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Abstract—The pervasive penetration of mobile smart devices
has significantly enriched Internet applications and undoubtedly
reshaped the way that users access Internet services. Different
from traditional desktop applications, mobile Internet applica-
tions require users to input via touch screens and view outputs
on the displays with considerably limited size. The significant
conflict between the limited-size of touch screens and the richness
of online media contents widely exists in dynamic-viewport
mobile applications, a class of mobile Internet applications that
download contents beyond the user’s viewing region (referred to
as viewport).

As dynamic-viewport mobile applications usually use HTTP
for content downloading, to improve their quality of experience
(QoE) and cost efficiency, in this paper we present a Mobile-
Friendly HTTP middleware (MF-HTTP), which can interpret
user touch screen inputs and optimize the HTTP downloading
of media objects for such applications. We first demystify screen
scrolling in mobile operating systems and precisely break down
the viewport moving process. We identify the key influential
factors for media object downloading and develop an optimal
download scheme. Towards building a practical middleware, we
further discuss and address the implementation issues in detail.
We implement a MF-HTTP prototype based on Android plat-
forms and evaluate the performance of MF-HTTP by conducting
concrete case studies on two representative dynamic-viewport
mobile applications, namely, web browsing and 360-degree video
streaming.

Index Terms—Mobile Applications, Dynamic-Viewport, Screen
Scrolling, Middleware.

I. INTRODUCTION

During the past decade, we have witnessed the pervasive
penetration of mobile smart devices such as smartphones,
tablets and wearable devices, which significantly enrich In-
ternet applications and improve user experience. In the fore-
seeable future, mobile smart devices are predicted to take
up over 50% of global devices/connections and surpass 4/5
of mobile data traffic by 2021 [1]. Different from traditional
desktop applications, in which users interact via input/output
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Fig. 1: An example of dynamic-viewport mobile application

devices like large-size displays, keyboards, and mouses, mo-
bile Internet applications require users to input through touch
screens and allow them to view outputs on the displays
of considerably limited size. This distinct feature introduced
by mobile hardware interfaces brings both challenges and
opportunities to mobile Internet applications. On one hand,
the service providers of mobile Internet applications should
provide multiple copies of media contents with different reso-
lutions and even multiple versions of application user interface
(UI) layouts to fit various sizes of screens on heterogeneous
devices. On the other hand, as media contents are usually
organized in certain order/layout in mobile Internet applica-
tions, it is possible to predict the viewing region (referred to
as viewport hereafter) given the user inputs and the fixed size
of display.

The significant conflict between the limited-size of touch
screens and the richness of online media contents requires
the mobile Internet applications to download contents way
beyond the user viewport. In the mobile applications that host
contents beyond (in and out of) the viewports, users have to
move their viewports through touch screen interactions to fully
access the contents and achieve good experience. In this paper,
we identify and term these applications as dynamic-viewport
mobile applications. Understanding how the viewport moves
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naturally becomes crucial to optimize the dynamic-viewport
mobile applications. Taking web browsing as an example,
mobile users usually can only view a limited area of the web
page. By tracking user touches, it is possible to identify in
which direction the viewport moves and where it stops, as well
as the area covered during the deceleration. Conventionally,
web browsers download all the elements in the web page by
default, as users can easily view the whole web page on a
desktop display. However, in the mobile scenario, given the
entire screen scrolling process, we are able to tell which media
contents need to be downloaded. For instance, in Fig. 1, the
user browses the web page and scrolls the viewport from
position A to position B. The area bounded by the dashed
lines is covered during the deceleration of screen scrolling.
In this web browsing event, there is no need to download
the images that are entirely out of the scrolling covered area,
which does not hurt the user experience as they never appear
in the viewport. In this example, we consider a general case for
dynamic viewport applications, in which the screen scrolling
can happen in two dimensions (vertically and horizontally).
In later sections, we will also model and analyze the viewport
motions in 2D space with X, Y coordinates. Many websites
today have their mobile versions to fit the mobile device’s
screen width so that users only need to scroll vertically, which
can be taken as a special case of Fig. 1.

For dynamic-viewport mobile applications, which now have
become mainstream, the current protocol/system designs rarely
consider the user-touch screen interactions together with the
content organization/represetation in the limited viewport. De-
spite the limitations brought by the mobile interfaces (e.g.,
limited displays), we attempt to exploit the opportunities
from user-device interactions (e.g., user touches) and add
this missing component into the protocol/system design for
dynamic-viewport mobile applications. As the screen scrolling
animation is mostly affected by user touches, once an input
gesture is given based on user touches, the following process
of viewport movement is predetermined in mobile operating
systems. Therefore, by studying the impacts of user touches
on screen scrolling, our work targets to improve quality of
experience (QoE) and cost efficiency for the class of dynamic-
viewport mobile applications.

As dynamic-viewport mobile applications usually use HTTP
for content downloading, in this paper, we showcase the
design of Mobile-Friendly HTTP middleware (MF-HTTP),
which acts at the application layer, interprets screen scrolling
processes on mobile devices by tracking user touch screen
operations, and optimizes the downloading of media objects
to improve QoE and cost efficiency of such applications. We
first demystify screen scrolling philosophy in mobile operating
system in depth. With the opportunities of collecting and
understanding user touch screen operations, we show how to
precisely break down the viewport movement, and identify the
media objects involved in the process. By examining the key
influential factors for media object downloading, we develop
an optimal download scheme. Towards building a practical
middleware, we further discuss the implementation details for
MF-HTTP, based on which we implement a prototype on
Android platforms. We conduct concrete case studies on two

(a) A raw frame

(b) Viewport 1 (c) Viewport 2

Fig. 2: 360-degree video watching application

(a) Vine (b) Instagram

Fig. 3: Mobile social networking application

typical dynamic-viewport mobile applications, namely, web
browsing and 360-degree video streaming, integrate them with
our MF-HTTP middleware implementation, and evaluate the
performance through extensive experiments. This optimization
flow can easily be applied to other protocol/system enhance-
ments for dynamic-viewport mobile applications.

The rest of the paper is organized as follows. Section II
introduces the class of dynamic-viewport mobile applications,
and demonstrates their key features and dominance as a
mainstream service type. To enhance dynamic-viewport mo-
bile applications, we present the architecture of the Mobile-
Friendly HTTP middleware and reveal its underlying design
principles in Section III. The practical details of MF-HTTP
implementation are discussed in Section IV. Section V further
conducts concrete case studies on two representative dynamic-
viewport mobile applications. The performance of MF-HTTP
are evaluated in Section VI. Finally, we revisit the related
studies in Section VII and conclude our paper in Section VIII.
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II. DYNAMIC-VIEWPORT MOBILE APPLICATIONS

In this section, we first identify the unique characteristics
of dynamic-viewport mobile applications, and then show their
popular existence. In dynamic-viewport mobile applications,
to fully access the contents and achieve good experience,
users need to move the viewports through screen scrolling,
the unique touch screen interactions on mobile platforms. The
operation of screen scrolling in such applications implies that,
the viewport is of limited size compared to the contents, and
thus the applications need to download their contents beyond
the user viewport. The dynamic-viewport mobile applications
have been widely seen in real-world, which involve a broad
class of mobile Internet applications. Some examples are, to
name but a few, mobile web browsing [2], 360-degree video
watching [3], and mobile social networking [4]. For mobile
web browsing, like the example in Fig. 1, many of today’s
websites offer web pages that exceed the user viewports.
For 360-degree video watching, the raw frames, as shown
in Fig. 2(a), are downloaded to construct the whole 360-
degree panoramic views, while the user viewports can only
cover limited areas such as the two snapshots in Fig. 2(b)
and Fig. 2(c). For mobile social networking, users can only
view a very limited amount of social feeds each time in the
viewports as shown in Fig. 3, whereas there are usually huge
volumes of social contents outside the viewports waiting to be
downloaded through user-screen interactions. These illustrated
examples demonstrate the key features of the daynamic-
viewport mobile applications: (1) the users can only access
limited contents in their viewports; (2) the applications usually
download/prefetch some contents beyond the user viewports;
(3) the user viewports are moved/changed through user-screen
interactions.

We next take a close look at mobile web browsing to
show that dynamic-viewport mobile applications have become
a mainstream service type. We examine the Alexa’s top 50
global websites [5] on a typical mobile device such as Nexus
6 phone. Fig 4 shows that 68% of the top websites belong
to the category of dynamic-viewport, while only 32% of the
websites have full-size viewports. It should be noted that all of
the websites with full-size viewports are search or login pages.
We further check the normalized viewport size (the ratio of
viewport size to web page size) for the websites with dynamic-
viewports. Fig 5 plots the empirical CDF of the normalized
viewport size. For nearly 60% of the web sites with dynamic-
viewports, the user viewport is smaller than 20% of the whole
web page. Only a small portion (less than 10%) of these
websites have comparable user viewports (greater than 90%) to
the web pages, most of which are also search or login pages. It
is worth to mention that, many websites have web pages with
indefinite length. For example, when browsing shopping sites
or social networking sites, users can always scroll down to
view more related items or social feeds. Even for the search or
login pages that have full-size viewports, the websites become
dynamic-viewport once the search engines return the search
results or the contents are returned after completed logins.
All these observations further confirm the dominance of the
dynamic-viewport applications.
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Fig. 4: Top 50 websites’ viewport distribution
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Fig. 5: CDF of normalized viewport size for the top websites with
dynamic viewports

III. MF-HTTP: ARCHITECTURE AND DESIGN

In most of dynamic-viewport mobile applications, HTTP is
widely adopted for content downloading due to its simplicity,
readiness and ease to use [6]. We thus propose a Mobile-
Friendly HTTP middleware (MF-HTTP), acts at the appli-
cation layer, interprets screen scrolling processes on mobile
devices by tracking user touch screen operations, and optimize
the downloading of media objects to improve QoE and cost
efficiency of dynamic-viewport mobile applications. In this
section, we introduce the architecture and design principles
of MF-HTTP. To present the details of the design, we first
investigate the screen scrolling philosophy, taking the Android
OS as an example, next we discuss how to identity the content
elements that will be covered during the scrolling, and finally
we formulate and solve the optimization problem.
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Fig. 6: An example of screen scrolling process
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A. Middleware Architecture

We first illustrate the opportunities from screen scrolling,
the unique user–screen interaction on mobile platforms. Fig. 6
shows an example of screen scrolling process. Along the time
axis, the solid line segments indicate the user/device actions,
and the dashed line segments indicate when the objects enter
the user viewport. From t0 to t1, the viewport changes as the
user moves his/her finger. Once the finger is released at t1, the
following scrolling process is predetermined. Thus, at t1, we
can accurately calculate the viewport’s movement and predict
object A’s exit and object B and C’s entrance in the viewport,
which will be addressed in detail in later subsections. Given
such information, better download arrangements can be made
for the media objects in advance.

Our middleware consists of three modules: touch event
monitor, screen scrolling tracker and flow controller, each
of which will be elaborated in the following subsections.
The main work flow is shown in Fig. 7. The touch event
monitor attaches to the target mobile app to collect user touch
data, which will be sent to the screen scrolling tracker. The
middleware server that holds the other two modules can be
either a remote content server or a forward or reverse proxy.
With the information of user touch and device configuration,
the screen scrolling tracker traces and predicts the viewport’s
movement. Further, given the location and size of the viewport
and those of the media objects, the coverages of the media
objects in the viewport can be calculated. Finally, with the full
knowledge of the screen scrolling process, the flow controller
is able to determine the optimal download policy.

B. Touch Event Monitor

The touch event monitor is a light-weight module that
collects the device specification and configuration (e.g., screen
size, pixel density, viewport scale) as well as the user touch
data. As the user touch data can only be obtained from the
mobile device, this module is designed to locate on the mobile

client and provide interfaces for the mobile app developers to
feed the user touch data. The collected information and data
are sent to the screen scrolling tracker, which only introduces
negligible traffic overhead.

In general, there are 3 types of input user gestures: click,
drag, and fling, the last two of which can result in screen
scrolling animation. Each gesture can be identified by a series
of touch events. By detecting and collecting the information
about the user’s finger touch and release on the screen, the
initial scrolling velocity on x axis (denoted as vx) and that on
y axis (denoted as vy) can be calculated as the displacement
divided by the touch time in two axes, respectively.

C. Screen Scrolling Tracker

1) Scrolling Animation Philosophy: As we will discuss the
practical issues for the implementation in the next section,
we first investigate the philosophy of animating the screen
scrolling for most mobile operating systems, which is to
gradually decelerate the scrolling speed until it reaches zero if
there is no other finger touch detected during the deceleration1.
Taking Android OS as an example, we next show how to cal-
culate the viewport movement and the media object coverage
during the scrolling process. Given the user touch data, the
initial scrolling speed can be obtained as v =

√
v2x + v2y .

Android OS uses a threshold for the initial scrolling speed
to distinguish between a drag and a fling, whose default
value is 50 pixels/second and can be scaled under different
configurations based on the actual screen resolution.

For dragging, the screen scrolling speed will experience a
uniform deceleration, which can be easily interpreted given the
deceleration parameter and initial speed. As the deceleration of
a dragging event is usually short and has very limited impact
on viewport movement, we focus on analyzing the case of
flinging. If a fling is detected, the deceleration will change

1https://developer.android.com/training/gestures/scroll.html
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with the scrolling speed. Given the initial scrolling speed v, the
total fling duration T (v) and the total fling distance D(v) (the
viewport displacement caused by the fling) can be calculated
by using the following equations:

l(v) = log[0.35 · v/(Fric · PCOEF )], (1)

T (v) = 1000 · exp[l(v)/(DRATE − 1)], (2)

D(v) = Fric·PCOEF ·exp[DRATE/(DRATE−1)·l(v)], (3)

where DRATE = log(0.78)/log(0.9), Fric denotes the fric-
tion parameter with the default value as 0.015, and PCOEF =
G · 39.37 · ppi · 0.84. To compute PCOEF , G is the gravity
of the Earth with a constant value of 9.80665 m/s2, 39.37 is
used for the conversion between meters and inches, and ppi
denotes pixel density for the specific mobile device. Note that,
as the basis of the following analysis, the above equations are
obtained from our analysis of Android OS source code2’ 3.
Even if the source code cannot be accessed in some cases
(for example, a customized OS), the scrolling process should
be easy to model, as we only need to fit the relationship
between the initial scrolling speed and the scrolling distance,
both of which are usually provided in the SDK as available
information for mobile app developers.

2) Viewport Displacement: Assume that, at time t, which
denotes the time elapsed since the scrolling starts, the scrolling
speed decreases to v′. From Eq. 2 and Eq. 3, we can have

D(v) = Fric · PCOEF · (T (v)/1000)DRATE . (4)

Given t = T (v)− T (v′), the viewport displacement at time t
can be calculated as

d(t) = D(v)− Fric · PCOEF · [(T (v)− t)/1000]DRATE .
(5)

Upon obtaining d(t), we can further calculate the viewport
displacement on x and y axis as dx(t) = d(t) · vx

v and dy(t) =
d(t)· vy

v , respectively. Note that, as d(t) can have any direction,
which is usually the same as (or opposite to) the direction
of the user’s finger touch movement, dx(t) and dy(t) can be
either positive or negative.

3) Objects Involved in Viewport Movement: As the view-
port and the rendered media objects (e.g., objects in a web
page) are usually rectangular or bounded by rectangular boxes,
let (x0p, y

0
p) be the original coordinates of the left-top vertex

of a viewport, and wp and hp be its width and height. The
viewport can be then uniquely defined. Similarly, we define
(xi, yi), wi, and hi as the coordinates of the left-top vertex,
the width, and the height of a media object i, respectively.

To identify the media objects covered by a scrolling process,
we first determine the area covered by the viewport movement.
Given the viewport displacement calculated above, the final
location of the viewport’s vertices can be obtained. As the
viewport can move in any direction in a 2-D plane, the
mathematical description of the covered area depends on
the specific situation. For simplicity, we study the case of

2https://android.googlesource.com/platform/frameworks/base/+/master/
core/java/android/widget/Scroller.java

3https://android.googlesource.com/platform/frameworks/base/+/master/
core/java/android/view/ViewConfiguration.java
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Fig. 8: Viewport movement

Dx(v) = D(v) · vx

v > 0, Dy(v) = D(v) · vy

v > 0 (other
cases can be studied similarly), in which the covered area is
surrounded by the boundary consisting of 6 intersected line
segments as illustrated in Fig. 8:

(1) x = x0p;

(2) y = y0p;

(3) x = x0p + wp +Dx(v);

(4) y = y0p + hp +Dy(v);

(5) y =
Dy(v)

Dx(v)
(x− x0p) + y0p + hp;

(6) y =
Dy(s)

Dx(v)
(x− x0p − wp) + y0p.

In Fig. 8, the blue rectangles denote the viewport initial and
final location, and the dotted lines indicate the corresponding
moving boundaries to the six equations above. The area
covered by the viewport movement can be determined as the
closed area within these boundaries.

To decide whether object i (the red rectangle in Fig. 8)
appears in such a bounded area, we check its four vertices
to see if it intersects or is located inside. Since the four
vertices are correlated, we can further evaluate the case based
on the location of one vertex for example the left-top vertex.
Specifically, given the boundaries, we can then determine that
object i is located in/intersecting the covered area, if (xi, yi)
meets the following conditions:

(1) x0p − wi < xi < x0p + wp +Dx(v);

(2) y0p − hi < yi < y0p + hp +Dy(v);

(3)
Dy(v)

Dx(v)
(xi − x0p − wp) + y0p − hi < yi

<
Dy(v)

Dx(v)
(xi + wi − x0p) + y0p + hp.

The 3 conditions check whether there is a part of the object
falls into the area between the 3 pairs of the parallel boundaries
in Fig. 8.
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As we are now able to filter the media objects that are
involved in a scrolling process, intuitively, the media objects
that never appear in the viewport can be omitted for down-
loading or considered with low priority, which likely causes
no difference in user QoE.

4) Object Coverage in Viewport: For those media objects
that appear in the viewport, calculating how much area each of
them covers is a straight-forward evaluation of its significance
to user’s multimedia viewing experience. We next show how to
compute the coverage of a media object i in the viewport at a
given time t. Based on the analysis in the previous subsections,
we have that, at time t, the left-top vertex of object i is moved
to (xp(t), yp(t)) = (x0p + dx(t), y

0
p + dy(t)). Similarly, we

consider object i appearing in the viewport at time t, if the
two following conditions are satisfied:

(1) xp(t)− wi < xi < xp(t) + wp;

(2) yp(t)− hi < yi < yp(t) + hp.

If object i is identified in the viewport, we can further calculate
how much area it covers. Let si(t) be the coverage of object
i in the viewport at time t, which can be obtained as:

si(t) =[min (yi + hi, yp(t) + hp)−max (yi, yp(t))]·
[min (xi + wi, xp(t) + wp)−max (xi, xp(t))].

(6)

D. Flow Controller

The flow controller determines and executes the optimal
download policy for the media objects identified in the last
step. We next present the formulation of the download opti-
mization problem, which is solved in this module.

Consider n media objects (such as images in a web page
or video segments in a DASH stream) that are involved in
a screen scrolling event. To accommodate the heterogeneity
of mobile platforms, the service/content providers usually
offer multiple versions of media objects, e.g., images/video
segments with different qualities. Assume that each object
i ∈ [1, n] have m versions ordered increasingly by resolu-
tion. Let ti be the time when object i first appears in the
viewport. Assume that the media objects are indexed based
on the order in which they enter the viewport, which implies
t1 ≤ t2 ≤ ... ≤ tn. Let B(t) be the available bandwidth
at time t and fi,j be the file size of object i with resolution
rj (j ∈ [1,m]). We further define the cost function as c(fi,j),
which denotes the cost of download with the given file size. We
use ki,j ∈ {0, 1} to denote the download policy for the given
object, where the binary variable ki,j = 1 indicates the object
i of version j will be downloaded, and ki,j = 0 otherwise.

1) Performance Metric Models: We propose two metric
models to evaluate the performance gain as well as the
download cost for a media object, namely, the QoS model
and the cost model.

In practice, user QoE is a subjective metric affected by many
factors, and thus it is difficult to model for a broad class of
applications such as the dynamic-viewport applications. The
actual user QoE can be determined based on the features
of a specific application and evaluated accordingly as shown
in later case studies. Here our generic QoS model attempts
to evaluate the quality of content in the dynamic-viewport

applications. Based on Section III-C4, object i covers a faction
si(t)
S of the viewport at time t, where S is the area of the

viewport. The quality of content is not only reflected by a
media object’s coverage and resolution, but also depends on
how long the object stays in the viewport. Following this
intuition, our QoS model consists of two parts. The first part
Q1(i, j) weights the object based on its coverage during the
screen scrolling, which can be calculated as the normalized
integral of si(t) in discrete time with resolution rj :

Q1(i, j) =
1

T (v)

rj
rm

T (v)∑
t=1

si(t)

S
=

1

T (v)

1

S

rj
rm

T (v)∑
t=1

si(t), (7)

where S = wp · hp. The terms in the denominator are used to
normalize Q1(i, j) so that its value is between 0 and 1.

The second part Q2(i) is an binary indicator which checks
whether the object appears in the final viewport when the
screen scrolling stops:

Q2(i) = 1[si(T (v))>0], (8)

where 1[·] is the indicator function.
The QoS metric of object i with resolution rj is defined as

a weighted sum of the two parts defined above:

Qi,j = a ·Q1(i, j) + b ·Q2(i). (9)

For simplicity, we set a = b = 1/2, so that Qi,j is between 0
and 1, and the QoS score of the object in the final viewport
will never be lower than that of the object out of the viewport.

The performance gain comes with a price. The download
cost of a object can be obtained from the cost function c(fi,j)
given the file size fi,j . We calculate the normalized cost for
downloading object i with resolution rj as

Ci,j = c(fi,j)/cM (10)

where cM is the highest download cost during the scrolling
process. As cM is reached when all the involved media
objects are downloaded at the highest resolutions or the
bandwidth is completely consumed, it can be calculated as
cM = c(min(

∑n
i=1 fi,m,

∑T (v)
t=1 B(t))). In general, the cost

function should be nondecreasing with respect to increasing
file size. We keep the cost model generic so that it can be
easily adapted to different practical scenarios. For example,
the cost function can be defined based on the communication
energy model fitting the practical details such as the tail time
in 3G/4G communications [7]. In some other cases, the cost
function can be a cut-off line describing the monetary cost for
a mobile user who pays a fixed fee for a data plan and pays
an extra fee (based on usage) when the data traffic exceeds
the limit allowed by the data plan.

2) Optimization Objective: The goal is to generate the
optimal download policy for all the media objects, which
maximizes the QoE gain and minimizes the download cost.
The objective function can be formulated as

n∑
i=1

m∑
j=1

ki,j(p ·Qi,j − q · Ci,j) =

n∑
i=1

m∑
j=1

ki,j(
p

2

1

2T (v)

1

S

rj
rm

T (v)∑
t=1

si(t) +
p

2
1[si(T (v))>0] − q

c(fi,j)

cM
),

(11)
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Algorithm 1 Optimal Solution by Dynamic Programming

1: Calculate v(i, j) and w(i, j), ∀i ∈ [1, n], j ∈ [1,m];
2: for l from 0 to W (tn) do
3: M [0, l] = 0;
4: end for
5: for i from 1 to n do
6: for l from 0 to W (ti) do
7: Mtemp = M [i− 1,min(l,W (ti−1))];
8: for j from 1 to m do
9: if M [i− 1,min(l − w(i, j),W (ti−1))] + v(i, j) >

Mtemp and w(i, j) ≤ l then
10: Mtemp = M [i− 1, l − w(i, j)] + v(i, j);
11: ki,j = 1;
12: ki,j′ = 0, ∀j′ ∈ [1,m], j′ 6= j;
13: end if
14: end for
15: M [i, l] = Mtemp.
16: end for
17: end for

where p and q are the weighting parameters.
For the proposed optimization problem, the following two

constraints must be satisfied.
(1) Each object is downloaded once at most:

∀i ∈ [1, n],

m∑
j=1

ki,j ≤ 1. (12)

(2) The bandwidth should be enough to download the
objects in time:

∀i′ ∈ [1, n],
i′∑

i=1

m∑
j=1

ki,j · fi,j ≤
ti′∑
t=1

B(t). (13)

The first constraint ensures that no more than one copy (with
a certain resolution) of each object can be downloaded. The
second constraint implies that, when any object i′ appears in
the viewport at time ti′ , there should be enough bandwidth to
download it and all the other selected objects that enter the
viewport before it. Given the download policy, the underlying
scheduling scheme hinted by Eq. 13 is to schedule the down-
load in the same order that the objects are requested in the
application.

3) Optimal Solution: We solve the formulated optimization
problem by converting it to a variation of the 0-1 Knapsack
problem. Define the value of object i with with resolution rj
as v(i, j) = p ·Qi,j − q ·Ci,j , its weight as w(i, j) = fi,j , and
the maximum weight capacity as W (t′) =

∑t′

t=1B(t). The
key difference is that, in our problem, W (t′) (the available
bandwidth till a given time t′) varies with time. Define M(i, l)
as to be the maximum value that can be attained with weight
less than or equal to l using first i items. Inspired by the
solution of 0-1 Knapsack problem, we solve the formulated
problem by dynamic programming as shown in Algorithm 1.

The algorithm first initializes v(i, j) and w(i, j) according
to the definitions. The maximum weight capacity is carefully
updated as it increases with larger i. A variable Mtemp is
further introduced to store the temporary maximum value
when evaluating the different versions of a media object.
Each time Mtemp is changed, the download policy ki,j is

updated accordingly, which takes O(m) operations. The time
complexity of Algorithm 1 is O(nm2W (tn)). The proposed
algorithm returns the optimal result since it does exhaustive
search. However, as we solve the problem as a variation of
the Knapsack problem, it runs in pseudo-polynomial time. In
practice, W (tn) usually has higher magnitude than n and
m, so it may need to be encoded using logW (tn) bits.
Although this algorithm is executed whenever a user touch
event is detected, given that any user gesture can only affect
a limited number of media objects for a very short time, n,
m, and W (tn) are most likely to have small values, and thus
Algorithm 1 can run efficiently.

IV. MIDDLEWARE IMPLEMENTATION

In this section, we present and discuss the implementation
issues for the MF-HTTP middleware.

A. Touch Event Monitor

The touch event monitor is implemented on the mobile
side. The middleware should introduce least modifications on
mobile clients and HTTP servers for dynamic-viewport mobile
services. As we need to collect user touch events from mobile
devices, integrating the touch event monitor to the client-side
software, typically a mobile app, is however inevitable. It
thus should be effortless for general mobile app developers
to implement and integrate the touch event monitor, which
employs simple and standard APIs to collect and transmit data.

The user interface for an Android app is built using a hier-
archy of layouts (ViewGroup objects) and widgets (View
objects). Layouts are invisible containers that control how
its child views are positioned on the screen. Widgets are UI
components that can be displayed on screen, such as buttons
and text boxes. The widget that occupies (a part of) the
device’s screen can listen to and handle user touch events
on it. The idea is to find the proper View object class in
the application’s source code, which can also be provided
by developers, and attach this module to the scrollable View
objects that display the scrolling effect in response to touch
gestures. Next, we override the onTouchEvent method of
the target View objects to handle touch screen motion events.
The customized onTouchEvent method focuses on three
types of motion events: ACTION_DOWN, ACTION_MOVE, and
ACTION_UP, which denote the start, the ongoing process, and
the end of a pressed gesture, respectively. When the first two
types of motion events are detected, the touch coordinates and
the timestamp are reported. When ACTION_UP motion events
are detected, the initial scrolling velocities on x and y axes
are calculated and reported, based on which the input gesture
can be identified as a fling or a drag. We further decouple
the scrolling animation from the original mobile application
to produce a well-controlled scrolling process, by employing
the Scroller class to animate scrolling over time using
platform-standard scrolling physics (friction, velocity, etc.).
The corresponding scrolling offsets for both drag and fling
events are calculated and sent to the screen scrolling tracker.
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B. Screen Scrolling Tracker

As the touch event monitor is designed to be as light
as possible, the screen scrolling tracker should be able to
collect all the related information to user input, hardware
platform, metadata of the media objects in dynamic-viewport
mobile applications, and provide accurate and timely feeds
for the flow controller. Some of these information can only
be obtained in runtime, while others should be retrieved in
advance, which requires us to carefully identify and process.

Prior to user consuming any mobile Internet services, the
screen scrolling tracker requires certain knowledge about the
(multimedia) services provided by dynamic-viewport mobile
applications. As such knowledge can be hardly collected from
client side, we implement the screen scrolling tracker on the
middleware server. This module can thus access the related
data on the cache of the middleware server, which is generated
during the previous usages of the target service from the same
user or from other users. If a miss occurs at the cache, it
can retrieve the required metadata directly from the server of
the target dynamic-viewport mobile application with very low
cost. Advanced caching schemes [8], [9] can be applied by
the middleware server to reduce the cache misses as well as
the caching cost.

During the consumption of mobile Internet services, the
screen scrolling tracker maintains a TCP socket connection
with the touch event monitor to collect the data related to
screen scrolling. First, this module retrieves the device spec-
ification and configuration information from the touch event
monitor, e.g., screen size, pixel density, initial viewport loca-
tion, viewport size, viewport scale, platform scrolling physics,
etc.. Second, the user touch data is constantly transmitted
to the module through the TCP socket connection, including
touch coordinates, timestamp, velocity, and scrolling offsets
along with total duration if a fling is detected. Based on the
analysis in Section III-C, it is able to calculate the viewport
locations and object coverages during the scrolling process.
Whenever a touch event with a newer timestamp arrives, the
emulation of current/unfinished scrolling is aborted.

Sending all user input events away from the mobile users
may cause some user privacy issue. To avoid that, we ac-
tually do not send all user input events to the middleware.
Rather than collecting all the information of user touches
(i.e., where and how the user touches the screen), MF-HTTP
only requires the information of the scrolling speed when
the user releases his/her touch (i.e., how quick user finger
leaves the screen). Therefore, besides emulating the viewport
movement, the middleware cannot reproduce the exact user
touch given the limited information, which can address the
user privacy concern in certain degree. In addition, during the
system deployment the middleware can be placed at a trustful
proxy/server, which can reside in the same (and safe) internal
network as the mobile client.

C. Flow Controller

The flow controller is also implemented on the middleware
server and runs in a separate thread from the screen scrolling
tracker. During its execution, it communicates with the screen

scrolling tracker by sharing global variables, and collects the
related information from the previous downloading sessions.

The flow controller should have certain control over the
download of media objects without modifying the content
server of the dynamic-viewport mobile application or breaking
down the hardcore of the mobile app. To this end, we adopt
the mitmdump4 tool, run MF-HTTP as a man-in-the-middle
proxy, and redirect the mobile client’s HTTP traffic to the
middleware server. As the tool offers a powerful scripting API
that allows us to control many aspects of HTTP traffic being
proxied, we develop a Python script to run with mitmdump
on the middleware server to identify and handle the HTTP
traffic generated by the target mobile multimedia service. By
default, the tool’s script mechanism is single threaded, and the
proxy blocks while script handlers execute, which can easily
cause a performance issue as multiple HTTP requests may be
initiated simultaneously, e.g., in one web browsing session.
We thus modify the script with the @concurrent setting,
and let MF-HTTP proxy work in a non-blocking mode so
that the flow controller can process multiple HTTP requests
at the same time. The control of media object downloading is
realized by modifying, deferring, or blocking the target HTTP
headers, requests and responses.

The flow controller executes the optimization logic pre-
sented in Section III-D. It is worth noting that, our optimiza-
tion model of MF-HTTP can adapt to various user require-
ments and different practical scenarios, as the cost function and
the weights of performance metrics are adjustable. Moreover,
as the inputs, the outputs, and the interfaces employed by MF-
HTTP are simple and straight-forward, users of MF-HTTP can
design and implement their own optimization logics.

V. CASE STUDIES

MF-HTTP targets to optimize dynamic-viewport mobile
applications, a class of mobile Internet applications that can
make HTTP downloads outside user viewport. For different
applications, the knowledge assumed from the last section can
be carefully obtained or bypassed. We next present concrete
case studies on two representative applications, web browsing
and 360-degree video streaming, and discuss the light and
practical adjustments for the MF-HTTP prototype.

The two applications in our case studies involves two major
types of multimedia experience and various kinds of user
behaviors. From the multimedia experience side, web brows-
ing offers a one-time download-and-view experience, while
360-degree video streaming provides a continuous download-
and-view experience. From the user behavior side, the two
applications both support touch-based interactions, as well as
other types of user inputs, e.g., gyroscope readings from end
devices in 360-degree video streaming. To examine different
user behaviors, we analyzed the data from a touch-based
user behavior dataset for social media browsing [4] and three
sensing-based user behavior datasets for 360-degree video
watching [10], [11], [12]. As shown in Fig. 9, the touch-
and-scroll user behaviors usually have high fling (the specific
type of user touches that cause fast screen scrolling) speed

4https://mitmproxy.org/
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Fig. 10: CDF of head-turn angular
speed

in browsing-based applications: 86.1% of the flings are over
500 pixel/ms and 45.8% of them are over 1,000 pixel/ms,
which suggests great optimization opportunities in fast brows-
ing events. On the contrast, the head-turn user behaviors in
video watching applications exhibits a more stable pattern:
in Fig. 10, the probability of the angular speed being less
than 10◦/s is about 62.8%, and the probability for less than
30◦/s is around 83.1%, which implies that the dynamics
of unpredictable head turns are bounded to certain limits.
Given the above considerations, the two target applications
are representative for viewpoint tracking and media objects
downloading.

A. Mobile Web Browsing

For mobile web browsing, the media objects that are critical
to user viewing experience are the images in the web page
(the videos are often marked by their thumbnails before
being selected to play). Therefore, our scrolling-aware HTTP
middleware can be adjusted for the download of images.

1) For Touch Event Monitor: In this case study, we develop
a light-weight web browser based on the WebView5 class
from Android API, whose onTouchEvent method is cus-
tomized as presented in the last section. Note that WebView
share the same rendering engine as Chrome for Android,
where both are based on the same code.

2) For Screen Scrolling Tracker: As the web page layouts
and the resource dependencies are usually stable [13], the
screen scrolling tracker can collect necessary information
about the web page from the middleware server’s cache. If
the web page has never been requested before, our middleware
server starts a WebDriver6 (Chrome) instance and downloads
the web page. A reference between web objects’ locations and
source URLs can be then built accordingly. We use Chrome’s
developer tool to emulate the web page layout under different
screen sizes. Every time the web page is requested, this
reference is built and updated, so that the middleware keeps
refreshing the information of web page layouts proactively.

The “load-before” relationship between the web page’s
contents such as HTML, CSS, JavaScript, and image objects,
usually referred to as the content dependency [14], is one
of the key factors of web page loading optimization. For
example, the browser should first download HTML as the root
file, and download CSS/JavaScript files next to specify the

5https://developer.android.com/reference/android/webkit/WebView.html
6https://seleniumhq.github.io/selenium/docs/api/py/api.html

layouts and the contents. The dependency exists because that
HTML, CSS, and JavaScript need to be parsed/executed. This
parse/execution process decides what contents (multimedia
objects or other HTML, CSS and JavaScript files) to be
downloaded and where (multimedia objects) to be displayed in
the web page. Therefore, those contents can only be requested
and downloaded after parsing/executing the depended HTML,
CSS and JavaScript. Although the dependencies between web
objects can be profiled using tools such as Wprof [15], we
choose to not violate any dependency by obeying the download
sequence/order of HTML, CSS and JavaScript. As HTML,
CSS and JavaScript files constitute only a quarter of the
bytes on the average mobile web page [16], MF-HTTP focus
on modifying/skipping the download of the rest multimedia
objects (still the majority of the downloaded bytes), e.g.,
images, among which dependencies rarely exist.

3) For Flow Controller: As bandwidth is rarely the bot-
tleneck for web browsing [2], we release the bandwidth
constraint from the formulated problem in Section III-D.
Rather than modifying the hardcore of the web engine to have
fine-grained control over the download of web page objects,
MF-HTTP adopts simple but effective approaches. The flow
controller is adjusted to execute the following work process.
(1) When a web page is requested, as the images’ source URLs
are already collected, the flow controller maintains a block list
of source URLs for the images outside the initial viewport. (2)
For each data flow, it checks the header to see if the requested
URL is in the block list. If so, it blocks the HTTP request.
(3) By receiving the updates of viewport location, viewport
displacement, and object coverage from the screen scrolling
tracker, the flow controller is able to determine whether an
image appears in the viewport in the scrolling process. If the
image is never involved in the scrolling, it remains in the block
list. For web browsing, the images in the viewport before and
after its moving are the most crucial to user QoE. Thus such
images in the current viewport or in the final viewport when
the scrolling stops are identified and removed from the block
list. For the images that appear but fail to stay in the viewport,
the flow controller evaluates their values p ·Qi,j − q · Ci,j as
in Eq. 11. The images with positive values are allowed to
download, while others with negative values are kept in the
block list. (4) Whenever a new user touch event is detected, the
flow controller receives the updates from the screen scrolling
tracker and reacts in the same logic as described above.

B. 360-Degree Video Streaming

Different from web browsing, video streaming is bandwidth-
sensitive and -intensive, which can also benefit from MF-
HTTP. 360-degree videos provide users with panoramic views
and create unique viewing experience, which are now popular
on major video sharing platforms such as YouTube and Face-
book. It is worth noting that, 360-degree videos are commonly
seen and consumed from various platforms, which do not
necessarily require virtual reality hardware to play. In this case
study, 360-degree videos are consumed as navigable videos
from mobile clients with dynamic viewports. As shown in
Fig. 2, the user’s viewport is significantly confined by the
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device’s size of display, while the whole raw frame is streamed
back with large portions outside the viewport. We next discuss
how to enable the key idea of MF-HTTP for 360-degree video
streaming.

1) Modification on Mobile Side: The touch event monitor
is implemented and attached to an open source 360-degree
video player7. In this case, we directly pin the touch event
monitor to the player’s main View object class, which extends
the TextureView class from Android API, to handle the
touch events and output the user gestures and the scrolling
offsets.

It worth noting that for 360-degree video playback on
smartphones, current major service providers such as YouTube
allow different ways of user interactions: user touch input
and gyroscope sensing are both supported. Our proposed MF-
HTTP should also be able to adapt to other types of user
inputs as long as the required information can be extracted.
The essential information needed from the user in MF-HTTP
is how quickly the viewport moves in which direction (and
where it will stop based on the calculation), which should
be easily collected or transformed from the given user inputs
such as sensor readings. For instance, gyroscope readings on
the smartphone can directly tell the angular speed of the user
head turn, which can be used to calculate the viewport moving
speed and indicate where it stops for the specific video player.
MF-HTTP can then work as normal.

2) Tile-based DASH Streaming: Although major video
sharing platforms like YouTube have already adopted progres-
sive and adaptive download over HTTP to delivery 360-degree
videos, they still largely inherit the delivery scheme from
traditional Internet videos, which is apparently inefficient for
360-degree videos and provides no flexibility to adapt to the
change of user’s Region Of Interest (ROI). An adaptive video
streaming technique that can smartly respond to viewport
movement is demanded for MF-HTTP. To this end, we adopt
the tile-based approach [17], [18] to adapt user’s ROI, the
viewport.

Bandwidth prediction is a widely existed issue in most video
streaming studies. If the bandwidth drops drastically in short
time, it may cause playback stall/freeze and trigger rebuffering.
Inspired by the start-of-the-art 360-degree video streaming
systems [36], [37], our MF-HTTP takes two approaches to
mitigate this issue: (1) we use the recent history to predict the
short future—predict the future bandwidth for the next one
or several video segments based on the observed bandwidth
during the download of last one or several video segments; (2)
to further tolerate bandwidth prediction errors in dynamic net-
work conditions, we set a damping coefficient α ∈ (0, 1] and
conservatively use α · predicted bandwidth as the available
bandwidth in the flow controller.

3) Adjustments for 360-Degree Video Watching: As the
spherical view for 360-degree videos is built from the rect-
angular raw frame, we adopt the widely used equirectangular
projection [19] as the sphere-to-play mapping scheme, which
unwraps a sphere with a radius of r on a 2D rectangular plane
with the dimensions of (2πr, πr). Given the initial field of

7https://github.com/fbsamples/360-video-player-for-android

view (FOV) and the viewport size obtained from the mobile
client, the radius of the spherical view can be calculated, which
enables the translation between longitudes and latitudes of
the sphere and x, y coordinates of the 2D plane. The screen
scrolling tracker can then map the viewport to the tiles of the
raw video frame.

User behaviors for video watching exhibit distinct patters. In
particular, user interest for video contents is usually coherent
in one viewing session, and thus users produce much more
drag events than fling events if there are any. Given that
a DASH segment’s duration is usually much longer than
a scrolling, instead of interpreting viewport movement, the
screen scrolling tracker only keeps a close track of the view-
port’s current location by monitoring the user drag events.
The tiles are thus classified into two categories: tiles that
appear in the viewport and tiles that have no overlap with
the viewport. In the original formulation, media objects with
different resolutions are evaluated and selected separately,
which can be simplified here by setting Qi,j to be binary, as the
tiles that appear in the viewport should be of the same quality
so as to provide better and consistent QoE for video watching.
As the design of more sophisticated algorithms specifically
for 360-degree video DASH streaming optimization is out
of the scope of this paper, therefore, for illustration purpose,
here the flow controller adopts the following principle for tile-
based 360-degree video DASH streaming: given the available
bandwidth, minimize the quality of the tiles that have no
overlap with the viewport and maximize the quality of the
tiles that appear in the viewport.

To accommodate different types of user inputs, MF-HTTP
can work in different modes. For more stable touch-based
user inputs, MF-HTTP can work in an aggressive mode by
skipping the download of no-show tiles as stated above. On
the other hand, for more dynamic sensor-based user inputs
that may change frequently and dramatically, MF-HTTP can
work in a conservative mode: (1) to avoid missing any tile
during the playback, it downloads all the tiles; (2) the tiles
are downloaded with different resolutions; (3) the resolution
selection is affected by the viewport-staying time/viewing
probabilities based on the user inputs—tiles with higher view-
ing time/probabilities are downloaded in higher resolutions. In
this conservative mode, although bandwidth is more evenly
utilized for all the tiles (with lower resolutions), the user
perceived video quality may not be hurt: when the viewport
moves very fast, users often cannot tell the difference in video
resolution.

VI. PERFORMANCE EVALUATION

We have conducted extensive evaluations to examine the
performance of our MF-HTTP middleware for both case
studies. We will discuss their results in the following two
subsections, respectively.

A. Experiments for Web Browsing

1) Test Platforms and Settings: In this subsection, we
evaluate the performance improvement of our MF-HTTP mid-
dleware for the mobile web browsing case study. We use a
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Nexus 6 phone running Android 7.0 as the mobile client, and
a desktop computer with Intel Core i7-3770 CPU @ 3.40GHz
× 8 and 16 GB memory running Ubuntu 14.04 LTS as the
MF-HTTP middleware. As the touch interface has no dramatic
change across different generations of hardware and software
platforms, similar experiment results are observed with other
phones. The mobile client is connected to MF-HTTP through
an IEEE 802.11 WLAN router. Both of the middleware and
the router locate in the university campus network, and the
network condition is good and stable. We use the browser to
access the Alexa’s top 25 global websites [5]. Each browsing
session consists of default viewport loading followed by a
random scrolling touch. We set the weight of cost metric
q = 0 to maximize the viewing experience. To better trace
the loading performance, we add a timer to the browser. We
compare the performance of browsing with and without MF-
HTTP enabled. The baseline approach downloads all the media
objects in the default order with no consideration of the user
viewport, which is commonly used in most browsers.

2) Results: We first check the default viewport size against
the web page size, where Fig. 11 shows the ratio of top 25
websites (the gray bars) . In particular, there are 11 websites
having full-size viewports and 14 websites having dynamic
viewports. Those 14 dynamic-viewport websites stand for
more general and various types of websites, from which
mobile users can only view a small portion of the whole page
(as low as 4.1% in the case of Sohu). The 11 websites with
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 Fig. 14: Amount of traffic

full-size viewports are mainly search engines (e.g., Google
global and 4 other regions, Microsoft Live) and login pages
(e.g. Facebook, Twitter, and Linkedin). We further check their
viewport sizes after logging into user accounts or entering
search keywords. As shown in Fig. 11 (the black bars),
with the social contents and search results returned, the user
viewports only cover 15.4% of the web pages in average. It is
worth noting that, some websites (e.g., YouTube and Yahoo)
have pages of varying length, which will always load new
contents when users hit the bottom. In theory, these websites
can have unlimited length of contents, and thus the impacts of
limited-size viewports become even more notable. We further
examine the distribution of media object size. In particular,
we check the ratio of image height/webpage height and the
ratio of image width/webpage width, respectively, and plot
the results in Fig 12. The majority of the images (over 60%)
have medium sizes, which cover from 5% to 15% of the web
page’s width and from 10% to 25% of the web page’s height,
respectively. There are also over 10% large images with width
and height greater than 22.6% of web page’s width and 31.6%
of web page’s height, and 20% small images with width and
height smaller than 4.9% of web page’s width and 8.8% of
web page’s height.

Rather than using page load time, one of the major per-
formance metrics for web browsing, we use a new metric,
viewport load time, which is the elapsed duration when the
viewport is fully loaded. We record the screen of the test
smartphone and replay the video to track the loading process
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(a) MF-HTTP enabled (b) MF-HTTP disabled

Fig. 15: Screenshots of two browsing sessions with the same
timestamp

MF-HTTP/Baseline % in MF-HTTP % in Baseline
Received 83.35% 88.83% 90.63%
Transmitted 100.34% 11.17% 9.37%

TABLE I: Comparison and proportions of two-way traffic

as well as the timer. As shown in Fig. 13, MF-HTTP sig-
nificantly improves the loading performance for the websites
with dynamic viewports as it prioritizes the downloads of the
objects in the viewport. In average, MF-HTTP reduces the
viewport load time by 44.3%. The high loading time of some
webpages mainly caused by the large number of images and
the relatively large image size. Another reason may be that
our test browser is developed merely based on the WebView
API. The advantage is that our implementation is lightweight
and has increased control over advanced configuration options,
while the disadvantage is that the test browser is less-optimized
and lacks some features of fully-developed browsers. The test
browser thus has poorer performance than the commercial
products such as Chrome, Safari and Firefox. As the experi-
ments for MF-HTTP and baseline were done on the same test
browser, the VLT comparison can demonstrate the superiority
of MF-HTTP. Fig. 15 further shows two screenshots taken
at the same time for two YouTube browsing sessions using
different approaches. In this example, MF-HTTP finishes load-
ing the viewport, while the baseline approach still struggles
in downloading objects disregarding whether they are in the
viewport.

We next examine the amount of traffic generated during the
browsing sessions using the two approaches. Fig. 14 shows
that MF-HTTP generally requires less data transmissions than
the baseline approach, with 15.3% traffic saving in average. It
is worth noting that, as q is set to be 0, MF-HTTP works in the
most aggressive download mode, and only omits downloading
the objects that never enter the viewport. Hence, when q > 0,
more traffic saving can be expected. We further break down
the traffic constitution in Tab. I. With MF-HTTP enabled, the
mobile client sends comparable amount of data (100.34%),
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while receives 16.65% less data, which suggests that the traffic
saving comes from less media downloads. As the mobile client
needs to report user touches to the middleware server, the
communication overhead for MF-HTTP is mostly outgoing
traffic from the client, which only accounts for a small portion
of the total traffic as shown in Tab. I. The communication
overhead for MF-HTTP is thus negligible (less than 2%).
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Fig. 19: Video quality constitutions with different bandwidth (Video 1 to 3 from left to right)

B. Simulations for 360-Degree Video Streaming

1) Data Collection: In this subsection, we evaluate the
performance improvement of our MF-HTTP middleware for
the 360-degree video streaming case study. We obtain three
test videos from YouTube8 at 4 different resolutions/quality
levels: 1080s (quality level 4), 720s (quality level 3), 480s
(quality level 2), and 360s (quality level 1), where “s” stands
for spherical. We recruit 10 volunteers to watch each video
on the Nexus 6 phone and modify the 360-degree video
player to record user touches during the video watching. Each
video watching session lasts for 1 minute. To support tile-
based DASH streaming, we use the GPAC9 toolbox to slice
and package the 360-degree videos into into 4 × 4 tiles. We
further do a segmentation on the encoded tile-based videos
and generate segments with duration of 1 second as well
as the MPD files, which are ready to be DASHed. The
viewport movement and the resulting tile and rate selection
are generated by MF-HTTP based on the collected traces of
user touches.

2) Results: First, we examine the effect of parameter se-
lection by varying the ratio of p/q from 100 to 10−3. We
calculate the average quality level (QL) of the 3 test videos
and normalize their delivery cost (NC) against that of the
baseline approach at 1080s. The cost model adopted is a linear
model: 10 dollar per 100 MB traffic, which is close to the
major mobile operators data add-on prices10. Fig. 16 shows
the clear tradeoff between two optimization sub-objectives,
where higher quality level comes with higher cost. The result
suggest an appropriate setting of p/q may be 10−1, where a
good balance can be achieved for both sub-objectives.

We next check the bandwidth consumption for MF-HTTP
at different resolutions. As shown in Fig. 17, MF-HTTP
significantly reduces the bandwidth consumption at each res-
olution (52% average bandwidth saving at 360s, 59% at 480s,
60% at 720s, and 56% at 1080s, respectively), compared
to the baseline approach, streaming the whole frame with a
fixed resolution without considering the viewport. The result
suggests that, with the same video quality, MF-HTTP is much

8YouTube IDs of the three test videos are: -xNN-bJQ4vI, rG4jSz 2HDY,
wXeKxY3F0sE.

9https://gpac.wp.imt.fr/home/
10https://www.telus.com/en/mobility/prepaid/add-ons

more cost-efficient in terms of data transmissions than the
blind downloading. We further plot a sample trace of one
video watching session in Fig. 18, which shows that MF-
HTTP does not necessarily share network load peaks with the
baseline steaming approach. On the other hand, the bandwidth
consumption of MF-HTTP is closely affected by the number
of tiles that appear in or overlap the viewport, as the valleys
of the two curves match in Fig. 18.

We further vary the available bandwidth from 250KB/s to
1000KB/s to examine the streaming quality of MF-HTTP, and
compare its performance with a greedy DASH scheme that
maximizes bandwidth usage and streams at the highest possi-
ble resolution. Fig. 19 shows how much time (in percentage)
the test videos are played at different resolutions using two
streaming approaches. It worth noting that, in MF-HTTP, we
track user viewport and calculate its location for a known and
short future. Since we make no prediction of user viewport
during this process, MF-HTTP has full knowledge of user
viewport when selecting the tiles and their bit-rates. Therefore,
in our MF-HTTP optimization, it does not miss tiles and
thus avoids playback stall time as long as the bandwidth can
afford the streaming with the lowest resolution. When there
is not enough bandwidth for the lowest resolution, playback
stall occurs, which is denoted as “NA” In Fig. 19. As shown,
MF-HTTP constantly outperforms the greedy DASH scheme
under all bandwidth conditions for all test videos. MF-HTTP
can maintain good video quality when the bandwidth is low,
and it quickly responds to the increase of the bandwidth. This
result suggests that MF-HTTP can more efficiently utilize the
network resource to focus on downloading the high quality
video segments in the viewport.

VII. RELATED WORK

A serial of studies have been conducted to optimize web
browsing, an application that is largely affected by user
viewport. Prior work [2] suggested that client-only approaches
have significant limitations for mobile users: caching [20] web
contents does not remove the true bottleneck of web page
loading–RTT, and predictive prefetching [21] cannot work well
either since most of the pages will only be requested once by
a user. A recent measurement study [22] showed that only
a few web sites have fully deployed HTTP/2 (the state-of-
the-art standard in industry) servers, and few of them have
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correctly realized the new features in HTTP/2, which implies
the necessity of research efforts on optimizing web perfor-
mance. Scheduling network requests is a widely exploited
approach to reduce page load time, which is designed base on
the dependency between web page elements [14]. Butkiewicz
et al. [13] proposed KLOTSKI, a system that prioritizes the
contents most relevant to the user preference and with least
rendering time. By collecting the traces of user gaze fixation
during web browsing, Kelton et al. [23] examined the focus
of user attention and reordered the loading of web objects
accordingly. To achieve the best performance-energy tradeoff,
Ren et al. [24] adopted a machine learning based approach
to predict the optimal processor configurations at runtime for
heterogeneous mobile platforms.

Video streaming is another killer application influenced
by user viewport. The rate adaptation scheme is one of the
fundamental research issues for video steaming. By studying
the responsiveness and smoothness trade-off in DASH, Tian et
al. [25] showed that client-side buffered video time is a helpful
feedback signal to guide rate adaptation. Instead of constantly
predicting future capacity, Huang et al. [26] proposed to use
simple capacity estimation only in the startup phase and then
choose the video rate based on the current buffer occupancy in
the steady state. Novel techniques, e.g., deep learning [27] and
emerging computing architectures, e.g., edge computing [28],
[29], [30] are also adopted to improve the rate adaptation for
video streaming. Recently, MPEG DASH standard [31] has
included a new Spatial Representation Description (SRD) [32]
feature, to support the streaming of spatial sub-parts of
a video to display devices, in combination with adaptive
multirate streaming that is intrinsically supported by DASH.
Following this advance, DASH has been further exploited to
stream zoomable and navigable videos [33], virtual reality
videos [34], and multiview videos [35]. For 360-degree video
streaming, Qian et al. [36] designed a viewport prediction
mechanism based on the analysis of user head movement
traces to optimize the rate-adaptation, and reworked other re-
lated components in the streaming pipeline to further boost the
performance against non-viewport-adaptive approaches. He et
al. [37] identified that viewport prediction error can result
in significant video quality degradation, and thus proposed a
novel tile-based layered approach to adaptively stream 360-
degree content on smartphones.

Such mobile smart devices as smartphones, phablets, and
tablets, undoubtedly reshape the way that users access Internet
services, and therefore attract tremendous attentions from
academia. Existing studies have tackled the challenges brought
by the intrinsic mobile nature and enhanced network protocols
to accommodate seamless mobility [38], [39], inefficient re-
transmission [40], unstable channel quality [41], [42], [43],
and unexpected interference [44], [45] in wireless and mobile
networks. Yet, very few of them have attempted to improve
network protocols for multimedia applications by utilizing rich
interfaces and user interactions on mobile smart devices. To
this end, taking the example of the most commonly used
network protocol–HTTP, we proposed our middleware design
to make it more suitable for mobile multimedia applications.
Furthermore, rather than optimizing one specific application,

our work strives to enhance dynamic-viewport mobile applica-
tions, a class of mobile Internet applications that make HTTP
downloads for media contents outside user viewports.

VIII. CONCLUSION

In this paper, we presented the Mobile-Friendly HTTP
middleware (MF-HTTP) to enhance dynamic-viewport mo-
bile applications that usually use HTTP to download media
contents beyond the users’ viewing regions on mobile de-
vices. MF-HTTP acts at the application layer and interprets
screen scrolling processes on mobile devices by tracking
user touch screen operations. Based on the information from
the screen scrolling processes, MF-HTTP further optimizes
the downloading of media objects to improve QoE and cost
efficiency. To achieve this, we first demystified the detailed
screen scrolling philosophy in mobile system and showed how
to precisely break down the viewport movement. We then iden-
tified the key influential factors for media object downloading,
and developed an optimal downloading scheme. We further
discussed practical issues towards the implementation of MF-
HTTP. Finally, we implemented a prototype based on Android
platforms and conducted concrete case studies on two typical
dynamic-viewport mobile applications, namely, web browsing
and 360-degree video streaming, to demonstrate the superior
performance of MF-HTTP.
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