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Abstract—Automobiles have become one of the necessities of modern life, but also introduced numerous traffic accidents that

threaten drivers and other road users. Most state-of-the-art safety systems are passively triggered, reacting to dangerous road

conditions or driving maneuvers only after they happen and are observed, which greatly limits the last chances for collision avoidances.

Timely tracking and predicting the driving maneuvers calls for a more direct interface beyond the traditional steering wheel/brake/gas

pedal. In this paper, we argue that a driver’s eyes are the interface, as it is the first and the essential window that gathers external

information during driving. Our experiments suggest that a driver’s gaze patterns appear prior to and correlate with the driving

maneuvers for driving maneuver prediction. We accordingly present GazMon, an active driving maneuver monitoring and prediction

framework for driving assistance applications. GazMon extracts the gaze information through a front-camera and analyzes the facial

features, including facial landmarks, head pose, and iris centers, through a carefully constructed deep learning architecture. Both our

on-road experiments and driving simulator based evaluations demonstrate the superiority of our GazMon on predicting driving

maneuvers as well as other distracted behaviors. It is readily deployable using RGB cameras and allows reuse of existing smartphones

towards more safely driving.

Index Terms—Gaze, driving assistant, mobile computing, deep learning
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1 INTRODUCTION

AUTOMOBILES have become one of the necessities ofmodern
life and deeply penetrated into our daily activities. They

unfortunately also introduce numerous social problems,
among which traffic accidents are most notoriously threaten-
ing automobile drivers and other road users. Besides well-
developed passive safety equipments such as belt and air bag,
active automobile safety systems are also under rapid devel-
opment in recent years. They use positioning devices, built-in
cameras, or laser beams to identify potentially dangerous
events, so as to avoid imminent crashes. According to U.S.
data [1], systems with automatic braking can reduce rear-end
collisions by an average of 40 percent.

Despite being referred to as active, most of these systems
remain passively triggered by a vehicle’s surroundings and

its driving interface (i.e., steeringwheel, brake, and gas pedal).
They react to dangerous road conditions or driving maneu-
vers only after they happen and are observed. Given the well-

known two-second rule,1 such passive reaction can greatly limit
the last chances for collision avoidances. For example, the lat-
est Active Blind Spot Detection system, including BMW,2 Ford3

and Toyota,4 uses radar sensors to inform the driver via a
symbol on the wing mirror if there is a vehicle currently in
their blind spot. When the driver uses the indicator, e.g., the
turn signals or the steering wheel, to change lanes, they are
warned in potentially dangerous situations by a flashing LED
signal and beeps, which, on a highway, can be still too late to
avoid a collision if the speed is over 120 km/h. The Adaptive
Front-lighting system, which has been developed to enhance
night visibility, also follows the angle change of the steering
wheel and accordingly change the lighting pattern to compen-
sate for the curvature of a road. The lag from steering wheel
movement to light movement, however, is not negligible
(being activated after 1/4 turn of the wheel and sometimes
one or two full turns). Another example is the navigation sys-
tem, which provides rich information for a driver but can
often puzzle the driver or be puzzled by the driver. When
there are two close exits or intersections, frequently the driver
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1. A driver usually needs about two seconds to react to avoid
accident.

2. https://www.bmw.co.uk/bmw-ownership/connecteddrive/
driver-assistance/intelligent-driving#gref

3. https://owner.ford.com/support/how-tos/safety/driver-assist-
technology/blind-spot/how-to-use-blis-with-cross-traffic-alert-system.
html

4. https://www.toyota.ca/toyota/en/safety-innovation/safety-
technology
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is confused with the display, or the navigation system is con-
fused after a wrong turn. Indeed, without a clear understand-
ing of the driving maneuverss, the navigation system has
become a major source contributing to accidents, and today’s
system lacks the ability to sense and predict the drivers’
abnormal maneuvers beyond simply disabling touchscreen
input during driving.

In short, timely tracking and predicting the driving
maneuvers is essential and important towards improving
driving safety, and we need a new and more direct interface
beyond the traditional steering wheel/brake/gas pedal. We
argue that a driver’s eyes are the interface, as this is the first
and the essential window that gathers external information.
Our crowdsourcing measurements reveal strong correla-
tions between the eye-gazing patterns and the driving
maneuvers, e.g., cruising and lane change, which are further
confirmed by our on-road experiments and driving simula-
tor based evaluations to be discussed later. In particular,
gaze patterns occurs prior to the corresponding driving
maneuvers, which offers a great chance to overcome the
two-second rule.

To this end, we develop GazMon, an active drivingmaneu-
ver monitoring and prediction framework for driving assis-
tance applications. GazMon extracts the gaze information
from a front-camera and predicts driving maneuvers based
on the gaze patterns. The patterns are analyzed through a
supervised deep learning architecture. In particular, we incor-
porate a joint Convolutional Neural Network (CNN) and
Long Short TermMemory (LSTM) network,which first identi-
fies low-level activities, and then scales up to predict complex
high-level drivingmaneuvers.

Our GazMon does not rely on very advanced and high-
cost eye tracking devices (e.g., Tobii EyeX5). It is readily
deployable using RGB cameras and can be easily integrated
to intelligent in-vehicle systems, e.g., CarPlay and Android
Auto, minimizing/reducing the reliance on extra hardware.
It also allows the reuse of existing smart phones for driving
maneuver prediction. It is known that smartphone usage is
the second largest risk factor, resulting in 6.4 percent for
crash accidents [2]. The distractions in driving mainly come
from the interactions with the smartphones, such as notifi-
cations from the smartphones, watching or touching the
screen. There have been solutions using mobile phones and
wearable devices to capture driver maneuvers, yet few of
them strive to achieve the more challenging but important
task, i.e., predict driving maneuvers. Our GazMon demon-
strates that a careful design can turn a smartphone from an
accident contributor into a crash preventer. With GazMon,
driving applications can warn and return feedbacks to driv-
ers without distracting them, e.g., through voice instruc-
tions, to improve the safety.

We have deployed the trained deep learning models of
GazMon with Mobile TensorFlow on Android smart phones,
e.g., Google Pixel and Vivo X9 Plus. We conduct extensive on-
road experiments for driving maneuver prediction and test
distracted driving maneuver prediction on our driving simu-
lation platform, which also provide additional feedbacks to
GazMon to fine-tune the deep learningmodel. The evaluation

results report that our GazMon not only achieves significant
prediction accuracy on driving maneuvers over different
state-of-art feature-based solutions, but also can successfully
identify other distracted driving behaviors such as eating and
reaching objects, which allows applications to benefit from
predicting the driving behaviors.

The main contributions of this paper are summarized as
follows:

� We present the first systematical study to thoroughly
investigate the correlation between gaze pattern and
driving maneuver via collecting a driving maneuver
dataset that covers 129 trips in a 2-month period. The
results demonstrate that gaze patterns occurs prior to
the corresponding driving maneuvers (approximately
5.09 seconds on average), which offers a great chance
to overcome the two-second rule.

� We propose GazMon, the first eye gazing based active
driving maneuver monitoring and prediction frame-
work, which can be implemented with the COTS
smartphones, making GazMon a promising real-life
deployment that can benefit many applications to
actively improve driving safety.

� The GazMon implementation is the first system that
jointly uses a Convolutional Neural Network and
Long Short Term Memory network to effectively
solve the eye gazing based driving maneuver predic-
tion problem.

� The real-world on-road experimental results demon-
strate that GazMon can allow 200 percent of the gap
required by the two-second rule (i.e., 4 seconds before
the actual driving maneuvers) and still distinguish
various driving maneuvers and other distracted
behaviors with high accuracy, which outperforms the
state-of-the-art systems.

The rest of the paper is organized as follows. Section 2
presents the motivations of our GazMon in drivingmaneuver
prediction. Section 3 provides our data preprocessing scheme
to extract the features from images, and presents our deep
learning approach for driving maneuver prediction. Section 4
discusses the implementation details. The performance evalu-
ation results on our approach are presented in Section 5.
Section 6 extensively discusses a series of potential applica-
tions that can be enabled/enhanced by our GazMon frame-
work. Section 7 illustrates the related work of the research
area and provides a literature review. We then conclude this
paper in Section 8.

2 MOTIVATION AND OVERVIEW

2.1 Why we Incorporate Gaze Patterns Into Driving?

In this paper, we explore the opportunities to predict driv-
ing maneuvers through analyzing drivers’ gaze patterns.
We seek to first answer the following question: Do a driver’s
gaze patterns appear prior to the driving maneuvers? To investi-
gate the correlations between them, we capture the driver’s
gaze patterns and the steering wheel through our testbed.
For safety concerns, our testbed runs in a virtual reality
environment as shown in Fig. 1a. The driving simulator
platform runs on a customized PC, which is connected to
four 27-inch monitors as shown in Fig. 1b, where the5. https://tobiigaming.com/
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NVIDIA Surround Technology enables to combine displays
to create the most immersive gaming environment. As illus-
trated in Fig. 1c, we choose Tobii eyeX 4C6 as the eye-tracking
device to collect the users’ gazing data due to its affordable
price, suitable sampling rate, and reasonable accuracy. The
eye-tracking device consists of three illuminators and one
camera, where the illuminators create the pattern of near-
infrared light on viewer’s eyes, and the camera captures high-
resolution images of the driver’s eyes and the patterns. In this
simulation platform, volunteers play a driving simulation
game, namely Euro Truck Simulator 2, which makes people
feel as driving a vehicle in real life. We record a driver’s
maneuverswith the gamingwheel and pedals set and capture
the driver’s gazing patterns with Tobii eyeX 4C to provide a
straightforward comparison for ourmotivation.

We perform experiments over 50 experienced drivers on
the gaze patterns to explore their potential relationships with
the driving maneuvers. The results reveal that the driver’s
gaze patterns appear prior to the drivers’ maneuvers, thus
opening new opportunities to explore. Fig. 2 shows a typical
example of the gaze patterns collected from a volunteer and
the steering wheel turning maneuvers, which is the most
important feature in driving a vehicle. We plot the driver’s
gaze patterns at the horizontal direction, where a positive
degree means that the driver is looking on the left and a nega-
tive one means looking on the right. And the steering wheel
turning maneuver is plotted in a similar way. It is clear to see
that the gaze patterns highly correspond with the driving
maneuvers but come ahead of some time advance, e.g., shoul-
der check comes prior to left turn for about 10-15 seconds. We
count the time gap that gaze patterns appear prior to driving
maneuvers, which is approximately 5.09 seconds on average
and large enough for the two-second rule to apply. These
observations are further confirmed by our on-road experi-
ments and driving simulator based evaluations to be dis-
cussed in Section 5.

Thenweneed to answer the following question:How a driv-
er’s gaze patterns correlate with the driver’s maneuvers? As we
know, the single gaze point is ineffective to predict driving
maneuvers. Our experiments reveal that if we stack the gaze
points across a small time interval into a vector, then this vec-
tor can be a good indicator of different driving maneuvers.
Fig. 3 shows the gaze patterns from eight typical driving

maneuvers, i.e., cruising, scanning, looking at navigator, dis-
tracting, checking left side road, left turn, checking right side
road and right turn. This example shows that gaze patterns
are distinct with different driving intentions, and we can pre-
dict the drivingmaneuvers through analyzing gaze patterns.

2.2 How we Incorporate Gaze Patterns Into Driving?

Although there are a plethora of commercial off-the-shelf
equipment to detect gazing patterns, most of them cannot
be immediately applied to the vehicular environment. On
one hand, high-end eye trackers are very expensive (e.g.,
Tobii Pro X3-120 costs more than $15,000), which are not
suitable for wide deployment on vehicles. On the other
hand, low-end eye trackers such as gaming peripherals
(e.g., Tobii Eye Tracker 4C) are intended to be used in inter-
active and gaming applications only. Moreover, most eye
tracking peripherals work with stationary computers and
require calibrations with PC monitors before deployment.
As such, significant effort is needed to install state-of-the-art
eye-tracking devices on a vehicle, and the cost for custom-
ized modification and calibration can be prohibitively high.

OurGazeMon framework does not rely on a particular eye-
tracking hardware. In the long run, advanced eye tracking sol-
utions could be seamlessly integrated into the vehicles’
onboard systems with affordable cost, and our GazeMon will
benefit from it. We note that nowadays mobile phones are
ubiquitous and widespread used, where more than a third of

Fig. 1. GazMon motivation.

Fig. 2. Gaze patterns appear prior to driving maneuvers.6. https://tobiigaming.com/eye-tracker-4c/
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the world’s population is estimated to have smartphones by
2019. Given that people carry their phones everyday every-
where, the phones have great potentials to serve as eye gazing
tools in vehicular environments, since mobile phones can
directly capture images from the front RGB camera and
require no modifications to the existing on-vehicle systems.
Another benefit is that the high adoption rate of technology
upgrades on mobile phones can lead to rapid development
and deployment of new camera technology and allow the use
of computationally expensive methods. In the near future, we
believe mobile phones can be a suitable and ubiquitous solu-
tion to demonstrate the importance of eye gazing and its
enabled driving maneuver prediction based vehicular assis-
tance and safety applications. Our GazMon is the first attempt
towards this direction, which can achieve high prediction
accuracy in a timely manner as later demonstrated by both
on-road experiments and driving simulator based on evalua-
tions in Section 5.

3 SYSTEM DESIGN

This section describes the main components of our GazMon
design. Fig. 4 shows the block diagram and work flows.

3.1 Preprocessing

Our GazMon is readily deployable using RGB cameras (e.g.,
webcams and front-cameras on smart phones) and allows

reusing existing smart phones for driving maneuver predic-
tion. As such, GazMon can be built on top of low cost com-
modity-off-the-shelf (COTS) mobile phones and useful for
various driving assistance and safety applications. As the
image from the front-camera on mobile phones provides
rich information, we propose our GazMon design to prepro-
cess the image streaming, as illustrated in Fig. 5. We extract
the facial landmarks, head pose and iris center with facial
feature calibration to capture the eye gaze information for
the driving maneuver prediction.

3.1.1 Facial Landmarks Detection

We follow the notation in [3] for facial landmark detection.
Let xi 2 R2 be the x; y-coordinates of the ith facial landmark
in an image I. Then the vector S ¼ fx1; x2; . . . ; xpg denotes
the coordinates of all the p facial landmarks in I. In this
paper, we refer to the vector S as the shape, and use SðtÞ to
denote our facial landmark estimation on the image It at
time t. Each time t regressor rtð�; �Þ in the cascade predicts
an update vector from the image It and the current shape
estimation SðtÞ, and then is added to the current shape esti-
mation SðtÞ to calculate Sðtþ 1Þ

Sðtþ 1Þ ¼ SðtÞ þ rtðIt;SðtÞÞ: (1)

The critical point of the cascade is that the regressor rt
makes its predictions based on features (e.g., pixel intensity

Fig. 3. Gaze patterns from typical driving maneuvers.

Fig. 4. GazMon framework.
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values) computed from It and indexed relative to the cur-
rent shape estimation SðtÞ.

3.1.2 Head Pose Estimation

In real driving scenarios, drivers change their head pose and
facial expression, while their head position keeps relative sta-
ble. The accuracy of capturing eye gaze information highly
depends on the head pose estimation. Accurately estimating
the driver’s head pose in complex situations is a challenging
problem. GazMon extracts head pose rotation information in
addition to facial landmark detection. We start with single
camera tracking by exploring the 2D-3D spatial consistency of
feature points on each image. Given the tracked 2D facial
landmarks, we use the POSIT algorithm [4] to estimate user’s
head pose. The POSIT algorithmfinds an object’s pose by iter-
atively minimizing the error between the projection of a
known 3D model and the 2D landmarks tracked. When the
2D facial features are tracked in each image, the 2D to 3D con-
version method can be utilized to obtain the head pose infor-
mation. Given an input image It and facial landmarks SðtÞ,
PðtÞ is estimated byminizing

eðtÞ ¼
XK

k¼1

rðskðtÞ � fðPðtÞSðtÞÞÞ; (2)

where fð�Þ is the perspective projection of a 3D point from the
model in homogeneous coordinate SðtÞ to its 2D correspon-
dence skðtÞ and rð�Þ is an M-estimator chosen to alleviate
gross noise interference. The POSIT algorithm is efficient
with acceptable accuracy, and thus adequate to real-time
applications.

3.1.3 Iris Center Detection

Our real world experiments have shown that the visible
imaging methods are not robust to the lighting conditions.
For example, pupils may not be visible without IR lighting,
which is the key stone for eye tracking. We instead use the
iris center as a notable feature, by which we can estimate
the gaze direction. Our iris detection is based on [5]. The
eye region EðtÞ is extracted from the facial landmarks, and
the iris center is then detected in the eye region. To achieve
this, we first use the L0 gradient minimization method [6] to
smooth the eye region, where a rough estimation of the iris
center can be obtained by the color intensity. Random sam-
ple consensus (RANSAC) is then utilized to estimate the
radius r of the iris. At last, a combination of intensity energy
and edge strength information is utilized to locate the iris
center, where the intensity energy in the circle window

should be minimized and the edge strength of iris edges
should be maximized.

3.1.4 Eye Gazing Feature Calibration

To work ubiquitously, the system should be able to calibrate
itself to different mobile phone placements and vehicle mod-
els. Here themain challenge is that it is hard for a user to place
the mobile phone exactly on the same position of the dash-
board every time. We thus develop a calibration module to
automatically align the smart phones to a fixed coordinate
system. The calibration is done by collecting an initial mea-
surement that takes about 10 seconds for the driver to keep
looking at the front. In particular, we construct the feature
frame FðtÞ that denotes the measured eye gaze information at
time t and FðtÞ ¼ fSðtÞ;PðtÞ;EðtÞg. Let ~F represent the eye
gazing information of the 10 second initial measurement. We
map the measured eye gazing information FðtÞ at time t to the
calibrated eye gazing information F̂ðtÞ as follows:

F̂ðtÞ ¼ FðtÞ � ~F: (3)

3.2 Deep Learning Architecture for Driving
Maneuver Prediction

This part starts from the design of our feature frame. The pre-
processing stage outputs the eye gazing features for each
image, which we utilize to build the frame. Specifically, we
provide the following as input to themodel: (1) the facial land-
marks together with their locations in the image, (2) the head
pose, and (3) the iris centers. The size of facial landmark frame
is n� L, where n is the sampling rate and L is the number of
landmarks in one image. The size of head pose frame is n� 3,
which corresponds to the 3D information. And the size of eye
irises is n� 4, where there are two irises on each face and the
coordinate of each iris has two values in the form of ðx; yÞ. As
illustrated in Fig. 6, we construct a deep learning architecture
that jointly uses a Convolutional Neural Network (CNN) [7]
and a Long Short Term Memory (LSTM) network [8]. In our
deep learning architecture, the CNN is used to extract spatial
relationships in a single frame, and LSTM is used to learn
dynamic temporal relationships from a sequence of frames.
Our deep learning design takes the results from the data pre-
processing as inputs into the neural networks. CNN outputs
are then processed through two layers of stacked LSTMs. The
output is the classification of maneuvers using a softmax
layer. We discuss the layers one by one in the remainder of
this subsection.

We use the fully-connected layer tomerge the three inputs,
where these features are outputs of rectified linear units. As

Fig. 5. A streaming of images for right shoulder check.
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illustrated in Fig. 6, CONV represents convolutional layers
(with filter size of kernels: CONV-1: n� 16, CONV-2: n� 4),
while FC represents the fully-connected layers and LSTM rep-
resents LSTM layers. We construct a CNN to take the facial
landmarks frames as input and provide the output to be fed
into the fully-connected layer with head pose and iris center
information. The merged features then form the input as a
sequence of frames to the LSTM structure.

LSTM is a structure originally proposed by Hochreiter
and Schmidhuber [8]. An LSTM cell is a subnet that allows
to easily memorize the context information for long periods
of time in sequential data. The subnet includes three gates:
the input gate it, the forget gate ft, and the output gate ot,
which have the controls to overwrite, keep, or retrieve the
memory cell ct, respectively. Each LSTM cell remembers a
single floating point value ct. This value may be diminished
or erased through a multiplicative interaction with the for-
get gate ft or additively modified by the current input xt

multiplied by the activation of the input gate it. The output
gate ot controls the emission of the memory value from the
LSTM cell.

Let sðxÞ ¼ ð1þ e�xÞ�1 be the sigmoid function, which
controls the inputs to a range of [0,1]. We have

it ¼ sðWxixt þWhiht�1 þWcict�1 þ biÞ (4)

ft ¼ sðWxfxt þWhfht�1 þWcfct�1 þ bfÞ (5)

ot ¼ sðWxoxt þWhoht�1 þWcoct þ boÞ (6)

ct ¼ ftct�1 þ it tanhðWxcxt þWhcht�1 þ bcÞ (7)

ht ¼ ot tanhðctÞ; (8)

where the W terms denote weight matrices (e.g., Whi is the
input-hidden weight matrix), and the b terms denote bias
vectors (e.g., bf is the bias vector of forget gate).

The LSTM cells are then grouped and organized into a
deep LSTM architecture. Inside the architecture, the output
from one LSTM layer will be the input for the next LSTM
layer. We fine-tune the LSTM architecture with various
numbers of layers and memory cells, and choose to use two
stacked LSTM layers, each with 32 memory cells.

Following the LSTM layers, a softmax classifier is used to
make a prediction at every image It, i.e., to get the probabil-
ity distribution over the maneuver label y in the maneuver
cluster g

PrðyjItÞ ¼ eItP
y02g eIt

: (9)

Our goal is to find the maximum likelihood of all training
samples. As an objective function, we apply the negative
log probability, i.e., the cross entropy error function

E ¼ �
X

y2g
zylnPrðyjItÞ; (10)

where zy 2 f0; 1g. PrðyjItÞ is the predicted probability of the
class with maneuver label y.

4 SYSTEM IMPLEMENTATIONS

We have implemented GazMon on various mobile device
hardware, such as Google Pixel, Xiaomi Mi Max, Vivo X9
Plus, Huawei Nexus 6P and LG Nexus 5. Fig. 7a shows our
GazMon running on implemented Vivo X9s Android smart-
phone with a 20-Megapixel front camera, which is placed on
the vehicle’s dashboard. During the 10 second measurement
of the calibration, the driver needs to keep looking at the
front to allow the capturing of an initial pose of the user’s
head and enough facial information. In this stage, the driver
holds their head still while looking ahead. The video from
the front camera is captured and used to build an initial
head model, which requires facial landmarks, iris center
and head pose have stable values. When checking the left
blind spot, even the camera sometimes can only capture
half of the driver’s face, the missing information can be par-
tially recovered based on euclidean distance among facial
landmarks in the initial head model, which will then be fur-
ther processed by our deep learning model that is capable
of using dynamic temporal relationships from a sequence of
frames (note that not all the frames only capture half of the
driver’s face) to better predict the driver’s maneuvers.

The mobile phone part of GazMon is implemented as an
app on Android OS 5.1.1 working together with dlib-
android API7 and TensorFlow Mobile Android API,8 which
is based on JAVA in the android-studio programming envi-
ronment. On startup, the GazMon app launches an Android
activity (CameraActivity.java) which basically accesses the
camera by using the Android Camera2 package. Then

Fig. 6. GazMon deep learning architecture.

7. https://github.com/tzutalin/dlib-android
8. https://www.tensorflow.org/mobile/
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GazMon uses the supported Java Native Interface (JNI) pro-
cedures to interact with dlib-android engine and the recent
proposed dlib library [9] to extract a sequence of eye gazing
features from the incoming image stream.

In training stage, GazMon uploads the drivers’ videos
with the preprocessed eye gazing features in a batch to the
server, when the high-speed wireless connection is avail-
able. The preprocessed eye gazing features are used for
training the deep learning architecture, where the ground
truth of the driving maneuvers is labeled based on the vid-
eos from the front cameras. Figs. 7b, 7c, 7d, 7e, 7f, 7g, and 7h
show the video snapshot examples and the eye gazing fea-
tures in our dataset. The server part of the GazMon is
deployed on our customized desktop, where CNN and
LSTM classifiers are implemented in Keras9 with cuDNN
on Dual Nvidia GTX 1080Ti GPUs.

In prediction stage, the GazMon app running on smart
phones can timely process the images captured by the device’s
camera and predict the driving maneuvers based on the deep
learning architecture pre-trained by the aforementioned
approach, so as to provide realtime services to users, where
the preprocessed eye gazing features are fed into TensorFlow
Mobile’s core engine implemented byGoogle developers.

5 ON-ROAD TEST AND FURTHER INVESTIGATION

ON DISTRACTED DRIVING BEHAVIOR

It is well known that in the auto manufacture industry, devel-
oping a new technology on vehicles, especially driving safety
system, involves an iterative process, including many rounds
of design, validation and improvement. GazMon is no excep-
tion. To the end, we conduct extensive real-world experiments
withGazMon to evaluate and further improve its performance.
The experiments include six vehicle models (i.e., 2015 Jeep
Patriot, 2016 Mazda CX-5, 2015 Ford Mustang, 2016 Toyota

Camry, 2016 Lexus IS and 2014Audi S5) and 10 drivers driving
on two typical types of roads (i.e., highway and urban streets),
covering 129 trips with 2,469 minutes in a 2-month period. To
evaluate the prediction quality, 6,120 driving maneuver exam-
ples are labeled based on the real-world videos. To conduct a
comprehensive on-road study, we test five typical driving
maneuvers, i.e., cruising (CR) with 1,796 examples, left turn
(LT) with 1307 examples, right turn (RT) with 1,449 examples,
left lane change (LL) with 728 examples and right lane change
(RL) with 840 examples, as shown in Figs. 8 and 9. Due to the
safety concerns, the distracted driving behaviors (e.g., using
cell phone, reaching for a moving object, eating or drinking)
cannot be involved in on-road study, which are tested on our
simulation platform andpresented at the end of this section.

We train the models for the two different scenarios with
cross validation to mitigate overfitting, where 80 percent of
the data is used as a training set and the remaining 20 percent
is used as a test set. The training includes 100 epochs using
stochastic gradient descent (SGD). We implement the CNN
networks with two convolutional layers with a dropout of 0.5,
followed by one fully-connected layer to merge head pose
and iris center information. Our LSTM networks use 32 mem-
ory cells per layer. Throughout training, we save the model

Fig. 7. (a) shows the real-world experiment, and (b)-(h) show example snapshots of the dataset.

Fig. 8. Examples of cruise, left lane change and right lane change [10].
9. Keras: Deep Learning library for Theano and TensorFlow.

https://keras.io/
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and compute prediction accuracy on the test set for each
epoch. As depicted in Fig. 10, at time t, we use the eye gazing
information collected during time ½t�W; t� to perform the
prediction for the maneuver at time tþ T , where W is the
detection window size and T is the predicted time gap. We
use different experiment parameters to allow investigating
different predicted time gap and various aspects of detection
window, e.g., image size, detection windows size, sampling
rate, and differentmobile devices.

5.1 On-Road Experiment Results

Table 1 shows the details of prediction accuracy in precision (P),
recall (R) and F-Score (F) [11] of our GazMon approach, where
each column denotes the driving activity performed and each
row represents the prediction time gap. As shown in the table,
the precision of driving maneuver prediction is at least 0.96 in
4 seconds, which indicates that GazMon can allow 200 percent
of the gap required by the two-second rule and still distinguish
various driving maneuvers with high accuracy. We thus use
4 seconds as the default predicted time gap for the remained
experiments. We also observe that the left lane change (LL) has
better prediction accuracy than the right lane change (RL) in
longer predicted time gap, because the left lane change takes
longer time as the vehicle needs accelerate tomerge into the left

lane. When the predicted time gap is larger than 5 seconds, the
prediction accuracy decrease for the right lane change (RL) and
left turn (LT). This is because the experienced drivers always
have right shoulder check before both of those maneuvers. If
the predicted time gap is too large, it will cause that the predic-
tion is mainly based on the right shoulder check and thus can-
notwell distinguish these twomaneuvers.

We next examine the accuracy of drivingmaneuver predic-
tion when applying different detection window size. Fig. 11
illustrates that the larger the detection window size is, the
greater the accuracy achieves. Meanwhile, too large a detec-
tionwindows size can lead to huge computation resource con-
sumptions on mobile phones, which may cause excessive
delay for the maneuver detection. We observe that with a 3 s
detectionwindow size, our system achievesmore than 90 per-
cent prediction accuracy, which indicates that our system can
achieve high prediction accuracy under a small computation
latency. We thus use this value as the default detection win-
dow size. We also evaluate the prediction accuracy with dif-
ferent sampling rates. In particular, Fig. 12 illustrates that the
accuracy drops for low sampling rate, and the higher sam-
pling rate makes the accuracy better. Similar to the detection
window size, too higher sampling ratewill exhaust themobile
phones’ computation resources and thus slow down the
maneuvers prediction. To this end, we use a sampling rate of
10 Hz as the default setting of our evaluation, which yields an
average accuracy of 94 percent.

Fig. 13 shows the performance of our GazMon compared
with different state-of-the-art approaches. To this end, we
implement five commonly used classifiers (k-Nearest Neigh-
bors, one-versus-all Linear SVM, Decision Tree, Random For-
est, and Quadratic Discriminant Analysis) as well as the CNN

Fig. 9. Examples of left turn and right turn [10].

Fig. 10. Experimental parameters.

TABLE 1
The Accuracy of Driving Maneuver Prediction Versus Prediction Gap

CR LT RT LL RL

P R F P R F P R F P R F P R F

1 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
2 1.00 1.00 1.00 0.98 1.00 0.99 1.00 0.98 0.99 0.96 1.00 0.98 1.00 0.97 0.99
3 0.97 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.99 0.97 0.98
4 0.96 1.00 0.98 1.00 1.00 1.00 1.00 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.99
5 0.96 0.87 0.91 0.94 0.92 0.93 0.88 0.94 0.91 0.88 0.98 0.93 0.95 0.90 0.92
6 0.96 0.98 0.97 0.84 0.96 0.90 0.89 0.91 0.90 0.84 0.91 0.88 0.97 0.78 0.86
7 0.94 0.93 0.94 0.93 0.61 0.74 0.98 0.94 0.96 0.94 0.98 0.96 0.75 0.96 0.84
8 0.98 0.98 0.98 0.85 0.57 0.68 0.97 0.90 0.93 0.83 0.96 0.89 0.72 0.87 0.79

Fig. 11. Moving window size.
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based approach used in iTracker [12] and a LSTM based
approach. The result clearly shows that GazMon can achieve
22 percent higher accuracy than iTracker that only uses CNN.
This demonstrates the benefits of the LSTM architecture used
in GazMon on learning dynamic temporal relationships from
a sequential spectrum frames for driving maneuver predic-
tion. At the same time, GazMon also obtains 36 percent higher
accuracy than the LSTM-based approach, which illustrates
the necessity of the CNN architecture used in GazMon to effi-
ciently extract the features for driving maneuver prediction.
Our GazMon also outperforms the other five commonly used
classifiers, achieving 40 percent gain over the best approach
(SVM) among them. One general observation is that as the
1080p images contain more details for facial features, espe-
cially the eye areas, which provide more opportunities to
achieve higher prediction accuracy.

In Fig. 14, we compare the results of our deep learning
design with inputs from various preprocessing options. The
comparison among the facial landmarks, head pose, images
and GazMon shows the effectiveness of our preprocessing
scheme for obtaining eye gaze information, which poten-
tially offers the rich information for driving maneuver pre-
diction and leads to a better performance against head-
based driver monitoring systems.

Figs. 15 and 16 show the drivingmaneuver prediction accu-
racy in two different environments, i.e., along with the high-
way and in the urban streets, respectively. Our GazMon
achieves the best performance along the highway environ-
ment with the accuracy of up to 99 percent, and the prediction
accuracy in the urban streets is up to 89 percent. The difference
is mainly because the diversity of driving maneuvers along
the highway is much lower than in the urban streets. We fur-
ther examine the performance of GazMon with different
mobile devices, as shown in Figs. 17 and 18. The mobile

Fig. 12. Sampling rate.

Fig. 13. Overall performance of GazMon system.

Fig. 14. Different inputs.

Fig. 15. Highway.

Fig. 16. Urban street.

Fig. 17. Time cost.
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devices include Google Pixel, Xiaomi Mi Max, Vivo X9 plus,
Huawei Nexus 6P and LG Nexus 5, in the order of their pro-
cessor performance. Fig. 17 shows the processing time for a
single frame image on different devices. Intuitively, the larger
image takes longer time to process. Taking Google Pixel as an
example,which is released onOctober 2016, yet the processing
time is much less than 0.05 s, meaning that GazMon on it
can easily process the 1080p image streaming with the rate of
10 frames per second. Even for LG Nexus 5, which is relea-
sed on October 2013 and has the slowest processor among
these mobile devices, can still process a 720p image within
0.15 second (i.e., a 720p image streaming of at least 5 frame per
second), indicating that GazMon can work on a variety of
mobile device hardware. In Fig. 18, GazMon can achieve a
high and relatively stable prediction performance. Even for
LGNexus 5, the least powerful hardware that can only process
about 5 frames in one second, the average accuracy is still well
above 80 percent.

5.2 Further Investigation on Distracted Driving
Behaviors

As on-road experiments with distracted driving behaviors,
e.g., eating and reaching objects, can be dangerous and may
cause safety and ethical issues, we therefore evaluate the
performance under such behaviors on our driving simulator
instead. In the risky distracted driving simulation, we invite
50 experienced drivers as volunteers who are varied in age
and gender. In each simulation case, the volunteer plays the
first mission10 in the driving simulation game, namely Euro
Truck Simulator 2, which starts from Frankfurt to Mannheim

with 82 km distance and takes around 10 minutes to drive
in the game. To conduct a comprehensive evaluation, driv-
ers will drive as normal first and then engage in three typi-
cal risky distracted driving behaviors, i.e., (1) using cell
phone, including texting, dialing and reading; (2) reaching
for a moving object; and (3) eating snacks or drinking nonal-
coholic beverage.

We first report the precision, recall and F-Score in Table 2
for distracted driving behaviors. GazMon can achieve the
performance of 0.95 (precision), 1.00 (recall), 0.98 (F-Score),
when the prediction time gap is 4 second. This again dem-
onstrates the effectiveness of our GazMon on driving behav-
ior prediction, especially considering the two-second rule
for accident avoidance. Then we evaluate the relationship
between distracted driving behaviors and accidents, includ-
ing speeding or red light tickets, car/barrier crashes and
driving on the wrong lanes. We plot of the empirical CDF of
driving time until accidents occur in Fig. 19, which gives a
much clearer picture of the importance of predicting the
driving behaviors. We can see that the distracted driving
behaviors have a remarkable impact on the accidents. Tak-
ing using phone in driving as an example, nearly 80 percent
of the drivers have accidents in 3 minutes of the simulated
driving. On the normal driving case, we require the volun-
teer carefully paly the driving game, the driving accidents
can be reduced to less than 10 percents, indicating that
avoiding distracted driving behaviors can effectively reduce
accidents and keep the drivers safe. We further explore acci-
dents distribution versus distracted driving behaviors in
Fig. 20. In the using phone case, 70 percent drivers will have

Fig. 18. The accuracy on different mobile devices.

TABLE 2
The Accuracy of Normal and Distracted

Driving Behavior Prediction

Normal Driving Distracted Driving

Precision Recall F-score Precision Recall F-score

1 1.00 0.99 0.99 0.98 1.00 0.99
2 0.99 0.99 0.99 0.98 0.98 0.98
3 0.99 0.98 0.98 0.96 0.98 0.97
4 1.00 0.96 0.98 0.95 1.00 0.98
5 0.99 0.94 0.96 0.91 0.98 0.95
6 0.99 0.89 0.94 0.85 0.98 0.91
7 0.89 0.97 0.93 0.96 0.85 0.90
8 0.88 0.92 0.90 0.89 0.83 0.86

Fig. 19. Driving time until accidents occur.

Fig. 20. Accidents distribution versus distracted driving behaviors.10. https://www.youtube.com/watch?v=Z1FAOuylvzg
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car or barrier crashes. In the normal driving case, we can see
that most accidents are speeding tickets, since it is hard to
provide drivers the full feeling of speed on the simulator.
To better evaluate the potentials of GazMon for driving
safety, we conduct an experiment where drivers will have
distracted driving behaviors once per 30 seconds, and we
let GazMon alerts the driver as soon as a distracted driving
behavior is detected. When GazMon triggers the alerts,
drivers should stop their distracted driving behaviors and
pay their attention to driving. The results are shown in
Fig. 21, which illustrates the accident rates are significantly
reduced, indicating a significant improvement to the driv-
ing safety.

6 DISCUSSIONS ON POTENTIAL APPLICATIONS

Our performance evaluation has demonstrated the effec-
tiveness of GazMon, which with a simple alert mechanism,
e.g., beep sound alerts, can already greatly help reduce acci-
dents and improve driving safety. Indeed, we envision that
our GazMon can further facilitate various safety and driving
applications. We discuss some of them in the following
subsections.

6.1 Driving Behavior Guidance

One of the critical applications for GazMon is the distrac-
tions detection. Driver distractions have been identified as a
common causal factor in vehicle collisions by extensive
researches. The drivers’ gazing patterns can provide useful
information for addressing this issue. For example, the gaze
pattern based on online maps for a specific road can be uti-
lized to remind drivers via predicting driving styles and
warning dangerous driving behaviors.

Another possible enhancement by our GazMon might be
to use crowdsourcing to determine the zones that the driv-
ers should pay attention to. Those zones can be figured out
by using historical drivers’ gazing patterns. For example, by
comparing estimated and expected gaze patterns at a spe-
cific location, the system can warn the driver visually if the
drivers overlook those zones.

6.2 Predictable Navigation

With the advances of outdoor positioning services (GPS in
particular), the navigation for drivers or pedestrians has
increasingly been an essential application on smartphones
or car consoles. Real-time driving information, such as live
traffic or construction locations, has been incorporated as

well. The quality of the recommended routes is generally
acceptable with state-of-the-art navigation services; the
interaction techniques however are far from convenience,
although voices commands [13] and gesture control have
been integrated into in-vehicle interfaces.

It is known that the state-of-the-art navigation systems do
not have the ability to sense the users’ status or intentions. In
fact, quite often a driver may get puzzled during the driving,
e.g., searching for the exits along the highway, or confused
with the driving lanes. Google Maps and similar navigation
services provide less detailed guidelines or simply fail, since
the interfaces of navigation systems limit the interactionswith
the driver. The driver is difficult to ask the navigation system
for more routes details, not to mention to let navigation sys-
tems sense the driver’s determinedness. Yet, with our Gaz-
Mon and the augmented reality technology, the navigation
system can detect the driver’s uncertain status and provide
more detailed guidance to drivers.

6.3 Other Applications

Our GazMon can potentially lead to many other interesting
applications. One of them would be the adaptive front-light
system. The state-of-the-art systems mainly depend on vehi-
cle speed and steering input. With the information from our
GazMon, the driver could naturally interact with the vehicle
by his/her gaze moving, where the adaptive front-light can
point the low-beams headlights to the direction the driver
intends to observe, so as to enable the front-light system to
work based on the drivers’ observation intentions rather
than the steering wheel turning behaviors.

Another application that enhances driver safety is the blind
spot warning systems. For automotive driving, blind spots are
zones outside of a vehicle that the driver is unable to see. The
blind spot warning systems detect other vehicles located to
the driver’s side and rear. For example, the systemcan provide
the driver with a warning, if a vehicle enters the driver’s blind
spot while s/he is changing lanes. Yet such blind spot zones
are pre-defined, and will not alert drivers to pedestrians, bicy-
clists, animals or vehicles outside its detection zones. There
exist however many accident risks in the areas that the driver
may overlook, where threat levels can be further assessed
based on our GazMonwith timely warnings being provided if
necessary. Another example application can be to detect and
alert driver’s bad driving habits with the help of our GazMon,
which may need some extension to integrate with other infor-
mation such as steering wheel movement. When the driver

Fig. 21. Drivers will stop their distracted driving behaviors after GazMon alerts.
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actually starts turning the steering wheel, the system could
determine whether the driver checks the mirrors, glances over
the shoulder to check blind spot areas and uses the turn signal.
If not, the system could warn the bad driving behaviors, no
matter therewill be impending risks or not.

7 RELATED WORK

There has been a plethora of works on eye detection and
tracking [14], which can be classified into two categories,
infrared imaging and visible imaging, depending on whether
they require external light sources (infrared lights) or not.
The infrared imaging method, e.g., Tobii Eye Tracker 4C,11

needs infrared cameras and infrared light sources, where
the latter can be used for controlling light conditions,
obtaining higher contrast images and for stabilizing gaze
estimation. This makes infrared imaging method able to
reduce the effects of light conditions, and produce a sharp
contrast between the iris and pupil. However, the infrared
imaging method requires multiple light sources to improve
the usability of the eye gaze tracking technology. In contrast
to that, there are a number of works on eye tracking algo-
rithms using an RGB camera, which are known as visible
imaging method. The visible imaging methods do not need
special cameras and light sources, and thus are more widely
utilized, which are further grouped into two categories, i.e.,
appearance-based and iris-based gaze tracking approaches.
Appearance-based methods attempt to build a mapping
from the appearance of the eye to the gaze point on screen
coordinates. Along this line, Sugano et al. [15] presented an
online learning algorithm within the incremental learning
framework for gaze estimation, which utilized the users
operations (i.e., mouse click) on the PC monitor. At each
mouse click, they created a training sample with the mouse
screen coordinate as the gaze label associated with the head
pose and eye image. Later, to reduce the training cost, Lu
et al. [16] introduced an adaptive linear regression model to
infer the gaze from eye appearance. However, as the
appearance may be inconsistent due to factors such as illu-
mination changes and head movement, appearance based
approaches [15], [16] rely on significant amount of training
data and require extensive computation resources, which
are not suitable on mobile devices. Iris-based gaze tracking
relies on extracting the features of the eye region, e.g., the
iris center and iris contour, to provide eye movement infor-
mation. Wang et al. [17] first detected iris through an ellipse
fitting procedure. The shape of the ellipse can be used for
determining the normal of 3D iris. Valenti et al. [18] infered
gaze directions from observed eye shapes, such as pupil
center or iris edges. Yet, Iris-based approaches [17], [18] are
not accurate, due to extracting the exact shape of iris is often
very difficult. Recently, Krafka et al. [12] proposed to collect
the face images as inputs, and apply a deep learning
approach for gaze tracking. Different from all these afore-
mentioned approaches, we carefully construct a novel deep
learning architecture to coherently utilize pre-processed eye
gazing information, such as facial landmark, head pose and
eye center location, so as to achieve a high accuracy solution
for driving behavior prediction.

On the other hand, mobile applications have been wit-
nessed an explosion on vehicles [19], [20] to reinforce driving
safety. Such pioneer applications [19], [20], [21] to detect
whether themobile device user is a driver or passenger,which
can facilitatemany applications aiming to eliminate distracted
driving. Sodhi et al. [22] demonstrated eye movements can be
collected and analyzed to compare a driver’s performance
with head-mounted eye-tracking devices to track on-road
driver eye movement, including one computer and three dif-
ferent COTS cameras, i.e., a scene camera, an eye camera and
an IR camera. Qi et al. presentedDrivAid [23] to infer different
driver maneuvers based on drivers head pose changes. The
system leveraged audio-visual to augment driving behavior
analysis based on IMU sensors and inferred the focus of atten-
tion by tracking the head orientation. Doshi et al. [24] pre-
sented a study for the eye gaze and headmovement to predict
driver’s lane change. Karatas et al. [25] used head-mounted
inertial sensors for head tracking in vehicles. Yang et al. [20]
presented an acoustic ranging system to locate the smart-
phone on vehicle using its audio infrastructure. Wang
et al. [19] captured vehicle dynamics with OBD devices, and
comparedwith smartphone sensing to determine the position
of the smartphone in vehicle. However, these works rely on
extra devices, which may not be widely available and thus
reduce the practical usefulness of the approaches for being
quickly adopted among a large number of users. Instead, our
GazMon is the first eye gazing based active driving behavior
monitoring and prediction framework that can be imple-
mented with the COTS mobile hardware, making GazMon a
promising real-life deployment that can benefitmany applica-
tions to actively improve driving safety.

In the drivingmobile applications, the driving behavior rec-
ognition has attracted a lot of research efforts, such as Aug-
mented Driving12 and CarSafe [26]. Augmented Driving
provides lane changing assistance and safe following distance
based on the vision of driver and captured by smartphone
camera. CarSafe [26] detects and alerts drivers to dangerous
driving conditions and behavior based on the smartphone
camera. Chen et al. [27] employed inertial sensors to detect var-
ious driving behavior, including lane changes, turns, and driv-
ing on curvy roads. Karatas et al. [28] tracked steering wheel
usage and angle with a wearable watch and smartphone.
Recently, eye-gazing has been studied in the context of driv-
ing, aiming at predicting the drivers’ nextmoves by relying on
their eye fixations [29]. When driver’s gaze cannot be directly
acquired through eye tracking systems, Vicente et al. [30]
inspecteddrivers’ faces using landmarks and the head orienta-
tion. Takatsugu et al. [31] proposed a classifier to determine the
cognitive distraction and neutral states with the driver’s gaze
transition. In industry, the safety systems work based on near-
IR methods. Lexus has equipped their high-end LS models
with their Driver Attention Monitor,13 which is designed to
detect whether a driver is not looking forward and will signal
an alert if it detects an object ahead. The system permanently
monitors the movement of the driver’s head when looking
from side to side using a near-IR camera installed on the top of
the steering wheel column, which is also integrated into the
pre-crash system, so as to warn the driver when a collision is

11. https://tobiigaming.com/eye-tracker-4c/
12. http://imaginyze.com/Site/Welcome.html
13. http://www.lexus.com/models/LS/safety
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probable. Different from these approaches, our work strives
to construct a deep learning architecture to predict the dri-
ving behavior that is going to happen based on various pre-
processed eye gaze information, which, can allow more time
gap beyond the two-second rule and bring great potentials to
significantly improve the driving safety.

8 CONCLUSION

In this paper, we presented GazMon that can predict driving
behaviors based on the drivers’ gaze patterns. GazMon
employs an image preprocessing scheme to extract eye gazing
features, which potentially offers the rich information for
driving behavior prediction. We then construct a deep learn-
ing architecture by utilizing the Convolutional Neural Net-
work and Long Short Term Memory network to effectively
solve the driving behavior prediction problem. A prototype
has been implemented using Android smart phones, and our
extensive experimental results have demonstrated that Gaz-
Mon achieves the driving behavior prediction accuracy of 94
percent on average in daily driving environments, which is
better than the state-of-art machine learning approaches and
provides a viable framework to allow many applications to
benefit frompredicting the driving behaviors.
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