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Abstract—With the advances in personal computing devices
and the prevalence of broadband network and wireless mobile
network accesses, end-users are no longer pure content consumers,
but contributors, too. In today’s crowdsourced streaming systems,
numerous broadcasters lively stream their video content, e.g.,
live events or online game scenes, to fellow viewers. Compared
to professional video producers and broadcasters, these new
generation broadcasters are geo-distributed globally and highly
heterogeneous in terms of the generated video quality and the
network/system configurations. The scalability and heterogeneity
challenges therefore lie on both broadcasters and the viewers,
which call for massive transcoding, and two critical issues:
1) choosing video representation set that maximizes viewer
satisfaction and 2) allocating computational resources that
minimize operational costs, must be systematically optimized in
the global scale. In this paper, we present a generic framework
utilizing the powerful and elastic cloud computing services for
crowdsourced live streaming with heterogeneous broadcasters
and viewers. We jointly consider the viewer satisfaction and
the service availability/pricing of geo-distributed cloud resources
for transcoding. We develop an optimal scheduler for allocating
cloud instances with no regional constraints. We then extend
the solution to accommodate regional constraints, and discuss a
series of practical enhancements, including popularity forecasting,
initialization latency, and viewer feedbacks. Our solutions have
been evaluated under diverse networks and cloud system
configurations as well as parameter settings. The trace-driven
simulation confirms the superiority of our design, while our
Planetlab-based experiment offers further practical hints toward
real-world migration.
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I. INTRODUCTION

W ITH the advances in personal computing devices, and
the prevalence of broadband and mobile network ac-

cesses, end-users are no longer pure content consumers, but
contributors, too. Crowdsourcing was first introduced in 2005
by Merriam-Webster as a way to obtain resources by collect-
ing contributions from crowds of people, instead of employ-
ees or suppliers, particularly in the online community. Since
then, crowdsourcing has been attempted as the method for var-
ious tasks and applications. Over the past three years, crowd-
sourced live streaming have emerged too, with a series of real-
world platforms being available in the market, such as Youtube
Live, Azubu.tv, Hitbox.tv, Dailymotion Games, and Ustream,
to name but a few. In these platforms, numerous broadcasters
lively stream their video content, e.g., live events or online game
scenes, to massive fellow viewers. One of the most successful
representatives, Twitch.tv (also referred to as Twitch TV), al-
lows any users to broadcast their live gaming videos from a wide
range of platforms. It attracted more than 100 million unique
viewers per month in 2014 with the peak online viewer num-
ber exceeding 1 million,1 which further reached 1.5 million in
March 2015 as measured by us. It is now ranked fourth among
all the Internet traffic contributors in the US, only below Net-
flix, Google and Apple [6]. In September 2014, Twitch TV was
acquired by Amazon for US$970 million, and more recently,
in August 2015, Google has also officially launched YouTube
Gaming to directly compete with Twitch, bolstering YouTube’s
streaming capabilities and offering the ability to upload videos
running at 60 frames/s.

Compared to professional video producers and distributors
(e.g., TV channels or Netflix), the new generation broadcasters
are geo-distributed globally and highly heterogeneous in terms
of the generated video quality and the network/system config-
urations. The system is also extremely dynamic over time, for
both the overall population and the distribution of viewers in
each region. For example, based on our measurement through
Twitch API and data from [1], Twitch TV now has live video
content coming from contributing sources in more than 100
different countries with over 150 different resolutions, being
shared by viewers all over the world. Although the total number
of online viewers peaks at 1.5 million, it can be less than 200
thousand in the same day.

1[Online]. Available: http://www.twitch.tv/year/2014
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To cope with the heterogeneity and dynamics of the net-
works and end viewers, such major video content providers
as YouTube and Netflix have deployed adaptive bitrate (ABR)
streaming and more recently dynamic adaptive streaming over
HTTP (DASH) [2]. The source videos with diverse qualities
and formats are encoded into a uniformed format and further
transcoded into several quality representations. Each represen-
tation (i.e., a quality version) of a video corresponds to a reso-
lution at certain bitrate [3]. Crowdsourced live streaming plat-
forms have also started deploying ABR and DASH with adap-
tive switching, but so far for a small number of broadcasters
only. e.g., Twitch TV only offers transcoding service to its pre-
mium broadcasters, who only make up only 1% to 1.5% of all
broadcasters. In the rest of the paper, we will interchangeably
refer to terms channel and broadcaster to indicate the video
broadcasting unit in crowdsourced live streaming systems.

Meanwhile, cloud computing has been widely deployed, and
we have witnessed many cloud-assisted/-based multimedia ser-
vices emerging in both academia and industry [2], [4], [5]. As
video encoding and transcoding are both computation-intensive,
and the demands from broadcasters and viewers vary dramati-
cally over time, cloud with elastic resource provisioning is an
accelerator of great potentials for the new generation of crowd-
sourced live streaming systems. The scalability and heterogene-
ity challenges from both broadcasters and viewers however are
unprecedent, calling for advanced solutions beyond those for
conventional video services [6].

In this paper, from realworld data, we identify the bene-
fits and challenges when deploying cloud-based systems for
crowdsourced live streaming. We examine the resource allo-
cation problem of assigning geo-distributed cloud service to
broadcasters for video transcoding and delivery, as well as the
decision problem of choosing video representation set for every
individual broadcaster to enable ABR/DASH. These two prob-
lems interact with each other: different video representation sets
result in different computation workload for the cloud assign-
ment, while the pricing and performance of the cloud services in
different regions also affect the decision of video representation
sets. We present a generic framework with an optimal scheduler
for allocating cloud instances with no regional constraints. We
then extend the solution to accommodate regional constraints,
and discuss a series of practical enhancements. Our solutions
have been evaluated with large-scale trace-driven simulations
and Planetlab/Amazon EC2 based experiments.

II. BACKGROUND AND RELATED WORK

Video streaming over Internet has become a mainstream
“killer” application over the past two decades [2]. Free video
sharing site Youtube now has over 1 billion viewers and around
300 h of video being uploaded every minute;2 Fee-based com-
mercial video provider Netflix has 65.55 million subscribers
worldwide, doubled its subscription number in just two and half
years.3 The content generation and delivery architectures have

2[Online]. Available: https://www.youtube.com/yt/press/statistics.html
3[Online]. Available: http://www.statista.com/statistics/250934/quarterly-

number-of-netflix-streaming-subscribers-worldwide

also evolved, from a single server framework, to content distri-
bution networks (CDN) [7] and peer-to-peer [8] for large scales.
More recently, cloud-assisted/-based systems have emerged for
video streaming services [4], [5], [9], [10]. To accommodate
network and device heterogeneity and dynamics, ABR stream-
ing [2] and the standardized DASH have been widely used [11].
They allow heterogeneous viewers to select among multiple
quality versions of the same video, but require intensive compu-
tational resources for transcoding these video quality versions.

There have been many earlier works addressing resource al-
location and optimization in streaming systems. Wu et al. [12]
considered coping with geo-distributed and time-varying video
demand worldwide; Wang et al. [4] introduces the strategy of
renting cloud servers with consideration of viewer locality and
viewer assistance. For transcoding, Huang et al. [5] designed
CloudStream, which schedules the video transcoding tasks in-
side a cluster based on video properties. Chen et al. [9] made
an initial study on the emerging crowdsourced live streaming
systems, and proposed a cloud renting strategy to optimize the
cloud site allocation for transcoding video contents provided by
geo-distributed live broadcasters. They have generally assumed
that the workload is fixed, e.g., the video representation set for
transcoding are pre-determined.

The overall workload for transcoding indeed depends on both
the set of channels to be transcoded and the set of targeted
video representations. Pires and Simon [13] studied the tradeoff
between the cost for transcoding and video delivery. Toni et al.
[14] introduced an integer linear programming model to find
the optimal set of video representation from the users’ Quality
of Experience (QoE) perspective. Aparicio-Pardo et al. [15]
further examined live video stream processing in the cloud, with
adaptive selection for the video representation set. Nevertheless,
these works have not addressed the geo-distributed workload
assignment and video delivery in the crowdsourced context,
particularly with cloud.

III. MOTIVATIONS AND SYSTEM STRUCTURE

A. Observations and Insights

From February 2015 to June 2015, we captured the data of the
broadcasters from Twitch TV every five minutes, using Twitch’s
public application programming Interface (API).4 This public
API provides the game name, viewer number, stream resolu-
tion, broadcaster language, premium partner status (Yes/No),
and some other related information of each channel. It however
does not provide certain detailed information about the viewers,
such as their network conditions, choices of video resolution,
or physical distributions. The geographical and bandwidth in-
formation of the broadcasters is not provided, either. Therefore,
we rely on datasets from [16] and [1] to estimate network and
demographic statistics, respectively.

Many of the observations from the Twitch TV data are consis-
tent with those from conventional video streaming systems, e.g.,
heterogeneous and dynamic viewers [2], [17]. Yet the hetero-
geneity becomes much stronger, not only on the viewers’ side,
but also on the broadcasters’ side. There is a variety of source

4[Online]. Available: http://dev.twitch.tv
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Fig. 1. Distribution of source stream resolutions.

Fig. 2. Geographical distribution of Twitch crowdsourcers (broadcasters)
worldwide.

Fig. 3. Viewer bandwidth distribution (CDF) in different regions.

stream resolutions, as shown in Fig. 1, where 177 different reso-
lutions ranging from 116 to 1600 p were detected from the data
captured on March 7, 2015 at 15:00 PST. There is clearly a need
to unify the video representations of the highly heterogeneous
source videos.

The viewers’ and the broadcasters’ distributions are also het-
erogeneous across regions. Fig. 2 shows the distribution of the
broadcasters in different continents. On the other hand, although
it is hard to identify the actual stream resolution choice for each
viewer, the preferred video representations of the viewers are
likely vary from region to region, according to the general band-
width conditions shown in Fig. 3. e.g., viewers in France may
generally prefer higher quality video than those in Germany.
As such, when unifying the representations, the regional dif-
ferences should be taken care as well, and the target quality

Fig. 4. Maximum and minimum online viewer number of every month from
July 2014 to June 2015.

Fig. 5. Overall system architecture of crowdsourced live streaming with cloud.

versions therefore should carefully chosen. Given the massive
broadcasters, the system scale is also becoming more dynamic.
Fig. 4 illustrates the maximum and the minimum viewer num-
bers within each month from July 2014 to June 2015 (data from
Stats TwitchApps5). The area between two lines in the figure
can be regarded as the scale dynamics of the system, which is
noticeably growing over time.

Above observations motivate us to use elastic cloud to
transcode crowdsourced video content, with careful manage-
ment of resource allocation and target video representation set.

B. System Architecture Overview

We now illustrate the overall system architecture in Fig. 5,
which seeks to address the unique challenges of the crowd-
sourced live streaming. At the top level, the many crowdsourcers
(i.e., broadcasters) upload video streams from different plat-
forms to the cloud in real time through such protocols as real
time messaging protocol [6]. The video broadcasters form a set
B = {b1 , b2 , . . . , bn}. Once entering the cloud, a source stream
will first reach one core server from a core server group c0 ,
which is regarded as cloud level 1. These core servers are dis-
tributed in different regions, A = {A1 , A2 , . . . , Al}, and keep

5[Online]. Available: http://stats.twitchapps.com/
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TABLE I
NOTATIONS IN THE FORMALIZED PROBLEM

Name Description

C set of available cloud instances for renting
R global video representation set
wi target video representation set for channel i

B set of broadcasters
S (wi ) satisfaction level with representation set wi

P (i) popularity of channel / broadcaster i

S set of renting schedule
l(j ) cost for renting a cloud server j per unit time
v (j ) cost for unit outbound data of cloud server j

Cv (·) cost for outbound data of amount (·)
A set of regions
D (A, t, r) demand of video at bitrate r at time t in region A

reporting the broadcasters’ information to a master server. The
master server will further assign server instances in the cloud for
transcoding tasks. The core server then forward the streams to
the allocated cloud instances defined as C = {c1 , c2 , . . . , cm},
in cloud level 2. Each cloud instance will transcode the original
source stream into a target quality version, and then broadcast to
viewers. For each channel, we try to assign cloud servers from
the same region, to avoid duplicated cross-region transfer of
source streams with extra cost, and more importantly, to mitigate
the delay variance of different quality versions. Given that video
transcoding, especially realtime video transcoding, is computa-
tionally intense, we need one dedicated CPU (also referred to
as core) for each output video representation to guarantee the
transcoding quality. Though multi-core cloud instances can also
be deployed to generate multiple video representations simul-
taneously, the number of output video representations shall not
exceed the number of cores, and from [18] we know the rental
price of a cloud instance is proportional to the number of cores
of the instance. Therefore, we regard one cloud instance per
core as the basic computational unit. In cloud level 1, we pro-
pose to use General Purpose cloud instances (e.g., Amazon m3
and m4) to collect source stream, and use Compute Optimized
instances (e.g., Amazon c3) as master server for decision mak-
ing. In cloud level 2, we choose Compute Optimized instances
for video transcoding and delivering. Table I summarizes the
important notations.

IV. CLOUD RESOURCE SCHEDULING: PROBLEM AND

OPTIMAL SOLUTION

We first formulate the problem of cloud resource scheduling,
and then put forward a greedy approach for optimal scheduling
when there are sufficient cloud instances.

A. The Cloud Resource Scheduling Problem

Our task is to assign cloud server instances6 in different re-
gions to live channels for video transcoding. In particular, we

6Unless otherwise specified, we use cloud server and cloud instance inter-
changeably in the paper.

need to decide the target video representation set for each broad-
caster, according to its popularity and viewer distribution, as
well as the cloud service pricing policies in each region.

Let R = {r1 , r2 , . . . , rm} be the global video representa-
tion set; e.g., if R includes 360, 480, 720, 1080, 4 K, then
each channel, after transcoding, can have at most these five
video quality levels, but can be less with resource constraints.
Let wi be the target video representation set of broadcasting
channel bi , which starts from including the lowest level only,
and if resources are available, expands in the ascending order
of video quality levels, i.e., {360p} → {360p, 480p} → · · · →
{360p, 480p, 720p, 1080p, 4K}. This way, each channel will of-
fer at least the lowest quality level that most of the viewers can
watch and the user experience can be gradually enhanced by
adding more levels; yet other orders of expansion would be used
as well depending on the specific application. We further define
the average satisfaction level for a channel with representation
set wi as S(wi), and P (i) as the popularity level for broad-
caster bi , which is proportional to the number of its viewers.
The overall satisfaction level for a live channel is P (i) · S(wi).
Specifically, we base our satisfaction function on the experimen-
tal results in [14], and we further modify the parameter settings
of this logarithmic shaped function to adjust to our scenario, so
that the maximum value is 1 when wi contains all the available
video representations. In our evaluation, the parameters a and
b in the below satisfaction function are set to 1 and 1 − log(5),
respectively, so that S(wi) = 1 when |wi | = 5. The overall sat-
isfaction below then measures the viewers’ QoE for the whole
system

S(wi) = a · log(|wi |) + b; Q =
∑

i∈B

P (i) · S(wi).

In terms of the cloud service, c0 is the pre-allocated core
server group, and C = {c1 , c2 , . . . , cm} is the set of cloud
servers we can rent from. l(j) and v(j) are the rental cost per
unit time and unit outbound data charge of cloud instance j,
respectively. Cv (·) presents the total cost of outbound data of
amount (·). We assume that a cloud instance, once being rented,
can start service instantly. We will later address the impact of
the initialization latency. We also define the cloud service rental
schedule as S = {(x1 , t1 , d1), (x2 , t2 , d2), . . . , (xk , tk , dk )}, in
which one unit (xj , tj , dj ) means we rent cloud instance xj

from time tj for duration dj . Note that the scheduling policy
must be conflict free, that is, one cloud instance cannot to be
rented twice at the same time.

Given the physical distribution of viewers, the locations of
the rented cloud instances should be optimized as well, which
reduces the delay between viewers and cloud servers and mini-
mizes the long-haul traffic, particularly the expensive cross-ISP
traffic. Given regions set A, for a cloud server cj , we use cj ∈ A
to denote that it is in region A. Additionally, we use D(A, t, r) to
represent the online population of viewers (or demand) watch-
ing channel at r bitrate in region A at time t. The overall cost for
renting the cloud service and bandwidth usage for data traffic at
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time t is therefore

l(c0) +
∑

(xj ,tj ,dj )∈S
l(xj ) · I[t∈[tj ,tj +dj )]

+Cv

( ∑

A∈A

∑

r∈R
D(A, t, r) · r

)

where the second and third parts are for rental costs and out-
bound data charges, respectively. As the core server group c0 is
predetermined and fixed, we focus on minimizing the left parts,
which is denoted as C

C =
∑

(xj ,tj ,dj )∈S
l(xj ) · I[t∈[tj ,tj +dj )]

+ Cv (
∑

A∈A

∑

r∈R
D(A, t, r) · r).

The cost for the cross-region traffic F is

F =
∑

A∈A

∑

r∈R

( ∑

(xj ,tj ,dj )∈S
D(A, t, r) · r · I[t∈[tj ,tj +dj ),xj /∈A ]

)

where the indicator function I[·] is valued 1 if [·] is true, or 0
otherwise. D(A, t, r) · r is the total amount instant data traf-
fic consumed at representation r by viewers in region A. And
D(A, t, r) of each region is determined by the video represen-
tation set wi of each channel, and the distribution of viewers
consuming each representation of wi in that region.

Thus, our goal is to match one or more cloud servers to one
broadcaster to maximize the reward and to minimize the overall
cost. In particular, the reward is the total viewer satisfaction,
or the overall QoE, while the cost comes from renting servers,
outbound data charges and cross-boundary network traffic; The
number of cloud instances matched to a broadcaster is the num-
ber of video representations that broadcaster has. Unfortunately,
these objectives come with inherent contradictions, e.g., provid-
ing more video representations leads to higher viewer satisfac-
tion level but increases the rental cost. We therefore resort to a
comprehensive cost, a sum of them with different weights that
reflect the tradeoff

Costcomprehensive = α · (Qmax − Q) + β · C + γ · F
where α, β, γ are the weights depending on specific application
and the network, cloud, and end-user configurations. We will
examine their respective impact later. Qmax is the maximum
viewer QoE, which is achieved when all viewers are watching
the video with maximum satisfaction, i.e., when every chan-
nel is provided with all available video representations. The
second part C is only about the actual financial cost we need
to minimize, while the third part F relates to the overall sys-
tem performance, especially the streaming delay and playback
fluency.

B. Greedy Rental Scheduler (GRS)

We now consider the solution for renting cloud instances at
a given time t. Algorithm 1 shows a GRS. Given the detailed
viewer information of each channel, the channels are first ranked
in decreasing order of popularity (line 1). The cloud instances in

Algorithm 1: Greedy Rental Scheduler

1: Sort B in decreasing order of their Popularity P (·)
2: Sort C in each region in ascendant order of l(·)
3: for i from 1 to |B| do
4: initialize an empty queue queue
5: for region s in A do
6: for j from 1 to |R| do
7: push cost(i, j, s) together with its corresponding

scheme into queue
8: end for
9: end for
10: sort queue in ascending order of cost
11: if the first item x in queue is feasible then
12: add x to schedule and decrease corresponding

cloud instance number
13: else
14: check the next item in queue until one is feasible
15: end if
16: end for
17: return the schedule

each region are sorted in ascending order of l(·), as the rental cost
is the major part of overall cost, and indeed the data charge rate
v(·) is always proportional to l(·). Such pre-sorting allows more
popular broadcasters to be considered first, and cloud servers
with cheaper unit cost to be selected first in each region. Then,
for each channel, a queue is constructed containing all possible
rental schemes (line 3–9). The scheduler uses the comprehensive
cost as key to sort this queue and chooses the optimal scheme
with the least comprehensive cost of that channel (line 10–12).
If the least-cost scheme is not feasible (i.e., not enough cloud
instance for the remaining channels), the next scheme along
the queue is selected (line 13–15). The GRS records the rental
scheme in every step and returns the overall schedule before
its termination. Note in the algorithm, the function cost(i, j, s)
calculates the comprehensive cost to serve the ith channel with
j cheapest cloud instances in region s, using the last formula
provided in the previous Section IV-A (the linear combination of
Costcomprehensive). The time complexity of GRS is O(|B| |A|),
as every broadcaster (line 3) will be tried with cloud instances in
every region (line 5), assuming |R| is a small and fixed number
(e.g., |R| is 5 for Twitch TV).

Theorem 1. The GRS is optimal when there is sufficient
cloud instances in each region.

Proof: We prove by induction that after |B| iterations of the
main loop, the GRS has the minimum comprehensive cost.

Base case: if we only have one channel, the algorithm returns
the schedule with minimum comprehensive cost, which is the
optimal schedule for this channel. The result is optimal.

Induction step: assume the claim is true after the optimal
schedule for k channels have been calculated. For the (k + 1)th
channel, the algorithm again tries to use the cheapest idle cloud
instances from each region to calculate possible rental schemes
and sorts them by comprehensive cost in a queue. Because we
have unlimited number of cloud instances in each region, the first
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scheme in the sorted queue with the least comprehensive cost can
always be achieved, and therefore it again provides the optimal
schedule for the (k + 1)th channel. The new schedule for all first
(k + 1) channels is still optimal. Therefore the greedy algorithm
is optimal when there are always sufficient cloud instances in
each region.

V. ACCOMMODATING REGIONAL LIMIT ON SERVICE SUPPLY

The GRS works optimally with sufficient cloud service pro-
vided in every region. Although ideally the cloud should provide
virtually infinite amount of computational resources, most ex-
isting cloud service providers indeed have imposed strict usage
constraints. For example, the on-demand and reserved instance
limit for Amazon c4.4xlarge are 10 and 20 per account,
respectively [19]; in Microsoft Azure, the limit for virtual ma-
chines per availability set is 100 [20]. Any demand beyond these
limits requires special approval, and will not always be granted.
Given the limited service supply, the greedy GRS keeps choos-
ing optimal sub-schedules until the point where only enough
cloud instances are to serve the same number of channels, re-
sulting in poor schedule overall.

A. Scheduling With Limited Cloud Service Supply (SLCS)

We now extend the greedy solution to a dynamic program-
ming based algorithm (SLCS). As shown in Algorithm 2,
we define a table (line 3) of size |B| · |C| where table(i, j)
stores the best state found for first i channels with j cloud
instances rented. A state is a data structure that stores the com-
prehensive cost (state.cost) and numbers of cloud instances
left (state.cloudOfRegion[regionNumber]) in each region.
tmpState and finalState are two instances of state repre-
senting the temporal intermediate state and final result state,
respectively. We also define a backtrackTable (line 3) to store
the state transition information in table. For example, if the state
of table(i, j) is transferred from the state of table(i − 1, j − 1),
then the value of backtrackTable(i, j) is (i − 1, j − 1). Before
scheduling, all broadcasters are ranked in descending order of
popularity, and the cloud instances in each region are sorted
in ascending order of l(·) · v(·). The table is initialized to be
empty. For each broadcaster i, a transition is made by adding
a new rental scheme for this broadcaster to the previous state
which is for the (i − 1)th broadcaster (line 4–15). The new rental
scheme is optimally calculated in the greedy manner introduced
in the GRS. Meanwhile, backtrackTable records the transition
information of each update. After the iteration finishes, the last
row of table contains the final states of all possible schedules,
from which the state with the least comprehensive cost is se-
lected. We backtrack from that state using the backtrackTable,
and return the whole schedule.

Algorithm 3 shows the calculateNewState(i,m, s, state)
in Algorithm 2, which returns a state of serving the ith channel
with m cloud instances in region s based on previous state
state. The function cost(i,m, s) is the same as has been used
and explained in Section IV-B. The time complexity of SLCS
is O(|B| |C| |A|), as it iterates through all broadcasters and all

Algorithm 2: Scheduling With Limited Cloud Service
Supply (SLCS)

1: Sort B in decreasing order of P (·)
2: Sort C in each region in ascendant order of l(·)
3: Initialize table, tmpState, finalState,

backtrackTable
4: for i from 1 to |B| do

5: for j from i to min
(
|R| · i, |C| − (|B| − i)

)
do

6: for m from 1 to min(|R| , j − i + 1) do
7: for region s in A do
8: newState ← calculateNewState

(i,m, s, table(i − 1, j − m))
9: if newState.cost < tmpState.cost and newState

is feasible then
10: tmpState ← newState
11: end if
12: end for
13: end for
14: if table(i, j).cost > tmpState.cost then

table(i, j) ← tmpState
15: end if
16: record the transition of table(i, j) into

backtrackTable for backtracking
17: end for
18: end for
19: finalState ← min

|B |≤c≤|C|
(table(|B| , c))

20: Backtrack from finalState and return the whole
schedule

Algorithm 3: calculateNewState(i,m, s, previousState)
1: Input: i is the ordered number of current channel

m is the number of representations
s is the region of cloud servers chosen from
previousState is the old state to be based on

2: initialize newState ← previousState
3: initialize newCost ← cost(i,m, s)
4: newState.cost ← newState.cost + newCost
5: newState.cloudOfRegion[s] ←

newState.cloudOfRegion[s] − m
6: return newState

cloud instances (line 4 and 5) to update the table, and for each
update it iterates through all regions (line 8).

B. Faster Implementation for Large Scale

The SLCS algorithm runs reasonably fast when the system
scale is small to medium. For larger scale, we suggest a faster im-
plementation, SLCS∗, which simplifies SLCS by using a heuris-
tic to rank cloud instances ahead of time, and then chooses
the generally most preferred instance first when assigning the
rental schedule. Algorithm 4 shows the details of SLCS∗. We
use the heuristic to rank all cloud instances based on their unit
rental price l(·). We leave it for further study to find more
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Algorithm 4: SLCS∗ - Fast Heuristic for SLCS

1: Sort B in decreasing order of P (·)
2: Sort all C in ascendant order of l(·)
3: Initialize table, finalState, backtrackTable
4: for i from 1 to |B| do

5: for j from i to min
(
|R| · i, |C| − (|B| − i)

)
do

6: table(i, j) ← min1≤m≤|R|(table(i − 1, j − m)
+cost2(i, j − m,m))

7: record the transition of table(i, j) into
backtrackTable for backtracking

8: end for
9: end for
10: finalState ← min|B |≤c≤|C|(table(|B| , c))
11: backtrack and return the whole schedule

comprehensive heuristics. In the algorithm, the table is of size
|B| · |C| where table(i, j) stores the cost of the best sub-
schedule for serving the first i most popular channels with
first j most preferred cloud instances. The backtrackTable
is the same to that in SLCS. The function cost2(i, j,m)
returns the comprehensive cost for the ith broadcaster us-
ing m cloud instances, selected from the jth preferred in-
stance on the list. More specifically, cost2(i, j,m) calculates
the Costcomprehensive for the ith broadcaster using the jth,
(j + 1)th, ..., and (j + m − 1)th cloud servers on the ranked
list.

The heuristic works best when each cost component has sim-
ilar preference on cloud instances. Since the faster implemen-
tation does not keep the information of cloud supply in each
region explicitly, the time complexity of SLCS∗ algorithm is
reduced to O(|B| |C|), as it only iterates through broadcasters
(line 4) and cloud instances (line 5).

VI. PERFORMANCE EVALUATION

A. Data Sets

1) Twitch Trace Data: We use the trace data captured by the
Twitch’s API for our large scale simulation. We refer to [1] to as-
sign the global viewer distribution for each channel. For a given
channel, we assume there is an equal number of viewers watch-
ing each video quality version. This assumption does not need
to be very strict; As long as there are some viewers consum-
ing each target video representation, our system works, since
the overall trend of viewer satisfaction and outbound bandwidth
cost is consistent. The only scenario affecting the scheduling
result is the extreme case where certain target representations
are not consumed by viewers at all, in which case we can save
the rental cost for cloud instances transcoding unwatched video
representations. However, with the massive viewer base, the
possibility of such extreme cases is little, and for simplicity of
calculation, we assume the number of viewers for each video
representation to be identical. On the other hand, video repre-
sentations are provided in a fixed order to ensure the majority
of viewers can watch the stream (i.e., lower quality version is

provided first), though in fact certain quality versions are more
preferred [21]. By default, |R| is set to 5 as in Twitch TV.

2) Amazon EC2 Pricing: Given that video transcoding is
computation-intensive, we use the Compute Optimized Amazon
c3 server for transcoding. Amazon c3 server is designed for
heavy computation works, and also has enhanced networking
feature for significantly high packet per second performance,
lower network jitter and latency. In most regions, Amazon pro-
videsc3 service at five power levels fromlarge to8×large,
with their prices mostly linear to their theoretical computa-
tion power/CPU number. In terms of data traffic, Amazon only
charges outbound data, not the in-cloud data within the same
region. Noticeably, cross-region in-cloud data transfer will be
charged, and the pricing policies vary from region to region.
Since the majority of the in-cloud data traffic happen in the
same region, we do not consider the cost of cross-region in-
cloud data traffic. Table II lists the pricing policies of Amazon
EC2’s c3 servers in five typical regions [18], which are used in
our simulations.

B. Methodology

For comparison, we implemented four approaches to sched-
ule the cloud service: Top-N , GRS, SLCS∗, SLCS, and the
special scenario with no supply limit. Top-N, the current strat-
egy of Twitch TV, provides full video representation set (i.e., all
quality levels from Low to Source) to the top N most popu-
lar broadcasters, but only the original video quality for the rest
of the broadcasters. We set N = 300 according to the Twitch
partner program requirements and the trace data we collected.
As Twitch’s partner program requires each broadcaster to have
at least 500 viewers regularly in order to become the premium
partner,7 only around 300 broadcasters are qualified. We ig-
nore the channels with zero viewers, assuming there is no video
transcoding and delivering need for them. The default parame-
ters α, β and γ are set to 0.33, 0.34 and 0.33, respectively, and
whenever changed later, their sum remains to be 1. For simplic-
ity, we also assume there are equal number of cloud instances
in each region, and the default limit is set to 2000. The situation
where there are sufficient cloud instances in each region serves
as an optimal baseline for comparison.

C. Simulation Results With Default Settings

We now present the results at the peak time (around 7:30 pm
PST) and valley time (around 2:30 am PST) of a day, which
correspond to the maximum and the minimum workloads of the
system, respectively. Fig. 6 shows the overall comprehensive
costs of schedules incurred by different approaches at peak time
hours, of ten days in March 2015. To examine the impact of
system dynamics, we use the data with significant oscillations.
The total viewer number of the data over time is shown in Fig. 7.
For ease of comparison, we normalize the comprehensive costs
into the range from 0 to 1. We see that the greedy approach with
no limit on server number (referred to as “No Limit” in figures)
always has the lowest cost, which is regarded as the optimal

7[Online]. Available: http://www.twitch.tv/p/partners



HE et al.: COPING WITH HETEROGENEOUS VIDEO CONTRIBUTORS AND VIEWERS IN CROWDSOURCED LIVE STREAMING 923

TABLE II
PRICING POLICIES OF AMAZON EC2 c3 SERVERS IN DIFFERENT REGIONS

Instance price (per hour) Outbound Data Price (per GB)

Different Region large 2xlarge 8xlarge Up to 10 TB Next 40 TB Next 100 TB Next 350 TB

US East (N. Virginia) $0.105 $0.420 $1.680 $0.090 $0.085 $0.070 $0.050
US West (Northern California) $0.120 $0.478 $1.912 $0.090 $0.085 $0.070 $0.050
EU (Frankfurt) $0.129 $0.516 $2.064 $0.090 $0.085 $0.070 $0.050
Asia Pacific (Sydney) $0.132 $0.529 $2.117 $0.140 $0.135 $0.130 $0.120
South America (São Paulo) $0.163 $0.650 N/A $0.250 $0.230 $0.210 $0.190

Fig. 6. Comprehensive costs at peak time in 10 days.

Fig. 7. Viewer number during peak/valley time of 10 days.

baseline. Considering the constraint on cloud service supply,
Twitch’s default Top-N approach in general has the highest
cost, followed by the GRS. The SLCS and SLCS∗ have lower
total costs, and their results are very close. The SLCS∗ only has
slightly higher costs than SLCS, suggesting that the heuristics
closely match for the reality (e.g., in our trace setup, many
viewers are in North America while the cloud services are the
cheapest in that region as well). Over the time, the results of
all approaches changes closely following the pattern of time-
varying demand.

Fig. 8 shows the average comprehensive costs of the four ap-
proaches and the optimal baseline during peak hours and valley
hours. In either case, the baseline solution with no limit gives
the best average result. The second best results are generated
by SLCS, which are 5% and 3.4% more than those of the “no

Fig. 8. Comprehensive cost at peak/valley time.

Fig. 9. Rental cost of different approaches.

limit” baseline during the peak and valley time, respectively.
The cost difference between SLCS∗ and SLCS is again below
1%. Compared with SLCS, GRS incurs 10.9% and 8.5% more
costs during peak time and valley time, respectively, while Top-
N incurs 24.4% and 25.6% more.

We also compare two important components of the com-
prehensive cost: the rental cost for cloud service and the total
viewer satisfaction, under the same supply constraint. Fig. 9
shows the normalized rental cost of the different approaches.
We see Top-N has the least rental cost charged, which is
reasonable given that it only provides transcoding to a very
small portion of broadcasters. GRS however has the highest
rental cost with around 39% more cost than SLCS. This is
highly related to the shortage of cloud service, as the GRS tries
to use more cloud service for the popular channels until there are
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Fig. 10. Total viewer satisfaction.

TABLE III
TIME CONSUMPTION OF DIFFERENT APPROACHES

Approach Top-N GRS SLCS SLCS∗

Time (sec) 5.7 × 10−5 7.7 × 10−3 7.3 1.9

only enough instances left, resulting in renting almost all cloud
service in the end. The SLCS and SLCS∗ have lower rental cost
compared to the greedy approach, and the advantage of SLCS∗

shown here is mostly related to its pricing based heuristics.
The “no limit” scenario incurs excessive cost compared to
SLCS, implying that more suitable cloud instances can be
used to improve the overall performance if there is no regional
constraint. Fig. 10 shows the total satisfaction achieved by each
approach. We can see that, except for the Top-N approach, the
total satisfactions are kept at high levels by other approaches
as well as the “no limit” scenario. Again the Top-N approach
suffers from its strategy of providing only a small portion of
channels full transcoding service, resulting in relatively lower
satisfaction level. However, the gap between Top-N and others
is not large, as the top 300 channels in fact covers around 80%
of the total viewers. The “no limit” scenario is only slightly
better, with around 1% to 2% higher satisfaction than SLCS.
As the satisfaction is proportional to the total popularity, the
peak time results are always higher than the valley time results.

From the perspective of scheduling results, our approaches
GRS, SLCS and SLCS∗ suggest different video representation
sets for different channels, while existing strategy Top-N has a
single threshold that provides either a full representation set or a
single quality version. In terms of time consumption, we list the
average scheduling computation time in Table III, from which
we see SLCS∗ reduced the calculation time by 74% compared to
SLCS. This difference could be more notable when the system
evolves into larger scale, and more region choices are available.
The running time measurement was conducted using a desktop
with Intel Core i7-3770 CPU @ 3.4 GHz × 8, which emulates
the master server in our model.

So far we have only discussed the situation under the same
supply constraint. In the following parts, we further explore
the performance of these approaches under different regional
constraints and parameter settings.

Fig. 11. Comprehensive cost with different regional limits.

D. Different Regional Constraints

To understand the influence of different service supply lim-
its, we change the regional cloud instance number from 1000
to 9000. Fig. 11 shows the comprehensive costs of these ap-
proaches over different supply limits.

At the bottom of the figure, the “no limit” solution has the
same optimal costs all the time as it is not influenced by the
change of the limit. At the top, the Top-N approach always has
the highest cost among all. Before the limit reaches 3000, the
cost is decreasing. This is because there are not enough overall
most suitable servers and when the limit increases, more best-fit
servers are used. When the limit is more than 3000, the cost re-
mains the same as the schedule converges and does not change
any more. In the middle, we see SLCS performs the best overall,
as compared to GRS and SLCS∗, especially when the limit is
below 3000. SLCS∗ has considerable advantage compared to
GRS when the limit is lower than 2000, but becomes worse than
GRS when the limit goes up. Eventually, when the limit is large
enough (e.g., when it is 9000, which can be regarded as un-
limited), both SLCS and GRS converge to the “no limit” result,
while SLCS∗ always has a higher cost than the optimal baseline.
This is because when there are infinitely many cloud instances,
SLCS generate the schedule in exactly the same greedy manner
as GRS does, resulting in the same rental schedule. However,
since with current heuristic of SLCS∗ always choose the cheap-
est instance first rather than the best-fit one, it fails to generate
the comprehensively optimal schedule when there are enough
instance.

In short, SLCS has the overwhelming advantage when the
cloud service supply is low while GRS is more suitable when
there are sufficient cloud instances. SLCS∗ has good perfor-
mance but suffers the bottleneck with the current heuristics.

E. Impact of Weight Settings

We next conduct simulations to investigate the impact of dif-
ferent weight settings. We change the ratio of two weights in a
wide range (e.g., change α/γ from 10−3 to 103) while keeping
the third equal to the denominator (e.g., keep γ equal to β).
The two extreme cases (i.e., when the ratio is 10−3 and 103)
respectively correspond to the situations where the scheduler ig-
nores the corresponding component of the numerator and where
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Fig. 12. Impacts of different α/γ on SLCS.

the schedule is majorly decided by that component. Fig. 12
shows the impacts of different α/γ on different components
of the cost, where β and γ are valued to be the same. We see
when the weight α increases, more cloud servers are rented in
order to improve the viewer satisfaction, with much more out-
bound data and slightly increased cross-region traffic. The cost
for cloud service renting increased more than four times, and
more expensive servers are rented. The outbound data cost is
increased as more higher quality video versions are provided
for a greater number of channels to ensure the overall viewer
satisfaction. The cross-region traffic has been sightly increased,
mainly caused by the increasing number of servers rented in
regions not preferred, as the server in preferred regions have
been used up. But as the change of cross-region traffic is very
limited (only 4.5%), only a small portion of viewers will suffer
from increased streaming discontinuity and latency.

Interestingly, we see the influences of weight settings are
mostly between 10−1 to 101 , as the result converges toward two
extreme cases: schedule ignoring one factor and dominated by
that factor. This indicates that each component cost is highly
sensitive with different weight settings in the indicated mid-
dle range above, and also confirms the necessity to carefully
consider multiple factors and the real application scenario in
order to achieve the overall optimization. Specifically, our cur-
rent simulation results suggest to select factor parameters with
the same or similar values, or at least be within the same range
to evenly reflect each component, with which the scheduler
can have stable and consistent performance, though the exact
parameter values shall shift dynamically to reflect the change
of importance of different components (e.g., cloud rental price
change, cross-region delay change, etc.).

VII. PLANETLAB/AMAZON EC2-BASED EXPERIMENTS AND

PRACTICAL CONSIDERATIONS

A. Planetlab/Amazon EC2-Based Experiments

We also have implemented a prototype of our proposed sys-
tem. In our implementation, we deployed 223 PlanetLab nodes,
in which ten nodes are broadcasters and 213 nodes are viewers.
All viewer nodes are assigned to broadcasters according to the
extremely skewed distribution similar to that in our Twitch data.

Fig. 13. Comprehensive cost with different regional limit.

Among these nodes, 88 of them are in Europe, 90 are in North
America (NA), 6 are in South America (SA), 28 are in Asia and
11 are in Oceania. The virtual system infrastructure for schedul-
ing and transcoding is built with Amazon EC2 c3 cloud servers
from five different regions: Singapore (Asia), Sydney (Ocea-
nia), Oregon (NA), São Paulo (SA) and Frankfurt (Europe).
All broadcasters and viewers keep updating their information
to the master server located in NA. The master server uses
the information collected to assign the transcoding schedule to
other cloud servers. For comparison, we have implemented both
SLCS and SLCS∗, as well as the greedy approach with no limit
in service supply. During the experiment, the broadcasters send
a short source video to the assigned transcoding servers, where
the video is transcoded by ffmpeg into different representations,
and forwarded to corresponding viewers.

We first tested the scheduling result under different regional
limit, as shown in Fig. 13. The result is consistent with that of
our previous simulation. The “no limit” situation provides the
optimal baseline, while with the increase of regional limit, SLCS
and SLCS∗ are generating schedules with lower comprehensive
costs. In the optimal case where the limit is 20 in each region,
both the optimal baseline and SLCS use 10 Oregon instances
and 20 Frankfurt instances, whereas SLCS∗ rents 20 Oregon
instances and 11 Frankfurt instances. The cloud instances from
these two sites (Oregon and Frankfurt) are highly favored given
their relatively cheaper price and the fact that over 80% of the
viewers are from these two regions. The difference in scheduling
results lies in the different selecting order of cloud instances
of SLCS and SLCS∗. Under the current experiment setup, the
scheduling result of SLCS converges when the regional limit is
20. Next, we measured the end-to-end streaming delay under
the optimal schedule of SLCS with regional limit of 20. Fig. 14
shows the streaming delay of different resolutions perceived by
viewers. The delay of different resolutions is similar, especially
for viewers with fast network speed. The difference becomes
obvious for slow network viewers (delay longer than 15 s), as
a result of larger stream transfer time. Overall around 50% of
the viewers have the delay within 5 s, and around 80% of the
viewers have the streaming delay within 8 s. We also analyze
the streaming delay by region, as shown in Fig. 15. Unlike the
previous, regional delay difference is huge. In general viewers
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Fig. 14. Streaming delay of different resolutions (CDF).

Fig. 15. Streaming delay in different regions (CDF).

in NA have the shortest delay, as around 50% of them have
delay within 3 s and around 90% of them have delay within
7 s. Viewers in Europe and viewers in Asia have similar delay,
despite the fact some cloud servers are deployed at the European
site. Results from Oceania and SA are not very representative
due to the small sample size.

B. Complimentary Experiments and Enhancements on
Streaming Performance

We also conducted three complimentary experiments to ex-
plore the difference of theoretical and actual streaming perfor-
mance, as well as the general performance of cloud servers in
different regions.

In the first experiment, we assume one cloud instance is as-
signed to provide certain video quality to all viewers. We mea-
sured the HTTP streaming speed from that cloud instance to all
its viewers (Planetlab nodes) and compare the result with the
general bandwidth measured on those viewers. Fig. 16 shows
the results measured with the cloud instance located in Oregon.
We see huge gap between the general bandwidth and the actual
cloud-viewer streaming speed, the latter of which is much lower.
This indicates a portion of viewers will be forced to choose lower
video quality though they indeed have enough bandwidth. Those
viewers can greatly benefit from the assistance of a proxy lo-
cal CDN. In the second experiment, we measured the average
RTT latency between viewers and cloud instances in different

Fig. 16. Streaming speed and viewers’ bandwidth (CDF).

Fig. 17. Viewer-to-cloud average RTT latency (CDF).

TABLE IV
NETWORK PERFORMANCES OF USER-CLOUD AND IN-CLOUD CONNECTION

RTT (ms) Data Transfer Speed (MB/s)

Cloud Instance Cloud Instance Cloud Instance Cloud Instance
in A in B in A in B

User in A 134 191 3.88 0.302
Cloud Instance in A 0.733 160 93.2 5.52

regions. Fig. 17 shows the results with cloud instances located
in Oregon, Frankfurt and Singapore, respectively. We see the
cloud service in Oregon is highly preferred with 90% of nodes
having RTT in 200 ms, while the streaming quality will be
heavily affected if the instances locates in Singapore, given its
overall high RTT. In the third experiment, we conducted an in-
cloud data transfer experiment and compared the result with
the user-cloud network performance. We found that though the
network connection is enhanced within the same Amazon re-
gion, cross-region in-cloud data transfer has not been well opti-
mized. Table IV shows the network performances of user-cloud
and in-cloud connections within the same region A (Oregon)
and between two typical regions A and B (Singapore). We see
in both in-region and cross-region cases the in-cloud connec-
tion outperforms the user-cloud connection, but in-cloud data
transfer suffers more from the cross-region bottleneck. Similar
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phenomenon was also observed during the experiments con-
ducted in other regions.

As suggested by our experiment results, CDN can be bene-
ficial in some specific regions, and careful selection on cloud
instance is important to ensure streaming performance. We can
also differentiate the impacts of cross-region traffic between
different regions. and quantize such difference in the modeling,
and quantize such difference in the modeling. Once we have
the statistics for the actual influence of cross-region traffic be-
tween every pair of regions, we can add an InfluenceTable,
in which InfluenceTable(i, j) stores the impact weight of the
cross-region traffic from region i to region j. And thus in the
comprehensive cost, we can have the below formula where Fij
is the data traffic from region i to region j

F =
∑

i∈A

∑

j∈A,j �=i

·InfluenceTable(i, j) · Fij .

C. Initialization Latency and Popularity Forecasting

So far we have focused on cloud service scheduling at a given
time t. As shown earlier, the continuously running system has
time-varying scale in both broadcasters and viewers; our algo-
rithms therefore should be periodically executed with updated
data, adding or removing cloud servers as needed. A newly ac-
tivated cloud instance however needs time for the configuration
and boot up [4]. Based on our measurement, it typically takes
2 min for an Amazon c3 server to boot up and function, and 30–
40 s for an instance to be activated from stopped status. There
is also a minimum rental duration, e.g., once an Amazon cloud
instance is started, it immediately charges one hour’s rental fee,
even if this transition is made multiple times within a single
hour.

Such a coarse granularity implies that periodical execution
of the scheduling algorithm is practical. On the other hand, to
minimize the influence caused by the initialization latency, we
should pre-rent certain amount of cloud instances that is suitable
for the coming time frame. The highly popular broadcasters are
building up their own communities of viewers and tend to set
up fixed schedules for broadcasting, so are popular events. For
example, the live event LCK Summer (a tournament of League
of Legends) on channel Riot Games alone attracted more than
340 000 viewers during its peak time on 9 August, 2015, and
in fact the viewer number reached the same level when the
same event happened before.8 These make the demands from
viewers and broadcasters more regular and predictable. As such,
machine learning based models, e.g., regression models such
as ARIMA [22] can be adapted to forecast the demand of the
system, for renting the corresponding amount of cloud instances
in advance. In the case that the excessive system demand is to
be triggered by an special event, the system can reserve extra
cloud instances well in advance given the event schedule.

8“Stream view numbers, February 2014 (Twitch only),” [Online]. Available:
https://www.reddit.com/r/leagueoflegends/comments/1zcuid/stream_viewer_
numbers_febuary_2014_twitch_only/

D. Community Interaction and Synchronization

As mentioned, a new trend in the crowdsourced live stream-
ing systems is that the channels-based communities of fellow
viewers have emerged as a platform for communicating with
each other, as well as interacting with broadcasters. The com-
munication in these communities are mostly done through text
messages, which can be easily transferred, processed, and posted
in real time. The latency of the live streaming itself however may
vary from viewer to viewer. Often the case, a much more de-
layed viewer comments on a scene watched by others a while
ago. This issue becomes even more dramatic when it comes
to some channels in which the game is collaboratively played
by all the viewers, such as Twitch Plays Pokemon,9 as viewers
having unsynchronized game information may give misleading
commands.

The existing Twitch implementation does not address the out-
of-sync issue, which substantially affect the viewers’ iterative
experience [6]. We observe that the video rate plays a key role
in controlling the live streaming latency, given that the initial
latency is mainly decided by the buffering time, and after every
video continuity, the re-buffering time adds to the latency. To
this end, the DASH mechanism can be revised to control the
video rate at the server/cloud side. The revision jointly consid-
ers the cloud-to-viewer data transmission delay (mostly related
to the bandwidth), the network delays (e.g., processing delay,
queuing delay and propagation delay), and the viewer player
buffer load when deciding the video rate. As such, despite of
the difference in network configurations, heterogeneous end-
viewers can better synchronize their live streaming with other
peer-viewers.

VIII. CONCLUSION

In this paper, we examined the emerging crowdsourced live
streaming systems, in which both the broadcasters and the
viewers can be highly heterogeneous. Our observation mo-
tivated the design of cloud rental strategy for an important
job—transcoding, to optimize the resource allocation for geo-
distributed live broadcasters. We formulated the problem, and
provided a GRS which provides optimal solutions when there
are sufficient supply of cloud service in each region. We then
considered the real world case with limitation on cloud service
supply, and put forward a dynamic programming based rent-
ing algorithm (SLCS). We further provided a heuristic-assisted
SLCS∗ which ranks the cloud instances in advance to achieve
faster running time. Our trace-driven simulation proved the su-
periority the scheduling results of SLCS and SLCS∗. We further
discussed a series of critical issues and enhancements toward
practical deployment.
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