
Beyond the Touch: Interaction-Aware Mobile
Gamecasting with Gazing Pattern Prediction

Cong Zhang∗, Qiyun He∗, Jiangchuan Liu∗, Zhi Wang†
∗School of Computing Science, Simon Fraser University, Canada

†Graduate School at Shenzhen, Tsinghua University, China
Email: congz@cs.sfu.ca, qiyunh@cs.sfu.ca, jcliu@cs.sfu.ca, wangzhi@sz.tsinghua.edu.cn

Abstract—Recent years have witnessed an explosion of game-
casting applications in the market, in which game players (or
gamers in short) broadcast their game scenes in real-time. Such
pioneer applications as YouTube Gaming, Twitch, and Mobcrush
have attracted a massive number of online broadcasters, and each
of them can attract hundreds or thousands of fellow viewers. The
growing number however has created significant challenges to the
network and end-devices, particularly considering bandwidth-
and battery-limited smartphones or tablets are becoming domi-
nating for both gamers and viewers.

Yet the unique touch operations of the mobile interface offer
opportunities, too. In this paper, our crowdsourced measurement
reveals that strong associations exist between the gamers’ touch
interactions and the viewers’ gazing patterns. Motivated by this,
we present a novel interaction-aware optimization framework
to improve the energy utilization and stream quality for mo-
bile gamecasting (MGC). Our framework incorporates a touch-
assisted prediction module to extract association rules for gazing
pattern prediction and a tile-based optimization module to utilize
energy on mobile devices efficiently. Trace-driven simulations
illustrate the effectiveness of our framework in terms of energy
consumption and streaming quality. Our user study experiments
also demonstrate much improved (3%-13%) quality satisfaction
than the state-of-the-art solution with similar network resources.

I. INTRODUCTION

With the widespread penetration of high-performance mo-
bile devices and communication networks, the mobile game-
casting (MGC) service is getting increasingly popular a-
mong gamers. Such MGC applications as YouTube Gaming1,
Twitch2, and Mobcrush3, have shifted the paradigm of multi-
media content generation and dissemination, which distributes
mobile game sessions from the gamer’s (i.e., broadcaster’s)
personal mobile device to a large population of viewers.
Recent research from Google [1] suggests that about a third of
U.S. mobile gamers are defined as “avid gamers”, who spend
more than nine hours a week on average playing mobile games
on smartphones; And these “avid gamers” access mobile
games and YouTube at similar times throughout the day.
Another news from Twitch also shows that the mobile viewers
in all gamecasting channels account for 35% of monthly
viewership [2]. Promoted by the prosperous game markets and
MGC applications, the growing number of gamers and viewers
in turn poses significant challenges to the existing live video

1https://gaming.youtube.com/
2https://www.twitch.tv/
3https://mobcrush.com/

broadcasting platforms, particularly with mobile broadcasters
and viewers.

Due to the intrinsic sensitivity to latency, MGC applications
cannot simply rely on existing solutions for quality and energy
optimization [3], e.g., ON-OFF transmission [4] or local cache
scheduling [5]. Some research efforts [6], [7] have focused on
optimizing the stream uploading stage, which however may
affect the viewers’ Quality-of-Experience (QoE) if the stream
quality fluctuates greatly. Recently, the rapid development of
eye-tracking researches makes foveated-aware optimization of
viewers’ watching experience possible, which has seen use
cases for content distribution and live streaming [8] [9]. They
are not targeting MGC applications, and typically need eye-
tracking peripherals to collect viewers’ gazing data in real-
time, which in turn produces extra energy consumption on
mobile devices.

Thanks to the unique features from mobile games, our
crowdsourced measurements show that strong correlations
exist between the gamers’ interactions on the touch screen
and the viewers’ eye-gazing patterns in the MGC context.
Motivated by this observation, we propose a novel interaction-
aware optimization framework that guides mobile gamecasting
in advance, even before the source encoding step. The target
and key challenges towards designing the framework lie in:
(1) understand the characteristics of the gamers’ interactions
and the viewers’ gazing patterns with dynamic game strategies
and eye movements; (2) online predict without the assistant
from eye-gazing peripherals considering the energy saving on
mobile devices; (3) design an optimization strategy to improve
the energy efficiency and adjust the streaming quality using the
predicted gazing patterns.

To this end, we build association rules between the gamers’
interactions and viewers’ gazing patterns from the trace-
data, and classify the users’ behaviors into distinct groups,
including single-touch, press-drag, pan, and zoom for touch
interactions, and area-fixation, smooth-pursuit, and scene-
saccade for gaze patterns, corresponding to the steady, slow,
and fast movements of human eyes. Our framework then
incorporates a touch-assisted prediction (TAP) module and a
tile-based optimization (TBO) module. The former achieves
offline training and online prediction through building the
association rules [10], and the latter improves the energy
efficiency in mobile devices using a tile-based quality selection
with bandwidth and QoE constraints. Trace-based simulations

Game Players Viewers

Mobile gamecasting Interactive message

MGC App

Live Chat

Game App

Screen Record

Live Streaming

Fig. 1: A generic architecture of MGC applications

and user study demonstrate that our framework achieves
noticeable better QoE under similar network constraints.

The remainder of this paper is organized as follows. Sec-
tion II briefly introduces the MGC background and related
work. Section III presents our observations in MGC applica-
tions and motivations in this paper. We propose the framework
design of the interaction-aware optimization in Section IV.
Section V and VI describe the collection and classification
of gamers’ touch interactions and viewers’ gazing patterns,
respectively. Section VII introduces the touch-assisted pre-
diction using data traces collected from two types of users.
Section VIII presents the tile-based optimization and solution.
Section IX evaluates the performance of our framework via
both trace-driven simulations and user study. We present
further discussion after concluding the paper in Section X.

II. BACKGROUND AND RELATED WORK

Recent years have witnessed an explosion of gamecasting
applications, in which gamers broadcast their game scenes in
real-time [11], [12]. Such pioneer applications as YouTube
Gaming, Twitch, and Mobcrush have attracted a massive
number of online broadcasters, and each of them can attract
hundreds or thousands of fellow viewers. In this section,
we first briefly introduce a generic architecture of MGC
applications, as shown in Figure 1. A typical MGC application
maintains the following services: (1) live streaming service,
which not only fulfills the encoding, ingesting, transcoding,
and distribution of live streams, but also implements the screen
recording functionality on mobile devices; and (2) live chat
service, which exchanges users’ messages through the IRC
(Internet Relay Chat) or proprietary chatting protocols. A
representative scenario is illustrated as follows (see Figure 2):
a gamer first launches a mobile game using an MGC appli-
cation, e.g., YouTube Gaming, on the smartphone. The top
bar on the screen provides the controllers for mobile cameras,
microphone, screen recording, and other configurations. After
clicking the screen recording button, the MGC application
encodes the recorded game scene as a live stream and transmits
it to the ingesting server. After multi-version transcoding, the
segments of this live stream are delivered to heterogeneous
viewers. During the gamecasting, the gamer and the viewers
can closely interact by lively discussing the game strategies
with the chat service.

The MGC applications have attracted a massive number
of geo-distributed gamers and viewers, who are increasingly
using mobile devices, e.g., smartphones, tablets, and phablets,
to broadcast and watch mobile gamecasting. These high-

performance mobile devices suffer from energy constraints
with the built-in batteries, but also enjoy opportunities with
the novel operation interfaces, in particular, the touch screens.

A. Touch-assisted Applications

Owing to the fast development of mobile devices, plenty
works have devoted to analyzing touch behaviors for specific
applications, e.g., recognizing users [13], [14] and unlocking
smartphone [15]. A recent work [16] explored the instant
video clip scheduling problem based on the unique scrolling
behaviors on mobile devices. Under the bandwidth and energy
constraints, they developed an effective algorithm to solve
corresponding sub-problems and achieved a significant im-
provement in viewing experience. Our work is motivated by
these works; yet we focus on the gamers’ touch behaviors to
predict the viewers’ gazing patterns for MGC applications.

B. Region-of-Interest Optimization

There have been significant studies on region-based opti-
mization in streaming applications [17], [18]. Most of them
target on the Region-of-Interest (ROI) detection, which is
used in visual attention models under the network bandwidth
and video quality constraints. Through assigning suitable bits
setting for ROI and non-ROI regions, these models achieve
better visual quality with limited bandwidth. The ROI predic-
tion in these works however depends on a saliency model,
which analyzes neighbor frames of live streams, but cannot
completely capture the patterns of human gaze. To overcome
these challenges, recent works have designed content transmis-
sion based on the user’s gaze information for live streaming
services [8] and cloud gaming systems [9]. These works need
extra supports from eye-tracking devices, e.g., web-camera, to
capture gazing data during the whole process. Our work differs
from them in that we predict viewers’ eye-gazing patterns
based on the cross-domain inputs, i.e., gamers’ interactions
in mobile gamecasting applications.

III. MOTIVATION

In this paper, we optimize the MGC applications from a new
perspective. That is, through analyzing gamers’ interactions
with the touch screen, we predict viewers’ eye-gazing patterns
towards energy-efficient streaming. We seek to first answer
the following question: How a gamer’s interactions affect the
viewer’s gazing patterns (including the focusing regions and
movement)? To investigate the associations between them, we
capture the gamers’ game interactions and viewers’ gazing
data through our testbed, which consists of a smartphone,
an eye-tracking device, and a desktop PC. We connect the
smartphone with the desktop PC to record gamers’ touch
events and deploy the eye-tracking device to capture viewers’
gazing points. The details about the testbed configurations will
be introduced in Section V and Section VI, respectively. Here,
we first highlight our findings.

Our testbed experiments show that the gamers’ touch in-
teractions change mobile game scenes and objects, which in
turn pilot the viewers’ gazing patterns. Figure 3 gives two

Camera

preview

Game scene

Camera on/off Mic on/off Record on/off Others

Top bar

Fig. 2: MGC interface

5

1

3

7

2
6

4

(a) Example A

1

(b) Example B

2

5

1

3
4

Viewer Gazing Player Gazing

(c) Gazing pattern comparison

Fig. 3: The motivations in our study

examples to illustrate their associations using the viewers’
gazing heatmap. In Figure 3a, a gamer designs one attacking
path to deploy soldiers from region #1 to #7. Consequently, the
viewers’ gazing points also follow this path. This example im-
plies that the viewing regions may correspond with the touch
interaction regions but have a temporal delay. In Figure 3b, the
gamer touches the button in region #1 and activates the system
setting options. Afterwards, the viewer focuses on reading
the information of each button. This example shows that the
viewing regions do not always have the spatial correlation
with the touch regions, but their associations still can be found
through analyzing the gamers’ touch interactions and viewers’
gazing patterns together.

Yet there is a new question: if a gamer considers the
strategies through investigating the game scenes first, and then
decides the touch interaction in the next step, why we cannot
directly rely on the gamer’s gazing data for the viewer’s
gazing prediction? The first reason is that such a strategy
needs to capture the gamers’ eye movement in real-time, which
needs either plugin supplements (e.g., mobile camera) with
higher energy consumption or expensive eye-tracking glasses.
Another reason is that differences exist between gamers and
viewers. To illustrate the second reason clearly, we use an
example4 to compare the gazing differences between gamers
and viewers without gazing heatmap points in Figure 3c. In
this figure, we plot the circle regions to exhibit the gazing
movement of a gamer and a viewer, respectively. We can
find that the gamer proactively focuses on lots of areas to
determine the next action (i.e., closing Town Hall information
board). The gazing sequence is: Storage Capacity in Town
Hall (region #1), Current Storage values (region #3), and then
Close icon (region #4). On the other hand, the viewer pays
more attention to the information board in region #2, and
then reads the introduction of Town Hall in region #5. Since
the gamers’ observations determine their game strategies and
touch interactions, they tend to observe lots of details from
the current game scene, which means that they have more
complex and unpredictable gazing patterns comparing with the
viewers. From this example, we also see the association se-
quence between the gamers’ and viewers’ behaviors: gamers’
gazing behaviors → gamers’ game strategies → gamers’ touch
interactions → viewers’ gazing patterns.

4Example link: https://youtu.be/EP2v9m9d15E

IV. INTERACTION-AWARE DESIGN

Motivated by these observations, we design an interaction-
aware optimization framework for MGC, as shown in Fig-
ure 4a. Compared with the original MGC framework, our
design incorporates two new modules: Touch-Assisted Pre-
diction (TAP) and Tile-Based Optimization (TBO). The TAP
module predicts the viewer’s gazing patterns through ingesting
touch interactions from gamers and relays the results to the
TBO module, which then accordingly optimizes the energy
and bandwidth consumption.

A. Touch-assisted Prediction Design

As shown in the left part of Figure 4b, the touch-assisted
prediction involves three steps: Data Collection, Data Clas-
sification, and Gazing Prediction. We highlight their design
concepts here and present the details of each step in the
following sections.

• Data Collection: We first collect the raw touch events
from the gamers’ mobile devices and the viewers’ gazing
points based on an eye-tracking device. All the data will
be formatted and processed towards the next step;

• Data Classification: According to game-specific rules, we
classify the touch events and gazing points into pre-
defined groups. The gamers’ touch interactions include
single-touch, press-drag, pan, and zoom. The viewer’s
gazing patterns consist of area-fixation, scene-saccade,
and smooth-pursuit;

• Gazing Prediction: The main part of this step is the
association model, which is derived from an association
rules learning. The prediction module receives gamers’
touch interactions and obtains the corresponding viewers’
gazing patterns during the mobile gamecasting.

B. Tile-based Optimization Design

In the tile-based optimization module, as shown in the
right part of Figure 4b, our framework is practical with
Spatial Representation Description (SRD) feature in recent
MPEG-DASH (Dynamic Adaptive Streaming HTTP) amend-
ment [19]. SRD works well to stream a part of spatial sub-
parts (i.e., tiles) of a video to viewers’ devices. We assume
that viewers’ mobile devices parse mobile gamecasting using
a media engine with DASH(SRD). A tile-based optimization
algorithm is then designed to adjust the quality of each tile
according to the predicted viewers’ gazing patterns. As such,
on the viewer’s device, this module can adaptively determine

MGC APP

LS IM

Game Players

Mobile Device

Viewers

TAP

Streaming data

Text data

Interaction data

Media Player

TBO

(a) Generic framework

PredictionData Collection

Touch Screen

Eye Tracking

Classification

Touch Interaction

Gazing Action

Association

Model

Touch

Event

Gazing

Pattern

Game Player Viewer

DASH Client

Tile-based Optimization

Tile-based

Selection

Touch-assisted Prediction

DASH+SRD

Media

Engine

Tile format

1 n...

1 n

n+1 2n

... ...

... ...

... ... n

..

.
..
.

... ... 2

1

n

.

..

(b) Design details in our framework

Fig. 4: Interaction-aware optimization framework in MGC

[2213.341595] EV_ABS ABS_MT_TRACKING_ID 00000024

[2213.341638] EV_ABS ABS_MT_POSITION_X 00000201

[2213.341655] EV_ABS ABS_MT_POSITION_Y 0000040b

[2213.341671] EV_ABS ABS_MT_TOUCH_MAJOR 00000008

[2213.341683] EV_ABS ABS_MT_TOUCH_MINOR 00000007

[2213.341750] EV_SYN SYN_REPORT 00000000

[2213.415273] EV_ABS ABS_MT_TRACKING_ID ffffffff

 Timestamp Event Type Multi-Touch Event Value

Fig. 5: Event sample

the quality of each tile in a certain segment, jointly considering
the viewers’ QoE and bandwidth constraints. Each segment
has n− by−n tiles (the default n is set to be 5 in our study).
In Section VIII, we formulate this problem mathematically and
solve it heuristically.

V. UNDERSTANDING GAME TOUCH INTERACTIONS

Because the gamers in MGC applications control and man-
age the stream sources, it is important to understand the
characteristics of their touch interactions. In this section, we
investigate gamers’ touch interactions based on real-world data
traces and classify game-specific touch behaviors.

A. Touch Data Collection

To collect user’s touch interactions, we install the Android
Debug Bridge (ADB)5 on a desktop PC (DELL Optiplex 7010)
that connects to a mobile phone (Samsung Galaxy S5 with
Android 6.0.1). After running the following command:
adb shell getevent -lt /dev/input/event2

the touch screen events of S5 will be printed with
a timestamp on the command terminal. The parameter
/dev/input/event2 (corresponding to the touch screen
of S5) filters out the events triggered by other sensors, such
as the proximity sensor, the light sensor, etc.

Figure 5 shows one event sample, where each line has four
fields: timestamp, event type, multi-touch event, and value.
This sample represents a single-touch interaction, which means
a user quickly touches the screen center once. The dynamics
of touch position (ABS MT POSITION X/Y) and touch area
(ABS MT TOUCH MAJOR/MINOR) are recorded in a trace
file. We write a Python script to extract the event properties
of each tracking record from the original data trace. The for-
matted tracking record is a five-attribute tuple: {tracking ID,
start timestamp, position array, area dynamics, duration}.

5ADB is a versatile command line tool that allows users communicate with
connected Android devices.

TABLE I: The statistics of touch data

Game ID Game Name # of Events # of Interactions
G1 Clash of Clans 65940 684
G2 HearthStone 33422 250
G3 Clash Royale 37151 421

To understand the characteristics of distinct gamers, we
recruited ten volunteers who are familiar with popular mobile
games. Each of the volunteers individually plays a game
on S5 for two minutes. To explore the impact of game
genre, we select three popular games: G1-Clash of Clans6,
G2-HearthStone7, G3-Clash Royale8 and capture the screens
during game playing. Table I presents the details of our data
traces. We find that the number of interactions is mostly deter-
mined by the gamers’ preferences. There is no strict proportion
between the number of events and the number of interactions.
Therefore, we further investigate which interaction is used
during the game playing.

B. Interaction Classification

According to the official description of touch actions in
Android Developers9, we define the following four game-
specific interactions: Single-touch (ST), Press-drag (PD), Pan
(PA), and Zoom (ZM).

• Single-touch (ST): Users press the touch screen once and
release quickly, e.g., pressing a button or activating an
object in a game;

• Press-drag (PD): This is a general touch action in mobile
games. For example, gamers move a card onto a target
area or deploy attacking path using soldiers;

• Pan (PA): This action is similar to scroll screen; but it is
an omnidirectional one-finger gesture in mobile games.
Pan can be used to expand the field of view when the
game scene is beyond the screen size;

• Zoom (ZM): Zoom is a key multi-touch action. Gamer’s
two fingers are used to scale up/down the game view. One
typical application is to increase the investigating details
before attacking enemy camps.

6https://clashofclans.com/
7http://us.battle.net/hearthstone/
8https://clashroyale.com/
9https://material.google.com/patterns/gestures.html

G1 G2 G3

Game ID

0

50

100

150

%
 o

f
to

u
ch

 i
n

te
ra

ct
io

n
s

Single-touch (ST)

Press-drag (PD)

Pan (PA)

Zoom (ZM)

Fig. 6: The classification of touch in-
teractions

G1 G2 G3

Game ID

0

50

100

150

%
 o

f
g

a
zi

n
g

 p
a

tt
e

rn
s

Area-fixation (AF)

Smooth-pursuit (SP)

Scene-saccade (SS)

Fig. 7: The classification of gazing
patterns

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8

Similarity

0

10

20

30

40

50

P
e

rc
e

n
ta

g
e

 (
%

)

Interaction

Duration (2 seconds)

Duration (4 seconds)

Fig. 8: The similarity of gazing pat-
terns

x

y

1

2

3

4

5

(a) Gazing points

0 20 40 60 80 100 120

Index (Gazing points)

0

1

2

3

4

5

6

R
e

a
ch

a
b

il
it

y
 D

is
ta

n
ce

×10
4

Area-fixation

Scene -saccade

Smooth-pursuit

(b) OPTICS result

Fig. 9: One example of gazing points classification

These touch actions are frequently used in mobile games.
We use a decision tree [10] to classify them using five key
features extracted from the data: duration, position number,
direction, maximum touch area, and minimum touch area.
Based on the definitions of touch interactions, this decision
tree has four outputs: single-touch, press-drag, pan, and zoom.
To train the decision tree and test the accuracy, we use 300
interactions labeled by the gamers. Finally, this decision tree
achieves an average accuracy of 97%, which is adequate for
the association analysis in our framework.

Figure 6 shows the interaction distribution of each game. We
observe that three games have significant differences in touch
interactions, which are affected by game genres. For example,
single-touch is the most frequent interaction in G1 and G3,
while G2 gamers have much more press-drag interactions,
dragging a card to attack opponents. Since there is no scale
up/down interaction in G2 and G3, we cannot find any zoom
interaction from data traces.

VI. INSIGHTS INTO VIEWERS’ GAZING PATTERNS

In this section, we first propose the data collection method
in viewers’ gazing investigation. Then, we analyze the char-
acteristics of viewers’ gazing data traces.

A. Gazing Data Collection

We choose Tobii eyeX10 as the eye-tracking device to
collect the users’ gazing data due to its affordable price,
suitable sampling rate, and high accuracy. It is connected to a
desktop PC (DELL Optiplex 7010) through USB 3.0 port and
attached to the frame of a 27-inch monitor (DELL U2715H),
as shown in Figure 10. The eye-tracking device consists of

10http://www.tobii.com/xperience/

Illuminators

Monitor

Eye tracking device

Camera

Fig. 10: The eye tracking device in our test-bed

three illuminators and one camera. The illuminators create
the pattern of near-infrared light on viewer’s eyes. Then, the
camera captures high-resolution images of the viewer’s eyes
and the patterns. The eye-tracking algorithms in the device
analyze these images and feedback the corresponding gazing
positions on this monitor. The ten volunteers mentioned earlier
have also assisted us to collect gazing data as viewers, who
have personal profiles to calibrate the eye-tracking device
before data collection. Each viewer watches three two-minute
game videos selected from a gamer in Section V. We write a
Python script to extract gazing data traces, including gazing
positions and timestamps.

B. Gazing Classification

To analyze the characteristics of viewers’ gazing patterns
in MGC applications, we focus on the following three gazing
patterns: area-fixation (AF), smooth-pursuit (SP), and scene-
saccade (SS), which are based on the state-of-the-art eye-
tracking research [20].

• Area-fixation (AF): The viewer’s gaze is on a fixed area.
Typically, viewers spend more time to watch the center of
the game scene when there is no any gamer’s interaction;

• Smooth-pursuit (SP): The viewer’s gaze smoothly follows
the movement of game objects, e.g., dragging gamer’s
builds and moving game cards;

• Scene-saccade (SS): The viewer scans the scene of the
gamecasting, e.g., reading a notice board or descriptions.

Figure 9a shows several examples of these patterns. In this
figure, we use labeled circles to indicate the area-fixation
regions, where viewers focus on them in a short term. Due
to the changes of game scenes, viewers quickly move gazing
areas from region #1 to region #2, which corresponds to the
scene-saccade pattern. Yet the slow movements among areas
#3, #4, and #5 are considered as the smooth-pursuit pattern;
that is, viewer’s eyes follow the movements of a game object.

After investigating the gazing points, we find that perfectly
classifying gazing points into three patterns is impossible due
to the data noise. As such, we first pre-process the gazing
points to improve the accuracy of classification. Because area-
fixation has cluster feature in the 2D space and each gazing
point also has a temporal dimension, i.e., timestamp, we
employ the OPTICS (Ordering Points To Identify the CluSter-
ing) algorithm [21] to process the time-series gazing points.
The OPTICS algorithm can find the density-based clusters
(i.e., area-fixation in our data traces) through calculating the
distance of two gazing points. Moreover, this distance also re-
flects the speed of the eye movement from one area to another.
Figure 9 shows a pre-process example. Figure 9a depicts five
area-fixation regions, one scene-saccade pattern (from area #1
to #2), and three smooth-pursuit patterns (#2→#3, #3→#4,
and #4→#5). Figure 9b shows the corresponding pre-process
results using the OPTICS algorithm. We extract the features of
the three gazing patterns based on the results from the OPTICS
algorithm. Similar to the classification of touch interactions,
100 labeled patterns are used to train the decision tree, which
achieves an average accuracy of 96%.

Figure 7 plots the distribution of gazing patterns in three
videos. The feature of human eye movement determines that
area-fixation accounts for the largest proportion in all cases.
On the other hand, we can still observe the impact of touch
interactions. For example, in G2, the percentage of SS is larger
than the results of other two games. Similar insights also can
be drawn from G3 in Figure 6 and 7, where PA and SS both
have the lowest proportions.

To illustrate the associations between touch interactions
and gazing patterns, we also choose two viewers to explore
the similarity11 of their gazing tiles. We divide these gazing
tiles into different time windows using two approaches: (1)
Interaction: we use the duration of every interaction trace to
determine the size of each window, which is the minimum time
slot for every association analysis; (2) Duration: considering
that the duration of streaming segments are fixed in practical
gamecasting applications, we divide the gazing data according
to the segment duration. We plot the similarity of gazing
data in Figure 8. From this figure, we observe that more
than 50% of gazing tiles have more than 0.2 similarity for
all approaches. Particularly, in Duration approach, we adopt
two settings, i.e., 2 seconds and 4 seconds, and observe the
percentage of similarity in 0.4-0.6 is higher than the Interaction
approach, which implies that the similarity of gazing tiles
exists in different viewers for the same touch interactions and
the association exists between touch interactions and gazing
patterns. Based on these investigations, we next model the
associations between the gamers’ interactions and the viewers’
gazing patterns.

11In this paper, we use Jaccard Similarity, which is a statistic used for
comparing the similarity of sample sets. Jaccard(A,B) =

|A
∩

B|
|A

∪
B|

TABLE II: Encoding example

Data traces Encoded transactions
{ST, (365, 632)};{AF, (250,430),(255,439)} T1. {115, 215}
{PD, (375, 700), (300, 1000)};
{SP, (280,500),(255,900)} T2. {125, 126, 225, 226}

VII. TOUCH-ASSISTED ASSOCIATION LEARNING

Association rules describe the strong relations of items
that occur frequently together in a data set. For instance,
in market sale analysis, they can be used to discover the
frequent combination of sales and product placements. In this
section, we first introduce the preliminaries of association rule
learning, and then build up such associations in our application
scenario, addressing such challenges as transforming our data
into the available format. In particular, we employ the classical
Apriori algorithm [10] to build the associations between the
gamers’ touch interactions and the viewers’ gazing patterns.
The transformation however is applicable if other advanced
association algorithms are to be used.

A. Preliminary

The inputs of association rules learning contain: (1) items
data, Ai, where item Ai ∈ I, i = {1, · · · ,M}, and (2) a
transaction data set, T , which consists of a set of transactions
< Ti, {Ap, . . . , Aq} >, where Ti is a transaction identifier
and Ai ∈ I, i = {p, · · · , q}. A collection of zero or more
items is defined as an itemset. If an itemset contains k items,
it is called k-itemset. An association rule is defined as an
implication expression of form X → Y , where X

∩
Y = ∅

and X,Y ⊆ I . The item support count δ(X) of itemset
X gives the number of transactions that contain a particular
itemset. δ(X) = |{Ti|X ∈ Ti, Ti ∈ T}|. To find the frequent
occurring patterns, the support and confidence also need to
be defined. Support determines how often a rule is appli-
cable to a given data set, while confidence determines how
frequently items in Y appear in transactions that contain X .
The support s(X → Y) is defined as follows: δ(X

∪
Y)/M .

The confidence of a rule X → Y is accordingly defined as
c(X → Y) = δ(X

∪
Y)/δ(X)

To discover frequent patterns and build reasonably strong
associations, we must specify two thresholds: minimum sup-
port, s′, and minimum confidence, c′. The first step is to find
all the itemsets that satisfy the threshold s′. These itemsets
are called frequent itemsets. The second step is to extract all
the rules from the frequent itemsets found in the previous
step, if the confidence of these rules is no less than threshold
c′. The second step is straightforward, while the first step
needs more attention since it involves searching all possible
itemsets. The Apriori algorithm employs a bottom-up approach
by identifying the frequent individual items in the transaction
data set and extending them to larger itemsets while the items
satisfy the minimum support threshold. The frequent itemsets
determined by the Apriori algorithm are then used to determine
the association rules.

Root Node

Touch Gaze

ST

PD PA

ZM

1 N

AF

SP

SS

...

Fig. 11: The encoding tree of touch and gaze data

B. Touch-assisted Association

To map our data into the corresponding transaction Ti, we
treat the touch interactions and gazing patterns as items and
each transaction in our study as a combination of several touch
items and gazing items from the start time of one touch to the
start time of next touch. To simplify the discussion and fit
the tile-based optimization context, we divide the positions
of touch and gazing data into N tiles with the same size,
where N = n2, n ∈ Z+. Each item is then encoded based on
the tree structure in Figure 11. Table II shows one encoding
example. In this example, we set N = 9. {ST, (365, 632)}
and {AF, (250, 430), (255, 439)} mean that (1) the gamer
touches (365, 632) once before the next interaction; (2) the
viewer’s gazing points contain (250, 430), (255, 439), which
is an area-fixation. The encoded transaction T1 includes two
items 115 (Touch-ST-5) and 215 (Gaze-AF-5). The rationale
of this encoding method is that each encoded item contains
all key information we needed. Notice that, we have already
remove a duplicated item (215).

Algorithm 1 Touch-assisted Association Learning Algorithm
Input:

(1) A1, Encoded touch interactions with timestamps
(2) A2, Encoded gazing patterns with timestamps
(3) minimum support threshold s′

Output: Association Rules
1: T ← Transaction(A1, A2);

// Generate transactions using the timestamps of the traces in A1 and A2

2: G ← Apriori(T , s′);
// Generate frequent itemsets using the Apriori Algorithm

3: for each frequent itemset g in G do
4: if all items in g come from the same type then
5: Remove g from G;
6: end if
7: end for
8: return G;

Using the Apriori algorithm, we can find all frequent l-
itemsets for mining strong association rules in the encoded
data set. Since we aim to find the association rules be-
tween touch interactions and gazing patterns, we remove the
frequent itemsets that only contain one type of behaviors,
e.g., {211, 212, 235} and {119, 118, 127}. We summarize the
touch-assisted association learning algorithm in Algorithm 1.

Given the frequent items, we can acquire the association
rules to predict the viewer’s gazing patterns. Through em-
ploying association rules for new touch interactions, the TAP
module will predict the gazing patterns before the gamer’s
next touch interaction. As mentioned, the gazing region (i.e.,
the order of tile) is related to the viewer’s QoE. Since there
are three gazing patterns, we have four sets: L1, including

the AF regions, L2, including the SP regions, L3, including
the SS regions, and L4, including other regions. Finally,
set {L1, L2, L3, L4} is sent to the TBO module. Next, we
illustrate how to utilize this information to optimize the energy
consumption on mobile devices in the MGC scenario.

VIII. TILE-BASED OPTIMIZATION

In this section, we first model the tile-based optimization
problem with bandwidth and QoE constraints and transform
it into an equivalent problem. We then present an efficient
solution to solve it.

A. Problem Formulation

For ease of exposition, we assume that the duration D of
a segment varies from a few seconds to several minutes (e.g.,
two seconds in our experiments). Each stream segment has N
tiles and each tile has V versions. We thus denote each tile as
ti,j , i ∈ {1, · · · , N}, j ∈ {1, · · · , V }. We use v(ti,j) = j to
denote the version information of a tile. Let di,j , ei,j , and qi,j
be the size, downloading energy consumption, and the quality
of tile ti,j , respectively. The information of file size di,j can
be acquired from streaming servers, the downloading energy
consumption ei,j can be estimated based on the research [22],
and the quality qi,j depends on the encoding bitrate. We use
Sw to denote the index of the segment being watched and Sc to
denote the index of the latest cached segment in DASH client.
The tile-based optimization in MGC can thus be formulated
as to maximize tile quality per energy consumption.

Maximize :

N∑
i=1

V∑
j=1

qi,j

ei,j
xi,j (1)

subject to:
Streaming Availability Constraints (2) and (3)

N∑
i=1

V∑
j=1

di,jxi,j ≤ B ·D · (Sc − Sw) (2)

V∑
j=1

xi,j = 1, i ∈ {1, · · · , N}, xi,j = {0, 1} (3)

Foveated Quality Constraints (4), (5) and (6)

v(ti,a) ≥ α, ti,a ∈ L1 (4)

0 ≤ v(ti,a)− v(ti,b) ≤ β, ti,a ∈ Lk, ti,b ∈ Lk−1 (5)

v(ti,a)− v(ti,b) = 0, ti,a, ti,b ∈ Lk, k ∈ {1, · · · , 4} (6)

where B is the average bandwidth, and α and β are two
tunable parameters. The rationale of Streaming Availability
Constraints is as follows: (1) all tiles in a segment should
be downloaded completely before the cache becomes empty,
which guarantees a smooth playback of the live stream; and (2)
the clients only need to download one quality version for every
tile, which avoid extra bandwidth consumption. In Foveated
Quality Constraints, two tunable parameters α and β control
the range of tile version based on the prediction results.

B. Solution
If we only consider the streaming availability constraints,

the tile-based optimization problem can be transformed into
the following Multiple Choice Knapsack (MCK) problem:
there are N mutually disjoint classes C1, · · · , CN of items
(i.e., tiles) to be picked into a knapsack (i.e., segment) of
capacity B · D · (Sc − Sw). Each item j ∈ Ci has a profit
qi,j/ei,j and a weight di,j , and the problem is to choose
exactly one item from each class such that the profit sum is
maximized without exceeding the capacity of the correspond-
ing weight sum. Through introducing the binary variables xi,j ,
which take on 1 if and only if item j is chosen in class Ci,
we can transform our problem into a corresponding MCK
problem with known practically efficient solutions available
(e.g., pseudopolynomial-time dynamic programming) [23]. It
is worth noting that the optimal solution of this MCK problem
may not meet the foveated quality constraints. We therefore
first narrow down the solution space according to Foveated
Quality Constraints before employing dynamic programming.
If there is no feasible solution, we can adjust α and β to
enlarge the solution space. Finally, we can obtain the version
selection of each tile. We employ the trace-driven simulation
to explore how to adjust these parameters in Section IX-A.

IX. PERFORMANCE EVALUATION

In this section, we evaluate our interaction-aware optimiza-
tion through the trace-driven simulations and user study under
various settings. A rooted Samsung Galaxy S5 with Android
4.4.2 is connected to a PC (DELL Optiplex 7010). Then, we
collect the communication data using Android tcpdump12 and
retrieve the tile files using wget13 on this S5 in a campus
network. To measure the energy consumption, we supply the
power of this S5 using a Monsoon power monitor14, which
connects to a PC through a USB connection and feedbacks the
energy consumption to this PC in real-time. During the energy
measurement, we turn off the mobile screen to guarantee that
the power is consumed by the tile transmission only.

A. Trace-driven Simulation

100 90 80 70 60 50 40 30 20 10

Network capacity (%)

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

il
iz

e
d

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

Interaction-aware Optimization

DASH(SRD)

(a) Energy consumtpion

100 90 80 70 60 50 40 30 20 10

Network Capacity (%)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

il
iz

e
d

 Q
u

a
li

ty

Interaction-aware Optimization

DASH(SRD)

(b) Stream quality

Fig. 13: Comparison of our approach and DASH(SRD)
We first investigate the impact of parameters α and β in

terms of energy consumption, data transmission, and streaming

12http://www.androidtcpdump.com/
13https://www.gnu.org/software/wget/
14https://www.msoon.com/LabEquipment/PowerMonitor/

quality. We divide a 2-second segment into 25 tiles, which
are encoded at eight bitrates. Based on the predicted gazing
patterns, as shown in Figure 12a, we conduct the tile-based
optimization to determine which tile should be obtained and
collect the corresponding data traces. Through investigating
these traces, we plot the normalized results under different α
and β settings in Figure 12b, 12c, and 12d. We observe that
α has higher impact than β; therefore, if there is no feasible
solution, the optimization algorithm first adjusts β, and then
changes α. On the other hand, the algorithm also attempts
multiple settings of α and β to achieve a higher stream quality.
In our simulation, we set α = 8 and β = 1 in default. When
the algorithm extends the solution space, it will fix the value
of α− β and consider the solution space in multiple settings
(e.g., α = 8, β = 2 and α = 7, β = 1).

To explore the effectiveness of our solution, we also explore
the performance of the tile-based optimization under different
network capacities through throttling the bandwidth on the
mobile device. We compare our method with the original
DASH(SRD) selection, in which all tiles in a segment have the
same version. Figure 13 plots the results. In Figure 13a, we
observe that our method has lower energy consumption except
for two data points at 50% and 40% of network capacity.
The reason is that the original DASH adaptation may reduce
the quality of tiles suddenly to accommodate the decrease
of bandwidth, while our method fully utilizes the available
bandwidth to optimize the tile quality per energy consumption.
Figure 13b shows that our solution optimizes the tile quality
selection with lower energy consumption except for the case
of 100% of network capacity, which is determined by our
optimization objective, i.e., efficient energy utilization.

B. User Study

100 90 80 70 60 50 40 30 20

Network capacity (%)

60

80

100

120

140

S
a

ti
sf

a
ct

io
n

 s
co

re

Baseline

Interaction-aware Optimization

DASH(SRD)

Fig. 14: Satisfaction Score
We further conduct user study to examine the QoE of our

solution. We first select a 10-second video clip and generate
25 tiles at 8 versions for all the segments using ffmpeg15, x264
encoder16, and mp4box17. According to the corresponding
touch interactions, we predict gazing pattern sets and output
the video clips under different network capacities. We also
produce DASH(SRD) video clips as the corresponding com-
parisons. As such, there are two clip-sets from our approach
and DASH(SRD), respectively.

15https://ffmpeg.org
16http://www.videolan.org/developers/x264.html
17https://gpac.wp.mines-telecom.fr/mp4box

7 8 9

12 13 14

17 18 19

3

6 10

11 15

21

1 2 4 5

L1 L3L2 L4

16 20

22 23 24 25

(a) Gazing pattern sets

8 7 6 5 4 3 2 1

α

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a

il
iz

e
d

 E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

β = 1

β = 2

β = 3

β = 4

(b) Energy consumption

8 7 6 5 4 3 2 1

α

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

il
iz

e
d

 d
o

w
n

lo
a

d
in

g
 d

a
ta

 s
iz

e

β = 1

β = 2

β = 3

β = 4

(c) Data transmission

8 7 6 5 4 3 2 1

α

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

il
iz

e
d

 Q
u

a
li

ty

β = 1

β = 2

β = 3

β = 4

(d) Stream quality

Fig. 12: Impacts of α and β

A desktop PC simultaneously plays two video clips under
the same network capacity in random windows. The viewers
compare their quality differences and evaluate them via satis-
faction scores from 1(worst) to 100(best). Figure 14 shows that
the evaluation results under different network capacities. We
use the original video clip as the baseline; hence all satisfaction
scores are 100. From this figure, we observe that our approach
always achieves a higher score (3%-13%) than DASH(SRD).

X. CONCLUSION AND FURTHER DISCUSSION

In this paper, we explored the emerging mobile gamecasting
systems, in which both stream sources and receivers are
mobile devices. Through trace analysis of a crowdsourced data
collection, we identified the relations between the touch inter-
actions of the gamers (broadcasters) and the gazing patterns
of the viewers. Motivated by this, we proposed an interaction-
aware optimization framework that includes two novel de-
signs: (1) a touch-assisted prediction builds association rules
offline and fulfills viewers’ gazing pattern prediction online;
and (2) a tile-based optimization for energy consumption
and quality selection under limited network capacity. The
experiment results showed that our solution effectively utilizes
the available bandwidth with better tile quality and more
efficient energy consumption. The user study also proved that
it steadily improves the viewers’ satisfactions (from 3% to
13%). We are currently integrating the whole framework with
practical implementation to further evaluate the performance
from different perspectives, such as the parameter selection in
the optimization algorithm, the impact of the number of tiles,
and the energy utilization under different wireless networks.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant #[8-519-
1-108] from the Qatar National Research Fund (a member of
Qatar Foundation). The findings achieved herein are solely
the responsibility of the authors. Dr. J. Liu’s work is also
supported by the Natural Sciences and Engineering Research
Natural Sciences and Engineering Research Council (NSERC)
of Canada. Dr. Z. Wang’s work is supported in part by SZSTI
under Grant No. CXZZ20150323151850088.

REFERENCES

[1] Google, “The rise of avid mobile gamers on youtube,” http-
s://goo.gl/ofbNuf, March 2016.

[2] Twitch, “Retrospective,” https://www.twitch.tv/year/2015, Dec. 2015.

[3] W. Hu and G. Cao, “Energy-aware Video Streaming on Smartphones,”
in IEEE INFOCOM, 2015.

[4] M. A. Hoque, M. Siekkinen, J. K. Nurminen, and M. Aalto, “Dissecting
Mobile Video Services: An Energy Consumption Perspective,” in IEEE
WoWMoM, 2013.

[5] X. Li, M. Dong, Z. Ma, and F. C. Fernandes, “GreenTube: Power Opti-
mization for Mobile Videostreaming via Dynamic Cache Management,”
in ACM MM, 2012.

[6] S. Wilk, R. Zimmermann, and W. Effelsberg, “Leveraging Transitions
for the Upload of User-generated Mobile Video,” in ACM MoVid, 2016.

[7] S. V. Rajaraman, M. Siekkinen, V. Virkki, and J. Torsner, “Bundling
Frames to Save Energy While Streaming Video from LTE Mobile
Device,” in ACM MobiArch, 2013.

[8] J. Ryoo, K. Yun, D. Samaras, S. R. Das, and G. Zelinsky, “Design
and Evaluation of a Foveated Video Streaming Service for Commodity
Client Devices,” in ACM MMSys, 2016.

[9] H. Ahmadi, S. Zad Tootaghaj, M. R. Hashemi, and S. Shirmohammadi,
“A Game Attention Model for Efficient Bit Rate Allocation in Cloud
Gaming,” Multimedia Systems, vol. 20, no. 5, pp. 485–501, 2014.

[10] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach,
D. J. Hand, and D. Steinberg, “Top 10 Algorithms in Data Mining,”
Knowledge and Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[11] R. Shea, D. Fu, and J. Liu, “Towards Bridging Online Game Playing
and Live Broadcasting: Design and Optimization,” in ACM NOSSDAV,
2015.

[12] Q. He, J. Liu, C. Wang, and B. Li, “Coping With Heterogeneous Video
Contributors and Viewers in Crowdsourced Live Streaming: A Cloud-
Based Approach,” IEEE Transactions on Multimedia, vol. 18, no. 5, pp.
916–928, 2016.

[13] S. M. Kolly, R. Wattenhofer, and S. Welten, “A Personal Touch: Rec-
ognizing Users Based on Touch Screen Behavior,” in ACM PhoneSense,
2012.

[14] Y. Chen, J. Sun, R. Zhang, and Y. Zhang, “Your Song Your Way:
Rhythm-based Two-factor Authentication for Multi-touch Mobile De-
vices,” in IEEE INFOCOM, 2015.

[15] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch
Me Once and I Know It’s You!: Implicit Authentication Based on Touch
Screen Patterns,” in ACM CHI, 2012.

[16] L. Zhang, F. Wang, and J. Liu, “Mobile Instant Video Clip Sharing:
Modeling and Enhancing View Experience,” in IEEE IWQoS, 2016.

[17] Y. Sun, I. Ahmad, D. Li, and Y.-Q. Zhang, “Region-based Rate Control
and Bit Allocation for Wireless Video Transmission,” IEEE Transactions
on Multimedia, vol. 8, no. 1, pp. 1–10, 2006.

[18] Z. Li, S. Qin, and L. Itti, “Visual Attention Guided Bit Allocation in
Video Compression,” Image and Vision Computing, vol. 29, no. 1, pp.
1 – 14, 2011.

[19] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual, and
S. Y. Lim, “MPEG DASH SRD: Spatial Relationship Description,” in
ACM MMSys, 2016.

[20] A. Duchowski, Eye Tracking Methodology: Theory and Practice.
Springer Science & Business Media, 2007, vol. 373.

[21] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “OPTICS:
Ordering Points to Identify the Clustering Structure,” SIGMOD Rec.,
vol. 28, no. 2, pp. 49–60, 1999.

[22] W. Hu and G. Cao, “Energy Optimization Through Traffic Aggregation
in Wireless Networks,” in IEEE INFOCOM, 2014.

[23] H. Kellerer, U. Pferschy, and D. Pisinger, Introduction to NP-
Completeness of Knapsack Problems. Springer, 2004.

