
Intelligent Edge-Assisted Crowdcast with Deep
Reinforcement Learning for Personalized QoE

Fangxin Wang∗, Cong Zhang♦∗, Feng Wang‡, Jiangchuan Liu∗, Yifei Zhu∗, Haitian Pang†∗, Lifeng Sun†
∗School of Computing Science, Simon Fraser University, Canada

♦School of Computer Science and Technology, University of Science and Technology of China, China
‡Department of Computer and Information Science, The University of Mississippi, USA

†Department of Computer Science and Technology, Tsinghua University, China

Abstract—Recent years have seen booming development and
great success in interactive crowdsourced livecast (i.e., crowd-
cast). Different from traditional livecast services, crowdcast
is featured with tremendous video contents at the broadcast-
er side, highly diverse viewer side content watching envi-
ronments/preferences as well as viewers’ personalized quality
of experience (QoE) demands (e.g., individual preferences for
streaming delays, channel switching latencies and bitrates). This
imposes unprecedented key challenges on how to flexibly and
cost-effectively accommodate the heterogeneous and personalized
QoE demands for the mass of viewers.

In this paper, we propose DeepCast, an edge-assisted crowdcast
framework, which makes intelligent decisions at edges based on
the massive amount of real-time information from the network
and viewers to accommodate personalized QoE with minimized
system cost. Given the excessive computation complexity in this
context, we propose a data-driven deep reinforcement learning
(DRL) based solution that can automatically learn the best
suitable strategies for viewer scheduling and transcoding se-
lection. To our best knowledge, DeepCast is the first edge-
assisted framework that applies the advance of DRL to explicitly
accommodate personalized QoE optimization for crowdcast ser-
vices. We collect multiple real-world datasets and evaluate the
performance of DeepCast using trace-driven experiments. The
results demonstrate the superiority of our DeepCast framework
and its DRL-based solution.

I. INTRODUCTION

In recent years, the interactive crowdsourced livecast (or
crowdcast) has become increasingly popular and seen explo-
sive success in the market, generating billion dollars of rev-
enue for major crowdcast platforms1. In a crowdcast service,
numerous broadcasters can stream their own contents to the
viewers in their channels through crowdcast platforms, such
as Twitch.tv2, Youtube Gaming3, and Douyu4, to name but a
few. Usually, the source streaming will be sent to the cloud and
CDN servers for transcoding and then delivering to massive
viewers with different bitrates [1].

Compared to conventional livecast services where profes-
sional video producers (e.g., TV channels and Netflix) broad-
cast well-planned content to viewers, crowdcast is featured

1https://www.fool.com/investing/2017/11/26/amazoncoms-twitch-is-
dominating-the-game-streaming.aspx

2https://www.twitch.tv/
3https://gaming.youtube.com/
4https://www.douyu.com/

with tremendous video contents generated at the broadcaster
side, highly diverse viewer side content watching environ-
ments/preferences, as well as frequent interactions among
broadcasters and viewers. This imposes unprecedented key
challenges on how to flexibly and cost-effectively accommo-
date the heterogeneous and personalized quality of experience
(QoE) demands (such as individual preferences for streaming
delays, channel switching latencies and bitrates) for different
viewers.

For example, many crowdcast platforms allow viewers to
send interactive messages in the chatbox of a live channel,
and both the broadcaster and other viewers can view these
messages and give feedbacks [2]. Some viewers can be very
proactive and have frequent interactions, while others can
be passive and only watch video contents with the message
display closed. In this case, the proactive viewers are much
more sensitive to the video latency than the passive viewers
because frequently delayed messages will impair their inter-
action experience. Another example is that viewers usually
have different viewing patterns. A considerable part of viewers
browse many channels frequently and even stay only a few
seconds in each channel. They tend to care more about the
channel switching latency rather than the streaming delay and
the bitrate. In contrast, there are also faithful viewers who only
watch the channel of one particular broadcaster, thereby being
insensitive to the channel switching latency.

Traditional solutions for livecast services mainly rely on
cloud-CDN architectures for streaming transcoding and de-
livery. Yet such dedicated architectures cannot well satisfy
the viewers’ personalized QoE demands since all the QoE
metrics are optimized in a monolithic approach. A new e-
merging network paradigm, i.e., edge computing [3], brings
new possibilities to the livecast service by pushing the service
closer to the end users. The existing edge-based approaches,
however, are still not able to well address the unique challenge
from crowdcast to effectively accommodate viewers’ diverse
QoE demands.

and utilizes
In this paper, we propose DeepCast, a novel edge-assisted

framework that is customized for crowdcast to accommodate
personalized QoE while minimizing the overall service cost.
In DeepCast, distributed edge servers only need to receive

910

00:00 04:00 08:00 12:00 16:00 20:00 24:00
Hour in a day

0

1000

2000

3000

4000

5000

C
on

cu
rr

en
t V

ie
w

er
 N

um
be

r WiFi access
3G/4G access

Fig. 1. The number of concurrent viewers in
different time periods of a typical day.

10-2 100 102 104

Time duration (min)

0

0.2

0.4

0.6

0.8

1

C
D

F

average viewing duration
for each channel
average viewing duration
for each viewer

Fig. 2. The CDF plot of average viewing duration
for every channel and average viewing duration for
every viewer.

100 101 102 103 104

Numbers

0

0.2

0.4

0.6

0.8

1

C
D

F

viewer numbers
for each channel
watched channel numbers
for each viewer

Fig. 3. The CDF plot of viewer numbers in dif-
ferent live channels and watched channel numbers
for every viewer during a day.

streaming of high bitrate from CDN servers and then down-
sample (or transcode) to other bitrates directly requested by
various local viewers, where edge servers also work collab-
oratively to schedule the viewer requests to proper servers
based on different QoE demands and current system resource
distribution. Although desirable, it is challenging to achieve
an optimal viewer scheduling and bitrate transcoding selection
due to the massive video contents, diversified QoE demands
and uncertain online watching behaviors. To this end, we make
effective use of the advanced deep reinforcement learning
(DRL) [4]–[8] to tackle the key challenge therein. DRL learns
a control policy (i.e., assign viewers to which edge server)
purely based on the experience, without any predefined rules.
Specifically, the edge system maintains an RL agent, which
starts knowing nothing and gradually learns to optimize the
viewer assignment policy based on the observed performance
of the past assignment.

In particular, DeepCast uses a state-of-the-art Actor-Critic
network model (A3C [6]) to train the deep neural network,
which extracts the edge system resource usage situation, cur-
rent viewing situation and the personalized viewer request as
a state and selects an optimal action through the network. We
collect three real-world datasets including a livecast viewing
trace and real edge trace in a major city in China, and a
public viewer bandwidth trace in the US, to evaluate the
performance of DeepCast by trace-driven experiments. The
results demonstrate the superiority of our DeepCast framework
and its DRL solution.

In summary, the contributions of this paper are as follows:
• We propose a novel edge-assisted framework called

DeepCast that is customized for crowdcast services. We
comprehensively consider the personalized QoE targets
(e.g., different preferences in streaming delay, channel
switching latency and bitrate) and system cost (e.g.,
computation and bandwidth cost), and integrate them into
a viewer scheduling optimization.

• We propose a DRL based experience-driven solution in
DeepCast, which can effectively learn the best suitable
strategy of viewer scheduling and transcoding selection
to achieve high personalized QoE and low system cost.

• We implement the DeepCast framework and collect three
real-world datasets for trace-driven experiments. We com-
pare DeepCast with the state-of-the-art solutions and the
results further demonstrate the superiority of DeepCast.

To our best knowledge, DeepCast is the first edge-assisted
framework that applies DRL to explicitly afford personalized
QoE optimization for crowdcast service.

The rest of paper is organized as follows. Section II intro-
duces our motivation through a data trace analysis. Section III
describes our edge-assisted crowdcast framework followed
by a problem formulation. Section IV details our design of
DRL based solution. Section V comprehensively evaluates the
performance of DeepCast through trace-driven experiments.
We review some related work in section VI with the conclusion
in section VII.

II. MOTIVATION

In this section, we first leverage a trace-driven data analysis
to better understand the diversity of personalized QoE demand-
s in crowdcast service. We have collected a dataset of users’
watching records from Inke.tv (one of the largest crowdcast
platforms in China) for 11 days in 2016, with about 7.3 million
viewing sessions on each day. Each record contains a viewer
ID, channel ID, network type, location, start time and end
time. We extract the viewing information in the Beijing area
(one of the most active areas) as a case study.

Fig. 1 illustrates the number of concurrent viewers through
different access approaches in different time periods in a
typical day. We can find that about 10% of viewers use the
3G/4G cellular network for crowdcast service. Considering the
high prices for cellular data and the huge traffic amount for
videos, such viewers may not have a strong favor in high
bitrate. Instead, they are often willing to sacrifice the bitrate
for a low streaming delay and a smooth watching experience.
Besides, the number of concurrent viewers at the evening peak
time is 4 to 5 times than other time periods, which can also
bring high burden to the platform’s bandwidth supply if all
viewers are served with very high bitrates.

We also investigate the average viewing time duration for
each channel and viewer, as illustrated in Fig. 2. We can

911

��������
�	
�����

����������

�	�����������

�����
������

�����
�����

������������
�������

 �������

!����
������

�"�# �"�$
�#�# �$�#

�%�"
	������&��

�%�#
	������&��

�������'
�������

Fig. 4. The edge-assisted crowdcast framework. Edge servers can get channel
content of different bitrates from the CDN server and can downsample from
high bitrate to low bitrate to serve viewers with various bandwidth situations.
Viewers can be served by different servers (edges or the CDN) to optimize
their personalized QoE demands.

see that there are about 35% of viewers watching a channel
for less than one minute. For this type of viewers, the most
obvious impact on viewing experience is the channel switching
latency since they usually browse many channels frequently.
They tend to care more about this latency rather than the
streaming delay and the bitrate. As a comparison, there are
about 15% of viewers watching a channel for more than one
hour. These viewers are usually more loyal to their favourite
channels and have a much higher tolerance for the channel
switching latency.

Fig. 3 illustrates the CDF plot of the number of total
viewers for every channel and the total watched channels for
every viewer in a typical day. We can see that the viewer
distribution exhibits a typical long-tailed distribution, where
only 2% channels have more than 100 viewers. Besides, there
are more than 50% viewers watching more than 3 channels.
This observation indicates a highly heterogeneous channel
viewing preference for different viewers, where they can have
dramatically different QoE preference in different channels.

The above data analysis indicates that different viewers
can have heterogeneous and personalized demands for various
QoE metrics, such as streaming delay, channel switching
latency and bitrate, which, however, are not well considered
and accommodated in existing livecast solutions. We therefore
propose an intelligent edge-assisted crowdcast framework to
address this problem, as discussed in the next section.

III. EDGE-ASSISTED CROWDCAST

A. Edge-Assisted Crowdcast Framework

Fig. 4 illustrates our edge-assisted crowdcast framework,
where a broadcaster in a channel first builds up a connection
with the platform’s service center (e.g., usually the cloud)
and transmits the raw streaming through RTMP (Real-Time
Messaging Protocol). The original streaming is then encoded

TABLE I
NOTATIONS USED IN OUR FRAMEWORK

E the edge server list
c the CDN server
H the streaming channels
V the version list of a channel
U the set of all the viewers

φ(u) the target version of viewer u
X

(u,j)
(h,v)

indicate whether user u is scheduled to server j for
(h, v)

Y
(e)
(h,v)

indicate whether (h, v) is at edge e

D(u) the streaming delay of user u
l(u,j) the latency between user u and server j

T
(e)
R(h,v∗,v) the transcoding latency for channel h when the

highest version is v∗

L(u) the channel switching latency for user u
B(u) the bitrate mismatch level for user u

M(φ(u), v) a predefined bitrate mismatch utility function
CT the total cost of computation

(h, v∗)e the highest version of channel h in edge e
IT (h,v) the resource consumption for transcoding to (h,v)

P
(e)
T the price of unit computation resource
CB the total cost of bandwidth
P j
B the unit bandwidth price of server j

IB(h,v) the bandwidth resource consumption for serving
(h,v)

W
(e)
T the computation capacity of edge e

W
(e)
B the bandwidth capacity of edge e

α, β the weighted parameters to tune the QoE penalty and
cost penalty

α
(u)
1 , α

(u)
2 , α

(u)
3 the personalized QoE factors for viewer u

st the state at time t
at the action at time t
rt the reward at time t
γ the discount factor for future reward

and compressed into RTSP (Real-Time Streaming Protocol)
streams with multiple bitrates, which are pushed to the CDN.

In a citywide area, the edge servers are distributed much
closer to the viewers and each edge server will serve the
crowdcast viewing requests within its proximity. The CDN
usually only needs to deliver channel content of high-quality
versions to the edge servers through HTTP. Then the edge
servers can transcode (or downsample) the high versions to
low-quality versions to serve the viewers with different bitrate
requests. A viewer may request a channel content with a
specific version based on his/her own bandwidth condition.
Given the viewers’ personalized QoE demand and the current
resource allocation situation, the regional edge can choose
to serve the viewer itself or redirect the request to another
edge (or the CDN), so as to optimize viewers’ personalized
QoE demands and minimize the system cost. For example
in Fig. 4, the requests of a channel skimmer (a viewer who
quickly browses many channels) can be redirected to the
nearest available edge server rather than the CDN to achieve
low channel switching latency. Tab. I lists the notations used
in this paper.

B. Problem Formulation

To better understand the challenges of implementing the
online viewer scheduling and transcoding selection, we start

912

from analyzing its offline scenario with known viewer requests
and resource situations. We assume that in a city-level region
the crowdcast service provider has one CDN server c and a
set of edge servers as E = {1, 2, ..., E} distributed across
the city. All of them are connected via the backhaul network.
The CDN is capable of having all the streaming channels H =
{1, 2, ..., H} and different versions V = {1, 2, ..., V }, where a
channel of a particular version is denoted as (h, v). We assume
that U viewers as U = {1, 2, ..., U} have viewing requests
for different channels and versions. Based on each viewer’s
watching preference and individual bandwidth condition, the
target version of viewer u is denoted as φ(u) = v′. We use a
binary variable X to denote the viewer scheduling outcome,
where X

(u,j)
(h,v) = 1 (j ∈ {E ∪ c}) (resp. 0) indicates user u is

(resp. is not) scheduled to j for (h, v). And Y
(e)
(h,v) = 1 (resp.

0) denotes that (h, v) is (resp. is not) at edge e.
We consider three QoE metrics for each viewer, i.e., stream-

ing delay, channel switching latency and bitrate mismatch
level, where the bitrate mismatch level is defined as a function
of the difference between the target version of the viewer
and the actually assigned version. Then we can calculate the
streaming delay D(u) of viewer u as follows:

D(u) =
∑
h,v

∑
e

X
(u,e)
(h,v)

(
l(u,e) + T

(e)
R(h,v∗,v) + l(e,c)

)

+
∑
h,v

X
(u,c)
(h,v)l

(u,c)
(1)

where l(u,e) (or l(u,c)) indicates the latency between user u

and edge e (or the CDN c), and T
(e)
R(h,v∗,v) is the transcoding

latency when the highest version is v∗. The first part of the
equation represents the latency if the viewer is scheduled to
an edge server, while the second part means the viewer is
directly scheduled to the CDN server. Note that if v∗ = v,
there is no need to transcode (i.e., T

(e)
R(h,v∗,v) = 0) because

the edge receives this version from the CDN server. Similarly,
the channel switching latency L(u) can be calculated as:

L(u) =
∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v)l

(u,j) (2)

In practice, the actual assigned version of a channel for a
viewer can be different from the target version. For example,
the crowdcast system may assign a lower version channel
content to a viewer if no enough system resource, or to satisfy
the viewer’s other preference, such as low streaming delay.
Then in this situation, there is a bitrate mismatch, which also
affects the QoE. We can calculate the mismatch level B(u) as
follows:

B(u) =
∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v)M(φ(u), v) (3)

where M(φ(u), v) is a predefined bitrate mismatch utility
function.

Besides the personalized QoE, we also consider the overall
cost for system resource usage, i.e., the computation cost and
bandwidth cost. Since the transcoding at edge server consumes

the computation resource, the total computation resource cost
(for the transcoding at edges) CT can be calculated as follows:

CT =
∑
e

∑
(h,v) �=(h,v∗)e

Y
(e)
(h,v)IT (h,v∗,v) · P (e)

T (4)

where (h, v∗)e indicates the highest version of channel h in
edge e, IT (h,v) is the resource consumption for transcoding
to (h, v), and P

(e)
T is the unit computation resource price at

edge e. Similarly, we can also calculate the total bandwidth
cost CB as:

CB =
∑
e

∑
u

∑
h,v

X
(u,e)
(h,v)IB(h,v)P

(e)
B

+
∑
h,v

∑
u

X
(u,c)
(h,v)IB(h,v)P

(c)
B +

∑
e

∑
h,v∗

Y
(e)
(h,v∗)IB(h,v∗)P

(c)
B

(5)
where IB(h,v) is the resource consumption for serving (h, v),
P

(e)
B and P

(c)
B is the unit bandwidth price for different edge

servers and the CDN server, respectively. The three parts in
(5) indicate the bandwidth cost from viewers to edges, viewers
to the CDN, and edges to the CDN, respectively.

Integrating viewers’ personalized QoE demands (Eq. 1,
Eq. 2 and Eq. 3) and the system cost (Eq. 4 and Eq. 5)
together, we have the following optimization objective (Ω)
that minimizes the sum of overall penalty, including the QoE
penalty (penalty for streaming delay, channel switching latency
and bitrate mismatch) and the system cost penalty:

Min :α
∑
u

(
α
(u)
1 D(u) + α

(u)
2 L(u) + α

(u)
3 B(u)

)
+ β (CT + CB)

(6)
s.t.

∑
h,v

∑
j∈{E∪c}

X
(u,j)
(h,v) = 1, ∀u (7)

X
(u,j)
(h,v) ≤ Y

(j)
(h,v), ∀(h, v), j ∈ {E ∪ c} (8)

∑
h,v

Y
(e)
(h,v)IT (h,v) ≤ W

(e)
T , ∀e (9)

∑
h,v

∑
u

X
(u,e)
(h,v)IB(h,v) ≤ W

(e)
B , ∀e (10)

where W
(e)
T and W

(e)
B are the computation and bandwidth

capacity of edge e, α and β are the weighted parameters to
tune the QoE penalty and system cost penalty, and α

(u)
1 , α(u)

2 ,
α
(u)
3 are the personalized QoE preference factors for viewer

u, which can be either specified by viewers or derived from
viewers’ watching history. Eq. 7 guarantees that a viewer can
only connect to one edge or the CDN. Eq. 8 indicates that the
target server must have the corresponding channel of suitable
version. Eq. 9 and Eq. 10 ensure that the resource usage does
not exceed the capacity.

The offline problem (Ω) can be reduced to a multi-
dimensional knapsack problem (by considering all servers can
have all the channels and versions), which is an NP-complete
problem. Even this problem can have pseudo-poly solution,
it is quite challenging to achieve fast and effective scheduling

913

����������	�
�

��
�	���	
���

�������������

�����

�����

�����������
������

�������
������

��
����	����

�����

��
����������
����������������������

������

Fig. 5. The workflow of using deep reinforcement learning for crowdcast
viewer scheduling.

with such massive amount of viewers and their diversified QoE
preferences, not to mention that in practice, the viewers are
arriving and leaving dynamically. With the abundant network
and viewer information, we believe a data-driven solution is
necessary in the edge-assisted crowdcast context. To this end,
we turn to the design of a deep reinforcement learning based
model to solve the problem, as described in the next section.

IV. DEEP REINFORCEMENT LEARNING MODEL DESIGN

In this section, we first introduce the basic learning mecha-
nism of applying deep reinforcement learning (DRL) into the
scheduling problem. We then describe how we transform the
online viewer scheduling and transcoding selection problem
into a learning task and design a DRL based model to learn
an effective solution.

A. Basic Learning Mechanism

Unlike existing edge resource allocation approaches using
predefined rules or model-based heuristics, DRL strives to
learn a general action decision from the past experience based
on the current state and the given reward. Specifically, in
the workflow of DeepCast as illustrated in Fig. 5, a learning
agent interacts with the environment in the DRL setting, where
the agent is the main component of scheduling decision and
the environment defines the rules, restrictions and reward
mechanism. At each time step t, the agent observes a state
st and can choose an action at. When this action is done, the
current state will transit to the next state st+1 and the agent
will receive a reward rt. If the agent continues this process, it
will get accumulated rewards after every action until done.
The objective of DRL is to find a best policy π mapping
a state to an action that maximizes the expected discounted
accumulated reward as E[

∑∞
t=t0

γtrt], where t0 is the current
time and γ ∈ (0, 1] is a factor to discount the future rewards.

B. Model Design

Our DeepCast solution uses a state-of-the-art actor-critic
based DRL model A3C [6]. We introduce the detailed func-
tionality design as follows.

State space. We consider the practical online scenari-
o where viewers come and leave dynamically. Recall the

problem formulation in §III-B, the state space in the DRL
formulation consists of three components, including resource
usage, viewer scheduling information, and current viewer
request. We use two vectors bi = {bi1, bi2, ..., biE} and
bo = {bo1, bo2, ..., boE+1} to record the inbound bandwidth and
outbound bandwidth of the edges and the CDN, respectively.
Note that the vector length of bo is E + 1, because the
viewers can also connect to the CDN server. We use a vector
c = {c1, c2, ..., cE} to record the computation resource usage
at each edge server.

In general, a viewer’s request should first be processed by
the regional edge. Based on the optimization policy, the edge
will decide to serve the viewer itself or redirect the request
to other edges or the CDN. We therefore use a viewer con-
nection table tab = (e, h, v) to record the viewer scheduling
information, indicating how many viewers are served by edge
e watching channel h of version v.

Besides the current edge system information, the current
viewer request is also included in the state. The viewer
request consists of the viewer location loc, requested chan-
nel h of version v based on her/his bandwidth condition,
and the personalized QoE preference5. Integrating all these
components together, the state input can be represented as
st = {bi,bo, c, tab, loc, h, v, α

(u)
1 , α

(u)
2 , α

(u)
3 }.

Policy. When receiving a state st, the learning agent of
DeepCast needs to take an action at for viewer scheduling.
The action space can be represented as {1, 2, ..., E, c}, where
at = j means assigning the current viewer request to server j
(an edge or the CDN). Given the continuous values of the edge
resource usage, there are infinite {state, action} pairs so that
we cannot store them in a tabular form and solve the problem
using traditional methods, e.g., Q-learning and SARSA [5].
To address this issue, we use neural network [9] to represent
the policy π, where the adjustable parameters of the neural
network is referred to as the policy parameters θ. Then we
can represent our policy as π(at|st; θ) → [0, 1], indicating the
probability of taking the action at at current state st.

Once a viewer is assigned to an edge, the edge selects
the requested channel h and the version v that leads to the
maximal reward to serve the viewer. If the edge does not have
(h, v), it will transcode to version v from the available high-
quality version or directly request the version from the CDN
(when no available higher version). Note that the computation
and bandwidth resource at each edge are limited. If the
edge server’s resources are not enough, the request will be
redirected to the CDN for help. In a practical crowdcast
scenario, many viewers can come within a short time period.
If we allow the model to assign K viewers at the same time,
the action space becomes (|E|+1)K , where the model is very
challenging especially when K is very large. Hence, we divide

5In practice, the personalized QoE preference can be either directly set
by each viewer, or learned through analyzing each viewer’s watching history
(e.g., interaction frequency, channel switching frequency, average watching
duration, etc.), which can be easily obtained by crowdcast platforms. A simple
example of possible prediction methodologies will be discussed in §V-A.

914

the time into small slots so that in each slot DeepCast only
processes one viewer request.

Reward. When applying an action at to the state st, the
learning agent will receive a reward rt from the environment.
Considering the optimization objective Ω in §III-B, we craft
the reward to achieve the minimal overall penalty. Specifically,
when we assign a viewer request to an edge (or the CDN), the
viewer will have a personalized QoE and add an extra cost for
the system. We define the reward rt as the opposite number
of the generated overall penalty for the coming viewer u as:

rt = −α
(
α
(u)
1 D(u)(t) + α

(u)
2 L(u)(t) + α

(u)
3 B(u)(t)

)

− β
(
C(u)(t)
T + C(u)(t)

B

) (11)

where D(u)(t), L(u)(t), B(u)(t), C(u)(t)
T , C(u)(t)

B are the stream-
ing delay, switching latency, bitrate mismatch, transcoding cost
and bandwidth cost for scheduling viewer u at time t.

Training methodology. We train the DeepCast learning
model using the state-of-the-art asynchronous advantage actor-
critic (A3C) model [6], [10], [11] since the actor-critic ar-
chitecture well matches our context and it also has shown
successful applications in many other research problems [10],
[11]. The DeepCast model maintains a policy π(at|st; θ) (the
actor network) and an estimate of the value function V (st; θv)
(the critic network), where θ is the policy parameter and θv is
the value function parameter. The actor network and the critic
network share the previous part of network parameters except
for the last output layer. In our model, the learning agent
continues to take actions for the coming viewer requests. The
model updates both the policy and the value function based
on the returns of every tmax actions or until done.

The training process of DeepCast learning model employs a
policy gradient algorithm [12]. The key idea of this algorithm
is to estimate the parameter gradient direction toward the
maximized total reward. In each step, we first compute the
gradient of the accumulated discounted reward regarding the
parameter θ, with which we are able to update the actor
network parameter θ. To avoid the convergence to a suboptimal
policy, we also add an entropy regularization term to the
actor’s update rule as in [7], which helps to encourage more
exploration. We train the critic network following a temporal
difference method [5]. Once the actor-critic network is well
trained, we can select the viewer scheduling action based on
the output of the actor network.

V. PERFORMANCE EVALUATION

In this section, we compare DeepCast with a state-of-the-
art approaches and evaluate their performance with real trace-
driven experiments.

A. Methodology

Data traces. To better evaluate DeepCast and other ap-
proaches, we adopt three real-world data traces and use them
together to reconstruct an evaluation environment as practical
as possible:

Fig. 6. The sampling rectangular area of viewers and edge servers. The blue
dot represents the location of viewers and the red cross indicates the location
of edge servers.

TABLE II
MEASUREMENT RESULT OF BANDWIDTH, TRANSCODING RESOURCE

USAGE AND TRANSCODING LATENCY.

versions (p) 1440 1080 720 480 360 240
bitrate (Mbps) 4.3 2.85 1.85 1.2 0.75 0.3

transcoding (vCPU) NA 330% 142% 82% 51% 41%
transcoding time (s) NA 0.27 0.19 0.16 0.13 0.11

• Trace for viewing information. We collected the crowd-
cast viewing information from the network trace of
Inke.tv for 11 days in December 2016, which has about
7.3 million viewing sessions every day. We obtained the
viewer ID, channel ID, start time and end time from this
dataset.

• Trace for location information. We collect the viewer
location and edge location from a dataset of iQiYi for two
weeks in 2015, which includes about 1.8 million viewer
locations and 1 million access point locations in Beijing.
We uniformly sample a part of the access point locations
as the edge locations.

• Trace for bandwidth information. We collected the
bandwidth situation from a broadband dataset from FC-
C [13]. We extract the average bandwidth in this dataset
as the viewer bandwidth situation in our experiment.

Since the dataset of Inke.tv does not disclose the location and
bandwidth information, we instead extract the location infor-
mation from the iQiYi dataset and the bandwidth information
from the FCC dataset, and use the integrated data for training
and evaluation.

Edge-assisted crowdcast measurement and setup. Unless
otherwise specified, the default parameters are set as follows.
We select a rectangular area in Beijing from our location
dataset as the target region (35 km × 21 km) as shown in
Fig. 6. The average session request number is 45 thousand
every day and we select the top 50 channels with the most
viewers for evaluation. We evenly sample 10 access points as
the edge server locations.

915

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(a) fat-edge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F
Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(b) mid-edge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Overall Penalty

cloud-cdn
joint-online

sd-only
csl-only
br-only

cost-only
DeepCast

(c) thin-edge

Fig. 7. The CDF plot of overall penalty by different approaches under different edge settings.

TABLE III
VIEWER CLASSIFICATION METHODOLOGY.

Categories Classification criteria Qoe Metrics
sd-pref n̄ ≤ 2, t̄ ≥ 30min α1 = 2, α2 = 1.5, α3 = 2
csl-pref n̄ ≥ 5, t̄ ≤ 10min α1 = 0.5, α2 = 6, α3 = 2
br-pref n̄ ≥ 4, t̄ ≥ 30min α1 = 0.5, α2 = 1.5, α3 = 8
normal otherwise α1 = 1, α2 = 3, α3 = 4

We set the inbound and outbound bandwidth of each edge
server as 200 and 400 Mbps, respectively. The vCPU core
number is 36 based on Amazon AWS c4.8xlarge instance [14].
The CDN server can relay all the channels of different versions
and is capable of serving all the viewers. We measure the
bitrates, and list the transcoding overhead of 1 second stream
from the highest bitrate to lower bitrate versions in Tab. II.
We set the latency between edges and CDN randomly from 20
ms to 100 ms considering the good network condition of edge
servers. The latency between CDN and viewers is randomly
set from 100 ms to 300 ms. And the latency between viewers
and edges is proportional to their geo-distance [15], with a
maximal value of 100 ms.

Training setup. We implement the DeepCast learning mod-
el using tensorflow [16] and run the experiment on a desktop
with dual GTX 1080 Ti GPU cards, dual Intel I7 3.6 GHz CPU
cards and 32GB memory. The default parameters in the actor-
critic training phase is set as γ = 0.99, η = 5e−4, η′ = 1e−3,
and we set the default neuron numbers in the hidden layer
as 4096 plus 2048. We train the network using the viewer
watching situation in a day. Based on the settings above,
training the actor-critic network needs 4 hours to achieve a
stable result.

Personalized QoE metrics. We set the bitrate mismatch
function as B = log(R∗/R), where R∗ is the target bitrate
for a viewer based on the bandwidth situation and R is the
actually allocated bitrate. This logarithmic representation was
used by BOLA [17] and can effectively decrease the marginal
improvement of high bitrates. With the viewing information
dataset, we use a simple method to classify the viewers
into different QoE preference categories based on their daily
average watching channel numbers (n̄) and watching durations
(t̄). We classify the viewers in our dataset into four categories,

TABLE IV
DIFFERENT SETTINGS OF EDGE CAPACITY.

Edge setting bw in capacity bw out capacity compute capacity
fat-edge 400 Mbps 800 Mbps 64 vCPU

mid-edge 200 Mbps 400 Mbps 36 vCPU
thin-edge 100 Mbps 200 Mbps 16 vCPU

i.e., streaming delay preferred (sd-pref), channel switching
latency preferred (csl-pref), bitrate preferred (br-pref) and
others (normal), and set different QoE parameters for each
categories, as illustrated in Tab. III. We tune these parameters
to balance each part with the normal setting. We use Amazon
AWS [14] as a reference for the setting of bandwidth and
transcoding cost, and set the edge bandwidth price to be 20%
of that of the CDN bandwidth price. We also adjust the system
cost proportionally to balance the QoE penalty and system cost
penalty when α = β.

Comparison methods. We consider the following methods
as the baseline for comparison with DeepCast: 1) Traditional
Cloud-CDN architecture (cdn-only): this architecture sched-
ules all viewers to CDN instead of edges. 2) Edge-assisted
conventional livecast architecture which uses a state-of-the-
art algorithm proposed in [1] for scheduling and transcoding
(joint-online): the viewers are first scheduled to proper edges
and then transcoding are conducted accordingly. 3) Streaming
delay only (sd-only): we only consider the video latency in
the training process. 4) Startup latency only (csl-only): we
only consider the channel switching latency in the training
process. 5) Bitrate only (br-only): we only consider the bitrate
mismatch level in the training process. 6) Cost only (cost-
only): we only consider the system cost in the training process.

B. Evaluation Results

We next evaluate the performance of DeepCast and analyze
the impact of edge capacity on the experiment results. We
set three different edge capacities, i.e., fat-edge, mid-edge and
thin-edge, where the detailed capacity settings are shown in
Tab. IV. We set both the QoE penalty factor α and the system
cost factor β as 0.5 by default. Fig. 7 shows the CDF plot of
the overall penalty of each viewer scheduling under different
edge capacities. And Fig. 8 provides the normalized average

916

0

0.5

1

fat-edge mid-edge thin-edge

O
ve

ra
ll

P
en

al
ty

Edge Settings

cloud-cdn
joint-online

sd-only

csl-only
br-only

cost-only

DeepCast

Fig. 8. The normalized overall penalty under different edge settings.

overall penalty, where we set the comparison method cloud-
cdn as the baseline method.

We have three key observations from this comparisive
experiment. First, DeepCast can easily achieve much lower
overall penalty than other existing approaches in all the
edge capacity settings. Specifically, in the mid-edge setting,
DeepCast reduces an average of 45.9% overall penalty than the
cloud-cdn solution and 41.6% overall penalty than the joint-
online solution. This result indicates that DeepCast can effec-
tively utilize the edge servers to satisfy viewers’ personalized
and heterogeneous QoE demands and make intelligent viewer
scheduling, while the cloud-cdn solution and the joint-online
solution cannot well schedule each viewer, incurring high
overall penalty. Besides, DeepCast performs even better when
there is more edge capacity. From Fig. 8 the normalized overall
penalty of DeepCast achieves 0.7, 0.54 and 0.42 under the
setting of thin-edge, mid-edge and fat-edge, respectively. This
indicates that more edge capacity will empower DeepCast with
more flexible choice, which can further lead to a lower overall
penalty. Moreover, DeepCast outperforms other learning based
methods that only consider part of the QoE metrics or the
cost, such as sd-only by 41.4%, csl-only by 30.5%, br-only
by 40.7% and cost-only by 33.9%. This is because DeepCast
comprehensively considers all the related metrics and make
proper scheduling accordingly.

Fig. 9 illustrates the detailed QoE metrics and system
cost under the mid-edge settings. We can find that DeepCast
achieves an average of 0.07 bitrate mismatch, which is 57.6%
less than cloud-cdn and 63.7% less than the joint-online. This
result shows that DeepCast can provide better bitrate match
given edge-assisted crowdcast architecture and the intelligent
scheduling. For the channel switching latency, DeepCast only
needs an average of 0.05 s, reducing 75% time compared
to traditional cloud-cdn architecture due to the much smaller
latency between viewers and edges than that between viewers
and the CDN. For the streaming delay, DeepCast also reduces
38.3% time than joint-online that uses a heuristic scheduling
strategy. Note that the streaming delay of DeepCast is slightly
higher than that of cloud-cdn due to the transcoding delay
on edge. However, this additional 0.06 s stream delay is still
well within human tolerance for the interactions. Regarding

0

0.2

0.4

0.6

0.8

1.0

1.2

br mismatch sd csl cost

A
ve

ra
ge

 V
al

ue

Different QoE Metrics and Cost

cloud-cdn
joint-online

sd-only

csl-only
br-only

cost-only

DeepCast

Fig. 9. The value of different QoE metrics under different edge capacity
settings.

the system cost, DeepCast reduces the average cost penalty
by 36% than the cloud-cdn solution and by 16.7% than the
joint-online solution.

VI. RELATED WORK

A. Crowdsourced Livecast

Crowdsourced livecast (or crowdcast) has become increas-
ingly popular in recent years in both industry and academia.
Many previous efforts have been made to improve the QoE
and reduce the cost in crowdcast service. Wang et al. [1]
considered the video transcoding and viewer delivery in a
cloud-CDN architecture, where the authors separate the viewer
scheduling and content transcoding and solve each with a
heuristic algorithm. Yan et al. [18] proposed a transparent
network service called LiveJack, which enables CDN to seam-
lessly integrate edge clouds for live broadcast. The main focus
is on system implementation rather than the consideration
of optimizing personalized QoE. Pang et al. [19] used edge
servers as relays to reduce the loss rate and latency of the
first mile video transmission in crowdcast. Ge et al. [20]
proposed an edge-based system to achieve 4K live streaming
across the global Internet. These works either focused on the
cache cost or dedicated QoE target rather than the personalized
QoE. In this paper, we focused on developing an edge-
assisted crowdcast framework with a data-driven learning to
accommodate personalized QoE with minimized system cost.

B. Deep Reinforcement Learning in Networking

In recent years, deep reinforcement learning (DRL) has
shown amazing potentials in many applications [4]. Minh et
al. [4] first used Deep Q-Network (DQN) to learn policies from
sensor input for decision making. In their work, experience
replay and target network were introduced to improve the
stability and the performance. Double DQN was next proposed
by Van Hasselt et al. [21], which was able to reduce the
observed overestimations and achieve better performance on
several games. Schaul et al. [22] developed a framework for
prioritizing experience, so as to replay important transitions
more frequently, and therefore learn more efficiently. Wang et
al. [23] proposed dueling network to represent two separate
estimators: one for the state value function and one for the

917

state-dependent action advantage function. The main benefit of
this factoring is to generalize learning across actions without
imposing any change to the underlying reinforcement learning
algorithm. There have been recent works on applying state-of-
the-art DRL frameworks such as DDPG [24] and A3C [6] in
intended services. Toward this direction, DeepRM [8] lever-
aged DRL to solve the online multi-resource job scheduling
problem and can achieve 46% job completion time than heuris-
tic algorithms. Pensieve [7] used A3C algorithm with DRL
to select the optimal bitrate for future video chunks purely
based on the past experience. DRL-TE [25] applied the DRL
to the traffic engineering problem and achieved experience-
driven network utility maximization. Different from these
aforementioned works, we consider the viewer scheduling and
transcoding selection problem in the crowdcast service. To our
best knowledge, DeepCast is the first to apply DRL into edge-
assisted crowdcast service to cost-effectively accommodate
personalized QoE demands.

VII. CONCLUSION

In this paper, we proposed DeepCast, an intelligent edge-
assisted crowdcast framework that applies deep reinforcement
learning to afford personalized QoE demands and accommo-
date cost-effectiveness. We first studied viewers’ diversified
QoE preferences through a data analysis and find that it is
complicated to achieve the optimal viewer scheduling and
transcoding selection due to the massive video contents, di-
verse QoE demands and uncertain online watching behaviors.
To better understand the challenges of implementing the
online viewer scheduling and transcoding selection, we then
analyzed its offline scenario with known viewer requests and
resource situations. We then proposed DeepCast, an intelligent
edge-assisted crowdcast framework that incorporated advanced
deep reinforcement learning for dynamic viewer requests and
network conditions. We trained the network based on multiple
real-world network datasets. Our trace-driven experiments
further demonstrated the superiority of DeepCast compared
to the state-of-the-art solutions.

ACKNOWLEDGEMENT

This work is supported by a Canada Technology Demon-
stration Program (TDP) grant and a Canada NSERC Discovery
Grant. The work of Haitian Pang and Lifeng Sun is supported
by the Key Research and Development Project under Grant
No. 2018YFB1003703, Beijing Key Laboratory of Networked
Multimedia. The corresponding author is Jiangchuan Liu.

REFERENCES

[1] Z. Wang, L. Sun, C. Wu, W. Zhu, and S. Yang, “Joint online transcoding
and geo-distributed delivery for dynamic adaptive streaming,” in Pro-
ceedings of the International Conference on Computer Communications
(INFOCOM), IEEE, 2014.

[2] C. Zhang and J. Liu, “On crowdsourced interactive live streaming: a
twitch. tv-based measurement study,” in Proceedings of the 25th ACM
SIGMM Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), pp. 55–60, 2015.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing – a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[5] R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduc-
tion. MIT press, 1998.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of International Conference on
Machine Learning (ICML), pp. 1928–1937, 2016.

[7] N. adaptive video streaming with pensieve, “Neural adaptive video
streaming with pensieve,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM), pp. 197–
210, ACM, 2017.

[8] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource man-
agement with deep reinforcement learning,” in Proceedings of the 15th
ACM Workshop on Hot Topics in Networks (HotNet), pp. 50–56, ACM,
2016.

[9] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural
network design, vol. 20. Pws Pub. Boston, 1996.

[10] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” in Proceedings of 5th International Conference on
Learning Representations (ICLR), 2017.

[11] Y. Wu and Y. Tian, “Training agent for first-person shooter game with
actor-critic curriculum learning,” in Proceedings of 4th International
Conference on Learning Representations (ICLR), 2016.

[12] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems (NIPS),
pp. 1057–1063, 2000.

[13] “Measureing broadband america 2016 from federal communications
commission.” https://www.fcc.gov/reports-research/reports/measuring-
broadband-america/raw-data-measuring-broadband-america-2016.

[14] “Amazon ec2 pricing.” https://aws.amazon.com/ec2/pricing/on-
demand/.

[15] O. Krajsa and L. Fojtova, “Rtt measurement and its dependence on
the real geographical distance,” in Telecommunications and Signal
Processing (TSP), pp. 231–234, IEEE, 2011.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: a system for
large-scale machine learning.,” in Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI), vol. 16, pp. 265–
283, 2016.

[17] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “Bola: Near-optimal
bitrate adaptation for online videos,” in Proceedings of the International
Conference on Computer Communications (INFOCOM), pp. 1–9, IEEE,
2016.

[18] B. Yan, S. Shi, Y. Liu, W. Yuan, H. He, R. Jana, Y. Xu, and H. J.
Chao, “Livejack: Integrating cdns and edge clouds for live content broad-
casting,” in Proceedings of the 2017 ACM on Multimedia Conference,
pp. 73–81, ACM, 2017.

[19] H. Pang, Z. Wang, C. Yan, Q. Ding, and L. Sun, “First mile in
crowdsourced live streaming: A content harvest network approach,” in
Proceedings of Thematic Workshops of ACM Multimedia, pp. 101–109,
ACM, 2017.

[20] C. Ge, N. Wang, W. K. Chai, and H. Hellwagner, “Qoe-assured 4k
http live streaming via transient segment holding at mobile edge,” IEEE
Journal on Selected Areas in Communications (JSAC), 2018.

[21] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning.,” in AAAI, vol. 2, p. 5, Phoenix, AZ, 2016.

[22] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” CoRR, vol. abs/1511.05952, 2015.

[23] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” CoRR, vol. abs/1511.06581, 2015.

[24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[25] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in Proceedings of the International Conference on Computer
Communications (INFOCOM), IEEE, 2018.

918

