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Abstract—Today’s explosively growing Internet video traf-
fics and viewers’ ever-increasing quality of experience (QoE)
demands for video streaming bring tremendous pressures to
the backbone network. As a new network paradigm, mobile
edge caching provides a promising alternative by pushing video
content closer at the network edge rather than the remote CDN
servers so as to reduce both content access latency and redun-
dant network traffic. However, our large-scale trace analysis
shows that different from CDN based caching, edge caching
environment is much more complicated with massively dynamic
and diverse request patterns, which renders that existing rule-
based and model-based caching solutions may not well fit such
complicated edge environments. Moreover, although cooperative
caching has been proposed to better afford limited storage
on each individual edge server, our trace analysis also shows
that the request similarity among neighboring edges can be
highly dynamic and diverse, which is drastically different from
CDN based caching environment, and can easily compromise
the benefits from traditional cooperative caching mostly de-
signed based on CDN environment. In this paper, we propose
MacoCache, an intelligent edge caching framework that is care-
fully designed to afford the massively diversified and distributed
caching environment to minimize both content access latency
and traffic cost. Specifically, MacoCache leverages a multi-agent
deep reinforcement learning (MADRL) based solution, where
each edge is able to adaptively learn its own best policy in
conjunction with other edges for intelligent caching. The real
trace-driven evaluation further demonstrates that MacoCache is
able to reduce an average of 21% latency and 26% cost compared
with the state-of-the-art caching solution.

I. INTRODUCTION

Recent years have witnessed the explosive development
of video content streaming. The global video traffic has ac-
counted for 75% of the Internet traffic in 2017 and is estimated
to grow four-fold by 2022 [1]. Meanwhile, people are having
increasingly higher demands for quality of experience (QoE)
on various kinds of video contents, e.g., in immersive 360-
degree videos low latency is critical to guarantee smooth
viewing. Thus, such massive video traffic and high QoE
demands bring tremendous pressure to the backbone network.

Video content caching in content delivery network (CDN)
is widely used to reduce duplicated traffic and improve QoE.
The traffic between CDN servers and end viewers however can
still be largely redundant, which also leads to poor QoEs with
large content access latency. Fortunately, mobile edge caching
(MEC) [2] provides an alternative solution by pushing video

contents closer to end viewers. Particularly, in the emerging
5G network, base stations (BSs) are naturally equipped with
edge servers [3] (e.g., Nvidia Jetson TX21) to provide both
storage and computation capacity for caching service. Through
caching proper video contents at nearby edges, viewers can
obtain their target videos locally instead of from remote CDN
servers, which not only provides better QoE with lower latency
but also saves the core network traffic cost.

Compared to CDN servers, the capacity of edge server is
usually less abundant for video caching, which highly depends
on carefully designed caching strategies to achieve good
performance. Meanwhile, today’s content providers mostly
use simple rule-based solutions such as Least Recently Used
(LRU), Least Frequently Used (LFU) and their variants [4], [5]
for ease of implementation. Recently, model-based approaches
have proposed specific models [6]–[8] according to the caching
situations to estimate the corresponding caching strategy, with
the content popularity usually assumed to be known.

However, different from CDN based caching environment,
edge caching environment is much more complicated as
verified by our large-scale data analysis on a real video
watching trace. Moreover, our trace analysis also indicates
that different edge areas can have quite diverse and dynamic
request patterns, e.g., the request workload and the requested
content in our trace have demonstrated high dynamics and
diversities across both temporal and geographical dimensions,
especially when considering a finer granularity. As such,
although previous works can work well in particular situations
by relying on dedicated models, they often turn out to be not
adaptive enough under such complicated edge caching context.

On the other hand, as the density of base stations are much
larger than CDN servers, e.g., the number of CDN in China
is only several hundred2 while the number of bast stations
has achieved 3.72 million3 by 2018, cooperative edge caching
has been proposed to better afford the less abundant storage
capacity on each individual edge server [3], [9]–[11]. Yet, our
trace analysis shows that despite of certain similarities existing
among neighboring edges to facilitate potential cooperations,

1https://developer.nvidia.com/embedded/jetson-tx2
2https://www.cdnplanet.com/geo/china-cdn/
3https://www.statista.com/statistics/989888/china-4g-mobile-base-station-

number/



such similarities are also highly diverse and dynamic, which
also renders previous solutions not adaptive enough to handle
such a highly vibrant, massively diversified and distributed
environment.

To this end, we propose MacoCache, an intelligent edge
caching framework that explores both adaptive intelligence
and collaborative intelligence so as to better boost the edge
caching performance to minimize the watching latency at
viewer side as well as the traffic cost at the service provider
side. Inspired by the recent advances of learning in various
smart applications [12]–[14], we explore the deep learning,
in particular, deep reinforcement learning in our framework
to handle the dynamic and diverse situations. However, tra-
ditional DRL usually uses one centralized learning agent,
which is not feasible for our framework since the massively
distributed edges will incur explosive action space. We thus
further expand it with multi-agent learning so that each edge
can be treated as a learning agent with cooperations facilitated
among their neighboring agents. Our multi-agent collaborative
caching (MacoCache) framework therefore integrates multi-
agent learning and DRL as multi-agent deep reinforcement
learning (MADRL) to well adapt the massively distributed
dynamics and diversities and achieve collaborative intelligence
for edge caching.

We use the state-of-the-art advantage actor-critic method for
the multi-agent learning where an actor network outputs the
caching replacement actions and a critic network provides the
feedback on the selected action. In MacoCache, each agent
needs to consider not only its own caching strategy but also its
neighbor agents’ caching strategies since the caching behaviors
of nearby agents are mutually influential. A simple yet popular
approach is using independent Q-learning (IQL) where each
agent learns its own policy independently by modeling other
agents as part of the environment. This approach however
leads to partially observable and non-stationary environment
since other agents are updating their own policies at the same
time. To stabilize the learning environment, the represented
policy fingerprint of each agent is shared among the neighbor-
hood and we scale down the neighborhood rewards to make
each agent more locally focused. Besides, we also integrate
long short term memory network (LSTM) with the actor-critic
model to better handle time series dynamics and diversities
by adapting the sequential characteristics from the historical
requests. We conduct extensive real trace-driven experiments
to evaluate the performance of our MADRL based solution.
The results further demonstrate that MacoCache is able to
reduce an average of 21% latency and 26% cost compared
with the state-of-the-art learning-based caching solution.

The rest of this paper is organized as follow. Section II
introduces the data analysis and the motivation of this work.
Section III describes the system framework followed by the
model formulation. Section IV introduces our MADRL model
and its design in collaborative edge caching. We evaluate our
solution in section V. Some related work is introduced in
section VI. We at last discuss our work in section VII and
conclude it in section VIII.

II. DATA ANALYSIS AND MOTIVATION

In this section, we analyze a real-world video watching
dataset to understand the viewer request patterns that will
be faced in a distributed edge environment. We collaborate
with iQiYi4, one of the largest video service providers in
China in 2019, and collect the video watching trace for
mobile users in Beijing for two weeks in May. The trace
contains about 17 million sessions, recording the user ID,
timestamp, video content name and the GPS locations of
each request. Through the data analysis, 1) we have noticed
the massive heterogeneity and dynamics of video requests
in terms of request distribution and request content features,
which demonstrates the necessity of a highly adaptive edge
caching strategy; 2) our trace analysis also reveals the content
similarities among neighboring edge areas, which indicates
the importance of incorporating more adaptive and intelligent
approaches for collaborative edge caching.

A. Analysis of Request Heterogeneity and Dynamics
Request workload analysis. We first study the viewer request
distribution and the patterns hidden behind from both spatial
dimension and temporal dimension. For ease of representation,
we select a 10 km ⇥ 10 km target area in Haidian district in
Beijing as a case study. Fig. 1 plots the heatmap of the request
density for different areas using records of one typical day in
our dataset. We can find that the content request demands are
highly skewed from the spatial dimension. For example, the
northeast area (knows as a mixed area mainly for business
and university) has much higher request demands than the
northwest area (known as a large scenic area).

We also examine the request workload characteristics from
the temporal dimension. For more fine-grained display, we
split the target area into 10 ⇥ 10 small grid areas where
each area is treated as an edge area with a corresponding base
station (or edge server) for request serving. Fig. 2 demonstrates
the request workload of these edge areas in different hours of
a week, where y-axis represents the edge area id (we index
each area by geographic order), x-axis represents the time slot
by hour, and the value represents the request workload. We
can find that the request workload of most areas has shown a
certain level of regularity, especially the periodicity. However,
the temporal patterns also show tremendous dynamics in both
duration and request amounts for different areas, e.g., for area
index from 0 to 10 the high demand starts from the afternoon
while for area index from 68 to 70 the high demand lasts
all day long. Such heterogeneity of request workload in both
spatial and temporal dimensions brings quite dynamic request
features in different areas and different periods, which calls
for a more adaptive caching strategy to capture the time and
space diversified patterns to achieve even better performance.
Request content analysis. We next study the heterogeneity
of the request contents among different edge areas. We define
mean content distribution and std content distribution as the
mean value and standard deviation of the request times for a

4https://www.iqiyi.com/



Fig. 1. The heatmap of viewer request density for
one day in our dataset.
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Fig. 2. The request demands for each small area
during each time periods. X-axis indicates the time
periods by hour and y-axis indicates the area id.
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Fig. 3. The CDF plot of the std/mean ratio of
different contents among all edge areas in one
typical day.
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Fig. 4. The request demands of different video
contents within each hour for one week.
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Fig. 5. The color map of average content similarity
for each edge in one day.
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Fig. 6. The CDF plot of the content similarity ratio
of each hour in a week when we average all edge
areas.

particular video content among all the edge areas, respectively.
And we denote the std/mean ratio as the ratio of the standard
deviation value to the mean value. It is intuitive that a
higher std/mean ratio means the requests of content are more
imbalance among different edge areas. Fig. 3 shows the CDF
plot of the std/mean ratio of the accessed videos in a typical
day. We can find that for more than 50% contents the std/mean
ratio is higher than 1, and for about 5% quite imbalanced
contents the ratio even exceeds 2. This result indicates that the
requested contents of different edge areas are highly variant
and each edge area can have its specific features. Thus, it
should be beneficial if different edges can adjust the caching
strategy based on their own content access patterns.

We then examine the content access patterns from a per-
spective of the content itself. We select three representative
video contents (i.e., a variety show, a movie and a news
report) and illustrate the total request demands of each hour
for one week in Fig. 4. We can find that the movie follows
an obvious periodic access pattern during a long time and the
request number is quite stable. The variety show also follows
a periodic pattern, while the general popularity has a slowly
decreasing trend with time. The request number of the seventh
day is only 15% of the first day for this variety show. As
to the news report, the demands first rise sharply and then
vanish very quickly within two days. This observation reveals
that the request patterns of different videos are also highly
correlated to their own contents, e.g., time-sensitive videos

usually disappear more quickly. From this perspective, it is
important to design highly adaptive caching solutions that are
capable to quickly identify and adjust to the characteristics of
video contents so as to facilitate the caching performance.

B. Analysis of Content Similarity among Neighboring Edges
We next look into the content access similarity between

neighboring areas. We also split the target area into 10 ⇥ 10
small grid areas and each edge area is a 1km*1km square. And
we define two areas as neighbors if their distance is within
a given neighboring distance threshold. The total content
requests inside one area i within time period T are denoted as
R

T
i . We define a request rs in R

T
i as a similar request if the

requested video content of rs is the same as any other request
in R

T
j , where j 2 neighbor(i) indicates any neighbor area of

area i. We thereby define the content similarity ratio CSR
T
i

for area i in time period T as

CSR
T
i =

k
P

rs 2 R
T
i k

kRT
i k

, 8rs is a similar request (1)

Fig. 5 plots the color map of the general average content
similarity of each edge area for one day with the default
distance threshold as 1km, where the x- and y-axis indicate
the edge area index and the value of each area represents the
content similarity value. We can find that the content similarity
varies a lot among different areas. For example, edge areas in
the northeast have relatively higher content similarity, which
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is probably because several universities reside in that region
and students may have similar content preferences. Note that
the content similarity and request density are not exactly
correlated. For example, comparing Fig. 1 and Fig. 5 we
observe that the southeast area has quite dense video requests
while the content similarity is not that high.

Since the CSR is affected by the neighboring distance
threshold we set, we also investigate the impact of this
threshold setting on CSR values of different edge areas. We
show the characteristics from the perspective of time. Fig. 6
demonstrates the CDF plot of the CSR of each hour in a week
when we average all edge areas. This result indicates that
the CSR of edge areas is also time-varying since in different
time periods people’s viewing preferences can also be quite
different.

These analysis insights above reveal both the potentials
and the challenges for cooperative caching among neighboring
edges. On one hand, the average high content similarity among
neighboring areas is greatly beneficial to cooperative caching
since missed requests in one edge area are very likely to be
served by nearby neighbors. On the other hand, the content
similarity is quite dynamic with time and heterogeneous across
different edges so that the inherent characteristics should be
carefully considered. Thus, we need a more intelligent and
adaptive design for cooperative edge caching strategy so as
to jointly consider the caching decisions of neighboring edges
given their content similarities may vary a lot over both time
and geographical locations.

III. FRAMEWORK AND SYSTEM MODEL

A. Edge Caching Framework

We consider a typical edge caching scenario for mobile
video streaming, as illustrated in Fig. 7. BSs are distributed
in a citywide area equipped with edge servers, which provide
storage capacity for video caching and computation ability
for cache decision making. Each BS serves the local video
requests within its coverage range. BSs are connected to the
remote CDN server via the backbone network. We assume that
the CDN server has enough storage capacity and has already
cached all the requested video contents. As a comparison, the

storage capacity of each BS is usually limited and can only
cache a small portion of popular video contents.

In the 5G network, BSs are able to communicate with other
neighboring BSs rather than work individually [3]. Each BS
can retrieve the requested video contents from its neighboring
BSs via the fronthaul links (e.g., using the high-bandwidth
and low-latency CPRI links for data transmission [9], [15]).
Since obtaining video contents from a neighboring BS is faster
and more cost-effective than from the CDN server [10], CDN
fetching will have the lowest priority. Thus, serving a request
should have three statuses, i.e., local hit, neighbor hit and CDN
hit, with the following steps. First, when a request arrives, the
local BS returns the cached content immediately if found in
local cache. Second, if local cache misses, the local BS turns to
its neighboring BSs for such content and returns the content if
it exists. Third, the local BS fetches the content from the CDN
server to serve this request. In our context, time is divided into
continuous caching periods, where each edge conducts cache
replacement only at the end of each period.

B. Problem Formulation
We first study the offline scenario of the edge caching

problem assuming the video requests are known in advance,
which tries to minimize both the content access latency and
the traffic cost. We assume there are a set of E = {1, 2, ..., E}

edges (or BSs) distributed at fixed locations in a large service
region. For each edge e, its neighbors are denoted as Ne. The
video content files F = {1, 2, ..., F} can be cached in these
edges to serve video requests. For ease of presentation, we
assume that all the content files have the same unit size since
we can divide video files into chunks of the same size. Each
edge e has a maximum storage capacity Ce. The CDN server
is denoted as c with enough capacity to cache all the contents.

Since every viewer request belongs to one particular edge
area and will be served by the BS therein, we aggregate each
viewer request to its corresponding BS (referred to as the
home BS) equivalently. We denote the number of requests for
content f in edge e within time period t as d

t
e,f . A binary

variable x
t
e,f,j is used to represent whether the video requests

for content f belonging to edge e at time t should be served
by server j (xt

e,f,j = 1) or not (xt
e,f,j = 0), where j 2 {E, c}

can be either an edge or the CDN server. We also use a binary
indicator y

t
f,j 2 {0, 1} to represent whether video content f

is cached in server j (ytf,j = 1) or not (ytf,j = 0).
In our edge caching context, there may exist three com-

ponents of latency, including viewer-to-edge latency, edge-to-
edge latency, and edge-to-CDN latency, according to different
cache hit situations. Without loss of generality, we neglect the
viewer-to-edge latency since it is contained in all requests.
Thus, we calculate the total transmission latency L

t
e for edge

e within time t as:

L
t
e =

X

f2F

X

j2{Ne,c}

d
t
e,fx

t
e,f,j le,j (2)

where le,j indicates the latency between edge e and another
server j. Similarly, for the video traffic cost, we neglect the



viewer-to-edge cost. And we can calculate the video access
traffic cost Ct

e as:

C
t
e =

X

f2F

X

j2{Ne,c}

d
t
e,fx

t
e,f,jpe,j (3)

where pe,j is the traffic cost between e and server j. At the
end of each caching period, if the videos to be cached at the
next moment are not exactly the same as the currently cached,
each edge needs to fetch the new ones from neighbor edges or
the CDN server, which will also introduce extra traffic cost.
We denote such cost as video replacement traffic cost and
calculate it for edge e at time t as

R
t
e =

X

f2F

X

j2{Ne,c}

max{y
t
f,e � y

t�1
f,e , 0}xt�1

e,f,jpe,j (4)

Integrating Eq. 2 to Eq. 4 together, we can formulate cache
replacement problem (⌦) that aims to minimize the total
content access latency and traffic cost (including video access
cost and video replacement cost) for all requests as:

min :
X

t2T

X

e2E

(↵Lt
e + �C

t
e + �R

t
e) (5)

subject to :
X

j2{Ne,c}

x
t
e,f,j = 1, 8e 2 E (6)

X

f2F

y
t
f,e  Ce, 8e 2 E (7)

x
t
e,f,j  y

t
f,j (8)

x
t
e,f,j 2 {0, 1} (9)
y
t
f,j 2 {0, 1} (10)

where ↵ and � are weighted factors to adjust the preference
between latency and traffic cost. Eq 6 guarantees that each
request will be served by only one edge or the CDN server.
Eq. 7 indicates that the storage usage of each edge should not
exceed the capacity. Eq. 8 ensures that a viewer request can
only be served by edges or the CDN server that have cached
the corresponding video content. Finally, Eq. 9 and Eq. 10
restrict the optimization variables as binary value.

Lemma 1. The edge caching decision problem ⌦ is NP-
complete.

Proof. Our problem ⌦ tries to minimize both the transmission
latency and traffic cost for each time period. We first consider
a simplified case ⌦0 that removes Eq. 4 and only focus on
one time slot. Given a deployment solution, it is obvious that
our problem can be verified in polynomial time. Besides, this
problem is actually equivalent to the Helper Decision Problem
(HDP) described in [7], where the edge in our problem plays
the same role as helper. Hence, the problem HDP that has
been proven to be NP-complete [7] can be directly reduced in
polynomial time to ⌦0. Since problem ⌦0 is a simplified case
of ⌦, we then prove that our problem ⌦ is NP-complete. ⌅

From the analysis of the offline scenario, we know the
complexity of solving the cooperative edge caching problem.

Solving the online form is even more challenging in the
following two aspects. First, the a prior information of viewer
request pattern is seldom available in practice so that model-
based solutions may not well adapt to the request dynamics
and make intelligent caching decisions. Second, the caching
strategies of each edge are mutually influential, making it
difficult to achieve global optimality, especially considering
a long term optimization.

The recent success in both deep reinforcement learning
and multi-agent learning provides an alternative perspective
for this problem. The rich historical viewer request patterns
offer invaluable data resources that could be utilized for a
data-driven caching solution. Specifically, the learning-based
approach can not only well capture the hidden dynamics of
local and related edges but also enable an end-to-end solution
from request prediction to cache decision. Given these unique
advantages, we propose a multi-agent deep reinforcement
learning (MADRL) based approach to solve this problem,
which is described in the following section.

IV. MULTI-AGENT DEEP REINFORCEMENT LEARNING
FOR COOPERATIVE EDGE CACHING

In this section, we present MacoCache, a multi-agent deep
reinforcement learning (MADRL) based cooperative edge
caching framework that adaptively makes intelligent caching
decisions to minimize both content access latency and traffic
cost. We start from introducing the background of single-agent
deep reinforcement learning. We then present the multi-agent
advantage actor-critic (MAA2C) training policy used in our
MADRL model and how we stabilize the training process. At
last, we describe how we implement our MADRL model to
solve the edge caching problem.

A. Background of Single-Agent Deep Reinforcement Learning

In traditional single-agent deep reinforcement learning,
there is an agent trying to make proper decisions based on
the past experience and the given rewards. Specifically, at
each time slot t, the agent observes a state st and takes an
action at based on its policy ⇡. The agent then transits to
state st+1 with a reward rt. The target of the agent is to find
an optimal policy ⇡ to select actions so as to maximize the
discounted accumulated rewards Rt =

P1
0 �

t
rt, where � is a

discounted factor to reduce the importance of future rewards.
Many advanced learning algorithms are proposed in recent
years to enable the wide application of DRL, such as deep
Q-learning (DQN) [16], double DQN [17], deep deterministic
policy gradient (DDPG) [18], A3C [19] and so on. In our edge
caching context, however, single-agent DRL is not applicable
for two reasons. First, as an independent caching unit, each
edge should have its own caching strategy based on the
corresponding user request and content access patterns, which
could be significantly different among different edges. Second,
using one central agent for caching decision is not scalable,
which restricts the practical usage. We therefore expand it to
MADRL to solve this problem.



B. Multi-Agent Advantage Actor-Critic Learning Model

We consider applying multi-agent advantage actor-critic
(MAA2C) learning model to solve this reinforcement learning
(RL) problem. In our multi-agent settings, each edge e serves
as a learning agent with an actor network (as ✓) and a critic
network (as !). The actor network is trained to learn a policy
⇡✓e for caching decision making, while the critic network
is trained to learn a value function V!e as an estimate of
the expected total reward. These agents work concurrently to
explore the optimal edge caching strategy. Note that the multi-
agent environment for edge caching is partially observable,
i.e., each agent e is able to observe and communicate with its
neighbor agents Ne. Then the input state of an agent will also
include its neighbors’ states, denoted as

st,Ze = {st,e, {st,j}8j2Ne} (11)

where Ze includes both itself and its neighbors.
Independent Q-learning (IQL) is one of the most straight-

forward and popular approaches to solve multi-agent RL prob-
lems. In IQL, the Q-function of each agent only depends on its
own observation and action, treating the other agents as part
of the environment. Based on this idea, we can easily extend
IQL to independent A2C (IA2C) with the actor-critic method.
However, simply using IA2C for multi-agent RL problems is
problematic as the environment will become non-stationary
in the experience replay from the view of each agent [20].
Actually, the behaviors of all agents are implicitly included
in the environment dynamics, while the learning policies are
continuously updating, making the learning process hard to
converge.

We adopt two methods to stabilize the training process
of each agent and the enhanced approach is referred to as
MAA2C. The first one is a fingerprint-based method that in-
cludes the behavior policies of neighboring agents to make the
environment stationary. Since the whole policy network that
uses deep network is too large to be directly included [20], we
turn to include a low-dimensional fingerprint, i.e., the probabil-
ity simplex of neighborhood agents as ⇡t,Ne = {⇡t,j}8j2Ne .
This inclusion is reasonable since each agent is aware of the
policy change of other agents and is able to adapt to the
environment dynamics. Therefore, the behavior policy of each
agent can be represented as

⇡t,e = ⇡✓e(at,e|st,Ze ,⇡t�1,Ne) (12)

Besides the fingerprint, we also adjust the impact of neigh-
borhood policies on each agent. Since viewers belonging to
neighboring agents can also obtain videos from the current
agent, so we need to jointly consider the rewards of both
current agent and its neighboring agents when updating policy.
In our edge caching context, we try to make each agent focus
more on its local requests, which can not only make the
policy updating more locally correlated but also increase the
probability of local-hit. For this reason, we introduce neighbor

reward weight �i,j 2 [0, 1] to relax neighborhood rewards. The
weighted reward for agent e is then calculated as

r̃t,e = rt,e +
X

j2Ne

�e,jrt,j (13)

The value of �e,j is expected to be inversely proportional to the
latency between agent e and j, e.g., �e,j = lmax�le,j

lmax
, where

lmax is the largest edge to edge latency.
With the two proposed stabilization methods, the MAA2C

model updates both the policy and value function of each agent
during each time period in an experience-replay way. We train
each agent using a policy gradient algorithm that estimates
the parameter gradient direction towards the maximized total
weighted rewards. For each training step, we can first calculate
the estimate of the advantage function as

At,e = r̃t,e + �V!e(st+1,Ze ,⇡t,Ne)� V!e(st,Ze ,⇡t�1,Ne)
(14)

With the estimated advantage, we update the actor network
policy ⇡✓e through increasing the likelihood of selecting opti-
mal actions. To encourage exploration and prevent premature
convergence to suboptimal policies, we also introduce an
entropy term as stated in [19]. Then the parameterized network
✓e of agent e can be updated as

✓e  ✓e + ⌘✓

X

t

r✓e log⇡✓e(at,e|st,Ze ,⇡t�1,Ne)At,e

+ �
0
r✓eH(⇡✓e(·|st,Ze ,⇡t�1,Ne))

(15)

where the term H(·) is the entropy, ⌘✓ is the learning rate of
the actor network, and �

0 is a hyperparameter to control the
entropy term. We use temporal difference method to update
the parameterized critic network as

!e  !e � ⌘!

X

t

r!e [r̃t,e + �V!e(st+1,Ze ,⇡t,Ne)

� V!e(st,Ze ,⇡t�1,Ne)]
2

(16)

where ⌘! is the learning rate of the critic network. After the
A2C based training, the actor network can be used for caching
selection for every agent.

C. MADRL Design for Edge Caching
We next describe the detailed design of MADRL for our

edge caching context, including the state, action, reward de-
sign, and the learning network architecture.
State and observation design. The state of each agent should
include both the current caching situations and the request
demand situations. Thus, we define the state for an agent e as
st,e = {yt

f ,e,d
t
e,f}, where dt

e,f = {d
t
e,1, ..., d

t
e,F } indicates

the request demand and yt
f ,e = {y

t
1,e, ..., y

t
F,e} 2 {0, 1}

records the caching state. As described, each agent also need
to include the neighborhood states and their corresponding
behavior policies. Therefore, the observation of an agent e to
be included to the input network is

O(t, e) = {st,Ze ,⇡t�1,Ne} (17)

Action design. At the end of each time period, an agent will
observe the input from the environment and make the next



F
C

Caching states 
and demands

fingerprint 
policies

F
C

LSTM

F
C

F
C

Actor

Critic

...

Fig. 8. The learning network architecture.

action based on its policy. We define an action of agent e

as at,e = {a
f
t,e}82F, where a

f
t,e = 1 means we cache the

content f and a
f
t,e = 0 otherwise. The total cached contents

should not exceed Ce so that
P

f2F a
f
t,e  Ce. Many existing

works model the action space as selecting one cached content
for replacement using one-hot encoding. This is however not
practically feasible in our edge caching context since we need
to select a set of video content to cache for each decision. To
address this problem, we define the output space of each actor
network as the caching probability of each content and the top
Ce contents rather than only one with the highest probability
will be selected for caching.
Reward design. Each learning agent receive a reward rt,e after
taking their own actions. We define the reward as the negative
value of the weighted sum of the transmission latency and
traffic cost. Recall the definition in section III-B, we denote
the reward of agent e at time period t as

rt,e = �
X

f2F

(↵dtf,ele,j0f + �d
t
f,epe,j0f

+ �max{y
t
f,e � y

t�1
f,e , 0}pe,j0f )

(18)

where j
0
f = argminj2{Ne,c},yt

f,j=1(↵le,j + �pe,j) indicates
the neighboring edge (or the CDN server) that has the re-
quested content and leads to the minimal sum of transmission
latency and traffic cost. Note that if one request achieves local
hit, the latency and traffic cost are zero.
Network architecture. Our MAA2C model uses deep neural
networks to represent the learning policy and the learning
network architecture is illustrated in Fig. 8. Traditional learn-
ing models usually use deep neural network (DNN) as the
architecture for the actor and critic network. The past request
information is also included to learn the historical patterns.
This simple architecture however may not be able to fully
explore the hidden sequential patterns of the video requests.
Besides, including the historical requests into the observation
will also greatly increase the input space, making it difficult
for training. To address this problem, we use long short term
memory (LSTM), which is an advanced learning model that
is widely used for time series processing, to capture the
hidden content request patterns. Specifically, the LSTM layer
is deployed at the last layer before the final output layer so
that the feature representations of the past time periods can be

integrated together for the action decision at the current time
period. Before the LSTM layer, the input observation will first
be fed to fully connected layers for processing.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments to evaluate
the performance of our MacoCache edge caching strategy.
Specifically, using real trace-driven evaluations, we demon-
strate the superiority of MacoCache over classic rule-based
solutions and state-of-the-art learning-based solutions.

A. Setup and Methodology
Evaluation setup. We collect a real data trace of viewers’
requesting records from iQiYi for two weeks and extract the
request and content access patterns for evaluation. Without
loss of generality, we randomly select 30 edge areas from
our target 10km*10km region mentioned in section II. We
assume a BS (or agent) located at the center of each edge area
will serve the requests belonging to each corresponding area.
Since we cannot directly obtain the real transmission latency
between neighboring edges, we set the latency proportional to
the Euclidean distance between them [21]. The transmission
latency between an edge and the CDN server is set as 5
times of the average latency between any two neighbors in
our environment. The traffic cost is set as 1 for neighbor hit
and 5 for CDN hit. To balance the transmission latency and the
traffic cost in our target, we set ↵ as 1 and � as 2 to make these
two components comparable. We define the neighbor edges of
one particular edge as the nearest N surround edges, where the
default neighbor number is set as 8. Besides, we set the default
time slot granularity as every one hour. Based on our analysis
of the real viewing dataset, the requested contents are highly
skewed where only a small portion of contents are frequently
requested by viewers. Given this situation, we only consider
caching those video contents that are requested no less than
10 times in our target region. And the default cache capacity
for every edge is set as 4% of our target video contents.

We implement the MacoCache learning model using py-
torch [22], which runs on a server with dual GTX 1080 Ti
GPU cards, dual Intel I7 3.6 GHz CPU cards and 32GB
memory. The learning rate for the actor network ⌘✓ and the
critic network ⌘! is set as 5e � 4 and 2e � 4, respectively.
We set � as 0.99 by default. We consider the caching states
of the past 24 time slots as the input for LSTM. The size of
the hidden layers is both 2048. We use the previous 80% data
for training and the rest of data is used for evaluation.
Baseline methods. We compare our MacoCache method with
several baseline methods as follows. 1) Least recently used
(LRU): This method always caches the most recently used
content in the cache and evicts those that are least recently
used. 2) Least frequently used (LFU): This method counts the
frequency of contents and always caches the most frequently
used ones. 3) Deep reinforcement learning (DRL) [23]: DRL
uses the same learning architecture as our proposed method
except that it only considers the caching situations of the
local edge. 4) Joint action learners (JAL) [24]: JAL utilizes
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Fig. 9. The average latency, traffic cost, edge hit ratio and neighbor hit ratio of different approaches for different cache size of each edge.
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Fig. 10. The average latency, traffic cost, edge hit ratio and neighbor hit ratio of different approaches for different number of neighbors for each edge.

a stateless multi-agent Q-learning method to conduct caching
decisions. Compared to MacoCache, it does not maintain the
historical request patterns and does not use a deep neural
network as policy representations. Unless otherwise specified,
the result of our model is represented as MADRL in the
experiments.
Evaluation metrics. We mainly evaluate the following per-
formance metrics. 1) Average latency: It is calculated as the
average latency value for all requests in every edge in a given
time period. 2) Average traffic cost: This metric includes two
parts of cost. The first part is the average total traffic cost of
requests in each edge for each time period. And the second
part comes from the cost of content prefetching for each edge
at the end of each time period. 3) Edge hit ratio: This metric is
calculated as the sum of requests with local hit and neighbor
hit divided by the total number of requests. It reflects the ratio
of content requests that are served by edge servers instead of
the remote CDN server. 4) Neighbor hit ratio: It is calculated
as the sum of requests with neighbor hit divided by the total
number of requests.

B. Evaluation Results

We first consider the impact of different edge cache capacity
on our evaluation metrics. We change the edge cache capacity
from 2% to 7% of the total active content number and show
the results in Fig. 9. From Fig. 9(a) and Fig. 9(b) we can
find that MADRL outperforms all other baseline approaches
in minimizing both content access latency and traffic cost
with different percentage of cache capacity. Even with quite
small cache space (2%), MADRL can reduce 73%, 50%, 21%,
14% latency and 103%, 98%, 59%, 26% cost compared with
LFU, LRU, DRL and JAL, respectively. Besides, these two
metrics have a decreasing trend for all approaches when we
increase the edge capacity since larger storage space enables

edge nodes to cache more content simultaneously so that more
video requests can be satisfied by local edge or neighbor edges.

From Fig. 9(c) we can find that our approach has about 13%
and 7% higher edge hit ratio than the state-of-the-art DRL and
JAL based approach respectively, not to mention the simple
rule-based approach LFU and LRU. This is because DRL only
considers maximizing the individual performance for every
single edge without well-planned cooperation and JAL may
not well capture the historical request patterns using a stateless
architecture. As a comparison, MADRL is able to fully mine
the time-sequential request features from the historical states
and jointly consider both its local situation and the neighbors’
situations, achieving a higher edge hit ratio. As to Fig. 9(d),
we find that DRL has the lowest neighbor hit ratio which is
below 10%. Comparing the edge hit situation and neighbor
hit situation of MADRL and DRL we can find that MADRL
sacrifices some local hit and spares a portion of cache space
to serve its neighbors. This tradeoff actually benefits more
edges since CDN fetching can be largely avoided, leading to
an average lower latency and traffic cost. Besides, note that
the neighbor hit ratio of MADRL and JAL decreases as the
capacity increase. This is because when cache space is large
enough, most requests can be served locally and the portion
of neighbor hit is naturally reduced.

We next change the number of neighbors for each edge
to evaluate the performance of different approaches. The
neighbors are selected from near to far for each edge (if
there are multiple neighbors with the same distance, we ran-
domly select the specific number from them). From Fig. 10(a)
and Fig. 10(b) we can find that MADRL outperforms other
approaches even when there are very few neighbors. When
the number of neighbors increases, the reduction of average
latency and cost are marginally declined. For example, the
latency reduction is 500% when increasing the number of



neighbors from 2 to 4 than from 10 to 12. This means the cache
cooperation among several nearby neighbors is usually enough
and considering too many neighbors is not so cost-efficient.
Similarly, the edge hit ratio and neighbor hit ratio also reveal
the same characteristics from Fig. 10(c) and Fig. 10(d). In
average, our MADRL based approach is able to achieve about
14% and 8% higher edge hit compared with DRL and JAL,
respectively.

VI. RELATED WORK

A. Caching at Network Edge
Mobile edge caching [2] emerges in recent years as a

new caching paradigm that enables the content fetching at
the much closer network edge, particularly the base stations
or APs, so as to reduce the traffic cost as well as content
access latency [3], [25]. Many existing approaches propose
specific models according to different caching situations. They
either rely on dedicated models with the content popularity
assumed to be known [6], [7], [26] or propose forecasting
models to predict the general content popularity based on such
features as historical patterns [27] and social patterns [28],
[29]. These approaches however are not adaptive enough to
well fit the highly dynamic and heterogeneous environment in
edge caching. Recently, many learning-based approaches [23],
[30], [31] have also been proposed to improve the caching
performance in edge, while they are mostly confined to cen-
tralized learning within one node that is not scalable enough
in edge context. Jiang et al. [24] models the D2D caching
problem as a multi-agent multi-armed bandit problem and
relies on Q-learning to learn a coordinated caching scheme
among multiple agents, while the stateless architecture may not
fully capture the high dynamics among different edges towards
a well adaptive strategy. Different from existing approaches,
our MacoCache framework leverages multi-agent deep rein-
forcement learning to well adapt the massively distributed
dynamics and diversities and achieve collaborative intelligence
for edge caching.

B. Deep Reinforcement Learning
In recent years, deep reinforcement learning has been widely

explored in many research fields given its powerful learning
capacity from the past experience. For example, Mnih et
al. [16] applies deep Q-learning in the popular Atari games,
which achieves excellent performance even beyond the average
human level. Mao et al. [14] develops a DRL based system that
is able to automatically select proper bitrate purely based on
the historical experience without any predefined rules. Pang et
al. [32] propose a multimodal DRL based approach to optimize
video quality selection in 360-degree video streaming. Wang et
al. [33] applied DRL for viewer scheduling and transcoding
selection in crowdsourced livecast streaming. The integration
of DRL and multi-agent learning, referred to as multi-agent
deep reinforcement learning (MADRL), further expands the
learning capacity to more complicated situations that need
cooperation or competition [34], such as spectrum sharing
in vehicular network [35] and traffic signal control [36]. In

this paper, we propose a MADRL based framework that is
carefully designed to afford the massively vibrant, diversified
and distributed caching environment to minimize both the
video access latency and the redundant traffic cost.

VII. FURTHER DISCUSSION

Active content set selection. Our MacoCache framework does
not conduct caching selection through the whole video set
since there are numerous video numbers in practical scenarios
and more than 80% videos are only accessed less than 5
times from our trace. We therefore focus more on those active
videos, which is also a common processing method in practical
caching service. Besides, how to forecast the popularity of
video content, especially for the near future time period,
has been widely explored with good performance in recent
researches [27], [29], which is not our focus in this paper.
Online updating. Our MacoCache framework supports online
updating and the selected set of popular content can also be
updated over time. According to the practical video watching
situation, we can define a content updating period, e.g. several
hours or one day, where the active contents for caching are
selected at each updating period. Based on it, the learning
model can be updated periodically with the latest content
request data. It is worth noting that the updating process and
the current prediction process are independent and the well-
trained model can be applied to the next period iteratively.
Scalability. Though we select a certain number of edges for
evaluation, our MacoCache framework is scalable to support
large-scale edge node for collaborative caching. In practical
deployment, each edge runs its own learning agent and shares
information among its neighbors, which renders much better
scalability compared to those caching approaches with a
centralized scheduler.

VIII. CONCLUSION

In this paper, we propose MacoCache, a novel edge caching
framework that leverages multi-agent deep reinforcement
learning (DRL) to better boost the edge caching performance
so as to minimize both the content access latency and the
traffic cost. Through our trace analysis on a real-world video
watching dataset, we demonstrate that both the content access
patterns and the content similarities among different edge areas
are highly heterogeneous and dynamic across both temporal
and geographical dimensions. Inspired by the recent advances
in deep reinforcement learning and multi-agent learning, we
therefore propose a MADRL based approach to well adapt the
massively distributed dynamics in the edge caching context
and achieve collaborative intelligence for edge caching. The
trace-driven evaluation further demonstrates the superiority of
our approach compared with the state-of-the-art solutions.
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