDN:

� Nearest scheme: when a request is generated, it is routed
to the nearest hotspot. Accordingly, each hotspot caches the

Procedure 1: ContentAggregationReplication
Input : The redirected video request fij between Hs and

Ht; the storage size ci for i ∈ H; the value of
requests λi for i ∈ H; the value of requests λiv for
video v in i ∈ H.

Output: Video placement solution yvj , for all v ∈ V, j ∈ H.

1 Lf ← Hs × V (T ) ×Ht, ef (i, v, j) ∈ Lf ;
2 ef (i, v, j)← min{fij , λvi};
3 Lu ← V(T ) ×Ht;
4 eu(v, i) ∈ Lu;
eu(v, j)←

∑
i∈SinktoSource(j) ef (i, v, j);

5 Ll ← V(T ) ×H; el(v, i) ∈ Ll; el(v, i)← λvi;
6 if λvi > 0, yvi = 1;
7 Rank Lu in the descending order of eu(v, j);
8 do
9 Select (v′, j′) ∈ Lu with the largest placement

efficiency index;
10 For all i′ ∈ SinktoSource(j′), redirect the

ef (i
′, v′, j′) requests of video v′ from hotspot i′ to

j′, and fi′j′ ← fi′j′ − ef (i
′, v′, j′); Update yvj

11 el(v
′, i′)← el(v

′, i′)− ef (i
′, v′, j′);

12 el(v
′, j′)←

el(v
′, j′) +

∑
i′∈SinktoSource(j′) ef (i

′, v′, j′);
fij ← fij−

13 while for all fij = 0, i ∈ Hs, j ∈ Ht

14 Rank Ll in the descending order of ev,i;
15 while Bcur < Bpeak and Ll ̸= Φ do
16 Select (v′, i′) ∈ L with the largest offload efficiency

index and c∗i′ < ci′ ;
17 c∗i′ ← c∗i′ + 1; Replicate content v′ to hotspot i′;
18 Bcur ← Bcur + 1 and Ll ← Ll − {(v′, i′)};
19 end
20 return yvj
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Fig. 5: The geo-distribution of video requests and content
hotspots.

most popular files based on the requests of the nearby users
independently from the others.
� Local random scheme (referred to as Random scheme)

[5], [7]: the content hotspot serves users and caches the most
popular videos within a certain radius nearby (1.5km in our
simulation). When a request is generated, it is randomly routed
to a hotspot within 1.5km that has stored a copy of the



associated video.
1) Performance Metrics: We illustrate four system per-

formance metrics in the evaluation and their normalization
methods used in the figure illustration as follows:

� Hotspot serving ratio, i.e., after prefetching contents to
edge hotspots, the proportion of requests that can be served
by the hotspots (normalized by original CDN workload, i.e.,
the total number of requests).

� Average content access latency/distance. Recall we let
the distance between requests and hotspots reflect the latency.
Since the maximum distance between pairs of hotspots in
our dataset is 20km (i.e.,

√
172 + 112km), we directly set the

content access latency as 20km when a user request is served
by CDN server.

� Content replication cost: Prefetching contents to hotspots
introduces extra load to the original CDN server. It is the
total number of replicas that are prefetched to the hotspot
(normalized by the entire video set size.)

� CDN server load, i.e., the original CDN workload minus
the number of requests served by the hotspots, and then
plus the number of content replicating. It is normalized by
the original CDN workload. It can reflect the overall system
performance since it considers both of the content access
condition and content replication cost.

B. Overall Performance: Parameter Impact Analysis

1) The Impact of the Service Capacities: We analyze the
impact of the hotspots’ service capacities on the algorithm
performance in Fig. 6. We vary the capacity per hotspots from
2% to 5% of the entire video set size in Fig. 6. As expected,
in Fig. 6(a), increasing service capacity could increase the
hotspot serving ratio. We observe that: 1) The hotspots will
be in overloaded conditions when they have low service
capacity. Hence simply prefetching the si most popular video
for hotspot is suffices to fully utilize the service capacity,
and consequently the gaps among these three schemes are
small; 2) The performance gap between RBCAer and other
two schemes increases as capacity increases, e.g., in Fig. 6(a),
to achieve the hotspot serving ratio of 0.74, the hotspots only
need service capacity of 4% by using our RBCAer, while
hotspots need more capacity which equals 5.2% (resp. 5.7%)
by using the Random scheme (resp. Nearest scheme); 3) The
RBCAer scheme consistently outperforms the Nearest and
Random schemes, and the serving ratio gap increases in the
range of 0% (si = 2%) to 12% (si = 7%).

Two crucial factors which play an important role in our
RBCAer are content access distance and replication cost
demonstrated in Fig. 6(b) and Fig. 6(c). From Fig. 6(b),
we observe our RBCAer provides significant content access
distance reduction by carefully design the request balancing
solution, e.g., when capacity value equals 5%, the content
access distance of RBCAer is 42% lower than that of Nearest
and Random schmes (from 6km to 3.5km). In Fig. 6(c),
we observe Random scheme and Nearest scheme are almost
unchangeable and mainly restrained by the hotspot cache size,
e.g., Random scheme prefetches most video (4.54× of entire

video size) since hotspots not only prefetch their local popular
videos but also popular videos of other location. Our content
placement cost is the lowest and changeable in response to
various capacity. This is because that in RBCAer, 1) our
content aggregation procedure would migrate and aggregate
a popular video from multiple overloaded hotspots to one
under-utilized hotspot, and it reduces the content placement
cost; and 2) various capacity influences the size of overloaded
hotspot set and under-utilized hotspot set, i.e., too low capacity
(resp. too high capacity) brings less under-utilized hotspots
(resp. overloaded hotspots) to serve the extra requests (resp.
offload their extra requests), and consequently it reduces the
improvement space for content aggregation procedures in
RBCAer.

Finally, Fig. 6(d) shows the CDN server load after using
these three schemes, and RBCAer significantly outperforms
the Nearest and Random schemes. When capacity value equals
5%, the CDN server load reduces to 47% of its original load
with our RBCAer, which is about 22% lower than the Nearest
and Random schemes (i.e., (60%− 47%)/60% = 22%).

2) The Impact of the Cache Sizes: Fig. 7 compares the
performance of the discussed schemes with different cache
size of hotspots. Parameter ci varies from 0.5% to 5% of the
entire video set size (note the ticks in x-axis is uneven). We
observe our RBCAer obviously outperforms both Nearest and
Random schemes. The details are analyzed as follows:

1) Increasing the available cache size improves the hotspots
serving ratio for all the strategies, as more videos are cached
at the hotspots. Our RBCAer has the best performance, e.g.,
as shown in Fig. 7(a), RBCAer solution could achieve 0.7 of
the hotspot serving ratio with only 0.67% of the cache size,
while the Random scheme (resp. Nearest scheme) requires
more available cache space, i.e., 2% (resp. 3%) of the entire
video size;

2) Fig. 6(b) shows the average content access distance by
using RBCAer is obviously below the other two schemes
under all of the cache size setting. Specifically, RBCAer can
achieve about 50% of the content access distance reduction
over Nearest and Random schemes.

3) The content replication cost quickly increases as cache
size increases. Since the sharp changes make the differences
among the three strategies hard to observe, we zoom in two
details at cache size 0.9% and 3% respectively. At the cache
point of 0.9%, the content replication cost of RBCAer is tiny
(0.01% of the entire video set size) higher than the Nearest
Strategy. This is because that, to achieve the request balancing,
RBCAer deploys extra contents for under-utilized hotspots to
serve the requests offloaded from the overloaded hotspots. The
situation becomes different at the point of cache size 3% which
is detailed in Fig. 6(c).

4) As expected, Fig. 6(d) shows that, increasing the available
cache size, the CDN server load declines gradually at first and
then increases gradually, since the replication cost grows faster
than the number of requests served by hotspots when cache
size higher than 1% of the entire video set size. When cache
size equals 1%, our RBCAer solution outperforms Nearest and
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Random schemes by reducing the CDN server load to 0.425
of the original server load, which 21% (resp. 17%) lower than
the server load using Nearest scheme (resp. Random schemes).

C. Impact of Factor θ

Recall in Sec. IV-A we only generate edges whose cost
lower than θ for graph Gd. Fig. 9 shows the influence of θ.
We change θ from 0km to 7.5km, and calculate the number
of edges in the Gd (normalized by the number of most
possible edges |V |2) and the maximum flow of Gd(V,E)
(normalized by the maximum flow when we add all edges
between overloaded hotspots and under-utilized hotspots to
Gd(V,E), i.e., maxflow in Sec. IV-A), respectively. We
observe when θ is set to 7.5km, Gd could successfully achieve
the maxflow and the number of edges is only 11% of the
|V |2. In our evaluation, θ2 is set to 1.5km which could handle
about 50% of the maxflow. Considering the number of edges
in the flow graph is an important factor influencing the time
complexity to solve MCMF, hence in practical, restricting
the hotspot cooperation within a nearby region is enough to
balance hotspots’ load and speed up the scheduling decision
of the RBCAer.

D. Running Time

We leverage four different algorithms, including straightfor-
ward solving the linear relaxation of the integer programming
formulation of the URBCA problem (referred to LP-based
scheme), our RBCAer, Nearest scheme and Random scheme,
to make the scheduling decision. We set up these solutions
on a laptop which has 128GB memory, 2.6GHz GenuineIntel
CPU. As Linear Programming (LP) relaxation and rounding

scheme5 (e.g., [4]) is a common technology to approximately
solving the integer linear programming, we straightforward
solve the LP relaxation of our ILP to evaluate the running
time of such kind of algorithms. Due to our laptop’s memory
size, we sample 10K requests for the running of LP-based
scheme by GLPK. For other three scheme, we still use our
original dataset.

We repeat the experiments and compute the average run-
ning time. As presented in Fig. 8, perform the LP-based
scheme (not to mention straightforward the ILP) consumes
more than 2.4 hour, which is too computationally demanding
to implement and not feasible in a real system. We find
that RBCAer costs more computation time than Nearest and
Random schemes, but consuming 35s to obtain the scheduling
results is feasible for a real world crowdsourced CDN. And
RBCAer reduces up to 20% CDN server load compared with
Nearest/Random schemes. This result indicates that RBCAer is
efficiency to wisely schedule a large-scale of request balancing
and content replication for crowdsourced video CDN.

VI. RELATED WORK

Video traffic already represents a significant fraction of
today’s network traffic, e.g., a recent report indicates that
Netflix and Youtube account for 55% of the peak downstream
traffic in North America [1]. To alleviate such video delivery
workloads on backbone and CDN servers, in recent few years,
both academia and industrial communities realize that the
abundant of edge devices, such as set-top [16], small cell
base station (SBS) [4], and smart Wi-Fi APs [7], can be
well utilized as edge content hotspots, which prefetch and

5LP relaxation and rounding: The first step requires solving the LP
relaxation of the ILP problem, and then rounding it to obtain a g - close
integer solution
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deliver contents to nearby end users, to offload the traffic of
CDN servers as well as improve the content access quality
experienced by users. In this paper, we denote such platform
as Crowdsourced video CDN.

In this section, we survey the related works on user redi-
rection and content caching. Several past research efforts have
considered these problems separately.

User redirection for load balance. Traditional content
providers, e.g., Akamai replicates contents at essentially all
CDN servers where demand exists, and balances the workload
spanning different CDN providers [10], [11] and different time
zone. In the peer CDN system, [20], [5] design distributed-
hash-table (DHT) to guarantee the load balance by randomly
selecting peers for each video request. These request redirec-
tion strategies are based on latency and server load. However,
in crowdsourced CDN, the cache size of the content hotspots
is limited and it is impossible to only think traffic engineering
problem for the user routing. In this paper, we take the content
placement cost into account and only hotspots with similar
content similarity do the workload offloading cooperation.

Cooperative caching. In the conventional CDN, [21] devel-
ops a polynomial-time optimal algorithm for the hierarchical
caching problem based on a reduction to MCMF model.
[22] develops approximation caching algorithms aiming to
minimize the bandwidth cost. [23] solve the caching problem
based on the matching in a bipartite graph. [17] propose a dy-
namic content allocation for Cloud-assisted CDN to minimize
the cloud traffic cost. However, these caching works assume
caches’ service capacity is never the bottleneck and hence do
not consider the user redirection balancing problem.

Jointly request redirection and caching. A method to
further increase the system benefits is to jointly design
caching and routing policies. The measurement analysis in
[24] indicates a great interaction between content distribution
and traffic engineering could benefit the system performance.
Similar to our design, [25] solves the joint content placement
and request routing problem based on the min-cost network
model and heuristic workload aggregation. But it is not in the
context of video distribution and ignores the content placement
cost. [26], [16], [27] employ the Lagrangian relaxation method
and use iterative algorithms to reach a solution. However, there
is no guarantee about the running time of the algorithms.
Recently, caching and routing in small cell networks, with the
objective of minimizing content access delay, has been studied

in [3], [6], [4] without considering the content replication cost.
[4] formulates this joint problem as UHCMFL Problem, which
is most similar to our problem. But it solves the problem
based on the LP-relaxation which requires a long running time
for practical implementation. In our previous work [28], we
present a region partition solution for the hotspot organization
based on the latency and content replication cost. Based on the
result of [28], if we aggregate all hotspots in each region to a
virtual hotspot, RBCAer could be used to make cross-region
cooperation to further increase the algorithm scalability.

Finally, it is worth observing that caches are located as
close to the users creating a degree of similarity with P2P
networks [16], [29]. Most works on P2P algorithms however
pay attention to minimizing the content delivery traffic for a
given content placement, whereas our focus is on a more con-
trolled environment where the request balancing and content
replication can be actively and centrally managed.

To the best of our knowledge, the user redirection prob-
lem both considering the content placement cost and request
balancing has not been well addressed in the crowdsourced
CDN. Our proposed RBCAer solution can effectively conduct
balanced user redirection without much content replication
cost and with polynomial-time running time.

VII. CONCLUSIONS

In this paper, we explore, formulate and address the request
redirection problem in crowdsourced CDNs by taking both
hotspots’ load balance and content requested by users into
consideration. Specifically, we conduct measurement studies
to understand request patterns in crowdsourced CDN, finding
that the workloads of nearby hotspots are very different, and
contents requested at nearby hotspots can also be significantly
different. Based on these observations, we then formulate
the user redirection problem by taking both the load bal-
ance and the content requested by users into consideration.
To address this problem, we propose a heuristic scheduling
solution, RBCAer, which obtains the scheduling decision by
solving a content aggregation network flow problem (designed
by the content similarity) to achieve request balancing and
content aggregation. Finally, we evaluate the effectiveness and
efficiency of RBCAer using trace-driven simulations in terms
of many system performance metrics and running time.
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[26] T. Bektaş, J.-F. Cordeau, E. Erkut, and G. Laporte, “Exact algorithms
for the joint object placement and request routing problem in content
distribution networks,” Computers & Operations Research, 2008.

[27] J. Dai, Z. Hu, B. Li, J. Liu, and B. Li, “Collaborative hierarchical
caching with dynamic request routing for massive content distribution,”
in INFOCOM, 2012 Proceedings IEEE.

[28] W. Hu, Z. Wang, M. Ma, and L. Sun, “Edge video cdn: A wi-fi content
hotspot solution,” Journal of Computer Science and Technology (JCST),
2016, accepted for publication.

[29] Y. Huang, Z. Xias, Y. Chen, R. Jana, M. Rabinovich, and B. Wei, “When
is p2p technology beneficial to iptv services,” Proc. of NOSSDAV, IL,
USA (June 2007), 2007.


