
Enhancing Dynamic-Viewport Mobile
Applications with Screen Scrolling

Lei Zhang ,Member, IEEE, Feng Wang , Senior Member, IEEE,

and Jiangchuan Liu , Fellow, IEEE

Abstract—The pervasive penetration ofmobile smart devices has significantly enriched Internet applications and undoubtedly reshaped

the way that users access Internet services. Different from traditional desktop applications, mobile Internet applications require users to

input via touch screens and view outputs on the displayswith considerably limited size. The significant conflict between the limited-size of

touch screens and the richness of onlinemedia contents widely exists in dynamic-viewportmobile applications, a class ofmobile Internet

applications that download contents beyond the user’s viewing region (referred to as viewport). As dynamic-viewportmobile applications

usually use HTTP for content downloading, to improve their quality of experience (QoE) and cost efficiency, in this paper, we present a

Mobile-Friendly HTTPmiddleware (MF-HTTP), which can interpret user touch screen inputs and optimize theHTTP downloading ofmedia

objects for such applications.We first demystify screen scrolling inmobile operating systems and precisely break down the viewport moving

process.We identify the key influential factors for media object downloading and develop an optimal download scheme. Towards building a

practical middleware, we further discuss and address the implementation issues in detail. We implement aMF-HTTPprototype based on

Android platforms and evaluate the performance ofMF-HTTP by conducting concrete case studies on two representative dynamic-viewport

mobile applications, namely, web browsing and 360-degree video streaming.

Index Terms—Mobile applications, dynamic-viewport, screen scrolling, middleware

Ç

1 INTRODUCTION

DURING the past decade, we have witnessed the pervasive
penetration of mobile smart devices such as smart-

phones, tablets and wearable devices, which significantly
enrich Internet applications and improve user experience.
Mobile smart devices are predicted to take up over 50 percent
of global devices/connections and surpass 4/5 of mobile data
traffic by 2021 [1]. Different from traditional desktop applica-
tions, in which users interact via input/output devices like
large-size displays, keyboards, and mouses, mobile Internet
applications require users to input through touch screens and
allow them to view outputs on the displays of considerably
limited size. This distinct feature introduced by mobile hard-
ware interfaces brings both challenges and opportunities to
mobile Internet applications. On one hand, the service pro-
viders of mobile Internet applications should provide multi-
ple copies of media contents with different resolutions and
even multiple versions of application user interface (UI) lay-
outs to fit various sizes of screens on heterogeneous devices.
On the other hand, asmedia contents are usually organized in

certain order/layout in mobile Internet applications, it is pos-
sible to predict the viewing region (referred to as viewport
hereafter) given the user inputs and the fixed size of display.

The significant conflict between the limited-size of touch
screens and the richness of online media contents requires
the mobile Internet applications to download contents way
beyond the user viewport. In the mobile applications that
host contents beyond (in and out of) the viewports, users
have to move their viewports through touch screen interac-
tions to fully access the contents and achieve good experi-
ence. In this paper, we identify and term these applications
as dynamic-viewport mobile applications. Understanding how
the viewport moves naturally becomes crucial to optimize
the dynamic-viewport mobile applications. Taking web
browsing as an example, mobile users usually can only view
a limited area of the web page. By tracking user touches, it is
possible to identify in which direction the viewport moves
and where it stops, as well as the area covered during the
deceleration. Conventionally, web browsers download all
the elements in the web page by default, as users can easily
view the whole web page on a desktop display. However, in
themobile scenario, given the entire screen scrolling process,
we are able to tell which media contents need to be down-
loaded. For instance, in Fig. 1, the user browses the web page
and scrolls the viewport from position A to position B. The
area bounded by the dashed lines is covered during the
deceleration of screen scrolling. In this web browsing event,
there is no need to download the images that are entirely out
of the scrolling covered area, which does not hurt the user
experience as they never appear in the viewport. In this
example, we consider a general case for dynamic viewport
applications, in which the screen scrolling can happen in two

� L. Zhang is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, Guangdong 518060, China.
E-mail: leizhang@szu.edu.cn.

� F. Wang is with the Department of Computer and Information Science,
University of Mississippi, University, MS 38677 USA.
E-mail: fwang@cs.olemiss.edu.

� J. Liu is with the College of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, Guangdong 518060, China, and also with
the School of Computing Science, Simon Fraser University, Burnaby, BC
V5A 1S6, Canada. E-mail: csljc@ieee.org.

Manuscript received 14 Dec. 2018; revised 12 Nov. 2019; accepted 1 Dec.
2019. Date of publication 18 Dec. 2019; date of current version 4 Mar. 2021.
(Corresponding author: Jiangchuan Liu.)
Digital Object Identifier no. 10.1109/TMC.2019.2959524

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021 1393

1536-1233 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-7395-3780
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0002-0461-6940
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
https://orcid.org/0000-0001-6592-1984
mailto:leizhang@szu.edu.cn
mailto:fwang@cs.olemiss.edu
mailto:csljc@ieee.org

dimensions (vertically and horizontally). In later sections, we
will also model and analyze the viewport motions in 2D
space with X, Y coordinates. Many websites today have their
mobile versions to fit the mobile device’s screen width so
that users only need to scroll vertically, which can be taken
as a special case of Fig. 1.

For dynamic-viewport mobile applications, which now
have become mainstream, the current protocol/system
designs rarely consider the user-touch screen interactions
together with the content organization/represetation in the
limited viewport. Despite the limitations brought by the
mobile interfaces (e.g., limited displays), we attempt to
exploit the opportunities from user-device interactions (e.g.,
user touches) and add this missing component into the proto-
col/system design for dynamic-viewport mobile applica-
tions. As the screen scrolling animation is mostly affected by
user touches, once an input gesture is given based on user
touches, the following process of viewport movement is pre-
determined inmobile operating systems. Therefore, by study-
ing the impacts of user touches on screen scrolling, our work
targets to improve quality of experience (QoE) and cost effi-
ciency for the class of dynamic-viewportmobile applications.

As dynamic-viewport mobile applications usually use
HTTP for content downloading, in this paper, we showcase
the design of Mobile-Friendly HTTP middleware (MF-
HTTP), which acts at the application layer, interprets screen
scrolling processes on mobile devices by tracking user touch
screen operations, and optimizes the downloading of media
objects to improve QoE and cost efficiency of such applica-
tions. We first demystify screen scrolling philosophy in
mobile operating system in depth. With the opportunities of
collecting and understanding user touch screen operations,
we show how to precisely break down the viewport move-
ment, and identify the media objects involved in the process.
By examining the key influential factors for media object
downloading, we develop an optimal download scheme.

Towards building a practical middleware, we further discuss
the implementation details for MF-HTTP, based on which we
implement a prototype on Android platforms. We conduct
concrete case studies on two typical dynamic-viewport
mobile applications, namely, web browsing and 360-degree
video streaming, integrate them with our MF-HTTP middle-
ware implementation, and evaluate the performance through
extensive experiments. This optimization flow can easily be
applied to other protocol/system enhancements for dynamic-
viewportmobile applications.

The rest of the paper is organized as follows. Section 2
introduces the class of dynamic-viewport mobile applica-
tions, and demonstrates their key features and dominance as
a mainstream service type. To enhance dynamic-viewport
mobile applications, we present the architecture of the
Mobile-Friendly HTTP middleware and reveal its underly-
ing design principles in Section 3. The practical details
of MF-HTTP implementation are discussed in Section 4.
Section 5 further conducts concrete case studies on two rep-
resentative dynamic-viewport mobile applications. The per-
formance of MF-HTTP are evaluated in Section 6. Finally, we
revisit the related studies in Section 7 and conclude our
paper in Section 8.

2 DYNAMIC-VIEWPORT MOBILE APPLICATIONS

In this section, we first identify the unique characteristics of
dynamic-viewport mobile applications, and then show their
popular existence. In dynamic-viewport mobile applica-
tions, to fully access the contents and achieve good experi-
ence, users need to move the viewports through screen
scrolling, the unique touch screen interactions on mobile
platforms. The operation of screen scrolling in such applica-
tions implies that, the viewport is of limited size compared
to the contents, and thus the applications need to download
their contents beyond the user viewport. The dynamic-
viewport mobile applications have been widely seen in real-
world, which involve a broad class of mobile Internet appli-
cations. Some examples are, to name but a few, mobile web
browsing [2], 360-degree video watching [3], and mobile
social networking [4]. For mobile web browsing, like the
example in Fig. 1, many of today’s websites offer web pages
that exceed the user viewports. For 360-degree video watch-
ing, the raw frames, as shown in Fig. 2a, are downloaded to
construct the whole 360-degree panoramic views, while the
user viewports can only cover limited areas such as the two
snapshots in Fig. 2b and 2c. For mobile social networking,
users can only view a very limited amount of social feeds
each time in the viewports as shown in Fig. 3, whereas there
are usually huge volumes of social contents outside the view-
ports waiting to be downloaded through user-screen interac-
tions. These examples demonstrate the key features of the
daynamic-viewport mobile applications: (1) the users can
only access limited contents in their viewports; (2) the appli-
cations usually download/prefetch some contents beyond
the user viewports; (3) the user viewports are moved/
changed through user-screen interactions.

We next take a close look at mobile web browsing to
show that dynamic-viewport mobile applications have
become a mainstream service type. We examine the Alexa’s
top 50 global websites [5] on a typical mobile device such as

Fig. 1. An example of dynamic-viewport mobile application.

1394 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

Nexus 6 phone. Fig. 4 shows that 68 percent of the top web-
sites belong to the category of dynamic-viewport, while only
32 percent of the websites have full-size viewports. It should
be noted that all of the websites with full-size viewports are
search or login pages.We further check the normalized view-
port size (the ratio of viewport size to web page size) for the
websites with dynamic-viewports. Fig. 5 plots the empirical

CDF of the normalized viewport size. For nearly 60 percent
of the web sites with dynamic-viewports, the user viewport
is smaller than 20 percent of the whole web page. Only a
small portion (less than 10 percent) of these websites have
comparable user viewports (greater than 90 percent) to the
web pages, most of which are also search or login pages. It is
worth to mention that, many websites have web pages with
indefinite length. For example, when browsing shopping
sites or social networking sites, users can always scroll down
to view more related items or social feeds. Even for the
search or login pages that have full-size viewports, the web-
sites become dynamic-viewport once the search engines
return the search results or the contents are returned after
completed logins. All these observations further confirm the
dominance of the dynamic-viewport applications.

3 MF-HTTP: ARCHITECTURE AND DESIGN

In most of dynamic-viewport mobile applications, HTTP is
widely adopted for content downloadingdue to its simplicity,
readiness and ease to use [6]. We thus propose a Mobile-
Friendly HTTP middleware (MF-HTTP), acts at the applica-
tion layer, interprets screen scrolling processes on mobile
devices by tracking user touch screen operations, and opti-
mize the downloading of media objects to improve QoE and
cost efficiency of dynamic-viewport mobile applications. In
this section, we introduce the architecture and design princi-
ples of MF-HTTP. To present the details of the design, we
first investigate the screen scrolling philosophy, taking the
Android OS as an example, next we discuss how to identity
the content elements that will be covered during the scrolling,
and finallywe formulate and solve the optimization problem.

3.1 Middleware Architecture

We first illustrate the opportunities from screen scrolling, the
unique user–screen interaction on mobile platforms. Fig. 6
shows an example of screen scrolling process. Along the time
axis, the solid line segments indicate the user/device actions,
and the dashed line segments indicate when the objects enter

Fig. 2. 360-degree video watching application.

Fig. 3. Mobile social networking application.

Fig. 4. Top 50 websites’ viewport distribution.

Fig. 5. CDF of normalized viewport size for the top websites with
dynamic viewports.

Fig. 6. An example of screen scrolling process.

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1395

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

the user viewport. From t0 to t1, the viewport changes as the
user moves his/her finger. Once the finger is released at t1,
the following scrolling process is predetermined. Thus, at t1,
we can accurately calculate the viewport’s movement and
predict object A’s exit and object B and C’s entrance in the
viewport, which will be addressed in detail in later subsec-
tions. Given such information, better download arrange-
ments can bemade for themedia objects in advance.

Our middleware consists of three modules: touch event
monitor, screen scrolling tracker and flow controller, each of
which will be elaborated in the following subsections. The
main work flow is shown in Fig. 7. The touch event monitor
attaches to the target mobile app to collect user touch data,
whichwill be sent to the screen scrolling tracker. Themiddle-
ware server that holds the other two modules can be either a
remote content server or a forward or reverse proxy. With
the information of user touch and device configuration, the
screen scrolling tracker traces and predicts the viewport’s
movement. Further, given the location and size of the view-
port and those of the media objects, the coverages of the
media objects in the viewport can be calculated. Finally, with
the full knowledge of the screen scrolling process, the flow
controller is able to determine the optimal download policy.

3.2 Touch Event Monitor

The touch event monitor is a light-weight module that col-
lects the device specification and configuration (e.g., screen
size, pixel density, viewport scale) as well as the user touch
data. As the user touch data can only be obtained from the
mobile device, this module is designed to locate on the
mobile client and provide interfaces for the mobile app
developers to feed the user touch data. The collected infor-
mation and data are sent to the screen scrolling tracker,
which only introduces negligible traffic overhead.

In general, there are 3 types of input user gestures: click,
drag, and fling, the last two of which can result in screen
scrolling animation. Each gesture can be identified by a series
of touch events. By detecting and collecting the information
about the user’s finger touch and release on the screen, the

initial scrolling velocity on x axis (denoted as vx) and that on
y axis (denoted as vy) can be calculated as the displacement
divided by the touch time in two axes, respectively.

3.3 Screen Scrolling Tracker

3.3.1 Scrolling Animation Philosophy

Aswewill discuss the practical issues for the implementation
in the next section, we first investigate the philosophy of ani-
mating the screen scrolling for most mobile operating sys-
tems, which is to gradually decelerate the scrolling speed
until it reaches zero if there is no other finger touch detected
during the deceleration.1 Taking Android OS as an example,
we next show how to calculate the viewport movement and
themedia object coverage during the scrolling process. Given
the user touch data, the initial scrolling speed can be obtained

as v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q
. Android OS uses a threshold for the initial

scrolling speed to distinguish between a drag and a fling,
whose default value is 50 pixels=second and can be scaled
under different configurations based on the actual screen
resolution.

For dragging, the screen scrolling speed will experience a
uniform deceleration, which can be easily interpreted given
the deceleration parameter and initial speed. As the deceler-
ation of a dragging event is usually short and has very lim-
ited impact on viewport movement, we focus on analyzing
the case of flinging. If a fling is detected, the deceleration
will change with the scrolling speed. Given the initial scroll-
ing speed v, the total fling duration T ðvÞ and the total fling
distance DðvÞ (the viewport displacement caused by the
fling) can be calculated by using the following equations:

lðvÞ ¼ log½0:35 � v=ðFric � PCOEF Þ�; (1)

T ðvÞ ¼ 1000 � exp½lðvÞ=ðDRATE � 1Þ�; (2)

DðvÞ ¼ Fric � PCOEF � exp½DRATE=ðDRATE � 1Þ � lðvÞ�; (3)

Fig. 7. Middleware architecture.

1. https://developer.android.com/training/gestures/scroll.html

1396 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://developer.android.com/training/gestures/scroll.html

where DRATE ¼ logð0:78Þ=logð0:9Þ, Fric denotes the friction
parameter with the default value as 0.015, and PCOEF ¼
G � 39:37 � ppi � 0:84. To compute PCOEF , G is the gravity of
the Earth with a constant value of 9.80665 m=s2, 39.37 is
used for the conversion between meters and inches, and ppi
denotes pixel density for the specific mobile device. Note
that, as the basis of the following analysis, the above equa-
tions are obtained from our analysis of Android OS source
code.2,3 Even if the source code cannot be accessed in some
cases (for example, a customized OS), the scrolling process
should be easy to model, as we only need to fit the relation-
ship between the initial scrolling speed and the scrolling
distance, both of which are usually provided in the SDK as
available information for mobile app developers.

3.3.2 Viewport Displacement

Assume that, at time t, which denotes the time elapsed since
the scrolling starts, the scrolling speed decreases to v0. From
Eqs. (2) and (3), we can have

DðvÞ ¼ Fric � PCOEF � ðT ðvÞ=1000ÞDRATE : (4)

Given t ¼ T ðvÞ � T ðv0Þ, the viewport displacement at time t
can be calculated as

dðtÞ ¼ DðvÞ � Fric � PCOEF � ½ðT ðvÞ � tÞ=1000�DRATE : (5)

Upon obtaining dðtÞ, we can further calculate the view-
port displacement on x and y axis as dxðtÞ ¼ dðtÞ � vxv and
dyðtÞ ¼ dðtÞ � vyv , respectively. Note that, as dðtÞ can have any
direction, which is usually the same as (or opposite to) the
direction of the user’s finger touch movement, dxðtÞ and
dyðtÞ can be either positive or negative.

3.3.3 Objects Involved in Viewport Movement

As the viewport and the rendered media objects (e.g., objects
in a web page) are usually rectangular or bounded by rectan-
gular boxes, let ðx0

p; y
0
pÞ be the original coordinates of the left-

top vertex of a viewport, and wp and hp be its width and
height. The viewport can be then uniquely defined. Simi-
larly, we define ðxi; yiÞ, wi, and hi as the coordinates of the
left-top vertex, the width, and the height of a media object i,
respectively.

To identify the media objects covered by a scrolling pro-
cess, we first determine the area covered by the viewport
movement. Given the viewport displacement calculated
above, the final location of the viewport’s vertices can be
obtained. As the viewport can move in any direction in a 2-D
plane, the mathematical description of the covered area
depends on the specific situation. For simplicity, we study the
case of DxðvÞ ¼ DðvÞ � vxv > 0;DyðvÞ ¼ DðvÞ � vyv > 0 (other
cases can be studied similarly), in which the covered area is
surrounded by the boundary consisting of six intersected line
segments as illustrated in Fig. 8.

(1) x ¼ x0
p;

(2) y ¼ y0p;

(3) x ¼ x0
p þ wp þDxðvÞ;

(4) y ¼ y0p þ hp þDyðvÞ;

(5) y ¼ DyðvÞ
DxðvÞ ðx� x0

pÞ þ y0p þ hp;

(6) y ¼ DyðsÞ
DxðvÞ ðx� x0

p � wpÞ þ y0p:

In Fig. 8, the blue rectangles denote the viewport initial and
final location, and the dotted lines indicate the correspond-
ing moving boundaries to the six equations above. The area
covered by the viewport movement can be determined as
the closed area within these boundaries.

To decide whether object i (the red rectangle in Fig. 8)
appears in such a bounded area, we check its four vertices
to see if it intersects or is located inside. Since the four verti-
ces are correlated, we can further evaluate the case based on
the location of one vertex for example the left-top vertex.
Specifically, given the boundaries, we can then determine
that object i is located in/intersecting the covered area, if
ðxi; yiÞmeets the following conditions:

(1) x0p � wi < xi < x0
p þ wp þDxðvÞ;

(2) y0p � hi < yi < y0p þ hp þDyðvÞ;

(3)
DyðvÞ
DxðvÞ ðxi � x0p � wpÞ þ y0p � hi < yi

<
DyðvÞ
DxðvÞ ðxi þ wi � x0pÞ þ y0p þ hp:

The three conditions check whether there is a part of the
object falls into the area between the three pairs of the paral-
lel boundaries in Fig. 8.

As we are now able to filter the media objects that are
involved in a scrolling process, intuitively, the media objects
that never appear in the viewport can be omitted for down-
loading or considered with low priority, which likely causes
no difference in user QoE.

Fig. 8. Viewport movement.

2. https://android.googlesource.com/platform/frameworks/base/
+/master/core/java/android/widget/Scroller.java

3. https://android.googlesource.com/platform/frameworks/base/
+/master/core/java/android/view/ViewConfiguration.java

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1397

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/widget/Scroller.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/widget/Scroller.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/view/ViewConfiguration.java
https://android.googlesource.com/platform/frameworks/base/+/master/core/java/android/view/ViewConfiguration.java

3.3.4 Object Coverage in Viewport

For those media objects that appear in the viewport, calculat-
ing howmuch area each of them covers is a straight-forward
evaluation of its significance to user’s multimedia viewing
experience. We next show how to compute the coverage of a
media object i in the viewport at a given time t. Based on the
analysis in the previous subsections, we have that, at time t,
the left-top vertex of object i is moved to ðxpðtÞ; ypðtÞÞ ¼ ðx0

pþ
dxðtÞ; y0p þ dyðtÞÞ. Similarly, we consider object i appearing in
the viewport at time t, if the two following conditions are
satisfied:

(1) xpðtÞ � wi < xi < xpðtÞ þ wp;

(2) ypðtÞ � hi < yi < ypðtÞ þ hp:

If object i is identified in the viewport, we can further calcu-
late how much area it covers. Let siðtÞ be the coverage of
object i in the viewport at time t, which can be obtained as

siðtÞ ¼ ½minðyi þ hi; ypðtÞ þ hpÞ �maxðyi; ypðtÞÞ��
½minðxi þ wi; xpðtÞ þ wpÞ �maxðxi; xpðtÞÞ�:

(6)

3.4 Flow Controller

The flow controller determines and executes the optimal
download policy for the media objects identified in the last
step. We next present the formulation of the download opti-
mization problem, which is solved in this module.

Consider nmedia objects (such as images in a web page or
video segments in a DASH stream) that are involved in a
screen scrolling event. To accommodate the heterogeneity of
mobile platforms, the service/content providers usually offer
multiple versions of media objects, e.g., images/video seg-
ments with different qualities. Assume that each object
i 2 ½1; n� have m versions ordered increasingly by resolution.
Let ti be the time when object i first appears in the viewport.
Assume that themedia objects are indexed based on the order
in which they enter the viewport, which implies t1 � t2 � � � �
� tn. Let BðtÞ be the available bandwidth at time t and fi;j be
the file size of object i with resolution rj (j 2 ½1;m�). We fur-
ther define the cost function as cðfi;jÞ, which denotes the cost
of download with the given file size. We use ki;j 2 f0; 1g to
denote the download policy for the given object, where the
binary variable ki;j ¼ 1 indicates the object i of version j will
be downloaded, and ki;j ¼ 0 otherwise.

3.4.1 Performance Metric Models

We propose two metric models to evaluate the performance
gain as well as the download cost for a media object, namely,
the QoSmodel and the cost model.

In practice, user QoE is a subjective metric affected by
many factors, and thus it is difficult to model for a broad class
of applications such as the dynamic-viewport applications.
The actual user QoE can be determined based on the features
of a specific application and evaluated accordingly as shown
in later case studies. Here our generic QoS model attempts to
evaluate the quality of content in the dynamic-viewport appli-

cations. Based on Section 3.3.4, object i covers a faction siðtÞ
S of

the viewport at time t, where S is the area of the viewport.
The quality of content is not only reflected by a media object’s
coverage and resolution, but also depends on how long the

object stays in the viewport. Following this intuition, our QoS
model consists of two parts. The first partQ1ði; jÞweights the
object based on its coverage during the screen scrolling, which
can be calculated as the normalized integral of siðtÞ in discrete
timewith resolution rj

Q1ði; jÞ ¼ 1

T ðvÞ
rj
rm

XT ðvÞ
t¼1

siðtÞ
S

¼ 1

T ðvÞ
1

S

rj
rm

XT ðvÞ
t¼1

siðtÞ; (7)

where S ¼ wp � hp. The terms in the denominator are used to
normalize Q1ði; jÞ so that its value is between 0 and 1.

The second partQ2ðiÞ is an binary indicator which checks
whether the object appears in the final viewport when the
screen scrolling stops

Q2ðiÞ ¼ 11½siðT ðvÞÞ> 0�; (8)

where 11½�� is the indicator function.
The QoS metric of object i with resolution rj is defined as

a weighted sum of the two parts defined above:

Qi;j ¼ a �Q1ði; jÞ þ b �Q2ðiÞ: (9)

For simplicity, we set a ¼ b ¼ 1=2, so that Qi;j is between 0
and 1, and the QoS score of the object in the final viewport
will never be lower than that of the object out of the viewport.

The performance gain comes with a price. The download
cost of a object can be obtained from the cost function cðfi;jÞ
given the file size fi;j. We calculate the normalized cost for
downloading object iwith resolution rj as

Ci;j ¼ cðfi;jÞ=cM; (10)

where cM is the highest download cost during the scrolling
process. As cM is reached when all the involved media
objects are downloaded at the highest resolutions or the
bandwidth is completely consumed, it can be calculated as

cM ¼ cðminðPn
i¼1 fi;m;

PT ðvÞ
t¼1 BðtÞÞÞ. In general, the cost func-

tion should be nondecreasing with respect to increasing file

size. We keep the cost model generic so that it can be easily

adapted to different practical scenarios. For example, the

cost function can be defined based on the communication

energy model fitting the practical details such as the tail

time in 3G/4G communications [7]. In some other cases, the

cost function can be a cut-off line describing the monetary

cost for a mobile user who pays a fixed fee for a data plan
and pays an extra fee (based on usage) when the data traffic

exceeds the limit allowed by the data plan.

3.4.2 Optimization Objective

The goal is to generate the optimal download policy for all the
media objects, which maximizes the QoE gain and minimizes
the download cost. The objective function can be formulated as

Xn
i¼1

Xm
j¼1

ki;jðp �Qi;j � q � Ci;jÞ

¼
Xn
i¼1

Xm
j¼1

ki;j
p

2

1

2T ðvÞ
1

S

rj
rm

XT ðvÞ
t¼1

siðtÞ þ p

2
11½siðT ðvÞÞ> 0� � q

cðfi;jÞ
cM

 !
;

(11)

where p and q are the weighting parameters.

1398 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

For the proposed optimization problem, the following
two constraints must be satisfied.

1) Each object is downloaded once at most

8i 2 ½1; n�;
Xm
j¼1

ki;j � 1: (12)

2) The bandwidth should be enough to download the
objects in time

8i0 2 ½1; n�;
Xi0
i¼1

Xm
j¼1

ki;j � fi;j �
Xti0
t¼1

BðtÞ: (13)

The first constraint ensures that no more than one copy
(with a certain resolution) of each object can be downloaded.
The second constraint implies that, when any object i0 appears
in the viewport at time ti0 , there should be enough bandwidth
to download it and all the other selected objects that enter the
viewport before it. Given the download policy, the underly-
ing scheduling scheme hinted by Eq. (13) is to schedule the
download in the same order that the objects are requested in
the application.

3.4.3 Optimal Solution

We solve the formulated optimization problem by convert-
ing it to a variation of the 0-1 Knapsack problem. Define the
value of object i with with resolution rj as vði; jÞ ¼ p �Qi;j�
q � Ci;j, its weight as wði; jÞ ¼ fi;j, and the maximum weight

capacity as Wðt0Þ ¼Pt0
t¼1 BðtÞ. The key difference is that, in

our problem,W ðt0Þ (the available bandwidth till a given time
t0) varies with time. Define Mði; lÞ as to be the maximum
value that can be attained with weight less than or equal to l
using first i items. Inspired by the solution of 0-1 Knapsack
problem, we solve the formulated problem by dynamic pro-
gramming as shown in Algorithm 1.

Algorithm 1.Optimal Solution by Dynamic Programming

1: Calculate vði; jÞ and wði; jÞ, 8i 2 ½1; n�; j 2 ½1; m�;
2: for l from 0 toWðtnÞ do
3: M½0; l� ¼ 0;
4: end for
5: for i from 1 to n do
6: for l from 0 toWðtiÞ do
7: Mtemp ¼ M½i� 1;minðl;Wðti�1ÞÞ�;
8: for j from 1 tom do
9: ifM½i� 1;minðl� wði; jÞ;Wðti�1ÞÞ� þ vði; jÞ >

Mtemp and wði; jÞ � l then
10: Mtemp ¼ M½i� 1; l� wði; jÞ� þ vði; jÞ;
11: ki;j ¼ 1;
12: ki;j0 ¼ 0; 8j0 2 ½1;m�; j0 6¼ j;
13: end if
14: end for
15: M½i; l� ¼ Mtemp.
16: end for
17: end for

The algorithm first initializes vði; jÞ andwði; jÞ according to
the definitions. The maximum weight capacity is carefully
updated as it increases with larger i. A variable Mtemp is
further introduced to store the temporary maximum value
when evaluating the different versions of amedia object. Each
time Mtemp is changed, the download policy ki;j is updated

accordingly, which takesOðmÞ operations. The time complex-
ity of Algorithm 1 is Oðnm2WðtnÞÞ. The proposed algorithm
returns the optimal result since it does exhaustive search.
However, as we solve the problem as a variation of the Knap-
sack problem, it runs in pseudo-polynomial time. In practice,
WðtnÞ usually has higher magnitude than n andm, so it may
need to be encoded using logWðtnÞ bits. Although this algo-
rithm is executed whenever a user touch event is detected,
given that any user gesture can only affect a limited number
of media objects for a very short time, n, m, and W ðtnÞ are
most likely to have small values, and thus Algorithm 1 can
run efficiently.

4 MIDDLEWARE IMPLEMENTATION

In this section, we present and discuss the implementation
issues for the MF-HTTP middleware.

4.1 Touch Event Monitor

The touch event monitor is implemented on the mobile
side. The middleware should introduce least modifications
on mobile clients and HTTP servers for dynamic-viewport
mobile services. As we need to collect user touch events from
mobile devices, integrating the touch event monitor to the
client-side software, typically a mobile app, is however inev-
itable. It thus should be effortless for general mobile app
developers to implement and integrate the touch event mon-
itor, which employs simple and standard APIs to collect and
transmit data.

The user interface for an Android app is built using a hier-
archy of layouts (ViewGroup objects) and widgets (View
objects). Layouts are invisible containers that control how its
child views are positioned on the screen.Widgets areUI com-
ponents that can be displayed on screen, such as buttons and
text boxes. The widget that occupies (a part of) the device’s
screen can listen to and handle user touch events on it. The
idea is to find the proper View object class in the application’s
source code, which can also be provided by developers, and
attach this module to the scrollable View objects that display
the scrolling effect in response to touch gestures. Next, we
override the onTouchEvent method of the target View
objects to handle touch screenmotion events. The customized
onTouchEvent method focuses on three types of motion
events: ACTION_DOWN, ACTION_MOVE, and ACTION_UP,
which denote the start, the ongoing process, and the end of a
pressed gesture, respectively. When the first two types of
motion events are detected, the touch coordinates and the
timestamp are reported. When ACTION_UP motion events
are detected, the initial scrolling velocities on x and y axes are
calculated and reported, based on which the input gesture
can be identified as a fling or a drag. We further decouple the
scrolling animation from the original mobile application to
produce a well-controlled scrolling process, by employing
the Scroller class to animate scrolling over time using plat-
form-standard scrolling physics (friction, velocity, etc.). The
corresponding scrolling offsets for both drag and fling events
are calculated and sent to the screen scrolling tracker.

4.2 Screen Scrolling Tracker

As the touch eventmonitor is designed to be as light as possi-
ble, the screen scrolling tracker should be able to collect all

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1399

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

the related information to user input, hardware platform,
metadata of the media objects in dynamic-viewport mobile
applications, and provide accurate and timely feeds for the
flow controller. Some of these information can only be
obtained in runtime, while others should be retrieved in
advance, which requires us to carefully identify and process.

Prior to user consuming any mobile Internet services, the
screen scrolling tracker requires certain knowledge about
the (multimedia) services provided by dynamic-viewport
mobile applications. As such knowledge can be hardly col-
lected from client side, we implement the screen scrolling
tracker on the middleware server. This module can thus
access the related data on the cache of the middleware
server, which is generated during the previous usages of
the target service from the same user or from other users. If
a miss occurs at the cache, it can retrieve the required meta-
data directly from the server of the target dynamic-viewport
mobile application with very low cost. Advanced caching
schemes [8], [9] can be applied by the middleware server to
reduce the cache misses as well as the caching cost.

During the consumption of mobile Internet services, the
screen scrolling tracker maintains a TCP socket connection
with the touch event monitor to collect the data related to
screen scrolling. First, this module retrieves the device spec-
ification and configuration information from the touch
event monitor, e.g., screen size, pixel density, initial view-
port location, viewport size, viewport scale, platform scroll-
ing physics, etc. Second, the user touch data is constantly
transmitted to the module through the TCP socket connec-
tion, including touch coordinates, timestamp, velocity, and
scrolling offsets along with total duration if a fling is
detected. Based on the analysis in Section 3.3, it is able to
calculate the viewport locations and object coverages during
the scrolling process. Whenever a touch event with a newer
timestamp arrives, the emulation of current/unfinished
scrolling is aborted.

Sending all user input events away from the mobile users
may cause some user privacy issue. To avoid that, we actu-
ally do not send all user input events to the middleware.
Rather than collecting all the information of user touches
(i.e., where and how the user touches the screen), MF-HTTP
only requires the information of the scrolling speed when
the user releases his/her touch (i.e., how quick user finger
leaves the screen). Therefore, besides emulating the view-
port movement, the middleware cannot reproduce the exact
user touch given the limited information, which can address
the user privacy concern in certain degree. In addition, dur-
ing the system deployment the middleware can be placed at
a trustful proxy/server, which can reside in the same (and
safe) internal network as the mobile client.

4.3 Flow Controller

The flow controller is also implemented on the middleware
server and runs in a separate thread from the screen scrolling
tracker. During its execution, it communicates with the screen
scrolling tracker by sharing global variables, and collects the
related information from the previous downloading sessions.

The flow controller should have certain control over the
download of media objects without modifying the content
server of the dynamic-viewport mobile application or break-
ing down the hardcore of the mobile app. To this end, we

adopt the mitmdump4 tool, run MF-HTTP as a man-in-the-
middle proxy, and redirect the mobile client’s HTTP traffic to
the middleware server. As the tool offers a powerful scripting
API that allows us to control many aspects of HTTP traffic
being proxied, we develop a Python script to run with mitm-
dump on the middleware server to identify and handle the
HTTP traffic generated by the target mobile multimedia
service. By default, the tool’s script mechanism is single
threaded, and the proxy blocks while script handlers execute,
which can easily cause a performance issue asmultiple HTTP
requests may be initiated simultaneously, e.g., in one web
browsing session. We thus modify the script with the @con-
current setting, and let MF-HTTP proxy work in a non-
blockingmode so that the flow controller can processmultiple
HTTP requests at the same time. The control of media object
downloading is realized by modifying, deferring, or blocking
the target HTTP headers, requests and responses.

The flow controller executes the optimization logic pre-
sented in Section 3.4. It is worth noting that, our optimization
model of MF-HTTP can adapt to various user requirements
and different practical scenarios, as the cost function and the
weights of performance metrics are adjustable. Moreover, as
the inputs, the outputs, and the interfaces employed by MF-
HTTP are simple and straight-forward, users of MF-HTTP
can design and implement their own optimization logics.

5 CASE STUDIES

MF-HTTP targets to optimize dynamic-viewport mobile
applications, a class of mobile Internet applications that can
make HTTP downloads outside user viewport. For different
applications, the knowledge assumed from the last section
can be carefully obtained or bypassed. We next present con-
crete case studies on two representative applications, web
browsing and 360-degree video streaming, and discuss the
light and practical adjustments for the MF-HTTP prototype.

The two applications in our case studies involves two
major types of multimedia experience and various kinds of
user behaviors. From the multimedia experience side, web
browsing offers a one-time download-and-view experience,
while 360-degree video streaming provides a continuous
download-and-view experience. From the user behavior
side, the two applications both support touch-based interac-
tions, as well as other types of user inputs, e.g., gyroscope
readings from end devices in 360-degree video streaming.
To examine different user behaviors, we analyzed the data
from a touch-based user behavior dataset for social media
browsing [4] and three sensing-based user behavior datasets
for 360-degree video watching [10], [11], [12]. As shown in
Fig. 9, the touch-and-scroll user behaviors usually have high
fling (the specific type of user touches that cause fast screen
scrolling) speed in browsing-based applications: 86.1 percent
of the flings are over 500 pixel/ms and 45.8 percent of them
are over 1,000 pixel/ms, which suggests great optimization
opportunities in fast browsing events. On the contrast, the
head-turn user behaviors in video watching applications
exhibits a more stable pattern: in Fig. 10, the probability of
the angular speed being less than 10�=s is about 62.8 percent,
and the probability for less than 30�=s is around 83.1 percent,

4. https://mitmproxy.org/

1400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://mitmproxy.org/

which implies that the dynamics of unpredictable head turns
are bounded to certain limits. Given the above considera-
tions, the two target applications are representative for view-
point tracking andmedia objects downloading.

5.1 Mobile Web Browsing

For mobile web browsing, the media objects that are critical
to user viewing experience are the images in the web page
(the videos are often marked by their thumbnails before
being selected to play). Therefore, our scrolling-aware HTTP
middleware can be adjusted for the download of images.

5.1.1 For Touch Event Monitor

In this case study, we develop a light-weight web browser
based on the WebView

5 class from Android API, whose
onTouchEvent method is customized as presented in the
last section. Note that WebView share the same rendering
engine as Chrome for Android, where both are based on the
same code.

5.1.2 For Screen Scrolling Tracker

As the web page layouts and the resource dependencies are
usually stable [13], the screen scrolling tracker can collect nec-
essary information about the web page from the middleware
server’s cache. If the web page has never been requested
before, our middleware server starts a WebDriver6 (Chrome)
instance and downloads the web page. A reference between
web objects’ locations and source URLs can be then built
accordingly. We use Chrome’s developer tool to emulate the
web page layout under different screen sizes. Every time the
web page is requested, this reference is built and updated, so
that the middleware keeps refreshing the information of web
page layouts proactively.

The “load-before” relationship between the web page’s
contents such as HTML, CSS, JavaScript, and image objects,
usually referred to as the content dependency [14], is one of
the key factors of web page loading optimization. For exam-
ple, the browser should first download HTML as the root file,
and download CSS/JavaScript files next to specify the layouts
and the contents. The dependency exists because that HTML,
CSS, and JavaScript need to be parsed/executed. This parse/
execution process decides what contents (multimedia objects
or other HTML, CSS and JavaScript files) to be downloaded
and where (multimedia objects) to be displayed in the web
page. Therefore, those contents can only be requested and

downloaded after parsing/executing the depended HTML,
CSS and JavaScript. Although the dependencies between web
objects can be profiled using tools such as Wprof [15], we
choose to not violate any dependency by obeying the down-
load sequence/order of HTML, CSS and JavaScript. As
HTML, CSS and JavaScript files constitute only a quarter of
the bytes on the average mobile web page [16], MF-HTTP
focus onmodifying/skipping the download of the rest multi-
media objects (still the majority of the downloaded bytes),
e.g., images, amongwhich dependencies rarely exist.

5.1.3 For Flow Controller

As bandwidth is rarely the bottleneck for web browsing [2],
we release the bandwidth constraint from the formulated
problem in Section 3.4. Rather thanmodifying the hardcore of
the web engine to have fine-grained control over the down-
load of web page objects, MF-HTTP adopts simple but effec-
tive approaches. The flow controller is adjusted to execute the
following work process. (1) When a web page is requested, as
the images’ source URLs are already collected, the flow con-
troller maintains a block list of source URLs for the images
outside the initial viewport. (2) For each data flow, it checks
the header to see if the requested URL is in the block list. If so,
it blocks the HTTP request. (3) By receiving the updates of
viewport location, viewport displacement, and object cover-
age from the screen scrolling tracker, the flow controller is
able to determine whether an image appears in the viewport
in the scrolling process. If the image is never involved in
the scrolling, it remains in the block list. For web browsing,
the images in the viewport before and after its moving are the
most crucial to user QoE. Thus such images in the current
viewport or in the final viewport when the scrolling stops are
identified and removed from the block list. For the images
that appear but fail to stay in the viewport, the flow controller
evaluates their values p �Qi;j � q � Ci;j as in Eq. (11). The
images with positive values are allowed to download, while
others with negative values are kept in the block list. (4)
Whenever a new user touch event is detected, the flow con-
troller receives the updates from the screen scrolling tracker
and reacts in the same logic as described above.

5.2 360-Degree Video Streaming

Different from web browsing, video streaming is band-
width-sensitive and -intensive, which can also benefit from
MF-HTTP. 360-degree videos provide users with panoramic
views and create unique viewing experience, which are now
popular on major video sharing platforms such as YouTube
and Facebook. It is worth noting that, 360-degree videos are
commonly seen and consumed from various platforms,

Fig. 9. CDF of user-touch fling speed. Fig. 10. CDF of head-turn angular speed.

5. https://developer.android.com/reference/android/webkit/
WebView.html

6. https://seleniumhq.github.io/selenium/docs/api/py/api.html

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1401

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html
https://seleniumhq.github.io/selenium/docs/api/py/api.html

which do not necessarily require virtual reality hardware to
play. In this case study, 360-degree videos are consumed as
navigable videos from mobile clients with dynamic view-
ports. As shown in Fig. 2, the user’s viewport is significantly
confined by the device’s size of display, while the whole
raw frame is streamed back with large portions outside the
viewport. We next discuss how to enable the key idea of
MF-HTTP for 360-degree video streaming.

5.2.1 Modification on Mobile Side

The touch event monitor is implemented and attached to an
open source 360-degree video player.7 In this case, we directly
pin the touch event monitor to the player’s main View object
class, which extends the TextureView class from Android
API, to handle the touch events and output the user gestures
and the scrolling offsets.

It worth noting that for 360-degree video playback on
smartphones, current major service providers such as You-
Tube allow different ways of user interactions: user touch
input and gyroscope sensing are both supported. Our pro-
posed MF-HTTP should also be able to adapt to other types
of user inputs as long as the required information can be
extracted. The essential information needed from the user in
MF-HTTP is howquickly the viewportmoves inwhich direc-
tion (and where it will stop based on the calculation), which
should be easily collected or transformed from the given user
inputs such as sensor readings. For instance, gyroscope read-
ings on the smartphone can directly tell the angular speed of
the user head turn, which can be used to calculate the view-
port moving speed and indicate where it stops for the specific
video player.MF-HTTP can thenwork as normal.

5.2.2 Tile-Based DASH Streaming

Although major video sharing platforms like YouTube have
already adopted progressive and adaptive download over
HTTP to delivery 360-degree videos, they still largely inherit
the delivery scheme from traditional Internet videos, which
is apparently inefficient for 360-degree videos and provides
no flexibility to adapt to the change of user’s Region Of Inter-
est (ROI). An adaptive video streaming technique that can
smartly respond to viewport movement is demanded for
MF-HTTP. To this end,we adopt the tile-based approach [17],
[18] to adapt user’s ROI, the viewport.

Bandwidth prediction is a widely existed issue in most
video streaming studies. If the bandwidth drops drastically
in short time, it may cause playback stall/freeze and trigger
rebuffering. Inspired by the start-of-the-art 360-degree
video streaming systems [19], [20], our MF-HTTP takes two
approaches to mitigate this issue: (1) we use the recent his-
tory to predict the short future—predict the future band-
width for the next one or several video segments based on
the observed bandwidth during the download of last one or
several video segments; (2) to further tolerate bandwidth
prediction errors in dynamic network conditions, we set a
damping coefficient a 2 ð0; 1� and conservatively use
a � predicted bandwidth as the available bandwidth in the
flow controller.

5.2.3 Adjustments for 360-Degree Video Watching

As the spherical view for 360-degree videos is built from the
rectangular raw frame, we adopt the widely used equirec-
tangular projection [21] as the sphere-to-play mapping
scheme, which unwraps a sphere with a radius of r on a 2D
rectangular plane with the dimensions of ð2pr;prÞ. Given
the initial field of view (FOV) and the viewport size obtained
from the mobile client, the radius of the spherical view can
be calculated, which enables the translation between longi-
tudes and latitudes of the sphere and x, y coordinates of the
2D plane. The screen scrolling tracker can then map the
viewport to the tiles of the raw video frame.

User behaviors for video watching exhibit distinct pat-
ters. In particular, user interest for video contents is usually
coherent in one viewing session, and thus users produce
much more drag events than fling events if there are any.
Given that a DASH segment’s duration is usually much lon-
ger than a scrolling, instead of interpreting viewport move-
ment, the screen scrolling tracker only keeps a close track of
the viewport’s current location by monitoring the user drag
events. The tiles are thus classified into two categories: tiles
that appear in the viewport and tiles that have no overlap
with the viewport. In the original formulation, media
objects with different resolutions are evaluated and selected
separately, which can be simplified here by setting Qi;j to be
binary, as the tiles that appear in the viewport should be of
the same quality so as to provide better and consistent QoE
for video watching. As the design of more sophisticated
algorithms specifically for 360-degree video DASH stream-
ing optimization is out of the scope of this paper, therefore,
for illustration purpose, here the flow controller adopts the
following principle for tile-based 360-degree video DASH
streaming: given the available bandwidth, minimize the
quality of the tiles that have no overlap with the viewport
and maximize the quality of the tiles that appear in the
viewport.

To accommodate different types of user inputs, MF-
HTTP can work in different modes. For more stable touch-
based user inputs, MF-HTTP can work in an aggressive
mode by skipping the download of no-show tiles as stated
above. On the other hand, for more dynamic sensor-based
user inputs that may change frequently and dramatically,
MF-HTTP can work in a conservative mode: (1) to avoid
missing any tile during the playback, it downloads all the
tiles; (2) the tiles are downloaded with different resolutions;
(3) the resolution selection is affected by the viewport-stay-
ing time/viewing probabilities based on the user inputs—
tiles with higher viewing time/probabilities are down-
loaded in higher resolutions. In this conservative mode,
although bandwidth is more evenly utilized for all the tiles
(with lower resolutions), the user perceived video quality
may not be hurt: when the viewport moves very fast, users
often cannot tell the difference in video resolution.

6 PERFORMANCE EVALUATION

We have conducted extensive evaluations to examine the
performance of our MF-HTTP middleware for both case
studies. We will discuss their results in the following two
subsections, respectively.7. https://github.com/fbsamples/360-video-player-for-android

1402 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://github.com/fbsamples/360-video-player-for-android

6.1 Experiments for Web Browsing

6.1.1 Test Platforms and Settings

In this subsection, we evaluate the performance improve-
ment of our MF-HTTP middleware for the mobile web
browsing case study. We use a Nexus 6 phone running
Android 7.0 as the mobile client, and a desktop computer
with Intel Core i7-3770 CPU@ 3.40 GHz� 8 and 16 GBmem-
ory runningUbuntu 14.04 LTS as theMF-HTTPmiddleware.
As the touch interface has no dramatic change across differ-
ent generations of hardware and software platforms, similar
experiment results are observed with other phones. The
mobile client is connected to MF-HTTP through an IEEE
802.11 WLAN router. Both of the middleware and the router
locate in the university campus network, and the network
condition is good and stable. We use the browser to access
the Alexa’s top 25 global websites [5]. Each browsing session
consists of default viewport loading followed by a random
scrolling touch. We set the weight of cost metric q ¼ 0 to
maximize the viewing experience. To better trace the loading
performance, we add a timer to the browser. We compare
the performance of browsing with and without MF-HTTP
enabled. The baseline approach downloads all the media
objects in the default order with no consideration of the user
viewport, which is commonly used inmost browsers.

6.1.2 Results

We first check the default viewport size against the web page
size, where Fig. 11 shows the ratio of top 25 websites (the
gray bars) . In particular, there are 11 websites having full-

size viewports and 14 websites having dynamic viewports.
Those 14 dynamic-viewport websites stand for more general
and various types of websites, from which mobile users
can only view a small portion of the whole page (as low as
4.1 percent in the case of Sohu). The 11 websites with full-
size viewports are mainly search engines (e.g., Google global
and 4 other regions, Microsoft Live) and login pages (e.g.,
Facebook, Twitter, and Linkedin). We further check their
viewport sizes after logging into user accounts or entering
search keywords. As shown in Fig. 11 (the black bars), with
the social contents and search results returned, the user
viewports only cover 15.4 percent of the web pages in aver-
age. It is worth noting that, some websites (e.g., YouTube
and Yahoo) have pages of varying length, which will always
load new contentswhen users hit the bottom. In theory, these
websites can have unlimited length of contents, and thus the
impacts of limited-size viewports become even more nota-
ble. We further examine the distribution of media object size.
In particular, we check the ratio of image height/webpage
height and the ratio of image width/webpage width, respec-
tively, and plot the results in Fig. 12. The majority of the
images (over 60 percent) have medium sizes, which cover
from 5 to 15 percent of the web page’s width and from 10
to 25 percent of the web page’s height, respectively. There
are also over 10 percent large images with width and
height greater than 22.6 percent of web page’s width and
31.6 percent of web page’s height, and 20 percent small
images with width and height smaller than 4.9 percent of
web page’s width and 8.8 percent of web page’s height.

Rather than using page load time, one of the major perfor-
mance metrics for web browsing, we use a newmetric, view-
port load time, which is the elapsed duration when the
viewport is fully loaded. We record the screen of the test
smartphone and replay the video to track the loading process
as well as the timer. As shown in Fig. 13, MF-HTTP signifi-
cantly improves the loading performance for the websites
with dynamic viewports as it prioritizes the downloads of
the objects in the viewport. In average, MF-HTTP reduces
the viewport load time by 44.3 percent. The high loading
time of some webpages mainly caused by the large number
of images and the relatively large image size. Another reason
may be that our test browser is developed merely based on
the WebView API. The advantage of our implementation is
lightweight and having increased control over advanced
configuration options, while the disadvantage is that the
test browser is less-optimized and lacks some features of
fully-developed browsers. The test browser thus has poorer

Fig. 11. Normalized viewport size.

Fig. 12. Image size distribution.

Fig. 13. Viewport load time.

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1403

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

performance than the commercial products such as Chrome,
Safari and Firefox. As the experiments for MF-HTTP and
baseline were done on the same test browser, the VLT com-
parison can demonstrate the superiority ofMF-HTTP. Fig. 14
further shows two screenshots taken at the same time for
two YouTube browsing sessions using different approaches.
In this example, MF-HTTP finishes loading the viewport,
while the baseline approach still struggles in downloading
objects disregardingwhether they are in the viewport.

We next examine the amount of traffic generated during
the browsing sessions using the two approaches. Fig. 15
shows that MF-HTTP generally requires less data transmis-
sions than the baseline approach, with 15.3 percent traffic sav-
ing in average. It is worth noting that, as q is set to be 0, MF-
HTTP works in the most aggressive download mode, and
only omits downloading the objects that never enter the view-
port. Hence, when q > 0, more traffic saving can be expected.
We further break down the traffic constitution in Table 1.
With MF-HTTP enabled, the mobile client sends comparable
amount of data (100.34 percent), while receives 16.65 percent
less data, which suggests that the traffic saving comes from
less media downloads. As the mobile client needs to report
user touches to the middleware server, the communication
overhead forMF-HTTP ismostly outgoing traffic from the cli-
ent, which only accounts for a small portion of the total traffic
as shown in Table 1. The communication overhead for
MF-HTTP is thus negligible (less than 2 percent).

6.2 Simulations for 360-Degree Video Streaming

6.2.1 Data Collection

In this subsection, we evaluate the performance improve-
ment of our MF-HTTP middleware for the 360-degree video
streaming case study. We obtain three test videos from You-
Tube8 at 4 different resolutions/quality levels: 1080s (quality
level 4), 720s (quality level 3), 480s (quality level 2), and 360s
(quality level 1), where “s” stands for spherical. We recruit
10 volunteers to watch each video on the Nexus 6 phone and
modify the 360-degree video player to record user touches
during the video watching. Each video watching session
lasts for 1 minute. To support tile-based DASH streaming,
we use the GPAC9 toolbox to slice and package the 360-
degree videos into into 4� 4 tiles. We further do a segmenta-
tion on the encoded tile-based videos and generate segments
with duration of 1 second as well as the MPD files, which are
ready to be DASHed. The viewport movement and the
resulting tile and rate selection are generated by MF-HTTP
based on the collected traces of user touches.

6.2.2 Results

First, we examine the effect of parameter selection by varying
the ratio of p=q from 100 to 10�3. We calculate the average
quality level (QL) of the 3 test videos and normalize their
delivery cost (NC) against that of the baseline approach at
1080s. The cost model adopted is a linear model: 10 dollar
per 100 MB traffic, which is close to the major mobile opera-
tors data add-on prices.10 Fig. 16 shows the clear tradeoff
between two optimization sub-objectives, where higher
quality level comes with higher cost. The result suggest an
appropriate setting of p=qmay be 10�1, where a good balance
can be achieved for both sub-objectives.

We next check the bandwidth consumption for MF-HTTP
at different resolutions. As shown in Fig. 17,MF-HTTP signif-
icantly reduces the bandwidth consumption at each resolu-
tion (52 percent average bandwidth saving at 360s, 59 percent
at 480s, 60 percent at 720s, and 56 percent at 1080s, respec-
tively), compared to the baseline approach, streaming the
whole frame with a fixed resolution without considering the
viewport. The result suggests that, with the same video qual-
ity, MF-HTTP is much more cost-efficient in terms of data
transmissions than the blind downloading. We further plot a
sample trace of one video watching session in Fig. 18, which
shows that MF-HTTP does not necessarily share network
load peakswith the baseline steaming approach. On the other
hand, the bandwidth consumption of MF-HTTP is closely
affected by the number of tiles that appear in or overlap the
viewport, as the valleys of the two curvesmatch in Fig. 18.

Fig. 14. Screenshots of two browsing sessions with the same timestamp.

Fig. 15. Amount of traffic.

TABLE 1
Comparison and Proportions of Two-Way Traffic

MF-HTTP/Baseline % in MF-HTTP % in Baseline

Received 83.35% 88.83% 90.63%
Transmitted 100.34% 11.17% 9.37%

8. YouTube IDs of the three test videos are: -xNN-bJQ4vI,
rG4jSz_2HDY, wXeKxY3F0sE.

9. https://gpac.wp.imt.fr/home/
10. https://www.telus.com/en/mobility/prepaid/add-ons

1404 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://gpac.wp.imt.fr/home/
https://www.telus.com/en/mobility/prepaid/add-ons

We further vary the available bandwidth from 250 to 1,000
KB/s to examine the streaming quality of MF-HTTP, and
compare its performance with a greedy DASH scheme that
maximizes bandwidth usage and streams at the highest possi-
ble resolution. Fig. 19 shows how much time (in percentage)
the test videos are played at different resolutions using two
streaming approaches. It worth noting that, in MF-HTTP, we
track user viewport and calculate its location for a known and
short future. Since we make no prediction of user viewport
during this process, MF-HTTP has full knowledge of user
viewport when selecting the tiles and their bit-rates. There-
fore, in ourMF-HTTP optimization, it does not miss tiles and
thus avoids playback stall time as long as the bandwidth can
afford the streaming with the lowest resolution. When there
is not enough bandwidth for the lowest resolution, playback
stall occurs, which is denoted as “NA” In Fig. 19. As shown,
MF-HTTP constantly outperforms the greedy DASH scheme
under all bandwidth conditions for all test videos. MF-HTTP
canmaintain good video quality when the bandwidth is low,
and it quickly responds to the increase of the bandwidth.
This result suggests that MF-HTTP can more efficiently uti-
lize the network resource to focus on downloading the high
quality video segments in the viewport.

7 RELATED WORK

A serial of studies have been conducted to optimize web
browsing, an application that is largely affected by user view-
port. Prior work [2] suggested that client-only approaches
have significant limitations for mobile users: caching [22] web
contents does not remove the true bottleneck of web page

loading–RTT, and predictive prefetching [23] cannot work
well either sincemost of the pages will only be requested once
by a user. A recent measurement study [24] showed that only
a fewweb sites have fully deployedHTTP/2 (the state-of-the-
art standard in industry) servers, and few of them have cor-
rectly realized the new features inHTTP/2, which implies the
necessity of research efforts on optimizing web performance.
Scheduling network requests is a widely exploited approach
to reduce page load time, which is designed base on the
dependency between web page elements [14]. Butkiewicz
et al. [13] proposed KLOTSKI, a system that prioritizes the
contents most relevant to the user preference and with least
rendering time. By collecting the traces of user gaze fixation
during web browsing, Kelton et al. [25] examined the focus of
user attention and reordered the loading of web objects
accordingly. To achieve the best performance-energy tradeoff,
Ren et al. [26] adopted a machine learning based approach to
predict the optimal processor configurations at runtime for
heterogeneousmobile platforms.

Video streaming is another killer application influenced
by user viewport. The rate adaptation scheme is one of the
fundamental research issues for video steaming. By studying
the responsiveness and smoothness trade-off in DASH, Tian
et al. [27] showed that client-side buffered video time is a
helpful feedback signal to guide rate adaptation. Instead of
constantly predicting future capacity, Huang et al. [28] pro-
posed to use simple capacity estimation only in the startup
phase and then choose the video rate based on the current
buffer occupancy in the steady state. Novel techniques, e.g.,
deep learning [29] and emerging computing architectures,
e.g., edge computing [30], [31], [32] are also adopted to
improve the rate adaptation for video streaming. Recently,
MPEG DASH standard [33] has included a new Spatial
Representation Description (SRD) [34] feature, to support
the streaming of spatial sub-parts of a video to display devi-
ces, in combination with adaptivemultirate streaming that is
intrinsically supported by DASH. Following this advance,
DASH has been further exploited to stream zoomable and
navigable videos [35], virtual reality videos [36], and multi-
view videos [37]. For 360-degree video streaming, Qian
et al. [19] designed a viewport prediction mechanism based
on the analysis of user headmovement traces to optimize the
rate-adaptation, and reworked other related components in
the streaming pipeline to further boost the performance
against non-viewport-adaptive approaches. He et al. [20]
identified that viewport prediction error can result in signifi-
cant video quality degradation, and thus proposed a novelFig. 17. Bandwidth consumption with fixed resolution.

Fig. 18. A sample trace of one video watching session.

Fig. 16. Effect of p=q.

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1405

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

tile-based layered approach to adaptively stream 360-degree
content on smartphones.

Such mobile smart devices as smartphones, phablets, and
tablets, undoubtedly reshape the way that users access Inter-
net services, and therefore attract tremendous attentions
from academia. Existing studies have tackled the challenges
brought by the intrinsic mobile nature and enhanced net-
work protocols to accommodate seamless mobility [38], [39],
inefficient retransmission [40], unstable channel quality [41],
[42], [43], and unexpected interference [44], [45] in wireless
and mobile networks. Yet, very few of them have attempted
to improve network protocols for multimedia applications
by utilizing rich interfaces and user interactions on mobile
smart devices. To this end, taking the example of the most
commonly used network protocol–HTTP, we proposed our
middleware design to make it more suitable for mobile mul-
timedia applications. Furthermore, rather than optimizing
one specific application, our work strives to enhance
dynamic-viewport mobile applications, a class of mobile
Internet applications that make HTTP downloads for media
contents outside user viewports.

8 CONCLUSION

In this paper, we presented the Mobile-Friendly HTTP mid-
dleware (MF-HTTP) to enhance dynamic-viewport mobile
applications that usually use HTTP to download media con-
tents beyond the users’ viewing regions on mobile devices.
MF-HTTP acts at the application layer and interprets screen
scrolling processes on mobile devices by tracking user touch
screen operations. Based on the information from the screen
scrolling processes, MF-HTTP further optimizes the down-
loading of media objects to improve QoE and cost efficiency.
To achieve this, we first demystified the detailed screen scroll-
ing philosophy in mobile system and showed how to pre-
cisely break down the viewport movement. We then
identified the key influential factors for media object down-
loading, and developed an optimal downloading scheme.We
further discussed practical issues towards the implementa-
tion ofMF-HTTP. Finally, we implemented a prototype based
on Android platforms and conducted concrete case studies
on two typical dynamic-viewport mobile applications,
namely, web browsing and 360-degree video streaming, to
demonstrate the superior performance ofMF-HTTP.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 61902257, and in

part by Tencent “Rhinoceros Birds” — Scientific Research
Foundation for Young Teachers of ShenzhenUniversity.

REFERENCES

[1] Cisco, “Cisco visual networking index: Global mobile data
traffic forecast update,” 2016-2021 white paper, San Jose, CA,
USA, 2017.

[2] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie, “How far can cli-
ent-only solutions go for mobile browser speed?” in Proc. ACM
Int. Conf. World Wide Web, 2012, pp. 31–40.

[3] C. Zhou, Z. Li, and Y. Liu, “A measurement study of oculus 360
degree video streaming,” in Proc. ACMMultimedia Syst. Conf., 2017,
pp. 27–37.

[4] L. Zhang, F. Wang, and J. Liu, “Mobile instant video clip sharing
with screen scrolling: Measurement and enhancement,” IEEE
Trans. Multimedia, vol. 20, no. 8, pp. 2022–2034, Aug. 2018.

[5] The top 500 sites on the web, Accessed: 2017. [Online]. Available:
http://www.alexa.com/topsites

[6] Y. Ma, X. Liu, Y. Liu, Y. Liu, and G. Huang, “A tale of two fash-
ions: An empirical study on the performance of native apps and
web apps on android,” IEEE Trans. Mobile Comput., vol. 17, no. 5,
pp. 990–1003, May 2018.

[7] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics
of 4G LTE networks,” in Proc. ACM Int. Conf. Mobile Syst. Appl.
Services, 2012, pp. 225–238.

[8] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen,
“Cooperative edge caching in user-centric clustered mobile
networks,” IEEE Trans. Mobile Comput., vol. 17, no. 8, pp. 1791–1805,
Aug. 2018.

[9] J. Li, C. Shunfeng, F. Shu, J. Wu, and D. N. K. Jayakody, “Contract-
based small-cell caching for data disseminations in ultra-dense
cellular networks,” IEEE Trans. Mobile Comput., vol. 18, no. 5,
pp. 1042–1053, May 2019.

[10] E. J. David, J. Guti�errez, A. Coutrot, M. P. Da Silva, and P. L. Callet,
“A dataset of head and eye movements for 360� videos,” in Proc.
ACMMultimedia Syst. Conf., 2018, pp. 432–437.

[11] C. Wu, Z. Tan, Z. Wang, and S. Yang, “A dataset for exploring
user behaviors in VR spherical video streaming,” in Proc. ACM
Multimedia Syst. Conf., 2017, pp. 193–198.

[12] W.-C. Lo, C.-L. Fan, J. Lee, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“360 video viewing dataset in head-mounted virtual reality,” in
Proc. ACMMultimedia Syst. Conf., 2017, pp. 211–216.

[13] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“KLOTSKI: Reprioritizing web content to improve user experi-
ence on mobile devices,” in Proc. USENIX Conf. Netw. Syst. Design
Implementation, 2015, pp. 439–453.

[14] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan, “Polaris:
Faster page loads using fine-grained dependency tracking,” in
Proc. USENIX Conf. Netw. Syst. Design Implementation, 2016,
pp. 123–136.

[15] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall, “Demystifying page load performance with WProf,”
in Proc. USENIX Conf. Netw. Syst. Design Implementation, 2013,
pp. 473–485.

[16] V. Ruamviboonsuk, R. Netravali, M. Uluyol, andH. V.Madhyastha,
“Vroom: Accelerating the mobile web with server-aided depen-
dency resolution,” in Proc. Conf. ACM Special Interest Group Data
Commun., 2017, pp. 390–403.

Fig. 19. Video quality constitutions with different bandwidth (Video 1 to 3 from left to right).

1406 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 4, APRIL 2021

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

http://www.alexa.com/topsites

[17] N. Quang Minh Khiem, G. Ravindra, A. Carlier, and W. T. Ooi,
“Supporting zoomable video streams with dynamic region-
of-interest cropping,” in Proc. 1st Annu. ACM SIGMM Conf.
Multimedia Syst., 2010, pp. 259–270.

[18] M. Xiao, C. Zhou, Y. Liu, and S. Chen, “OpTile: Toward optimal
tiling in 360-degree video streaming,” in Proc. ACM Int. Conf.
Multimedia, 2017, pp. 708–716.

[19] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan, “Flare: Practical
viewport-adaptive 360-degree video streaming for mobile devices,”
inProc. ACMAnnu. Int. Conf.Mobile Comput. Netw., 2018, pp. 99–114.

[20] J.He,M.A.Qureshi, L. Qiu, J. Li, F. Li, and L.Han, “Rubiks: Practical
360-degree streaming for smartphones,” in Proc. ACM Int. Conf.
Mobile Syst. Appl. Services, 2018, pp. 482–494.

[21] Equirectangular projection, Accessed: 2017. [Online]. Available:
https://en.wikipedia.org/wiki/Equirectangular_projection

[22] F. Qian et al., “Web caching on smartphones: Ideal versus reality,”
in Proc. ACM Int. Conf.Mobile Syst. Appl. Services, 2012, pp. 127–140.

[23] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetch-
ing to improve world wide web latency,” ACM SIGCOMM
Comput. Commun. Rev., vol. 26, no. 3, pp. 22–36, 1996.

[24] M. Jiang, X. Luo, T. Miu, S. Hu, and W. Rao, “Are HTTP/2 servers
ready yet?” in Proc. IEEE Int. Conf. Distrib. Comput. Syst., 2017,
pp. 1661–1671.

[25] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das, “Improving
user perceived page load times using gaze,” in Proc. USENIX Conf.
Netw. Syst. Design Implementation, 2017, pp. 545–559.

[26] J. Ren, L. Gao, H. Wang, and Z. Wang, “Optimise web browsing
on heterogeneous mobile platforms: A machine learning based
approach,” in Proc. IEEE INFOCOM, 2017, pp. 1–9.

[27] G. Tian and Y. Liu, “Towards agile and smooth video adaptation
in dynamic HTTP streaming,” in Proc. ACM 8th Int. Conf. Emerg.
Netw. Experiments Technol., 2012, pp. 109–120.

[28] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a large
video streaming service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 44, no. 4, pp. 187–198, 2015.

[29] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with pensieve,” in Proc. Conf. ACM Special Interest
Group Data Commun., 2017, pp. 197–210.

[30] Y. Im et al., “FLARE:Coordinated rate adaptation forHTTP adaptive
streaming in cellular networks,” in Proc. IEEE Int. Conf. Distrib. Com-
put. Syst., 2017, pp. 298–307.

[31] T. Tran and D. Pompili, “Adaptive bitrate video caching and proc-
essing in mobile-edge computing networks,” IEEE Trans. Mobile
Comput., vol. 18, no. 9, pp. 1965–1978, Sep. 2019.

[32] A. Mehrabi, M. Siekkinen, and A. Yla-Jaaski, “Edge computing
assisted adaptive mobile video streaming,” IEEE Trans. Mobile
Comput., vol. 18, no. 4, pp. 787–800, Apr. 2019.

[33] I. Sodagar, “The MPEG-DASH standard for multimedia streaming
over the internet,” IEEEMultiMedia, vol. 18, no. 4, pp. 62–67,Apr. 2011.

[34] O. A. Niamut, E. Thomas, L. D’Acunto, C. Concolato, F. Denoual,
and S. Y. Lim, “MPEGDASHSRD: Spatial relationship description,”
in Proc. ACMMultimedia Syst. Conf., 2016, Art. no. 5.

[35] L. D’Acunto, J. van den Berg, E. Thomas, and O. Niamut, “Using
MPEG DASH SRD for zoomable and navigable video,” in Proc.
ACM 7th Int. Conf. Multimedia Syst., 2016, Art. no. 34.

[36] M. Hosseini and V. Swaminathan, “Adaptive 360 VR video stream-
ing: Divide and conquer,” in Proc. IEEE Int. Symp. Multimedia, 2016,
pp. 107–110.

[37] K. Diab and M. Hefeeda, “MASH: A rate adaptation algorithm for
multiview video streaming over HTTP,” in Proc. IEEE INFOCOM,
2017, pp. 1–9.

[38] A. Yadav and A. Venkataramani, “msocket: System support for
mobile, multipath, and middlebox-agnostic applications,” in Proc.
IEEE 24th Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[39] L. Zhang, F. Wang, and J. Liu, “Dispersing social content in
mobile crowd through opportunistic contacts,” in Proc. IEEE Int.
Conf. Distrib. Comput. Syst., 2017, pp. 2276–2281.

[40] M. O. Khan, L. Qiu, A. Bhartia, and K. C.-J. Lin, “Smart retrans-
mission and rate adaptation in WiFi,” in Proc. IEEE 23rd Int. Conf.
Netw. Protocols, 2015, pp. 54–65.

[41] A. Aqil, A. O. Atya, S. V. Krishnamurthy, and G. Papageorgiou,
“Streaming lower quality video over LTE:Howmuch energy can you
save?” inProc. IEEE 23rd Int. Conf. Netw. Protocols, 2015, pp. 156–167.

[42] Y. Zhang, D. Niyato, and P. Wang, “Offloading in mobile cloudlet
systemswith intermittent connectivity,” IEEE Trans. Mobile Comput.,
vol. 14, no. 12, pp. 2516–2529, Dec. 2015.

[43] L. Zhang, D. Fu, J. Liu, E. C.-H. Ngai, and W. Zhu, “On energy-effi-
cient offloading in mobile cloud for real-time video applications,”
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 1, pp. 170–181,
Jan. 2017.

[44] C.-J. Liu and L. Xiao, “RMIP: Resource management with interfer-
ence precancellation in heterogeneous cellular networks,” in Proc.
IEEE 24th Int. Conf. Netw. Protocols, 2016, pp. 1–10.

[45] Y.Wu, Y. He, L. P. Qian, J. Huang, andX. S. Shen, “Optimal resource
allocations for mobile data offloading via dual-connectivity,” IEEE
Trans.Mobile Comput., vol. 17, no. 10, pp. 2349–2365, Oct. 2018.

Lei Zhang (S’12–M’19) received the BEng degree
from the Advanced Class of Electronics and Infor-
mation Engineering, Huazhong University of Sci-
ence and Technology,Wuhan, China, in 2011, and
the MS and PhD degrees from Simon Fraser Uni-
versity, Burnaby, BC, Canada, in 2013 and 2019,
respectively. He is a recipient of C.D. Nelson
Memorial Graduate Scholarship (2013) and Best
Paper Finalist at IEEE/ACM IWQoS (2016). He
is currently an assistant professor with the College
of Computer Science and Software Engineering,

Shenzhen University. His research interests include multimedia sys-
tems and applications, mobile cloud computing, edge computing, social
networking, and Internet of Things. He is a member of the IEEE.

Feng Wang (S’07–M’13–SM’18) received the
bachelor’s and master’s degrees in computer sci-
ence and technology from Tsinghua University,
Beijing, China, in 2002 and 2005, respectively,
and the PhD degree in computing science from
Simon Fraser University, Burnaby, British Colum-
bia, Canada, in 2012. He is currently an associate
professor with the Department of Computer and
Information Science, University of Mississippi,
University, Mississippi. He is a recipient of IEEE
ICME Quality Reviewer Award (2011) and ACM

BuildSys Best Paper Award (2018). He is a technical committee member
of Elsevier Computer Communications. He served as program vice chair
in International Conference on Internet of Vehicles (IOV) 2014, and as
TPC co-chair in IEEE CloudCom 2017 for Internet of Things and Mobile
on Cloud track. He also serves as TPC member in various international
conferences such as IEEE INFOCOM, ICPP, IEEE/ACM IWQoS, ACM
Multimedia, IEEE ICC, IEEE GLOBECOM, and IEEE ICME. He is a
senior member of the IEEE.

JiangchuanLiu (S’01–M’03–SM’08–F’17) received
the BEng (cum laude) degree in computer science
from Tsinghua University, Beijing, China, in 1999,
and the PhD degree in computer science from the
Hong Kong University of Science and Technology,
in 2003. He is currently a university professor with
the School of Computing Science, Simon Fraser
University, British Columbia, Canada and a visiting
professor with the College of Computer Science
and Software Engineering, Shenzhen University,
Guangdong, China. He is an EMC-endowed visit-

ing chair professor of Tsinghua University, Beijing, China and an adjunct
professor of Tsinghua-Berkeley Shenzhen Institute. In the past, he worked
as an assistant professor with the Chinese University of Hong Kong and as
a research fellow with Microsoft Research Asia. He is a co-recipient of the
Inaugural Test of Time Paper Award of IEEE INFOCOM (2015), ACM
SIGMM TOMCCAP Nicolas D. Georganas Best Paper Award (2013), and
ACM Multimedia Best Paper Award (2012). His research interests include
multimedia systems and networks, cloud computing, social networking,
online gaming, big data computing, RFID, and Internet of Things. He has
served on the editorial boards of the IEEE/ACM Transactions on Network-
ing, the IEEE Transactions on Big Data, IEEE Transactions onMultimedia,
IEEE Communications Surveys and Tutorials, and IEEE Internet of Things
Journal. He is a steering committee member of the IEEE Transactions on
Mobile Computing and Steering Committee chair of IEEE/ACM IWQoS
(2015-2017). He is a fellow of the IEEE and an NSERC E.W.R. Steacie
memorial fellow.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: ENHANCING DYNAMIC-VIEWPORT MOBILE APPLICATIONS WITH SCREEN SCROLLING 1407

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on January 15,2022 at 10:03:13 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Equirectangular_projection

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

