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Abstract— Recently backscatter networks have received
booming interest because, they offer a battery-free communica-
tion paradigm using propagation radio waves as opposed to active
radios in traditional sensor networks while providing compara-
ble sensing functionalities, ranging from light and temperature
sensors to recent microphones and cameras. While sensing data
on backscatter nodes has been seen on a clear path to increasing
in both volume and variety, backscatter communication is not
well prepared and optimized for transferring such continuous
and high-volume data. To bridge this gap, we propose a high-
throughput rate adaptation scheme for backscatter networks by
exploring the unique characteristics of backscatter links and
the design space of the ISO 18000-6C (C1G2) protocol. Our
key insight is that while prior work has left the downlink
unattended, we observe that the quality of downlink is affected
significantly by multipath fading and thus can degrade the uplink
and overall throughput considerably. Therefore, we introduce a
novel rate mapping algorithm that chooses the best rate for both
the downlink and uplink. Also, we design an efficient channel
estimation method fully compatible with the C1G2 protocol and
a reliable probing trigger, substantially saving probing over-
head. To combat interference, we further design an interference
detector using clusters and lightweight countermeasures to make
rate adaptation more robust. Our scheme is prototyped using
commercial RFID readers and tags. The results show that we
can achieve up to 2.6× throughput gain over state-of-the-art
approaches across various mobility, channel, network-size, and
interference conditions.

Index Terms— High-throughput, backscatter network, RFID,
rate adaptation.

I. INTRODUCTION

THERE is a long-standing vision of ultra-low power
ubiquitous sensor networks where many tiny sensors

are wirelessly connected and can perform continuous sens-
ing tasks without human intervention, e.g., Smart Dust [1].
Backscatter networks are one of the most promising candidates
to realize this goal as backscatter nodes -like RFID tags-
can capture power from propagation radio waves, making
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battery-free networks possible. Thanks to the advances of
energy efficiency scaling for microelectromechanical systems,
a wide range of applications that previously are only supported
by battery-assisted sensors become available for backscatter
networks, such as temperature or light intensity sensing [2],
acoustic signal capturing [3], and even video surveillance
[4]. While backscatter networks have seen the future of
increasing sensing data coming in, backscatter communication
that supports continuous and high-throughput transmission
is not quite ready yet. Recently there have been several
attempts that focus on revamping the traditional backscatter
protocols for more efficient transmission [5]–[7]. Yet incom-
patibility with industry standards, e.g., ISO 18000-6C (C1G2)
specification, and requirements of customized hardware hin-
der wide adoption of those proposals. As such, we aim to
design a high-throughput protocol that is fully compatible
with C1G2 using Commercial Off-The-Shelf (COTS) devices,
which can benefit tons of currently deployed backscatter
devices. To achieve this, however, there are several key
challenges:

• Ineffective Rate Selection: Prior work of rate selection for
backscatter networks only focuses on the uplink that is
for transmitting sensor data [8], [9], leaving the impact of
downlink rates largely uninvestigated. Actually, the down-
link is indispensable and implicitly involved in the uplink
transmission because any uplink has a downlink as its
predecessor, which means if the downlink fails due to
incorrect rate settings, the uplink would be discontinued.
This is the unique characteristic of the backscatter link
that a downlink and an uplink are sequentially combined
as a backscatter link. Therefore, if the downlink rate is
left unattended, even the optimal setting for the uplink
may not bring overall throughput gain.

• Probing Overhead: In backscatter networks, all transmis-
sions are scheduled by the reader through an ALOHA-
like MAC protocol because nodes cannot sense each
other. The performance of channel probing would
severely degrade due to MAC collisions when the node
population increases [8]. Although CARA [9] proposes
an estimation algorithm to compensate such collisions,
the probing process still needs to follow the above MAC
scheduling, prolonging the probing time. In addition,
the probing trigger, which is necessary for deciding
when to probe, could exacerbate the issue. For example,
Blink [8] requires measurements of at least 10 chan-
nels for its trigger, and CARA needs to probe at least
5 channels.
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• Limited Visibility for Channel Estimation: While it is
common that PHY hints for channel estimation, e.g.,
bit error rate (BER), are not available for most of the
COTS wireless devices, it becomes even worse when
we deal with COTS readers; even the packet level loss
rate is very difficult to obtain because COTS readers
only report the number of successful reads in a time
interval. Previous solutions either use an extra monitoring
device, like USRP, to sniffer messages transferred in the
air, or log commands from the reader into tags’ EPC
memory using Computational RFIDs (CRFID). Yet these
methods not only introduce more cost due to additional
hardware but also are inapplicable to situations where
only COTS devices are available.

To address the above issues, we propose a high-throughput
Rate Adaptation framework for Backscatter networks, RAB.
It is fast and efficient while being compatible with the
C1G2 protocol and existing commercial RFID readers. To do
so, it primarily makes three fundamental optimizations over
the current standard. First, our work provides insights that both
the uplink and downlink affect the overall throughput signifi-
cantly, which motivates us to adapt rates for both in contrast
to prior work that only focuses on the uplink [5], [8], [9].
Second, we describe a novel channel estimation method that
uses filter-based probing to effectively reduce errors brought
by MAC-layer collisions and estimates the loss rate by
leveraging the link timing features of the C1G2 protocol.
Third, we present a correlation-based channel hopping and
an accurate mobility detection approach that uses PHY hints
to determine when to trigger channel estimation, consider-
ably saving channel-probing overhead. Fourth, we design an
effective interference detector based on rate mapping clusters
and a robust rate-selection scheme to deal with rate distortion
brought by interference sources.

We build a prototype of RAB using a Thingmagic reader
and 100 Alien Higg3 tags. We compare RAB with Blink and
CARA and results show that across 120 traces with different
mobility, channel, and network-size conditions, RAB achieves
overall throughput gains of 2.6× over Blink and 2× over
CARA on average. This gain comes from two sources: First,
RAB reduces probing cost significantly by 9.1× compared
to Blink, and by 4.8× compared to CARA; Second, for data
transmission, our rate selection scheme achieves throughput
gains of 1.8× over Blink and 1.6× over CARA.

Contributions: We present RAB, a novel rate adaptation for
backscatter networks that for the first time investigates the
impact of downlink to the overall rate selection. As a result,
RAB improves throughput based on both uplink and downlink
variations. A complete robust link layer design is demonstrated
throughput extensive experiments.

II. BACKSCATTER PRIMER

Backscatter System: A backscatter system usually is com-
posed of a reader and one or more backscatter nodes,1 e.g.,
RFID tags. The reader initiates the communication by trans-
mitting carrier waves, which serves two purposes. First, the tag

1We use sensors and tags interchangeably in this paper.

Fig. 1. Examples of downlink and uplink symbols. The downlink rate,
ranging from 40 to 160 kbps, is controlled primarily by the length of Tari;
The uplink rate, ranging from 5 to 640 kbps, mainly depends on encoding
schemes (FM), Miller2/4/8) and backscatter link frequencies.

can capture energy from the radios waves and power itself for
computation and communication. Second, the tag backscatters
information bits by modulating the same carrier waves. While
many of the principles are generally applicable to all RFID
devices, here we focus on the UHF RFID devices whose
behaviors are defined in the C1G2 protocol [10].

Backscatter Link: While the reader is usually assumed
powerful, the tag is restricted in terms of computation, commu-
nication, and hardware capabilities since it can only capture
limited power from radio waves. Therefore, the asymmetry
exists almost everywhere in backscatter systems including
backscatter links. For example, the tag typical has a dipole
antenna with a gain of 2.1 dBi and a sensitivity of −13 dBm,
while the reader is with a circularly polarized antenna that has
a gain of 9 dBi and a sensitivity of −80 dBm. Accordingly,
the downlink symbols are amplitude-modulated Pulse Interval
Encoding (PIE) symbols, which are easy to decode because
an analogy comparator is enough. As shown in Figure 1,
downlink symbol ‘0’ is composed of a power-on interval and a
power-off interval of equal length. The total length of symbol
‘0’ defines Tari (Type A Reference Interval) and PW (pulse
width) is half of Tari. A symbol ‘1’ differs from ‘0’ only in
the power-on interval length; The total duration of ‘1’ should
be more than 1.5Tari and less than 2Tari. The C1G2 protocol
specifies the typical values of Tari: 6.25, 12.5, and 25 μs,
which correspond to downlink rates of 160, 80, and 40 kbps.2

In contrast, the uplink data rate is configured by setting BLF
(Backscatter Link Frequency) and different encoding schemes
(FM0, M2/4/8). For example, if the uplink is set at a BLF
of 250 kHz using Miller2, its data rate is 250/2 = 125 kbps.
Note that both rates of uplink and downlink are controlled by
the reader.

C1G2 Protocol: The C1G2 protocol specifies how the
reader interrogates tags through several rounds of handshaking.
We briefly describe its data reading as follows.3 As shown
in Figure 2, basically the reading process includes two phases:
ID transfer and Data transfer. First, the reader starts by
transmitting a QUERY command that contains a Q parameter,

2These are maximum rates assumed all symbol-0s.
3For more details please refer to [10].
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Fig. 2. Reading data from a tag following the C1G2 protocol. The reading
process includes an ID transfer phase and a Data transfer phase, each of which
has a handshaking through several different commands.

Fig. 3. The framework of our rate adaption scheme including three modules:
rate selection, channel estimation, and probing trigger.

which specifies how many slots are included in a query round.
Then the tag would choose a random number in [0,2Q -1) as its
slot counter. If this counter is equal to 0, the tag replies a 16-bit
random number (RN16); otherwise, the counter decreases 1
after each QUERY /QUERYREP. On receiving the RN16,
the reader sends an ACK that contains the decoded RN16 to
the tag. If the tag confirms the reader-decoded RN16 is correct,
it backscatters an identifier, EPC (typically 96 bits). This is the
end of the ID transfer phase. If the reader needs data from the
tag, it starts another round of handshaking through REQ_RN,
RN16, and ACK messages. If this round of handshaking goes
well, the tag would reply with the memory data upon receiving
a valid READ command.

Our focus in this paper is to choose optimal rates for
both the uplink and downlink that can maximize the over-
all throughput while conforming to the C1G2 protocol.
Optimizations from other aspects, such as rateless coding,
energy efficiency, or the fairness of MAC, are out of this
paper’s scope and thus are not considered.

III. OVERVIEW

Figure 3 presents the framework of RAB. The cornerstone
of RAB is our observation that we should adapt data rates
for both the downlink and uplink to maximize throughput.
While common wisdom says that the uplink rate should be
properly chosen to improve the throughput of the backscatter
link, we argue that the downlink rate should be treated in the
same way as there is a tradeoff in setting the downlink rate.
Our experiments show that too slow downlink rates could lose
the chance to increase throughput when the channel is good,
which motivates us to increase the downlink rate. At the same
time, we also observe that too aggressive downlink rates can
bring down the throughput even to 0 when a bad channel is
present because of the well-known sharp transition between
low and high loss rates [11] due to multipath fading. By using

a rate mapping algorithm, we choose the optimal rates for both
the uplink and downlink using overall loss rates and RSSIs that
capture multipath fading and path loss, respectively.

While RSSIs are the standard output of most readers, loss
rate measurements are not readily available. To measure the
loss rate accurately, we introduce a filter-based probing scheme
that avoids the potential MAC collisions of multiple tags
and thus is able to achieve fast probing regardless of the
tag population. To do so, we leverage the built-in SELECT
command provided by the C1G2 protocol, making our probing
lightweight and suitable for point-to-point measuring. In addi-
tion, we design a link timing based loss-rate estimation to over-
come the invisibility brought by the programming interfaces of
COTS readers. Link timing is another unique characteristic of
backscatter communication, which ensures the compatibility
of devices from different manufacturers. By using such link
timing structure, we can accurately approximate how many
queries have been sent and thus derive the loss rate.

The final module is to answer a question: when to probe.
We design a reliable probing trigger to further reduce the
probing cost by combing a PHY-assisted mobility detection
and a correlation-based channel hopping. In our mobility
detection, we mainly make use of a PHY-hint, phase, which is
widely used in many localization schemes and supported by
all COTS readers and the LLRP standard [12]. Differing from
[8], [9], it is lightweight and does not need measurements
from multiple channels. Channel hopping is another time
window for probing. We present a fast channel hopping that
is based on the observation that good/bad channels tend to get
together instead of being randomly distributed in the spectrum.
Therefore, our strategy is that staying away from the probed
bad channel and sticking around the good channel.

IV. RATE SELECTION

A. Backscatter Link Characteristics

As discussed before, a backscatter link consists of a down-
link that is Reader-to-Tag and an uplink that is Tag-to-Reader.
Prior work mainly focuses on adapting appropriate rates for the
uplink for two reasons. First, the path loss fading of an uplink
is more severe than its corresponding downlink because, while
power decays with the square of distance for the downlink,
it decays with the fourth power of distance for the uplink.
Second, the uplink is supposed to transfer more important data,
like sensing information, while the downlink is more viewed as
a way to disseminate parameters/commands. However, a key
point that is largely ignored is that if there is anything wrong
with the downlink, e.g., decoding errors, the corresponding
uplink would be discontinued, leading to handshaking failures.

From previous sections, we know that the downlink rate
can be set by adjusting the value of Tari. To examine the
impact of different Tari values on the throughput, we keep
a tag at a fixed place and BLF = 250 kHz. Then we vary
different encoding schemes for the uplink link. The results are
shown in Figure 4a. This is a link with good channel quality
where faster rates have better throughput. The optimal rates
in this case are Tari = 6.25 for the downlink and FM0 for
the uplink. Therefore in the case of good channels, we would
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Fig. 4. To examine the impact of data rates of both the uplink and downlink, we measure throughput with various settings. (a) is an example of a good channel,
which favors the fastest uplink rate (FM0) and downlink rate (Tari = 6.25); (b) is an example of a bad channel. Specifically, both FM0 and M2 encoding
settings do not work, and the performance of Tari 6.25 is even worse than that of Tari 12.5, which suggests Tari 6.25 is an aggressive choice. (c) is the
distribution of optimal Tari values across 100 random locations, showing that there is no single Tari value that is dominating.

miss the chance to increase throughput if a conservative Tari is
chosen. For example, with M2 for the uplink, the throughput
of Tari = 6.25 is 171 reads/s, but it drops to 120 reads/s with
Tari = 25. This observation motivates us to use the fastest
rate for maximizing throughput. However, this is not always
the case. As we move the tag to an 1-meter away location,
we observe different behaviors. As shown in Figure 4b, this
time the link is experiencing some difficulties because the
throughput of both FM0 and M2 encoding schemes is almost
0. In this case, the optimal rates become that Tari = 12.5 for
the downlink and M4 for the uplink. This case tells us that too
aggressive rates would not benefit but hurt overall throughput
in the case of not good channels. In addition, we measure
links at 100 random locations and plot the distribution of
optimal Tari values in Figure 4c, which shows that there is no
single Tari value that is dominating. To summarize, the above
observations suggest that the optimal Tari should be carefully
chosen to maximize the throughput based on the quality of
channels.

B. Rate Mapping

To find the optimal rates for the uplink and downlink,
we adopt a classification-based approach that takes loss rates
and RSSIs as input. Although RSSIs are inaccurate in mea-
suring backscatter signal strength due to self-interference [8],
they are still useful in indicating path loss. At the same time,
the overall loss rate entails multipath fading for both the uplink
and downlink. This feature is very important because our
hypothesis is that multipath fading is the main reason that the
aggressive rate, Tari = 6.25, would not always be the optimal
rate for the downlink where path loss is less of a problem.

Our rate selection map is built as in Figure 5. The intuition
behind this mapping is that when the loss rate increases,
more complex encoding schemes should be introduced for
resisting channel errors; when the RSSI decreases, the lower-
throughput uplink is used to combat path loss. In addition,
the impact of both the uplink and downlink under multipath
fading is accounted into the loss rate. Therefore, this mapping
essentially is able to deliver accurate and fast rate selection.
While classes in Figure 5 are only for illustration, the real sizes
and types of classes are empirically learned through a training
set collected in indoor environments. After all the classes are
established (class center and distance), we map a new pair of
measured loss rate and RSSI to the closest class.

Fig. 5. Optimal rate map of the uplink and downlink. When RSSIs decrease,
we choose the downlink with lower throughput. When loss rates increase,
we use slower encoding schemes of the uplink to combat the interference.
Note that BLF is not considered here for simplicity.

V. CHANNEL ESTIMATION

For rate selection, we assume that the loss rate is known.
However, it is not readily available in practice. In this section,
we show how to efficiently probe and estimate the loss rate.

A. Filter-Based Probing

Previous work of backscatter channel probing is neither
accurate nor efficient. The inefficiency of Blink and CARA
comes from the C1G2 MAC that is designed for tags that
cannot sense each other because probing packets still need
to follow the same MAC. There have been many solu-
tions on how to overcome such inefficiency [5], [13]. While
those efforts achieve significant efficiency by overhauling
the C1G2 MAC, they are overkill for just channel probing.
Furthermore, those solutions bring inevitable incompatibility
with the C1G2 protocol and thus lose interoperability with
many COTS tags.

Our solution for this is that we make use of the built-in
SELECT command of the C1G2 protocol to create a filter for
probing. The SELECT command is designed for choosing a
tag population for inventory and access. One or more tags
are selected by the reader according to user-specified criteria,
which is analogous to selecting records from a database.
In a SELECT command, the reader can specify which Memory
Bank to match, the associated starting address and length, and
a MASK. There are four types of memory banks: Reserved,
EPC, TID, and User memory. For example, if we know a tag’s
ID in advance, then we can easily make it selected by simply
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sending a SELECT command specifying the memory bank
as EPC, starting address as 0, length as 96, and MASK as the
wanted tag’s ID. This way, only the tag that matches the mask
would reply. Note that this method requires the ID information
before probing. As our goal is to maximize the throughput
for reading sensor data, we should know which sensor we
would like to collect data from in advance. Even sometimes
we may not know the sensor’s ID beforehand, as shown
in Figure 2, the data transfer phase is always preceded by
an ID transfer phase. Therefore, knowing the ID of a sensor
before transferring the data is not a problem for us. For the
rest of the paper we assume the IDs of tags are known before
reading sensor data.

Now by using the SELECT command, we enable a point-
to-point probing style that avoids MAC collisions completely.
Usually, a SELECT command is about 45-bit long (excluding
the MASK), which incurs some extra cost. However, such
cost is considerably less than the waste due to the inefficient
MAC. To better understand the performance improvement of
our selective probing, we can examine the time complexity for
different methods. It is easy to see that the time complexity
of probing for RAB is O(n), where n is # of tags. For
Blink and CARA, besides the C1G2 standard, they haven’t
mentioned any other settings or optimizations, so we assume
they follow the standard frame slotted aloha model. During
probing, if collisions happen, that would be counted towards
packet loss because commercial readers cannot distinguish a
packet loss due to bad channel or colliding. Hence, the min-
imal probing criteria is to probe each tag for at least once
while making collisions as few as possible. Although both
Blink and CARA do not specified the frame length setting
for probing, by following this criteria and frame slotted aloha
model, we can formulate this probing problem as the famous
“birthday problem”. From literature [14], [15], we know that
when the frame length is O(n2), collisions can be avoided with
high probability, i.e., with a high probability, h(ti ) �= h(tj )
for all i �= j, where h(x) is the hashed frame slot index, tx

denotes the x-th tag. Note that the time complexity of this
probing problem cannot be simply deduced from the well-
known maximum throughput for the frame slotted aloha model
that when both the frame length and number of tags are n,
1
e ∗ n singletons can be achieved. Even simply increasing the
frame length and tag population to en, the achieved 1

e ∗en = n
singletons cannot guarantee that n tags of interest are correctly
probed because collisions still exist and actually what we
need to probe are en tags. Hence, multiple frames are needed
even with 1

e -efficiency for each frame and the total time cost
would still be O(n2) according to [14], [15]. In addition,
such a multi-round probing scheme has a big disadvantage;
it is very difficult to probe the same tag for multiple times
due to randomly chosen slots in each frame. So for future
comparison, we use a single frame of O(n2) for Blink and
CARA. While optimizations of this O(n2) complexity are
possible for different application needs, it is out of the scope
of this paper. So we leave this discussion for future work since
we already provide a solution with O(n) complexity.

Fig. 6. Link timings of a probe. The C1G2 protocol has strict timing
requirements for each message, giving us opportunities to estimate loss rates.
P denotes either an uplink or downlink Preamble. FS denotes the Frame-Sync
symbol.

B. Loss Rate Estimation

After probing, the next step is to estimate the loss rate of
the link. Usually the loss rate can be estimated through the
following

rl =
prec

pprb
,

where rl is the estimated loss rate, pprb is the number of
packets probed in a time interval, and prec is the number
of packets received in that time interval. While prec is easy
to obtain for all kinds of RFID devices, things are different
for pprb . For USRP-based readers, pprb is not a problem as
they are fully programmable. COTS readers, however, do not
offer the way to obtain how many packets are sent or measure
the loss rate. In other words, they are more like a black box and
all we know is the probing time interval. Therefore, we need
to estimate how many probes/queries sent in a given period of
time. The time cost of a probing process can be modeled as
follows

tp = pprb ∗ tprb + prec ∗ trec + td,

where tp is the total probing cost for a tag, tprb is the time
cost for a single probing packet, trec is the time cost for a
single received packet, td is the composite built-in protocol
delay. The unknowns are pprb and td .

To estimate pprb , our first step is to take into account of
the data rate and the amount of data to be sent over both
the uplink and downlink. Then we need to find certain delays
built in the protocol, as shown in Figure 6. The first specified
timing limitation is T4, which is the time that the reader has
to wait before issuing another command. The length of T4 is
2RTcal, where RTCal = 0length + 1length . After the QUERY
command, the tag needs to wait for T1, of which the nominal
value is MAX(RTCal, 10Tpri ), where Tpri = 1/BLF. If there
is a reply from the tag, the reader must acknowledge it within
T2, ranging from [3Tpri , 20Tpri ]. T1 and T2 also apply to
the ACK and EPC messages.

If we set Tari = 6.25 and FM0 encoding, a probe would
take about 2.5 ms, corresponding to 400 probes/second.
However, in the field study, our measured result is around 250.
This is because there is a hardware-dependant command
delay between two probes. Besides this uncertain hardware-
dependent delay, we model all uncertain parameters in the pro-
tocol into a linear system, including T1, T2, T4, and 1length .
To build the linear system, we make multiple measurements
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across different settings and use the constrained least square
method to estimate unknowns.

Note that while many prior efforts try to solve this loss
estimation problem, they all need extra hardware. For exam-
ple, Flit [13] logs all the message counts into EPC using
CRFIDs; [16] uses an extra USRP-based monitor. In contrast,
we observe an opportunity to use the precise timing structures
that are specified in the C1G2 protocol and thus make is
compatible with commercial readers.

VI. PROBING TRIGGER

The probing trigger decides when to probe the channel,
which is very important because too often probing poses
unnecessary overhead and too rare probing would lose the
chance to adapt rates. Our probing trigger includes two indi-
cators: mobility detection and channel hopping.

A. Mobility Detection

When a sensor moves to another location, its channel
inevitably changes. At this time, the natural thought is that
a reader may need to choose the optimal rate for this new
position to maximize the throughput. While many localiza-
tion schemes have been proposed for RFID devices, they
either require a number of antennas [17], or are not fast
and lightweight enough for channel estimation purposes [18].
Blink [8] uses link signatures to detect mobility, yet it requires
measurements from at least 10 channels because RSSIs are
the only sources. Such multiple-channel detection introduces
too much overhead. To address this issue, we propose a more
effective mobility detection using both RSSIs and phases.

The solution is to use phase, a PHY-hint, which is supported
in COTS readers as specified in the LLRP standard. For every
successful read, the reader outputs a phase reading and an
RSSI value, making it virtually zero-overhead. The reported
phase is an effective way to measure the distance between the
reader and tag, R. The relationship between such distance and
measured phase, θ, is as follows [18],

θ = 2π
2R
λ

+ θD + θR + θM + Nπ,

where λ = is the wavelength, θD , θR , θM , are phase errors
brought by tag and antenna diversity, reflection characteristics,
and multipath, respectively, N is the integer ambiguity as
the measured phase is with period π. Therefore the distance
between two locations is approximated as

ΔR ≈ λ
4π

Δθ.

To set up a threshold that detects mobility, we conduct
an empirical study. From our field experiments, we observe
that when the tag is stationary, the phase measurement is
highly concentrated. Specifically, the variance is only 2.2◦,
and the gap between the min value and max value is
only 19◦ (0.33 radians), which only corresponds to 0.8 cm.
Therefore, we set up a threshold θth = 0.33.

Note that to ensure that N is the same for two consecutive
phases, the phase rotation between the two should be less
than π. This requirement is equal to that when the reading

rate is 50 reads/s, it can handle moving objects at velocity
up to 4 m/s, which is fairly enough for indoor applications.
When the reading rate is below this threshold, it could make
false negative alarms. To reduce this alarm, we use RSSIs as
a second metric and set its threshold at RSSIth = 1, which is
the granularity of RSSIs from COTS readers. Therefore, our
mobility detection works as follows. First, we check whether
the phase difference is greater than θth , if so, we label it as
a positive location change; otherwise, we check whether the
RSSI difference is greater than RSSIth , if so, it is positive,
otherwise negative.

Note that environmental mobility, e.g., human/metal objects
moving nearby, could be misidentified as location changes
because link characteristics, e.g., RSSIs and phases, are easily
affected by multipath. In fact, such misidentification is benefi-
cial to our system because it is the channel change that causes
misidentification and thus makes probing necessary.

Recently work on Tagwatch [19] introduces a rate-adaptive
reading system that first identifies mobile tags and then exclu-
sively read those tags. While both this work and ours have
mobility detection modules, there are at least two fundamental
differences. First, Tagwatch aims to improve reading rates at
the application layer, e.g., tracking, while we intend to boost
reading rates at the link layer. According to the popular OSI
model for networking [20], the link layer, which lies between
the physical and MAC layers, emphasizes adapting physical
lay modulation parameters to varying channels. We follow
the same principle and try to find the best modulation (Tari
values and encoding schemes) for both the downlink and
uplink. Nevertheless, Tagwatch aims at an upper application
layer and does not investigate physical layer parameters.
Second, Tagwatch’s mobility detection works at a coarse
time scale; it detects mobility at the scale of “3-5s” (See
Section 7 of [19]). Time scale here means how fast a mobility
detection module responds. On the contrary, ours works at
the order of tens of microsecond. Note that such a time-
scale difference does not come from the reading rate, but the
solutions and design goals. In particular, Tagwatch employs
a GMM model to approximate mobility for tracking purposes
where time-requirement is not too stringent while RAB needs a
faster approaches that can choose the best rate for the physical
layer, which requires to work within channel coherence time,
e.g., 100 ms. In short, RAB and Tagwatch perform mobility
detection for different purposes and working at different
network layers; thus they are complementary to each other
and can work together to bring better system performance.

Knowing the motion statuses of backscatter nodes can
further help rate adaptation. For example, if real-time location
information is available, the reader may tend to choose lower
rates when the node is far away. The moving direction and
speed of nodes are also very helpful when the reader wants
to know if the node is moving towards or away from some
“dead zones” where the slowest rate should be adopted to
combat severe channel conditions. Yet, deriving such motion
information accurately and timely is a challenge and most
existing solutions on the application layer are too heavy
for rate adaptation on the link layer. For example, Tagoram
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TABLE I

THROUGHPUT COMPARISON OF WITH AND WITHOUT INTERFERENCE
AT P1 THAT IS 30 cm FROM THE INTERFERING SOURCE

can achieve centimeter-level accuracy but requires too much
computation overhead and long delays [18].

B. Channel Hopping

Our second trigger is based on channel hopping, which is
mandatory as defined in the C1G2 protocol that the reader
can only stay on a channel in a time window. The quality of
channel may change due to hopping so that it is the chance the
reader needs to adapt rates. Prior work, such as selection in [8],
needs to probe all the channels to choose top ones, incurring
substantial unnecessary overhead. In contrast, our hopping
scheme is inspired by CARA [9], which is to use channel
correlation to largely reduce probing overhead. As we share
the same observation with CARA that good or bad channels
are clustered by channel indexes, the main difference is how
we fit this idea into our probing framework. Specifically, when
the current channel is good, we choose to probe the next
channel that is within hg-hop of the current one; if the probed
channel one is good, we stay, otherwise, we will switch to
another one that is far away from the probed one, say hb-hop
distance. The channel gap is empirically set at hg = 3 and
hb = 5. To decide a channel is good or bad, we use a very
conservative threshold 5 reads/s. The rationale of this setting
is the observation that the transition between high and low
loss rates is sharp [11].

Note that the fast switching method [8] may seem similar
to ours at first glance. First, the choice of the next channel
in [8] is random and thus non-directional, whereas our hopping
direction is guided by the channel correlation. Second, it needs
to measure burstiness of the channel, incurring on extra
burdens.

VII. COUNTERMEASURES AGAINST INTERFERENCE

Previously, we assume no interference for rate adapta-
tion; however, the channel quality is susceptible to wireless
interference, distorting our rate mapping relationship. The
interference sources could be other unscheduled RFID readers
and many other wireless devices operating on the 900 MHz
band, which has a very narrow bandwidth and harbors both
amateur and ISM frequencies. Typical devices using 900 MHz
include wireless LAN point-to-point bridges, remote control of
broadcast televisions, baby monitors, cordless phones, hobby-
ist radios, two-way radio talkie, etc. We perform controlled
experiments to examine how interference impacts our rate
mapping. As shown in Table II, when the interference source

TABLE II

THROUGHPUT COMPARISON OF WITH AND WITHOUT INTERFERENCE
AT P2 THAT IS 5 m FROM THE INTERFERING SOURCE

TABLE III

APPLYING THE LEARNED MAP TO DIFFERENT
SCENARIOS ACROSS TIME AND PLACES

is 30 cm away, the maximal throughput drops from 240 reads/s
without interference to 50 reads/s with interference. Note that
the optimal rate remains the same in this case. Neverthe-
less, this may not hold for other scenarios. We move the
interference source 5 m away as shown in Table III and
observe that the optimal rate changes from M4/Tari6.25 to
M4/Tari12.5. Therefore, we conclude that while interference
can significantly degrade the throughput, the optimal rate
changes indefinitely, which motivates us to design counter-
measures against interference.

First, we need to detect the existence of interference. Our
detection scheme is based on the observation that interfer-
ence distorts the rate mapping relationship. Hence, as shown
in Figure 7a, if the measured (RSSI, loss rate) pair falls out of
all classes, we classify it as the interfered pair. The rationale
for this is two-fold. When there is interference, it usually
requires higher RSSIs to achieve the same loss rate or the
loss rate increases for the same RSSI, both resulting in pairs
outside classes.

After interference detection, if no interference is found,
we perform rate mapping as described in the previous sections.
If some interfered source is spotted, we employ throughput-
based probing to choose the best rate. Because how the
best rate may change under interferences is uncertain, our
throughput-based probing is essentially exhaustive search. Our
throughput-based probing starts with the current best rate.
When there are four successive failures, we probe the next
level. Also, we have a timer, called probing interval. If the
rate has been staying at the same level for a probing interval,
there is a forced-probe for the next higher rate. As such,
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Fig. 7. We learn an empirical rate map from over 200 samples as in (a), which can be used to guide the rate selection for measured RSSI and loss-rate
pairs; then we compare RAB’s rate selection against BLINK and CARA, showing that RAB has significant improvement thanks to the optimal rate selection
of downlink rates.

Algorithm 1 Countermeasures Against Interference
1: Run the interference detection module
2: if interference detected then
3: state = interfered
4: while the probing interval ends do
5: throughput-based probing for the best rate
6: end while
7: probe the next higher rate
8: else
9: state = interference-free

10: Rate mapping
11: end if

the rate wouldn’t be trapped at a low rate. The pseudo-code
of interference countermeasure for rate adaptation is included
in Algorithm 1.

VIII. IMPLEMENTATION

In this section, we present how we conduct evaluation.
Reader: We mainly use a Thingmagic M6e reader for imple-

mentation, which is fully compatible with the C1G2 protocol.
Same as [8], the COTS reader has three limitations due to
API constraints: First, the data rate can only be set up at the
beginning of a query round; Second, the channel switching is
not lightweight and takes about 30 ms; Third, the minimum
probing time is 30 ms. We hope these factors will be addressed
in future readers. Currently, we only use trace-driven studies to
examine the aspects that are bounded by the above limitations,
such as channel switching.

Tag: Although we have tested many tags from different
vendors, such as Impinj, NXP, we do not observe significant
performance differences. Thus we choose a representative,
the Alien Higgs 3 tag, AZ-9640. One of the main reasons
that we extensively use this tag is that it has the largest
user memory, which is 512 bits, among tags in the same
price range. As the content of sensor data does not affect our
protocol at all, we write 512 random bits into the user memory
of each test tag in advance.

Parameter: The Thingmagic M6e provides two BLF
options, 640 kHz and 250 kHz, but only FM0 and Tari 6.25 are
allowed with 640 kHz. Thus we mainly use 250 kHz for
BLF on this reader, which allows Tari 6.25, 12.5, 25 and

FM0/M2/4/8 on this frequency. For probing, we set up Q = 1
to avoid MAC collisions and a filter of which the memory
bank is EPC, the starting address is 32, the length is 96, and
the mask is the target tag’s ID. The rates of probing packet
are fixed at the slowest: M8 and Tari 25. The reader power is
fixed at 30 dBm.

Competition: We compare RAB with two state-of-the-art
schemes, Blink [8] and CARA [9]. To ensure a fair competi-
tion, rate adaptation schemes from other wireless networks,
e.g., SampleRate [21], are not included as no clear stan-
dards or publications have specified how to adapt them to
backscatter networks, because a backscatter link is two-way
not one-way for other wireless networks.

Default Experimental Settings: By default, the tag no. is 5;
the backscatter link frequency is 250 kHz; the Q of the
ALOHA protocol is 1 for selective probing; each reading
period is 3 seconds; the length of tag data is 512 bits.

Due to the design of the C1G2 protocol, every tag-data
reading needs to transmit EPC (96 bits) first, which introduces
unnecessary delay and affects the overall reading performance.
To avoid such a limitation, we evaluate our method using
reads/s instead of the amount of tag-data traffic. To make
our proposal more suitable for transferring bulk tag-data e.g.,
sound and images, one of the most important future work
include designing burst read modes that can build a connection
first and then enter into flow-based transmission without rei-
dentification. Such a design may need to take the MAC-layer
redesign into consideration as well due to the fairness concern.

IX. EVALUATION

A. Rate Selection

To begin with, we investigate how our rate selection scheme
works. As Figure 5 only shows the intuition how rates would
adapt to different locations, the actual boundaries of different
classes could be irregular. Figure 7a is the empirical rate map
we learn from 230 randomly sampled locations in our testbed
of size 4m×5m. At each location, we measure all possible
combinations of downlink and uplink rates. As expected,
we observe that not every class is on the map and the bound-
aries are not regular. In addition, the trend of different classes
does go with our prediction that when the RSSI decreases,
the lower throughput of the downlink is favored; when the
loss rate increases, a slower encoding scheme should be used.
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Fig. 8. We examine our probing scheme in detail. (a) shows that a time interval of 30 ms is enough to accurately estimate loss rates; (b) shows that the
probing costs of Blink and CARA are way larger than that of RAB; (c) demonstrates that RAB achieves better throughput for various scenarios; (d) shows
our lightweight probing benefits the throughput in both static and mobile scenarios.

Note that our classifier has some errors. For example, some
points of FM0/Tari6.25 and M2/Tari12.5 are mixed, because
the throughput of both is similar.

To further check the impact of downlink rates, we compare
it with Blink and CARA. Since both Blink and CARA do
not consider the downlink rate, we make three variants for
them, each of which has a distinct Tari. The results are
plotted in Figure 7b. Not surprisingly RAB outperforms all the
variants of Blink and CARA because a single fixed Tari cannot
bring too much gain across different location and channel
conditions. One interesting thing to note is that the fastest
downlink rate, Tari 6.25, performs even worse than other
Tari values. It is mainly because that the too aggressive rate
hurts the downlink and makes uplink and overall throughput
suffered.

To verify the effectiveness of our rate map, we apply it
to various scenarios that are with different dates and places.
The results are shown in Table III. First, we test this rate
map for three consecutive days in our testbed and obtain
testing data of 200 samples for each day. We achieve more
than 90% rate selection accuracy and more than 90% of the
optimal throughput for three days, which shows the robustness
of our scheme against time. Then, we apply the map at three
different places including classroom, library, and lounge. The
rate selection accuracy decreases a bit due to the different
background of the place, yet the achieved throughput is still
more than 85% of the optimal one. This is because the
boundary errors in the empirical rate map make the rate
selection accuracy degraded, but the similar performance of
boundary points keeps the overall throughput not affected too
much.

B. Probing Cost

Next, we examine the impact of our probing scheme. First,
we need to determine how long should we probe. Figure 8a
shows the probing results across different time intervals for
3 different tags. We observe that the accuracy of probing is
not sensitive to the time interval for low and high loss rates.
Therefore, we set the probing interval at 30 ms. Note that
30 ms is the minimal time window that is allowed on COTS
readers.

Furthermore, we compare our probing cost against Blink
and CARA with different tag populations. To avoid the neg-
ative effect of 30 ms minimal window that severely degrades
the probing performance of Blink and CARA, this comparison

is done with traces. Figure 8b demonstrates that the probing
cost of Blink and CARA grows quadratically with the number
of tags while that of RAB increases linearly. Specifically,
the probing costs of Blink and CARA are 1612 ms and
1864 ms, corresponding to 6.7× and 7.8× more than that
of RAB when there are 20 tags. This is primarily due to
the filter-based probing paradigm that probes tags sequentially
while Blink and CARA need more time to deal with MAC
collisions.

In addition, to investigate how our probing benefits the
overall throughput, we compare RAB against state-of-the-
art schemes under complex scenarios. First, we examine
how RAB performs under different multipath environments,
including offices with normal multipath, corridors with severe
multipath, and NLoS scenarios with tags obstructed by a
wooden door. To eliminate the impact of MAC collisions
and channel hopping, we only use one tag and one channel
here. From Figure 8c, we observe that RAB is significantly
better than Blink and CARA in all three cases. This is
mainly because it uses a rate mapping scheme to select the
best rate for both the downlink and uplink, while previous
systems only rely on the uplink. As expected, RAB and
other systems experience throughput drop when multipath
becomes more severe. Nevertheless, RAB’s degradation is
less than Blink and CARA, showing strong resilience to
multipath. Next, we intend to examine how RAB behaves
under dynamic channel conditions. In particular, to examine
the performance under different speeds, we employ an iRobot
Create programmable robot, which has two powered wheels
and a third passive caster wheel maintains balance. According
to the official SDK, the maximum velocity can be set is
0.5 m/s. So we conduct tests under static, 0.1 and 0.5 m/s
for the iRobot, and a person attached with a tag of around
0.5 m/s scenarios. Figure 8d shows that the throughput of
RAB is considerably better than those of Blink and CARA
for both static and mobile scenarios. Furthermore, while there
is no much difference between Blink and CARA in the static
setting, CARA suffers more degradation than Blink does in
the mobile scenario because CARA is not mobility-aware.
Besides, RAB’s performance is quit stable across different
speeds, which can be attributed to its mobility-awareness.
In addition, the case of a person with a tag performs slightly
worse than the iRobot at the same speed. It is primarily
because a human usually absorbs more RF energy than the
robot, leading to lower backscattered signal strength.
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Fig. 9. Impact of interferences and countermeasures for different tag populations.

TABLE IV

QUERY ESTIMATION ACROSS DIFFERENT RATES. WE OBSERVE THAT THE
RELATIVE ERRORS OF QUERY ESTIMATION FOR RAB ARE WITHIN 5%

C. Loss Rate Estimation

Now we look to check link timing based loss rate estimation.
As the number of successful reads is known from the reader
output, we only need to examine the accuracy of query esti-
mation. For the ground truth, we use a USRP-based monitor
at a very close distance, 10 cm, to capture messages between
the reader and the tag. The results in Table IV show that our
estimation achieves less than 5% errors all the time and thus
are quite robust across a range of different rate settings. Such
errors do not affect the rate selection as shown in Figure 7a.
Note that while prior methods can also obtain loss-rate esti-
mates, they require either a USRP monitor or CRFID tags [13].
In contrast, our method is accurate and does not need any extra
hardware because we make use of the link timing feature of
backscatter communication.

D. Interference Countermeasures

To investigate effectiveness of our interference countermea-
sures and co-existence with other wireless devices, we first
examine the interference detection accuracy and the impact
on the single-tag throughput. We test three different interfering
sources: ImpinJ reader R420, Amateur radio Alinco DJ-G29T,
and WLAN bridge Nanobridge NBM9. As shown in Table V,
our detection accuracy are all above 75% for interference
strengths ranging from 33.9 to 0 dBm for all tested devices.

TABLE V

INTERFERENCE DETECTION ACCURACY AND IMPACT ON THROUGHPUT.
WE OBSERVE THAT THE STRONGER INTERFERENCE, THE LOWER

THROUGHPUT FOR DIFFERENT INTERFERENCE SOURCES

Particularly, for the ImpinJ reader, when the interference
strength is 30 dBm, the accuracy is as high as 92.3%.
The detection ratio becomes less accurate as the interference
strength is decreasing. The main reason is as the interference
level is low, the interference becomes more indistinguishable
from normal signals and thus hard to discover. Similarly,
when the interfering signal becomes stronger, the single-tag
throughput would go lower. For the amateur radio and
WLAN bridge, the achieved accuracy is still more than 90%.
In conclusion, our interference detection is robust for all those
different devices.

After detecting interference, we further conduct a bunch
of experiments to compare the performance with and without
our countermeasures. As shown in Figure 9, the comparison
is done across different levels of interference and differ-
ent tag populations. With interference countermeasures, high
throughput gains are observed for all scenarios. Specifically,
the throughput with countermeasures is 2.5× and 3.1× better
than cases at high and low level without countermeasures
when there are 5 tags. Similar observations can be made
when the number of tags increases to 10 and 15, shown
in Figure 9b and 9b. Such performance gains are mainly due
to our throughput-based probing scheme and the introduction
of probing timer.

E. Overall Performance

We now look at the overall performance of the whole
framework and compare it with state-of-the-art systems. First,
we study the static case where all tags are placed randomly.
Figure 10a shows that when there are 5 tags, the throughput
of RAB is 3.1× and 2.1× better than Blink and CARA,
respectively. The same trend can be observed when the number
of tags increases. As expected, all schemes degrade with the
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Fig. 10. Overall performance comparison under staticand mobile scenarios with different tag populations.

increasing number of tags because of more coordination time
needed.

When it turns to the mobile case in Figure 10b, all of the
three systems are affected by mobility differently, but RAB
is still the best across different tag populations. Particularly,
when the number of tags is 20, RAB achieves 2.5× and 5×
throughput gains over Blink and CARA. CARA is the worst
due to its lack of mobility detection module.

Then we conduct over 120 tests across different mobil-
ity, channel, and network-size conditions. Due to equipment
constraints, currently we are unable to Þnd a number of
robots to carry tags so we invite 20 volunteers. We let each
volunteer carry 1 tag when there are less than 20 tags.
When the tag population is 100, each one takes 5 tags. For
mobility, we ask volunteers to randomly walk no faster than
1 m/s. For channels, we collect the data across 1-week at
two difference places. The overall gains and its breakdown
on average are reported in Figure 10c. RAB achieves overall
throughput gains of 2.6× over Blink and 2× over CARA.
We break down this gain and Þnd that RAB reduces probing
cost by 8.2× and 4.3× over Blink and CARA. The majority
of this probing gain comes from the Þlter-based probing
design as it successfully avoids MAC collisions while being
compatible with the C1G2 protocol. Meanwhile, regarding
data transmission, RAB is 1.8× and 1.6× better than Blink
and CARA. This transmission gain is mainly brought by the
downlink-aware rate selection scheme while all prior systems
leave the downlink unattended.

X. RELATED WORK

Backscatter Communication EfÞciency:Backscatter com-
munication optimizations can be roughly classiÞed into
two categories: C1G2-compatible and C1G2-incompatible.
Buzz [5] introduces a rateless coding for backscatter nodes,
which achieves lossless transmission. Flit [13] designs a new
MAC that enables burst transferring bulk data, signiÞcantly
reducing wasted time by the C1G2 MAC. Laissez-Faire [22]
and BiGroup [23] propose to decode parallel transmissions
by analyzing signals in the both time and IQ domains, which
can work at moderate and high SNR scenarios. Those C1G2-
incompatible optimizations achieve substantial performance
gain but fall short of accommodating billions of deployed
RFID readers and nodes. Some C1G2-compatible improve-
ments have been proposed recently. Blink [8] makes use of
unique backscatter link signatures to detect mobility and adapt
rates. CARA [9] observes the opportunity that throughput can
be improved by channel-aware rate selection. Unlike both

that focus on the uplink rate selection, we observe that the
downlink rate could greatly affect the overall throughput as
well. In addition, our Þlter-based probing tries to efÞciently
estimate channels and avoid collision problems that are not
well considered before.

Rate Adaptation: Rate adaptation has been widely
researched in active-radio based wireless networks, like
802.11. BER [24], SNR [25], [26], and loss rate [27] are the
most commonly used metrics. While our work shares the same
idea that chooses the optimal rate that maximizes the network
throughput by estimating the channel quality. Those methods
have limited applicability to backscatter systems, especially
for the C1G2 protocol. For example, the limited visibility of
current COTS readers makes even loss rates hard to observe.
To solve this, we use the link timing features speciÞed by
the C1G2 protocol to approximate the loss rate. In addition,
we accurately deduce mobility hints using RSSI and phase
measurements together.

New Backscatter Paradigms:Several novel backscatter sys-
tems where nodes are powered by various sources have
been proposed, e.g., WiFi-backscatter [28]Ð[30], Bluetooth-
backscatter [6], FM-backscatter [7]. LoRa backscatter is pro-
posed to signiÞcantly increase the backscatter operation range
to about 500 m using commodity LoRa hardware [31].
Long-range WiFi-based backscatter communication that is
compatible with commodity WiFi device uses code translation
to piggyback the sensor data on the ongoing WiFi communi-
cation [32], which also extends to Bluetooth and ZigBee [33].
Those systems largely extend the operating range of traditional
readers and see a bright future of interconnecting more and
more wireless devices. Yet, their interpretability with C1G2 is
worth further investigation.

XI. CONCLUSION AND FUTURE WORK

We have presented RAB, a protocol that is to optimize
throughput within the C1G2 standard from many aspects,
including downlink-aware rate selection, Þlter-based prob-
ing, lightweight probing triggers, and robust interference
countermeasures. Our prototype has shown that considerably
throughput gains have been achieved over state-of-the-art
schemes. With more and more backscatter sensors have been
invented, we believe RAB can beneÞt a wide range of Internet-
of-Things applications.
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